JP2005085830A - 薄膜デバイスの製造方法および薄膜デバイス - Google Patents

薄膜デバイスの製造方法および薄膜デバイス Download PDF

Info

Publication number
JP2005085830A
JP2005085830A JP2003313403A JP2003313403A JP2005085830A JP 2005085830 A JP2005085830 A JP 2005085830A JP 2003313403 A JP2003313403 A JP 2003313403A JP 2003313403 A JP2003313403 A JP 2003313403A JP 2005085830 A JP2005085830 A JP 2005085830A
Authority
JP
Japan
Prior art keywords
substrate
layer
thin film
film device
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313403A
Other languages
English (en)
Inventor
Chiho Kinoshita
智豊 木下
Akihiko Asano
明彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003313403A priority Critical patent/JP2005085830A/ja
Publication of JP2005085830A publication Critical patent/JP2005085830A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】接着層を2層以上で形成することで、薄膜デバイス層と基板(例えばプラスチック基板)との線膨張率の違いによる反りの影響を排除した薄膜デバイスを可能とする。
【解決手段】第1基板上に薄膜デバイス層121を形成した後に薄膜デバイス層121上に第1接着層を介してもしくは被覆層と第1接着層とを介して第2基板を接着する工程と、化学処理および機械的研磨処理および紫外線照射処理の少なくとも一つの処理を含む工程により第1基板を完全または部分的に分離または除去する工程と、薄膜デバイス層121の第1基板が形成されていた側または部分的に残した第1基板を、第2接着層126を介して第3基板129に接着する工程と、第2基板を分離または除去する工程とを備えた薄膜デバイスの製造方法において、第2接着層126を2層以上の層、例えば接着剤層127と粘着剤層128とで形成することを特徴とするものである。
【選択図】図1

