JP2005083608A - Refrigeration unit - Google Patents

Refrigeration unit Download PDF

Info

Publication number
JP2005083608A
JP2005083608A JP2003313436A JP2003313436A JP2005083608A JP 2005083608 A JP2005083608 A JP 2005083608A JP 2003313436 A JP2003313436 A JP 2003313436A JP 2003313436 A JP2003313436 A JP 2003313436A JP 2005083608 A JP2005083608 A JP 2005083608A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
condenser
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313436A
Other languages
Japanese (ja)
Inventor
Kenichi Masaki
謙一 正木
Tadashi Tomikawa
匡 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003313436A priority Critical patent/JP2005083608A/en
Publication of JP2005083608A publication Critical patent/JP2005083608A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration unit for preventing damage of a compressor by liquid compression, and improving performance of an evaporator, by putting a compressor suction side refrigerant in a dry state, while bringing the refrigerant of an evaporator outlet near to a maximal saturated state. <P>SOLUTION: This refrigeration unit is provided with a supercooling heat exchanger 5 for exchanging heat between a suction side refrigerant of the compressor 1 and an outlet side refrigerant of a condenser 2. This heat exchanger 5 can puts the refrigerant of a wet state in a dry state by the outlet side refrigerant of the condenser 2, when the refrigerant of the evaporator 4 outlet is put in the wet state, and can further supercool the outlet side refrigerant of the condenser 2 by the refrigerant of the evaporator 4 outlet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば、圧縮機と凝縮器と膨張手段と蒸発器とを順次接続した冷凍装置に関する。   The present invention relates to a refrigeration apparatus in which, for example, a compressor, a condenser, an expansion means, and an evaporator are sequentially connected.

従来の冷凍装置では、圧縮機と凝縮器と膨張弁と蒸発器とを順次環状に接続し、上記圧縮機の吸入側における冷媒の圧力および温度をセンサにて検知し、この検知結果に基づいて、上記膨張弁を制御して、上記蒸発器出口の冷媒の過熱度(スーパーヒート)を制御していた(特公平6−65940号公報:特許文献1参照)。   In a conventional refrigeration system, a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner, and the pressure and temperature of the refrigerant on the suction side of the compressor are detected by a sensor. Based on the detection result, The expansion valve was controlled to control the degree of superheat of the refrigerant at the evaporator outlet (see Japanese Patent Publication No. 6-65940: Patent Document 1).

一般に、この過熱度が約0℃になるように制御して、上記蒸発器出口の冷媒を飽和状態に近づけることで、上記蒸発器の内部を液で満たすことができる。このとき、上記蒸発器の有効伝熱面積を多く確保できることから、上記蒸発器の小型化が可能になる。   Generally, the inside of the evaporator can be filled with liquid by controlling the degree of superheat to be about 0 ° C. and bringing the refrigerant at the outlet of the evaporator close to saturation. At this time, since a large effective heat transfer area of the evaporator can be secured, the evaporator can be downsized.

しかしながら、上記従来の冷凍装置では、上記過熱度が約0℃になるように制御したとき、上記圧縮機に吸入される冷媒が湿り状態になって、上記圧縮機が液圧縮による破損を生ずる問題があった。
特公平6−65940号公報(第2図)
However, in the conventional refrigeration apparatus, when the superheat degree is controlled to be about 0 ° C., the refrigerant sucked into the compressor becomes wet and the compressor is damaged due to liquid compression. was there.
Japanese Examined Patent Publication No. 6-65940 (Fig. 2)

そこで、この発明の課題は、蒸発器出口の冷媒をできるだけ飽和状態に近づけつつ圧縮機吸入側の冷媒を乾き状態にして、液圧縮による圧縮機の破損を防止しかつ蒸発器の性能を向上できる冷凍装置を提供することにある。   Accordingly, an object of the present invention is to make the refrigerant at the suction side of the compressor dry while bringing the refrigerant at the outlet of the evaporator as close to saturation as possible, thereby preventing damage to the compressor due to liquid compression and improving the performance of the evaporator. It is to provide a refrigeration apparatus.

上記課題を解決するため、この発明の冷凍装置は、圧縮機と凝縮器と膨張手段と蒸発器とを順次接続した冷凍装置において、
上記圧縮機の吸入側の冷媒と上記凝縮器の出口側の冷媒とを熱交換する過冷却用の熱交換器を設けたことを特徴としている。
In order to solve the above problems, the refrigeration apparatus of the present invention is a refrigeration apparatus in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected.
A heat exchanger for supercooling for exchanging heat between the refrigerant on the suction side of the compressor and the refrigerant on the outlet side of the condenser is provided.

この発明の冷凍装置によれば、上記熱交換器により、上記圧縮機の吸入側の冷媒と上記凝縮器の出口側の冷媒とを熱交換するので、上記蒸発器出口の冷媒が湿り状態にあるとき、この湿り状態の冷媒を、上記凝縮器の出口側の冷媒により、乾き状態にできる。また、同時に、上記凝縮器の出口側の冷媒を、上記蒸発器出口の冷媒により、一層過冷却することができる。   According to the refrigeration apparatus of the present invention, the heat exchanger exchanges heat between the refrigerant on the suction side of the compressor and the refrigerant on the outlet side of the condenser, so that the refrigerant at the evaporator outlet is in a wet state. At this time, the wet refrigerant can be dried by the refrigerant on the outlet side of the condenser. At the same time, the refrigerant on the outlet side of the condenser can be further supercooled by the refrigerant at the outlet of the evaporator.

したがって、上記蒸発器出口の冷媒を飽和状態に近づけても(過熱度を約0℃にしても)、その冷媒は上記圧縮機に吸入されるときには乾き状態であるので、上記圧縮機の液圧縮による破損を回避しつつ、上記蒸発器の内部を液で満たすことができる。このため、上記蒸発器の熱交換の効率を高くでき、伝熱面積を小さくして上記蒸発器の小型化が可能になる。また、上記凝縮器の出口側の冷媒を一層過冷却できるので、上記蒸発器入口の二相状態が液リッチとなり、上記蒸発器内の冷媒の分配を均等にして、上記蒸発器内の冷媒の偏流を防止できる。このため、上記蒸発器の性能をさらに向上して、上記蒸発器を一層小さくできる。   Therefore, even if the refrigerant at the outlet of the evaporator approaches a saturated state (even if the degree of superheat is about 0 ° C.), the refrigerant is in a dry state when sucked into the compressor. The inside of the evaporator can be filled with the liquid while avoiding breakage due to. For this reason, the efficiency of heat exchange of the evaporator can be increased, and the evaporator can be miniaturized by reducing the heat transfer area. Further, since the refrigerant on the outlet side of the condenser can be further supercooled, the two-phase state at the inlet of the evaporator becomes liquid-rich, and the distribution of the refrigerant in the evaporator is made uniform, so that the refrigerant in the evaporator The drift can be prevented. For this reason, the performance of the evaporator can be further improved, and the evaporator can be further reduced.

また、一実施形態の冷凍装置では、上記冷媒は、非共沸混合冷媒である。   In one embodiment, the refrigerant is a non-azeotropic refrigerant mixture.

この一実施形態の冷凍装置によれば、上記冷媒として、沸点が異なる複数の冷媒からなって偏流が生じやすい非共沸混合冷媒を用いていても、上記過冷却用の熱交換器の存在によって、上記蒸発器の中を確実に液で満たして、上記蒸発器内の冷媒の偏流を確実に防止でき、かつ、上記圧縮機の液圧縮を防止できる。   According to the refrigeration apparatus of this embodiment, even if a non-azeotropic refrigerant mixture consisting of a plurality of refrigerants having different boiling points and causing a drift is used as the refrigerant, the presence of the supercooling heat exchanger The evaporator can be reliably filled with the liquid, and the drift of the refrigerant in the evaporator can be reliably prevented, and the liquid compression of the compressor can be prevented.

また、一実施形態の冷凍装置では、上記蒸発器は、上記冷媒にて液熱媒体を冷却するものであって、積層された複数の伝熱プレートを備え、隣接するこの伝熱プレートの間に交互に冷媒流通路と液熱媒体流通路とが形成されると共に、上記各伝熱プレートに、上記冷媒流通路にのみ連通する上記冷媒の流入路および流出路と、上記液熱媒体流通路にのみ連通する上記液熱媒体の流入路および流出路とが形成される。   In one embodiment of the refrigeration apparatus, the evaporator cools the liquid heat medium with the refrigerant, and includes a plurality of stacked heat transfer plates, between the adjacent heat transfer plates. A refrigerant flow path and a liquid heat medium flow path are alternately formed, and each of the heat transfer plates is connected to the refrigerant inflow path and the outflow path that communicates only with the refrigerant flow path, and to the liquid heat medium flow path. An inflow path and an outflow path for the liquid heat medium communicating only with each other are formed.