Description

本発明は、プラスチック基板と薄膜デバイス層との線膨張率の違いを緩和してパネルに反りを発生させずに機械的強度を高めた薄膜デバイスの製造方法および薄膜デバイスに関するものである。
近年、薄膜デバイスは、使用機器の小型化の影響を受けて、薄型化、軽量化、堅牢化に対する要求を受けている。しかしながら、薄膜デバイスは、高温、真空という環境で作製されるために、製造に使われる基板に制限がある。例えば、薄膜トランジスタを用いた液晶表示装置では、1000℃の温度に耐える石英基板、500℃の温度に耐えるガラス基板が使われている。これらの基板の薄型化も検討されているが、石英基板、ガラス基板を用いる限り、剛性低下による基板サイズ縮小しなければならず、生産性が低下する。また、基板の厚さが薄くなれば堅牢さも急激に低下するため、実用上の問題点となっている。このように、製造基板に要求されている性能と実際に使用する際に求められている性能が異なっている。また、薄型、軽量、堅牢化が可能なプラスチック基板上に直接、薄膜トランジスタを作製しようという試みもあるが、耐熱温度の点から困難さが高い。
そこで、耐熱温度の高い製造基板上に形成した薄膜デバイスを実使用基板に転写する技術が検討されている。転写する方法としては、剥離層を設けてデバイス作製後に剥離層から剥離する方法(例えば、特許文献1参照。)や、エッチングによりガラス基板を除去する方法(例えば、特許文献2参照。)などが検討されている。
特開平10-125930号公報 特開2003-68995号公報
線膨張率の高いプラスチック基板に転写を行うと、薄膜デバイス層もしくは部分的に残っているガラスと、プラスチック基板の線膨張率が違うため、転写後に加熱すると、反ってしまうという問題がある。また、反った状態でさらに温度を上げると、薄膜デバイス層もしくは部分的に残っているガラスにクラックが入ってしまうこともある。これを解決するためには、線膨張率の低いプラスチック基板や金属基板を使用すればよい。しかしながら、金属基板は不透明なため液晶表示装置の場合は反射型にしか使用できない。また線膨張率の低いプラスチック基板は、透明度が低下すること、高価であることなどの点で不利である。
また、薄膜デバイス層とプラスチック基板を接着する接着剤に粘着剤を用いると、粘着剤層が熱による伸びの差を緩和するために、反りは起こらなくなるが、被接着体に液体を塗布してから固化させる接着剤の密着性のよい接着界面とは異なり、ゲル状の粘着層を被接着体に押し付けるだけなので、接着界面(粘着界面)の気密性に乏しい。また、接着剤は、薄膜デバイス層もしくは部分的に残っているガラスにある微小なクラックを埋めるため、クラックの低減が起こり機械的強度の向上が期待できるが、粘着剤ではその効果はない。なお、ここで言う接着剤は、使用前は液体状であるが使用後には固体状に硬化するものとし、粘着剤は、使用前後で状態が変化しないものとする。
本発明の薄膜デバイスの製造方法は、第1基板上に薄膜デバイス層を形成した後に前記薄膜デバイス層上に第一接着層を介してもしくは被覆層と第1接着層とを介して第2基板を接着する工程と、化学処理および機械的研磨処理および紫外線照射処理の少なくとも一つの処理を含む工程により前記第1基板を完全または部分的に分離または除去する工程と、前記薄膜デバイス層の第1基板が形成されていた側または部分的に残した第1基板を、第2接着層を介して第3基板に接着する工程と、前記第2基板を分離または除去する工程とを備えた薄膜デバイスの製造方法において、前記第2接着層を2層以上の層で形成することを最も主要な特徴とする。
本発明の薄膜デバイスは、プラスチック基板上に2層以上の層で形成される接着層を介して薄膜デバイス層が形成されていることを最も主要な特徴とする。
本発明の薄膜デバイスは、本発明の薄膜デバイスの製造方法により製造されたものであり、すなわち、第1基板上に薄膜デバイス層を形成した後に前記薄膜デバイス層上に第一接着層を介してもしくは被覆層と第1接着層とを介して第2基板を接着する工程と、化学処理および機械的研磨処理および紫外線照射処理の少なくとも一つの処理を含む工程により前記第1基板を完全または部分的に分離または除去する工程と、前記薄膜デバイス層の第1基板が形成されていた側または部分的に残した第1基板を、第2接着層を介して第3基板に接着する工程と、前記第2基板を分離または除去する工程とにより製造される薄膜デバイスにおいて、前記第2接着層は2層以上の層で形成されることを最も主要な特徴とする。
本発明の薄膜デバイスの製造方法は、第2接着層を2層以上の層で形成することから、そのうちの1層は、薄膜を全面で接着し、薄膜デバイス層を密着性よく支える役割を有する層で形成することができ、2層目は、第3基板をプラスチック基板で形成した場合に薄膜デバイス層とプラスチック基板との熱による伸びの差を緩和する役割を果たす層で形成することができるという利点がある。これによって、薄膜デバイス層とプラスチック基板との線膨張率の違いによる反りの影響を排除することができ、なおかつ機械的強度も強くすることができ、薄膜デバイス層の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。また、線膨張率の高い高価なプラスチック基板を使用しなくてもよいため、パネル基板の製造コストが安くなる。
本発明の薄膜デバイスは、本発明の薄膜デバイスの製造方法により形成することから、本発明の薄膜デバイスの製造方法と同様なる作用、効果を得ることができる。
本発明の薄膜デバイスは、プラスチック基板上に2層以上の層で形成される接着層を介して薄膜デバイス層が形成されていることから、熱を加えられた場合であっても、2層以上の層で形成される接着層によって薄膜デバイス層とプラスチック基板との熱による伸びの差が緩和されるという利点がある。これによって、薄膜デバイス層とプラスチック基板との線膨張率の違いによる反りの影響を排除することができ、なおかつ機械的強度も強くすることができ、薄膜デバイス層の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。また、線膨張率の高い高価なプラスチック基板を使用しなくてもよいため、パネル基板の製造コストが安くなる。
本発明の薄膜デバイスの製造方法および薄膜デバイスは、薄膜デバイス層と基板(例えばプラスチック基板)との線膨張率の違いによる反りの影響を排除した薄膜デバイスを提供するという目的を達成するものであり、薄膜デバイス層に接着する基板(例えばプラスチック基板)を2層以上の層で形成する第2接着層を介して接着することにより実現した。
本発明の薄膜デバイスの製造方法および薄膜デバイスは、まず、第1基板上に薄膜デバイス層を形成した後に薄膜デバイス層上に第1接着層を介して第2基板を接着し、化学処理(例えばエッチング)および機械的研磨処理(例えばCMP)および紫外線照射処理の少なくとも一つの処理を含む工程により第1基板を完全または部分的に分離または除去する。そして図1に示すように、薄膜デバイス層121の第1基板側(または部分的に残した第1基板)を、2層以上の層で形成する第2接着層126を介して第3基板129に接着することにより実現されるものである。図面では薄膜デバイス層121の第1基板側に絶縁層103が形成されている。したがって、絶縁層103に第2接着層126が形成される。なお、この絶縁層103の代わりに第1基板の一部を層状に残したものを用いることもできる。上記第2接着層126は、例えば接着剤層127と粘着剤層128とからなる。以下、本発明の薄膜デバイスの製造方法および薄膜デバイスに係わる実施例を以下に説明する。
本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例を、図2〜図5の製造工程断面図によって説明する。第1実施例では、プラスチック基板を用いた液晶用のアクティブ基板を作製した。
まず、薄膜デバイス層の形成方法を図2によって説明する。図2に示すように、第1基板101上に、後に行うガラスエッチングの保護層102としてフッ化水素およびフッ化水素酸に耐性を有する耐HF層を形成する。なお、本明細書では、上記「HF」とはフッ化水素もしくはフッ化水素酸を表すものとする。上記第1基板101には、例えば厚さ0.4〜1.1mm程度、例えば0.7nm厚のガラス基板を用いる。このガラス基板のかわりに石英基板を用いてもよい。上記保護層102は、例えばモリブデン(Mo)膜を500nmの厚さに成膜して形成する。さらに絶縁層103を形成する。この絶縁層103は、例えば酸化珪素(SiO2)膜を500nmの厚さに成膜して形成する。上記モリブデン膜は、例えばスパッタリング法にて形成することができ、上記酸化珪素膜は例えばプラズマCVD法により形成することができる。