この一実施形態の冷凍装置によれば、上記蒸発器は、いわゆる、プレート式熱交換器であるので、上記冷媒による上記液熱媒体への冷却効率を向上させることができる。また、上記冷媒の偏流が抑制されているので、上記液熱媒体が水である場合、この水の流路が部分的に凍結することがなく、性能の低下を防ぐことができる。要するに、上記過冷却用の熱交換器を設ける冷凍装置として、上記蒸発器が、上記液熱媒体流路の断面積の小さなプレート式熱交換器である場合に好適となる。   According to the refrigeration apparatus of this embodiment, since the evaporator is a so-called plate heat exchanger, the cooling efficiency of the liquid heat medium by the refrigerant can be improved. Moreover, since the drift of the refrigerant is suppressed, when the liquid heat medium is water, the flow path of the water is not partially frozen, and the performance can be prevented from deteriorating. In short, the refrigeration apparatus provided with the heat exchanger for supercooling is suitable when the evaporator is a plate heat exchanger having a small cross-sectional area of the liquid heat medium flow path.

この発明の冷凍装置によれば、上記圧縮機の吸入側の冷媒と上記凝縮器の出口側の冷媒とを熱交換する過冷却用の熱交換器を設けているので、上記蒸発器出口の冷媒をできるだけ飽和状態に近づけつつ上記圧縮機吸入側の冷媒を乾き状態にして、上記圧縮機の破損を防止しかつ上記蒸発器の性能を向上できる。   According to the refrigeration apparatus of the present invention, since the supercooling heat exchanger for exchanging heat between the refrigerant on the suction side of the compressor and the refrigerant on the outlet side of the condenser is provided, the refrigerant at the evaporator outlet It is possible to prevent the compressor from being damaged and improve the performance of the evaporator by making the refrigerant on the suction side of the compressor dry while bringing the refrigerant as close to saturation as possible.

また、一実施形態の冷凍装置によれば、上記冷媒として非共沸混合冷媒を用いても、上記過冷却用の熱交換器の存在によって、上記蒸発器内の冷媒の偏流を防止でき、かつ、上記圧縮機の液圧縮を防止できる。   Further, according to the refrigeration apparatus of one embodiment, even if a non-azeotropic refrigerant mixture is used as the refrigerant, the presence of the supercooling heat exchanger can prevent the refrigerant from drifting in the evaporator, and The liquid compression of the compressor can be prevented.

また、一実施形態の冷凍装置によれば、上記蒸発器は、いわゆる、プレート式熱交換器であるので、上記冷媒による上記液熱媒体への冷却効率を向上させることができる。   Moreover, according to the refrigeration apparatus of one embodiment, since the evaporator is a so-called plate heat exchanger, the cooling efficiency of the liquid heat medium by the refrigerant can be improved.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1は、この発明の冷凍装置の一実施形態である簡略構成図を示している。この冷凍装置は、圧縮機1と凝縮器2と膨張手段3と蒸発器4とを順次環状に接続して、冷媒を用いた冷凍サイクルを構成する。   FIG. 1 shows a simplified configuration diagram as an embodiment of the refrigeration apparatus of the present invention. In this refrigeration apparatus, a compressor 1, a condenser 2, an expansion means 3, and an evaporator 4 are sequentially connected in an annular manner to constitute a refrigeration cycle using refrigerant.

この冷凍サイクルを説明すると、上記圧縮機1にて吐出される気相の冷媒は、上記凝縮器2において熱を奪われて、液相状態になり、この液相の冷媒は、上記膨張手段3により、減圧されて、気相と液相の二相状態になる。その後、この二相の冷媒は、上記蒸発器4において熱を与えられて、気相状態になり、この気相の冷媒は、上記圧縮機1にて吸入されて加圧された後に、再び、上記圧縮機1にて吐出される。   Explaining this refrigeration cycle, the refrigerant in the gas phase discharged from the compressor 1 is deprived of heat in the condenser 2 to be in a liquid phase, and the refrigerant in the liquid phase is in the expansion means 3. Thus, the pressure is reduced to a two-phase state of a gas phase and a liquid phase. Thereafter, the two-phase refrigerant is heated in the evaporator 4 to be in a gas phase state. The gas-phase refrigerant is sucked and pressurized in the compressor 1 and then again, It is discharged by the compressor 1.

上記凝縮器2は、ファン7を備え、このファン7の空冷により、上記冷媒が冷却される。上記蒸発器4は、水(液熱媒体)にて上記冷媒を加熱すると共にこの水を冷却するものであり、すなわち、水と冷媒との熱交換器である。   The condenser 2 includes a fan 7, and the refrigerant is cooled by air cooling of the fan 7. The evaporator 4 heats the refrigerant with water (liquid heat medium) and cools the water, that is, a heat exchanger of water and refrigerant.

上記圧縮機1の吸入側の配管には、上記圧縮機1の吸入側における冷媒の圧力および温度を検知するセンサ6が設けられる。   A pipe 6 on the suction side of the compressor 1 is provided with a sensor 6 that detects the pressure and temperature of the refrigerant on the suction side of the compressor 1.

上記膨張手段3は、電子制御された膨張弁であり、上記センサ6による検知結果に基づいて、上記蒸発器4の出口における冷媒の過熱度(スーパーヒート)を制御するように構成されている。ここで、過熱度とは、飽和状態の温度との差を示す温度である。なお、上記膨張手段3としては、キャピラリーチューブ等を用いてもよい。   The expansion means 3 is an electronically controlled expansion valve, and is configured to control the degree of superheat (superheat) of the refrigerant at the outlet of the evaporator 4 based on the detection result by the sensor 6. Here, the degree of superheat is a temperature indicating a difference from the temperature in the saturated state. As the expansion means 3, a capillary tube or the like may be used.

そして、この冷凍装置は、上記圧縮機1の吸入側の冷媒(上記圧縮機1と上記蒸発器4との間の冷媒)と、上記凝縮器2の出口側の冷媒(上記凝縮器2と上記膨張手段3との間の冷媒)とを、熱交換する過冷却用の熱交換器5を設けている。具体的に述べると、上記熱交換器5は、上記圧縮機1と上記蒸発器4との間の配管(上記圧縮機1の吸入側配管)と、上記凝縮器2と上記膨張手段3との間の配管(上記凝縮器2の出口側配管)とにわたって配置される。なお、上記熱交換器5としては、例えば、二重管式熱交換器やシェルアンドチューブ式熱交換器やプレート式熱交換器等を用いる。   The refrigeration apparatus includes a refrigerant on the suction side of the compressor 1 (a refrigerant between the compressor 1 and the evaporator 4) and a refrigerant on the outlet side of the condenser 2 (the condenser 2 and the above-described refrigerant). A heat exchanger 5 for supercooling for exchanging heat between the refrigerant and the expansion means 3 is provided. Specifically, the heat exchanger 5 includes a pipe between the compressor 1 and the evaporator 4 (a suction side pipe of the compressor 1), the condenser 2 and the expansion means 3. Between the pipes (the outlet side pipe of the condenser 2). As the heat exchanger 5, for example, a double tube heat exchanger, a shell and tube heat exchanger, a plate heat exchanger, or the like is used.

上記構成の冷凍装置によれば、上記過冷却用の熱交換器5を設けているので、上記蒸発器4の出口の冷媒が湿り状態にあるとき、この湿り状態の冷媒を、上記凝縮器2の出口側の冷媒により、乾き状態にできる。また、同時に、上記凝縮器2の出口側の冷媒を、上記蒸発器4の出口の冷媒により、一層過冷却することができる。   According to the refrigeration apparatus having the above configuration, since the supercooling heat exchanger 5 is provided, when the refrigerant at the outlet of the evaporator 4 is in a wet state, the wet state refrigerant is supplied to the condenser 2. The refrigerant on the outlet side can be dried. At the same time, the refrigerant at the outlet side of the condenser 2 can be further subcooled by the refrigerant at the outlet of the evaporator 4.

例えば、上記蒸発器4出口の冷媒の過熱度を約0℃にし、上記凝縮器2出口の冷媒の温度を約50℃にし、上記蒸発器4入口の冷媒の温度を約5℃にする。   For example, the superheat degree of the refrigerant at the outlet of the evaporator 4 is set to about 0 ° C., the temperature of the refrigerant at the outlet of the condenser 2 is set to about 50 ° C., and the temperature of the refrigerant at the inlet of the evaporator 4 is set to about 5 ° C.