その後は、一般的な低温ポリシリコン技術、例えば「2003 FPDテクノロジー大全」(電子ジャーナル2003年3月25日発行、p.166−183およびp.198−201)、「'99最新液晶プロセス技術」(プレスジャーナル1998年発行、p.53−59)、「フラットパネル・ディスプレイ1999」(日経BP社、1998年発行、p.132−139)等に記載されているような低温ポリシリコンボトムゲート型薄膜トランジスタ(以下薄膜トランジスタをTFTと記す)プロセスでTFTを含む薄膜デバイス層を形成した。薄膜デバイス層の形成方法の一例を以下に説明する。
まず、第1基板101上に保護層102を介して形成された絶縁層103上にゲート電極104を形成するための導電膜を形成した。この導電膜には例えば厚さが100nmのモリブデン(Mo)膜を用いた。モリブデン膜の形成方法としては例えばスパッタリング法を用いた。そして上記導電膜を加工してゲート電極104を形成した。このゲート電極104は、一般的なフォトリソグラフィー技術およびエッチング技術によりパターニングして形成した。次いで、ゲート電極104上を被覆するようにゲート絶縁膜105を形成した。ゲート絶縁膜105は、例えばプラズマCVD法によって、酸化珪素(SiO2)層、または酸化珪素(SiO2)層と窒化珪素(SiNx)層との積層体で形成した。さらに連続的に非晶質シリコン層(厚さ30nm〜100nm)を形成した。
この非晶質シリコン層に波長308nmのXeClエキシマレーザパルスを照射し熔融再結晶化し結晶シリコン層(ポリシリコン層)を作製した。このポリシリコン層を用いて、チャネル形成領域となるポリシリコン層106を形成し、その両側にn-型ドープ領域からなるポリシリコン層107、n+型ドープ領域からなるポリシリコン層108を形成した。このように、アクティブ領域は高いオン電流と低いオフ電流を両立するためのLDD(Lightly Doped Drain)構造とした。またポリシリコン層106上にはn-型のリンイオン打込み時にチャネルを保護するためのストッパー層109を形成した。このストッパー層109は、例えば酸化珪素(SiO2)層で形成した。
さらに、プラズマCVD法によって、酸化珪素(SiO2)層、または酸化珪素(SiO2)層と窒化珪素(SiNx)層との積層体からなるパッシベーション膜110を形成した。このパッシベーション膜110上に、各ポリシリコン層108に接続するソース電極111およびドレイン電極112を形成した。各ソース電極111およびドレイン電極112は例えばアルミニウムで形成した。
その後、カラーフィルター113を形成した。カラーフィルター113は、カラーレジストを全面に塗布した後、リソグラフィー技術でパターニングを行って形成した。カラーフィルター113には、ソース電極111と後に形成する液晶駆動用電極が接続されるようにコンタクトホール113Cを形成した。このカラーフィルターの形成工程を3回行って、RGBの3色(赤、緑、青)を形成した。次に、平坦化を行うために保護膜114を形成した。保護膜114は例えばポリメチルメタクリル酸樹脂系の樹脂により形成した。また保護膜114には、ソース電極111と液晶駆動用電極とが接続されるようにコンタクトホール114Cを形成した。その後、ソース電極111に接続する画素電極115を形成した。この画素電極115は、例えば、透明電極で形成される。透明電極としては、例えばインジウムスズオキサイド(ITO)により形成され、その形成方法としてはスパッタリング法が用いられる。
以上の工程により、第1基板101上に透過型のアクティブマトリックス基板が作製できた。また、今回は、ボトムゲート型ポリシリコンTFTを作製したが、トップゲート型ポリシリコンTFTやアモルファスTFTでも同じように実施できる。
次に、第1基板101上の薄膜デバイス層121をプラスチック基板上に移載する工程を説明する。
図3(1)に示すように、第1基板101上に保護層102、絶縁層103、薄膜デバイス層121を形成したものをホットプレート122で80℃〜140℃に加熱しながら、第1接着剤123を厚さ1mm程度に塗布し、第2基板124を上に載せ、加圧しながら、室温まで冷却した。第2基板124には、例えば厚さ1mmのモリブデン基板を用いた。または、第2基板124にガラス基板を用いてもよい。または、第2基板124上に第1接着剤123を塗布して、その上に保護層102から薄膜デバイス層121が形成された第1基板101の薄膜デバイス層121側を載せてもよい。上記第1接着剤123には、例えばホットメルト接着剤を用いた。
次に、図3(2)に示すように、第2基板124を貼り付けた第1基板101をフッ化水素酸(HF)125に浸漬して、第1基板101のエッチングを行った。このエッチングは、保護層102であるモリブデン層がフッ化水素酸125にエッチングされないため、このエッチングは保護層102で自動的に停止する。ここで用いたフッ化水素酸125は、一例として、重量濃度が50%のもので、このエッチング時間は3.5時間とした。フッ化水素酸125の濃度とエッチング時間は、第1基板101のガラスを完全にエッチングすることができるならば、変更しても問題はない。
上記フッ化水素酸125によるエッチングの結果、図4(3)に示すように、第1基板101〔前記図3(2)参照〕が完全にエッチングされ、保護層102が露出される。
次に、混酸〔例えば、リン酸(H3PO4)72wt%と硝酸(HNO3)3wt%と酢酸(CH3COOH)10wt%〕により、保護層102〔前記図4(3)参照〕であるモリブデン層(厚さ:500nm)をエッチングした。これは、透過型の液晶パネルを作製するために、不透明なモリブデン層があると問題となるためである。上記混酸で500nmの厚さのモリブデン層をエッチングするのに必要な時間は約1分である。このエッチングの結果、図4(4)に示すように、この混酸は第1絶縁層103である酸化珪素をエッチングしないため、第1絶縁層103で自動的にエッチングが停止する。
次に、図4(5)に示すように、上記エッチング後に、薄膜デバイス層121の裏面側、すなわち絶縁層103表面に、2層以上の層からなる第2接着層126を形成した。まず第2接着層126の1層となる接着剤層127を形成した。
上記接着剤層127は、一例として、回転塗布技術により例えばアクリル系の紫外線硬化接着剤を塗布した後に紫外線を照射して硬化させることで形成した。回転塗布技術による膜形成では、膜厚を約10μmとした。この接着剤層127は、主に薄膜デバイス層121を保護するものであるため、ヤング率が高く硬いものがよい。具体的には、1×109Pa以上のヤング率を有するものが望ましい。
続けて、図5(6)に示すように、上記接着剤層127に、第2接着層126の1層となるアクリル系の粘着剤層128が付けられた第3基板(ここでは偏光板)129を貼り付けた。このように、第2接着層126は、接着剤層127と粘着材層128とにより形成される。また偏光板は、ヨウ素をPVA(ポリビニアルアルコール)フィルムに吸着させた後、このフィルムを一軸延伸させ偏光子とし、偏光子の両側にポリカーボネートフィルムを張り合わせたものを使用した。上記粘着剤層128は例えば50μmの厚さに形成し、ポリカーボネートフィルムは厚さが例えば200μmのものを用いた。この粘着剤層128は紫外線硬化接着剤の接着剤層127と第3基板(偏光板)129とを接着する目的以外に、薄膜デバイス層121とポリカーボネートフィルムの線膨張率の差を緩和するための層でもあるため、ヤング率が低く柔らかいものがよい。ポリカーボネートの線膨張率は70×10-6/K、薄膜デバイス層は4×10-6/K〜20×10-6/K程度の薄膜で構成されているため、この粘着剤層がないと、加熱時に反ってしまう。この線膨張率の差を50μmの粘着剤層128で緩和しようとすると、粘着剤層128のヤング率としては、1×107Pa以下のものが望ましい。
また、紫外線硬化接着剤の接着剤層127で薄膜デバイス層121を全面で支えているため、機械的強度も強い。ここで、偏光板を貼り付ける理由は、プラスチック基板を貼り付けた後にさらに外側に偏光板を貼り付けるよりも、直接偏光板を貼った方がパネルを薄くできるためである。
次に、図5(7)に示すように、上記基板をアルコール(図示せず)中に浸漬し、ホットメルト接着剤からなる第1接着層123〔前記図3(1)参照〕を溶かして第2基板124〔前記図3(1)参照〕を外した。その結果、第3基板(偏光板)129上に粘着剤層128と接着剤層127とからなる第2接着層126、絶縁層103を介して薄膜デバイス層121が載った薄膜デバイス(アクティブ基板)11を得た。
上記製造方法により製造した薄膜デバイス(アクティブ基板)11は、図6に示すように、例えば、下側の第3基板(偏光板)129が伸びても、粘着剤層128が伸びをそのまま伝えないため、第3基板(偏光板)129で発生した応力を薄膜デバイス層121まで伝えない。これによって、薄膜デバイス層121と、第3基板(偏光板)129との線膨張率の違いによる反りの影響を排除することができ、薄膜デバイス層121の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。