したがって、上記蒸発器4の出口の冷媒を飽和状態に近づけても(過熱度を約0℃にしても)、その冷媒は上記圧縮機1に吸入されるときには乾き状態であるので、上記圧縮機1の液圧縮による破損を回避しつつ、上記蒸発器4の内部を液で満たすことができる。   Therefore, even if the refrigerant at the outlet of the evaporator 4 approaches a saturated state (even if the degree of superheat is about 0 ° C.), the refrigerant is in a dry state when sucked into the compressor 1. The inside of the evaporator 4 can be filled with the liquid while avoiding breakage due to liquid compression 1.

このように、上記蒸発器4の熱交換の効率を高くでき、上記蒸発器4の小型化が可能になる。また、上記凝縮器2の出口側の冷媒を一層過冷却できるので、上記蒸発器4内部を満液にして、上記蒸発器4内の冷媒の偏流を防止できる。   Thus, the efficiency of heat exchange of the evaporator 4 can be increased, and the evaporator 4 can be miniaturized. In addition, since the refrigerant on the outlet side of the condenser 2 can be further supercooled, the inside of the evaporator 4 can be filled to prevent drift of the refrigerant in the evaporator 4.

上記冷媒としては、非共沸混合冷媒を用いているが、その他の冷媒を用いてもよい。ここで、非共沸混合冷媒とは、沸点が異なる複数の冷媒を混合したものであって、例えばR407C等である。   Although the non-azeotropic refrigerant mixture is used as the refrigerant, other refrigerants may be used. Here, the non-azeotropic refrigerant mixture is a mixture of a plurality of refrigerants having different boiling points, such as R407C.

このように、上記冷媒として、偏流が生じやすい非共沸混合冷媒を用いていても、上記過冷却用の熱交換器5の存在によって、上記蒸発器4の中を確実に液で満たして、上記蒸発器4内の冷媒の偏流を確実に防止でき、かつ、上記圧縮機1の液圧縮を防止できる。   Thus, even if a non-azeotropic refrigerant mixture that tends to cause drift is used as the refrigerant, the presence of the supercooling heat exchanger 5 ensures that the evaporator 4 is filled with liquid, The drift of the refrigerant in the evaporator 4 can be reliably prevented, and the liquid compression of the compressor 1 can be prevented.

上記蒸発器4は、プレート式熱交換器であり、図2の作用説明を兼ねた簡略構成図に示すように、積層された複数の伝熱プレート10を備え、隣接するこの伝熱プレート10,10の間に交互に冷媒流通路20と液熱媒体流通路30とが形成されると共に、上記各伝熱プレート10に、上記冷媒流通路20にのみ連通する上記冷媒の流入路21および流出路22と、上記液熱媒体流通路30にのみ連通する上記液熱媒体の流入路31および流出路32とが形成される。なお、この場合、上記液熱媒体は水である。   The evaporator 4 is a plate heat exchanger, and includes a plurality of stacked heat transfer plates 10 as shown in the simplified configuration diagram that also serves as an explanation of the operation of FIG. 10 are formed alternately between the refrigerant flow passages 20 and the liquid heat medium flow passages 30, and the refrigerant inflow passages 21 and outflow passages communicated with the heat transfer plates 10 only to the refrigerant flow passages 20. 22 and an inflow path 31 and an outflow path 32 of the liquid heat medium communicating only with the liquid heat medium flow path 30 are formed. In this case, the liquid heat medium is water.

具体的に述べると、上記伝熱プレート10は、金属製の平板からなり、隣接する上記伝熱プレート10,10において、この伝熱プレート10の周縁部同士が、当接し、この周縁部が、ろう付けにより接合されて一体に構成されている。なお、図2では、隣接する上記伝熱プレート10,10の間の隙間を実際よりも大きく描いている。   Specifically, the heat transfer plate 10 is made of a metal flat plate. In the adjacent heat transfer plates 10, 10, the peripheral portions of the heat transfer plates 10 come into contact with each other. They are joined together by brazing to form a single unit. In addition, in FIG. 2, the clearance gap between the said adjacent heat-transfer plates 10 and 10 is drawn larger than actual.

各伝熱プレート10の四隅部には、それぞれ、孔部11が設けられ、この孔部11の周囲には、適宜、シール部12が設けられる。そして、上記孔部11および上記シール部12により、上記冷媒の流入路21および流出路22と、上記液熱媒体の流入路31および流出路32とが形成される。   Holes 11 are provided at the four corners of each heat transfer plate 10, and seal parts 12 are appropriately provided around the holes 11. The hole portion 11 and the seal portion 12 form an inlet passage 21 and an outlet passage 22 for the refrigerant, and an inlet passage 31 and an outlet passage 32 for the liquid heat medium.

そして、上記冷媒は、実線の矢印に示すように、順次、流入路21、上記冷媒流通路20および上記流出路22を流れ、上記液熱媒体は、破線の矢印に示すように、順次、流入路31、上記液熱媒体流通路30および上記流出路32を流れ、上記冷媒流通路20を流れる上記冷媒と、上記液熱媒体流通路30を流れる上記液熱媒体とが、互いに熱交換を行う。   Then, the refrigerant sequentially flows in the inflow path 21, the refrigerant flow path 20, and the outflow path 22 as indicated by solid arrows, and the liquid heat medium sequentially flows in as indicated by broken arrows. The refrigerant flowing through the path 31, the liquid heat medium flow path 30 and the outflow path 32, flowing through the refrigerant flow path 20, and the liquid heat medium flowing through the liquid heat medium flow path 30 exchange heat with each other. .

従って、上記蒸発器4はプレート式熱交換器であるので、上記冷媒による上記液熱媒体への冷却効率を向上させることができる。   Accordingly, since the evaporator 4 is a plate heat exchanger, the cooling efficiency of the liquid heat medium by the refrigerant can be improved.

このように、上記蒸発器4にプレート式熱交換器を用いても、上記過冷却用の熱交換器5を備えているので、上記蒸発器4の内部が満液となって、上記蒸発器4内の上記冷媒の偏流が抑制されて、性能の低下を防ぐことができる。また、上記液熱媒体(水)の上記流路30,31,32が部分的に凍結することがない。要するに、上記過冷却用の熱交換器5を設ける冷凍装置として、上記蒸発器4が、上記液熱媒体流路30,31,32の断面積の小さなプレート式熱交換器である場合に好適となる。   Thus, even if a plate-type heat exchanger is used for the evaporator 4, since the supercooling heat exchanger 5 is provided, the inside of the evaporator 4 becomes full and the evaporator The drift of the refrigerant in 4 can be suppressed, and performance degradation can be prevented. Further, the flow paths 30, 31, and 32 of the liquid heat medium (water) are not partially frozen. In short, as a refrigeration apparatus provided with the heat exchanger 5 for supercooling, the evaporator 4 is suitable when it is a plate heat exchanger having a small cross-sectional area of the liquid heat medium flow path 30, 31, 32. Become.

なお、この発明は上述の実施形態に限定されず、この発明の要旨を逸脱しない範囲で設計変更可能である。例えば、上記蒸発器4の液熱媒体は、水以外に、エチレングリコール等であってもよい。また、上記蒸発器4の熱媒体は、液体(水)以外に、気体(エア)であってもよい。また、上記蒸発器4としては、上記プレート式熱交換器以外に、二重管式熱交換器やシェルアンドチューブ式熱交換器等を用いてもよい。   In addition, this invention is not limited to the above-mentioned embodiment, A design change is possible in the range which does not deviate from the summary of this invention. For example, the liquid heat medium of the evaporator 4 may be ethylene glycol or the like in addition to water. Further, the heat medium of the evaporator 4 may be gas (air) in addition to liquid (water). In addition to the plate heat exchanger, the evaporator 4 may be a double tube heat exchanger, a shell and tube heat exchanger, or the like.

本発明の冷凍装置の一実施形態を示す簡略構成図である。It is a simplified lineblock diagram showing one embodiment of the refrigerating device of the present invention. 蒸発器がプレート式熱交換器である場合の作用説明を兼ねた簡略構成図である。It is a simple block diagram which served as operation | movement description in case an evaporator is a plate type heat exchanger.