この後は、図示はしないが、上記アクティブ基板を対向基板と張り合わせ、基板間に設けた隙間に液晶を注入し、液晶セルとした。これは、一般的に行われている液晶セル組み立て工程で行えばよい。
本発明の薄膜デバイスは、前記図5(7)によって説明した構成であれば、上記図2〜図5によって説明した製造方法によらなくてもよい。すなわち、プラスチック基板である、第3基板(偏光板)129上に、2層以上の層からなるものとして例えば粘着剤層128と接着剤層127とからなる第2接着層126、絶縁層103を介して薄膜デバイス層121を形成したものであればよい。
このように、プラスチック基板上に2層以上の層(粘着剤層128と接着剤層127)で形成される第2接着層126を介して薄膜デバイス層121が形成されていることから、熱を加えられた場合であっても、粘着剤層128と接着剤層127とで形成される第2接着層126によって薄膜デバイス層121とプラスチック基板である、第3基板(偏光板)129との熱による伸びの差が緩和されるという利点がある。これによって、薄膜デバイス層121と、第3基板(偏光板)129との線膨張率の違いによる反りの影響を排除することができ、薄膜デバイス層121の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。
本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第2実施例を、図8〜図9の製造工程断面図によって説明する。第2実施例では、プラスチック基板を用いた液晶用のアクティブ基板を作製した。
まず、薄膜デバイス層の形成方法を図7によって説明する。図7に示すように、第1基板201上に、非晶質シリコン層202を形成する。上記第1基板201には、例えば厚さ0.4〜1.1mm程度、例えば0.7nm厚のガラス基板を用いる。このガラス基板のかわりに石英基板を用いてもよい。上記非晶質シリコン層202は、例えば10nmの厚さに形成したが、この膜厚は50nm以下であれば問題はない。この非晶質シリコン膜202は、例えばCVD法によって成膜することができる。非晶質シリコン膜202中に、水素を多く含むように、途中で薄膜デバイスが剥がれない限りの低温が望ましい。今回は150℃にて成膜を行った。また、低圧CVD法、大気圧CVD法、ECR法、スパッタ法によるアモルファスシリコンでも問題はない。その後、絶縁層203を形成する。この絶縁層203は、例えば酸化珪素(SiO2)膜を100nmの厚さに成膜して形成する。
その後は、一般的な低温ポリシリコン技術、例えば「2003 FPDテクノロジー大全」(電子ジャーナル2003年3月25日発行、p.166−183およびp.198−201)、「'99最新液晶プロセス技術」(プレスジャーナル1998年発行、p.53−59)、「フラットパネル・ディスプレイ1999」(日経BP社、1998年発行、p.132−139)等に記載されているような低温ポリシリコンボトムゲート型薄膜トランジスタ(以下薄膜トランジスタをTFTと記す)プロセスでTFTを含む薄膜デバイス層を前記第1実施例と同様に形成した。以下、その概略を説明する。
まず、第1基板201上に非晶質シリコン層202を介して形成された絶縁層203上にゲート電極204を形成するための導電膜を、例えば厚さが100nmのモリブデン(Mo)膜を、例えばスパッタリングによって形成した。そして上記導電膜を加工してゲート電極204を形成した。次いで、ゲート電極204上を被覆するようにゲート絶縁膜205を形成した。ゲート絶縁膜205は、例えばプラズマCVD法によって、酸化珪素(SiO2)層、または酸化珪素(SiO2)層と窒化珪素(SiNx)層との積層体で形成した。さらに連続的に非晶質シリコン層(厚さ30nm〜100nm)を形成した。
この非晶質シリコン層に波長308nmのXeClエキシマレーザパルスを照射し熔融再結晶化し結晶シリコン層(ポリシリコン層)を作製した。このポリシリコン層を用いて、チャネル形成領域となるポリシリコン層206を形成し、その両側にn-型ドープ領域からなるポリシリコン層207、n+型ドープ領域からなるポリシリコン層208を形成した。このように、アクティブ領域は高いオン電流と低いオフ電流を両立するためのLDD(Lightly Doped Drain)構造とした。またポリシリコン層206上にはn-型のリンイオン打込み時にチャネルを保護するためのストッパー層209を形成した。このストッパー層209は、例えば酸化珪素(SiO2)層で形成した。
さらに、プラズマCVD法によって、酸化珪素(SiO2)層、または酸化珪素(SiO2)層と窒化珪素(SiNx)層との積層体からなるパッシベーション膜210を形成した。このパッシベーション膜210上に、各ポリシリコン層208に接続するソース電極211およびドレイン電極212を形成した。各ソース電極211およびドレイン電極212は例えばアルミニウムで形成した。
その後、カラーフィルター213を形成した。カラーフィルター213は、カラーレジストを全面に塗布した後、リソグラフィー技術でパターニングを行って形成した。カラーフィルター213には、ソース電極211と後に形成する液晶駆動用電極が接続されるようにコンタクトホール213Cを形成した。このカラーフィルターの形成工程を3回行って、RGBの3色(赤、緑、青)を形成した。次に、平坦化を行うために保護膜214を形成した。保護膜214は例えばポリメチルメタクリル酸樹脂系の樹脂により形成した。また保護膜214には、ソース電極211と液晶駆動用電極とが接続されるようにコンタクトホール214Cを形成した。その後、ソース電極211に接続する画素電極215を形成した。この画素電極215は、例えば、透明電極で形成される。透明電極としては、例えばインジウムスズオキサイド(ITO)により形成され、その形成方法としてはスパッタリング法が用いられる。
以上の工程により、第1基板201上に透過型のアクティブマトリックス基板が作製できた。また、今回は、ボトムゲート型ポリシリコンTFTを作製したが、トップゲート型ポリシリコンTFTやアモルファスTFTでも同じように実施できる。
次に、第1基板201上の薄膜デバイス層221をプラスチック基板上に移載する工程を説明する。
図8(1)に示すように、第1基板201上に非晶質シリコン層202、絶縁層203、薄膜デバイス層221を形成したものをホットプレート(図示せず)で80℃〜140℃に加熱しながら、第1接着剤222を厚さ1mm程度に塗布し、第2基板223を上に載せ、加圧しながら、室温まで冷却した。第2基板223には、例えば厚さ1mmのモリブデン基板を用いた。または、第2基板223上に第1接着剤222を塗布して、その上に非晶質シリコン層202から薄膜デバイス層221が形成された第1基板201の薄膜デバイス層221側を載せてもよい。上記第1接着剤222には、例えばホットメルト接着剤を用いた。
次に、ガラス基板である第1基板201側から紫外線レーザー光を照射した。ガラスは紫外線レーザー光を透過させるため、紫外線レーザー光は、非晶質シリコン層202で吸収される。非晶質シリコン層202に紫外線が吸収されると水素が発生し、非晶質シリコン層202を境として薄膜デバイス層221と第1基板201との分離が起きる。この技術は特開平10-125930号公報に開示されている。この結果、図8(2)に示すように、絶縁層203に形成された薄膜デバイス層221上に第2接着層222を介して第2基板223が接着された構成が得られた。
その後、図8(3)に示すように、上記薄膜デバイス層221の裏面側、すなわち絶縁層203表面に、2層以上の層からなる第2接着層224を形成する。まず第2接着層224の1層となる接着剤層225を形成した。
上記接着剤層225は、一例として、回転塗布技術により例えばアクリル系の紫外線硬化接着剤を塗布した後に紫外線を照射して硬化させることで形成した。回転塗布技術による膜形成では、膜厚を約10μmとした。この接着剤層225は、主に薄膜デバイス層221を保護するものであるため、ヤング率が高く硬いものがよい。具体的には、1×109Pa以上のヤング率を有するものが望ましい。
続けて、図9(4)に示すように、上記接着剤層225に、第2接着層224の1層となるもので、上記接着剤層225よりもヤング率が低く柔らかい接着剤層226を塗布し、第3基板(プラスチック基板)227を貼り付けた。上記接着剤層226は、例えばポリメチルメタクリル樹脂系の紫外線硬化型接着剤であり、例えばスピンコートにより、例えば50μmの厚さに形成される。このように、第2接着層224は、接着剤層225と接着剤層226とにより形成される。また第3基板(プラスチック基板)227には例えばポリカーボネート基板を用い、このポリカーボネート基板には例えば0.2mmの厚さのものを用いた。上記接着剤層226は紫外線硬化接着剤の接着剤層225等を介して薄膜デバイス層221と第3基板227とを接着する目的以外に、薄膜デバイス層221と第3基板(ポリカーボネート基板)227の線膨張率の差を緩和するための層でもあるため、ヤング率が低く柔らかいものがよい。ポリカーボネートの線膨張率は70×10-6/K、薄膜デバイス層は4×10-6/K〜20×10-6/K程度の薄膜で構成されているため、この接着剤層226がないと、加熱時に反ってしまう。この線膨張率の差を50μmの厚さの接着剤層226で緩和しようとすると、接着剤層226のヤング率としては、1×107Pa以下のものが望ましい。
また、ヤング率が高く硬い紫外線硬化接着剤の接着剤層225で薄膜デバイス層221を全面で支えているため、機械的強度も強い。
次に、図9(5)に示すように、上記基板をアルコール(図示せず)中に浸漬し、ホットメルト接着剤からなる第1接着層222〔前記図8(1)参照〕を溶かして第2基板223〔前記図8(1)参照〕を外した。その結果、第3基板(プラスチック基板)227上に接着剤層226と接着剤層225とからなる第2接着層224、絶縁層203を介して薄膜デバイス層221が載った薄膜デバイス(アクティブ基板)12を得た。
上記製造方法により製造した薄膜デバイス(アクティブ基板)12は、図10に示すように、例えば、下側の第3基板(プラスチック基板)227が伸びても、接着剤層226が伸びをそのまま伝えないため、第3基板227で発生した応力を薄膜デバイス層221まで伝えない。これによって、薄膜デバイス層221と第3基板227との線膨張率の違いによる反りの影響を排除することができ、薄膜デバイス層221の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。
この後は、図示はしないが、上記アクティブ基板を対向基板と張り合わせ、基板間に設けた隙間に液晶を注入し、液晶セルとした。これは、一般的に行われている液晶セル組み立て工程で行えばよい。
本発明の薄膜デバイスは、前記図9(5)によって説明した構成であれば、上記図8〜図9によって説明した製造方法によらなくてもよい。すなわち、プラスチック基板である第3基板227上に、2層以上の層からなるものとして例えば接着剤層226と接着剤層225とからなる第2接着層224、絶縁層203を介して薄膜デバイス層221を形成したものであればよい。
このように、プラスチック基板上に2層以上の層(例えば、ヤング率が低く柔らかい接着剤層226とヤング率が高く硬い接着剤層225)で形成される第2接着層224を介して薄膜デバイス層221が形成されていることから、熱を加えられた場合であっても、接着剤層226と接着剤層225とで形成される第2接着層224によって薄膜デバイス層221とプラスチック基板である第3基板227との熱による伸びの差が緩和されるという利点がある。これによって、薄膜デバイス層221と第3基板227との線膨張率の違いによる反りの影響を排除することができ、薄膜デバイス層221の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。
次に、本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第3実施例を、図10〜図13の製造工程断面図によって説明する。第3実施例では、転写方式によりプラスチック基板にアクティブマトリックス基板を作製しアクティブマトリックス型有機エレクトロルミネッセンス(EL)ディスプレイを作製した。
図11に示すように、製造基板となる第1基板301に厚さ0.4〜1.1mm程度のガラス基板もしくは石英基板を用いる。そして、例えばスパッタリング法により、第1基板(例えば厚さが0.7mmのガラス基板)301上に薄膜デバイス層を形成する。
すなわち、薄膜デバイス層として、一般的な低温ポリシリコン技術、例えば「2003 FPDテクノロジー大全」(電子ジャーナル2003年3月25日発行、p.166−183およびp.198−201)、「'99最新液晶プロセス技術」(プレスジャーナル1998年発行、p.53−59)、「フラットパネル・ディスプレイ1999」(日経BP社、1998年発行、p.132−139)等に記載されているような低温ポリシリコンボトムゲート型薄膜トランジスタ(以下薄膜トランジスタをTFTと記す)プロセスでTFTを含む薄膜デバイス層を形成した。薄膜デバイス層の形成方法の一例を以下に説明する。
まず、第1基板301上にゲート電極304を形成するための導電膜を形成した。この導電膜には例えば厚さが100nmのモリブデン(Mo)膜を用いた。モリブデン膜の形成方法としては例えばスパッタリング法を用いた。そして上記導電膜を加工してゲート電極304を形成した。このゲート電極304は、一般的なフォトリソグラフィー技術およびエッチング技術によりパターニングして形成した。次いで、ゲート電極304上を被覆するようにゲート絶縁膜305を形成した。ゲート絶縁膜305は、例えばプラズマCVD法によって、酸化珪素(SiO2 )層、または酸化珪素(SiO2 )層と窒化珪素(SiNx )層との積層体で形成した。さらに連続的に非晶質シリコン層(厚さ30nm〜100nm)を形成した。
この非晶質シリコン層に波長308nmのXeClエキシマレーザパルスを照射し熔融再結晶化し結晶シリコン層を作製した。このポリシリコン層を用いて、チャネル形成領域となるポリシリコン層306を形成し、その両側にn- 型ドープ領域からなるポリシリコン層307、n+ 型ドープ領域からなるポリシリコン層308を形成した。このように、アクティブ領域は高いオン電流と低いオフ電流を両立するためのLDD(Lightly Doped Drain)構造とした。またポリシリコン層306上にはn-型のリンイオン打込み時にチャネルを保護するためのストッパー層309を形成した。このストッパー層309は、例えば酸化シリコン(SiO2 )層で形成した。
さらに、プラズマCVD法によって、酸化珪素(SiO2 )層、または酸化珪素(SiO2 )層と窒化珪素(SiNx )層との積層体からなるパッシベーション膜310を形成した。このパッシベーション膜310上に、各ポリシリコン層308に接続するソース電極311およびドレイン電極312を形成した。各ソース電極311およびドレイン電極312は例えばアルミニウムで形成した。
このようにして、低温ポリシリコンボトムゲート型薄膜トランジスタ(TFT)プロセスで薄膜トランジスタ(TFT)を形成した。その上に有機EL素子を形成した。
次に、例えばスピンコート法によって、ソース電極311、ドレイン電極312等を覆うように、パッシベーション膜310上に保護絶縁層313を例えばメタクリル酸メチル樹脂系樹脂で形成した後、一般的なフォトリソグラフィー技術およびエッチング技術により、ソース電極311と後に形成する有機EL素子のアノード電極とを接続できるように、その部分の保護絶縁層313を取り除いた。
次に、保護絶縁層313上に、有機EL素子を形成した。有機EL素子は、アノード電極314と有機層とカソード電極317とで構成されている。アノード電極314は、例えばスパッタリング法でアルミニウム(Al)膜を形成し、各TFTのソース電極311に接続され、個別に電流を流せるようになっている。
有機層は、有機正孔輸送層315と有機発光層316を積層させた構造とした。有機正孔輸送層315としては、例えば銅フタロシアニンを蒸着により30nmの厚さに形成した。有機発光層316は、緑色として、Alq3[tris(8-quinolinolato)aluminium(III)]を50nmの厚さに、青色として、バソクプロイン(Bathocuproine:2,9-dimethyl-4,7-diphenyl-1,10phenanthroline)を14nmの厚さに、赤色としてBSB−BCN[2,5-bis{4-(N-methoxyphenyl-N-phenylamino)styryl}benzene-1,4-dicarbonitrile]を30nmの厚さにそれぞれ蒸着した。
カソード電極317としては、酸化インジウム錫(In2 3 +SnO2 、以下ITOという)を使用した。
今回は、有機EL素子として、上記構造を用いたが、電極に、電子輸送層、正孔輸送層、電子注入層、正孔注入層、電子阻止層、正孔阻止層、発光層を組み合わせた公知の構造を用いてもよい。
さらに、カソード電極317を覆う形で、パッシベーション膜318を形成した。今回、パッシベーション膜318は、スパッタリング法により窒化シリコン(SiNx)膜を例えば200nmの厚さに形成した。このパッシベーション膜318は、その他、CVD法、蒸着法などで形成してもよい。