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
3 膨張手段
4 蒸発器
5 過冷却用の熱交換器
10 伝熱プレート
20 冷媒流通路
21 (冷媒の)流入路
22 (冷媒の)流出路
30 液熱媒体流通路
31 (液熱媒体の)流入路
32 (液熱媒体の)流出路
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion means 4 Evaporator 5 Heat exchanger for supercooling 10 Heat transfer plate 20 Refrigerant flow path 21 (Refrigerant) inflow path 22 (Refrigerant) outflow path 30 Liquid heat medium flow path 31 ( Inflow path for liquid heat medium 32 Outflow path for liquid heat medium

Claims (3)

圧縮機(1)と凝縮器(2)と膨張手段(3)と蒸発器(4)とを順次接続した冷凍装置において、
上記圧縮機(1)の吸入側の冷媒と上記凝縮器(2)の出口側の冷媒とを熱交換する過冷却用の熱交換器(5)を設けたことを特徴とする冷凍装置。
In the refrigeration apparatus in which the compressor (1), the condenser (2), the expansion means (3), and the evaporator (4) are sequentially connected,
A refrigerating apparatus comprising a supercooling heat exchanger (5) for exchanging heat between the refrigerant on the suction side of the compressor (1) and the refrigerant on the outlet side of the condenser (2).
請求項1に記載の冷凍装置において、
上記冷媒は、非共沸混合冷媒であることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
The refrigerating apparatus, wherein the refrigerant is a non-azeotropic refrigerant mixture.
請求項1または2に記載の冷凍装置において、
上記蒸発器(4)は、上記冷媒にて液熱媒体を冷却するものであって、
積層された複数の伝熱プレート(10)を備え、隣接するこの伝熱プレート(10,10)の間に交互に冷媒流通路(20)と液熱媒体流通路(30)とが形成されると共に、上記各伝熱プレート(10)に、上記冷媒流通路(20)にのみ連通する上記冷媒の流入路(21)および流出路(22)と、上記液熱媒体流通路(30)にのみ連通する上記液熱媒体の流入路(31)および流出路(32)とが形成されることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1 or 2,
The evaporator (4) cools the liquid heat medium with the refrigerant,
A plurality of stacked heat transfer plates (10) are provided, and a refrigerant flow path (20) and a liquid heat medium flow path (30) are alternately formed between the adjacent heat transfer plates (10, 10). In addition, only the refrigerant inflow path (21) and the outflow path (22) communicated with each of the heat transfer plates (10) only in the refrigerant flow path (20), and only in the liquid heat medium flow path (30). An inflow path (31) and an outflow path (32) of the liquid heat medium communicating with each other are formed.
JP2003313436A 2003-09-05 2003-09-05 Refrigeration unit Pending JP2005083608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313436A JP2005083608A (en) 2003-09-05 2003-09-05 Refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313436A JP2005083608A (en) 2003-09-05 2003-09-05 Refrigeration unit

Publications (1)

Publication Number Publication Date
JP2005083608A true JP2005083608A (en) 2005-03-31

Family

ID=34414360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313436A Pending JP2005083608A (en) 2003-09-05 2003-09-05 Refrigeration unit

Country Status (1)

Country Link
JP (1) JP2005083608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156543A (en) * 2007-12-27 2009-07-16 Sanden Corp Refrigeration system
JP2019007661A (en) * 2017-06-22 2019-01-17 三浦工業株式会社 Low-temperature cold water device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156543A (en) * 2007-12-27 2009-07-16 Sanden Corp Refrigeration system
JP2019007661A (en) * 2017-06-22 2019-01-17 三浦工業株式会社 Low-temperature cold water device

Similar Documents

Publication Publication Date Title
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
JP4433729B2 (en) Refrigeration equipment
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP6179414B2 (en) Heat exchanger for heat source unit of refrigeration apparatus, and heat source unit including the same
JP2010014374A (en) Heat pump type heating device
JP4442237B2 (en) Air conditioner
JP2022528256A (en) Air conditioner
JP2009162403A (en) Air conditioner
JP2000304380A (en) Heat exchanger
JP4153082B2 (en) Plate heat exchanger and refrigeration cycle equipment
JPH11182953A (en) Refrigerator
JP5526494B2 (en) Refrigeration equipment
JP2005083608A (en) Refrigeration unit
JP2005164104A (en) Heat pump device
JP2009275970A (en) Refrigerating apparatus
JP2006038306A (en) Freezer
US20120137723A1 (en) Air conditioner
JP2001033110A (en) Refrigerator
JP4906885B2 (en) Refrigeration cycle equipment
JP2012073008A (en) Refrigeration cycle device
JP2003240362A (en) Air conditioner
JP2007155203A (en) Air conditioner
KR20200061222A (en) Condensor for ice maker and ice maker using the same
JPH045932Y2 (en)
JPH109714A (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090924