以下、TFT層から有機EL層までを薄膜デバイス層321と呼ぶこととする。次に、第1基板301上の薄膜デバイス層321をプラスチック基板上に移載する工程を示す。
図12(1)に示すように第1基板301上に薄膜デバイス層321を形成したものをホットプレート322で80℃〜140℃に加熱しながら、第1接着層323を、例えばホットメルト接着剤を例えば1mm程度の厚さに塗布して形成した。次に、上記第1接着層323上に第2基板324を載せ、第2基板324を第1基板301方向に加圧しながら、室温まで冷却した。上記第2基板324には、例えば厚さが1mmのモリブデン(Mo)基板を用いた。または、第2基板324上にホットメルト接着剤を塗布して、その上に薄膜デバイス層321が形成された第1基板301の薄膜デバイス層321側を載せてもよい。
次に、図12(2)に示すように、第2基板323を貼り付けた基板をフッ化水素酸325に浸漬して、第1基板301のエッチングを行った。このエッチングでは、第1基板301を、例えばおよそ30μmの厚さになるように残すように行うため、エッチング終点は例えばエッチング時間により制御する。一例として、ここで用いたフッ化水素酸325は重量濃度15%〜25%のもので、このエッチング時間はエアーブローによるバブリングによって弗化水素酸溶液を攪拌しながら室温で約3時間とした。フッ化水素酸325の濃度とエッチング時間は、適宜変更しても問題はない。上記エッチングの代わりに、例えば機械的な研磨、化学的機械研磨等の研磨によって、第1基板301を薄くしても良い。
上記フッ化水素酸325によるエッチングの結果、図13(3)に示すように、第1基板301上に薄膜デバイス層321が形成され、さらに薄膜デバイス層321上に第1接着層323を介して第2基板324が形成されたものが得られる。
その後、図13(4)に示すように、上記薄膜デバイス層321の裏面側、すなわち第1基板301表面に、2層以上の層からなる第2接着層326を形成する。まず第2接着層326の1層となる接着剤層327を形成した。
上記接着剤層327は、一例として、回転塗布技術により例えばアクリル系の紫外線硬化接着剤を塗布した後に紫外線を照射して硬化させることで形成した。回転塗布技術による膜形成では、膜厚を約10μmとした。この接着剤層327は、主に薄膜デバイス層321を保護するものであるため、ヤング率が高く硬いものがよい。具体的には、1×109Pa以上のヤング率を有するものが望ましい。また、薄く残したガラスの第1基板301にクラックがあると、そこから割れてしまう。しかしながら、上記のように紫外線硬化接着剤からなる接着剤層327を塗布することにより第1基板301に発生しているクラックが埋まるため耐衝撃性が高くなる。
続けて、図14(5)に示すように、上記接着剤層327に、第2接着層326の1層となるもので、上記接着剤層327よりもヤング率が低く柔らかい粘着剤層328を塗布し、第3基板(プラスチック基板)227を貼り付けた。上記粘着剤層328は、例えばポリメチルメタクリル樹脂系の粘着剤であり、例えば50μmの厚さに形成される。このように、第2接着層326は、接着剤層327と粘着剤層328とにより形成される。また第3基板(プラスチック基板)227には例えばポリカーボネート基板を用い、このポリカーボネート基板には例えば0.2mmの厚さのものを用いた。このように、第2接着層326は、接着剤層327と粘着材層328とにより形成される。この粘着剤層328は紫外線硬化接着剤の接着剤層327と第3基板329とを接着する目的以外に、薄膜デバイス層321とポリカーボネートの線膨張率の差を緩和するための層でもあるため、ヤング率が低く柔らかいものがよい。ポリカーボネートの線膨張率は70×10-6/KK、ガラスは5×10-6/K程度の薄膜で構成されているため、この粘着剤層328がないと、加熱時に反ってしまう。この線膨張率の差を50μmの粘着剤層328で緩和しようとすると、粘着剤層328のヤング率としては、1×107Pa以下のものが望ましい。
また、紫外線硬化接着剤の接着剤層327で薄膜デバイス層321を全面で支えているため、機械的強度も強い。
次に、図14(6)に示すように、上記基板をアルコール(図示せず)中に浸漬し、ホットメルト接着剤からなる第1接着層322〔前記図12(1)参照〕を溶かして第2基板323〔前記図12(1)参照〕を外し、第3基板329上に粘着剤層328と接着剤層327とからなる第2接着層326、第1基板301を介して薄膜デバイス層321が載った薄膜デバイス(アクティブ基板)13を得た。
上記製造方法により製造した薄膜デバイス(アクティブ基板)13は、図14に示すように、例えば、下側の第3基板329が伸びても、粘着剤層328が伸びをそのまま伝えないため、第3基板329で発生した応力を第1基板301まで伝えない。したがって、第3基板329で発生した応力は薄膜デバイス層321まで伝わらない。これによって、薄膜デバイス層321と第3基板329との線膨張率の違いによる反りの影響を排除することができ、薄膜デバイス層321の損傷を防止して、信頼性の高い表示装置(液晶表示装置、エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。
この後は、図示はしないが、上記アクティブ基板を対向基板と張り合わせ、基板間に設けた隙間に液晶を注入し、液晶セルとした。これは、一般的に行われている有機エレクトロルミネッセンス表示装置の組立工程で行えばよい。
本発明の薄膜デバイスは、前記図13(6)によって説明した構成であれば、上記図11〜図13によって説明した製造方法によらなくてもよい。すなわち、プラスチック基板である第3基板329上に、2層以上の層からなるものとして例えば粘着剤層328と接着剤層327とからなる第2接着層326、第1基板301を介して薄膜デバイス層321を形成したものであればよい。
このように、プラスチック基板上に2層以上の層(例えば、ヤング率が低く柔らかい粘着剤層328とヤング率が高く硬い接着剤層327)で形成される第2接着層326を介して薄膜デバイス層321が形成されていることから、熱を加えられた場合であっても、粘着剤層328と接着剤層327とで形成される第2接着層326によって薄膜デバイス層321とプラスチック基板である第3基板329との熱による伸びの差が緩和されるという利点がある。これによって、薄膜デバイス層321と第3基板329との線膨張率の違いによる反りの影響を排除することができ、薄膜デバイス層321の損傷を防止して、信頼性の高い表示装置(エレクトロルミネッセンス表示装置等)のパネル基板を提供することができる。
上記第1、3実施例においては、第2接着層を1層の接着剤層と1層の粘着剤層とで形成したが、接着剤層を複数層に形成してもよく、また粘着剤層を複数層に形成してもよい。また上記第2実施例においては、第2接着層をヤング率のことなる2層の接着剤層で形成したが、そのうちの1層を複数層に形成してもよい。
上記各実施例において、薄膜デバイス層上に第1接着層を介して第2基板を接着する際に、薄膜デバイス層上に被覆層を形成した後、第1接着層を形成してもよい。この被覆層は、例えば酸化シリコン等の絶縁膜で形成される。
本発明の薄膜デバイスの製造方法および薄膜デバイスは、液晶表示装置、有機エレクトロルミネッセンス表示装置等の各種表示装置の用途に適用できる。
本発明の薄膜デバイスの製造方法および薄膜デバイスに係る実施の形態を説明する概略構成断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例の効果を説明する概略構成断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第2実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第2実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第2実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第1実施例の効果を説明する概略構成断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第3実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第3実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第3実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第3実施例を示す製造工程断面図である。 本発明の薄膜デバイスの製造方法および薄膜デバイスに係る第3実施例の効果を説明する概略構成断面図である。
符号の説明
121…薄膜デバイス層、126…第2接着層、127…接着剤層、128…粘着剤層、129…第3基板

Claims (9)

  1. 第1基板上に薄膜デバイス層を形成した後に前記薄膜デバイス層上に第1接着層を介してもしくは被覆層と第1接着層とを介して第2基板を接着する工程と、
    化学処理および機械的研磨処理および紫外線照射処理の少なくとも一つの処理を含む工程により前記第1基板を完全または部分的に分離または除去する工程と、
    前記薄膜デバイス層の第1基板が形成されていた側または部分的に残した第1基板を、第2接着層を介して第3基板に接着する工程と、
    前記第2基板を分離または除去する工程と
    を備えた薄膜デバイスの製造方法において、
    前記第2接着層を2層以上の層で形成する
    ことを特徴とする薄膜デバイスの製造方法。
  2. 前記第2接着層を接着剤層と粘着剤層とで形成する
    ことを特徴とする請求項1記載の薄膜デバイスの製造方法。
  3. 前記第2接着層を接着剤層と粘着剤層とで形成するとともに、前記第3基板に偏光特性を有する基板を用いる
    ことを特徴とする請求項1記載の薄膜デバイスの製造方法。
  4. 第1基板上に薄膜デバイス層を形成した後に前記薄膜デバイス層上に第1接着層を介してもしくは被覆層と第1接着層とを介して第2基板を接着する工程と、
    化学処理および機械的研磨処理および紫外線照射処理の少なくとも一つの処理を含む工程により前記第1基板を完全または部分的に分離または除去する工程と、
    前記薄膜デバイス層の第1基板が形成されていた側または部分的に残した第1基板を、第2接着層を介して第3基板に接着する工程と、
    前記第2基板を分離または除去する工程と
    により製造される薄膜デバイスにおいて、
    前記第2接着層は2層以上の層で形成される
    ことを特徴とする薄膜デバイス。
  5. 前記第2接着層は接着剤層と粘着剤層とからなる
    ことを特徴とする請求項4記載の薄膜デバイス。
  6. 前記第2接着層は接着剤層と粘着剤層とからなるとともに、前記第3基板は偏光特性を有する基板からなる
    ことを特徴とする請求項4記載の薄膜デバイス。
  7. プラスチック基板上に2層以上の層で形成される接着層を介して薄膜デバイス層が形成されている
    ことを特徴とする薄膜デバイス。
  8. 前記接着層は接着剤層と粘着剤層とからなる
    ことを特徴とする請求項7記載の薄膜デバイス。
  9. 前記接着層は接着剤層と粘着剤層とからなるとともに、前記プラスチック基板は偏光特性を有するものからなる
    ことを特徴とする請求項7記載の薄膜デバイス。

JP2003313403A 2003-09-05 2003-09-05 薄膜デバイスの製造方法および薄膜デバイス Pending JP2005085830A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313403A JP2005085830A (ja) 2003-09-05 2003-09-05 薄膜デバイスの製造方法および薄膜デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313403A JP2005085830A (ja) 2003-09-05 2003-09-05 薄膜デバイスの製造方法および薄膜デバイス

Publications (1)

Publication Number Publication Date
JP2005085830A true JP2005085830A (ja) 2005-03-31

Family

ID=34414334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313403A Pending JP2005085830A (ja) 2003-09-05 2003-09-05 薄膜デバイスの製造方法および薄膜デバイス

Country Status (1)

Country Link
JP (1) JP2005085830A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152187A (ja) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd 発光装置の作製方法および蒸着用基板
JP2009206244A (ja) * 2008-02-27 2009-09-10 Oki Data Corp 半導体装置
JP2011027822A (ja) * 2009-07-22 2011-02-10 Hitachi Displays Ltd フレキシブル表示装置
US7892385B2 (en) 2006-02-02 2011-02-22 Samsung Electronics Co., Ltd. Adhesive member and method of manufacturing display device using the same
JP2011517370A (ja) * 2008-03-05 2011-06-02 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 伸張可能及び折畳み可能な電子デバイス
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
JP2018125536A (ja) * 2009-09-04 2018-08-09 株式会社半導体エネルギー研究所 表示装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230310B1 (ko) * 2006-02-02 2013-02-06 삼성디스플레이 주식회사 접착 부재 및 이를 사용하는 표시 장치의 제조 방법
US7892385B2 (en) 2006-02-02 2011-02-22 Samsung Electronics Co., Ltd. Adhesive member and method of manufacturing display device using the same
JP2009152187A (ja) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd 発光装置の作製方法および蒸着用基板
US8425974B2 (en) 2007-11-29 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
JP2009206244A (ja) * 2008-02-27 2009-09-10 Oki Data Corp 半導体装置
JP4575966B2 (ja) * 2008-02-27 2010-11-04 株式会社沖データ 半導体装置
US8905772B2 (en) 2008-03-05 2014-12-09 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
JP2011517370A (ja) * 2008-03-05 2011-06-02 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 伸張可能及び折畳み可能な電子デバイス
US10064269B2 (en) 2008-03-05 2018-08-28 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US10292261B2 (en) 2008-03-05 2019-05-14 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
JP2011027822A (ja) * 2009-07-22 2011-02-10 Hitachi Displays Ltd フレキシブル表示装置
JP2018125536A (ja) * 2009-09-04 2018-08-09 株式会社半導体エネルギー研究所 表示装置
US10418384B2 (en) 2009-09-04 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US10665615B2 (en) 2009-09-04 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US11094717B2 (en) 2009-09-04 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US11862643B2 (en) 2009-09-04 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device

Similar Documents

Publication Publication Date Title
US8168511B2 (en) Display device manufacturing method and laminated structure
JP4052631B2 (ja) アクティブマトリクス型表示装置
CN100392797C (zh) 剥离方法
EP1575085A2 (en) Thin film device supply body and method of fabricating tha same and its use in a transfer method
JP2008122905A (ja) 有機電界発光表示装置及びその製造方法
JP2008124420A (ja) 有機電界発光表示装置及びその製造方法
JP2009123645A (ja) 有機el表示装置およびその製造方法
JP2009205941A (ja) 表示装置の製造方法、表示装置、照明装置の製造方法および照明装置
US20070090404A1 (en) Process for the fabrication of thin-film device and thin-film device
JP2001282123A (ja) 表示装置およびその製造方法
JP2003323132A (ja) 薄膜デバイスの製造方法および半導体装置
JP2006179352A (ja) 自発光パネルの製造方法
JP2005209756A (ja) 薄膜デバイスの製造方法、薄膜デバイス、液晶表示装置およびエレクトロルミネッセンス表示装置
JP2005085830A (ja) 薄膜デバイスの製造方法および薄膜デバイス
JP2005017567A (ja) 液晶表示装置と液晶表示装置の製造方法およびエレクトロルミネッセンス表示装置とエレクトロルミネッセンス表示装置の製造方法
JP4063225B2 (ja) 液晶表示装置および液晶表示装置の製造方法
JP2012138547A (ja) フレキシブル電子デバイスの製造方法および樹脂層付積層基板、ならびにフレキシブル電子デバイス製造部材
US6696325B1 (en) Method of transferring a thin film device onto a plastic sheet and method of forming a flexible liquid crystal display
JP2000133809A (ja) 剥離方法
JP4759917B2 (ja) 薄膜デバイスの製造方法、薄膜デバイスおよび液晶表示装置
JP2005202094A (ja) 表示装置の基板、薄膜デバイスの製造方法、薄膜デバイス、液晶表示装置およびエレクトロルミネッセンス表示装置
JP4621713B2 (ja) アクティブマトリクス型表示装置
JP2005216887A (ja) 薄膜デバイスの製造方法、薄膜デバイス、液晶表示装置およびエレクトロルミネッセンス表示装置
JP2005308849A (ja) 薄膜デバイス、薄膜デバイスの製造方法、液晶表示装置およびエレクトロルミネッセンス表示装置
JP3926116B2 (ja) 半導体装置の製造方法、液晶表示装置の製造方法、及びel表示装置の製造方法