JP2005079266A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2005079266A
JP2005079266A JP2003306577A JP2003306577A JP2005079266A JP 2005079266 A JP2005079266 A JP 2005079266A JP 2003306577 A JP2003306577 A JP 2003306577A JP 2003306577 A JP2003306577 A JP 2003306577A JP 2005079266 A JP2005079266 A JP 2005079266A
Authority
JP
Japan
Prior art keywords
emitting diode
light emitting
growth
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306577A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
貴士 古屋
Takeshi Kurosu
健 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003306577A priority Critical patent/JP2005079266A/en
Publication of JP2005079266A publication Critical patent/JP2005079266A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode having solved a problem that light extracting efficiency is lowered due to total reflection at the outermost front surface of a wafer by providing an uneven surface attained by a method suitable for a growth process. <P>SOLUTION: In a light emitting diode of double-hetero structure, an n-type clad layer formed of (Al<SB>x</SB>Ga<SB>1-x</SB>)<SB>y</SB>In<SB>1-y</SB>P (0≤x≤1, 0<y≤1), a light emitting layer, a p-type clad layer, and a current dispersing layer formed of Al<SB>x</SB>G<SB>1-x</SB>As (0≤x<1) or (Al<SB>x</SB>Ga<SB>1-x</SB>)<SB>y</SB>In<SB>1-y</SB>P (0≤x≤1, 0<y≤1) are sequentially formed on a conductive substrate using a chemical vapor deposition method. Projected and recessed portions 5a, 13a are formed on the surface of the current dispersing layer 5 or 13 being the outermost surface by conducting heat treatment after the growth of a film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光取り出し効率を高める為に最表面層を故意に凸凹に荒らした発光ダイオード(LED)に関するものである。   The present invention relates to a light emitting diode (LED) in which an outermost surface layer is intentionally roughened to improve light extraction efficiency.

従来の高輝度発光ダイオード用エピタキシャルウェハは、MOVPE法やハイドライドVPE法といった気相成長法を用いて作製させることが多い。   Conventional epitaxial wafers for high-intensity light-emitting diodes are often produced using vapor phase growth methods such as MOVPE and hydride VPE.

MOVPE(Metal Organic Vapor Phase Epitaxy:有機金属気相成長)法を例にとって説明する。成長は結晶基板をヒータで加熱し、そこにキャリアガスとして水素や窒素を用いてIII族原料となるTMG(トリメチルガリウム)やTMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、V族原料となるAsH3(アルシン)、PH3(ホスフィン)を供給し、熱分解反応により結晶成長させる。 A MOVPE (Metal Organic Vapor Phase Epitaxy) method will be described as an example. In the growth, the crystal substrate is heated with a heater, and hydrogen or nitrogen is used as a carrier gas therefor, TMG (trimethylgallium), TMA (trimethylaluminum), TMI (trimethylindium), or AsH as a V group material. 3 (arsine) and PH 3 (phosphine) are supplied and crystals are grown by thermal decomposition reaction.

図2に(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)のダブルヘテロ構造の発光ダイオードの断面模式図を示す。650℃に加熱したn型GaAs基板1上にn型AlGaInPクラッド層2、活性層3、p型AlGaInPクラッド層4、更に最表面に(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)もしくはAlxGa1-xAs(0≦x<1)の電流分散層6を積層成長する。電流分散層6の成長終了と同時にヒータを切り、温度を下げて成長は完了である。 FIG. 2 is a schematic cross-sectional view of a light emitting diode having a double hetero structure of (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1). An n-type AlGaInP clad layer 2, an active layer 3, a p-type AlGaInP clad layer 4 on an n-type GaAs substrate 1 heated to 650 ° C., and (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1) or Al x Ga 1-x As (0 ≦ x <1) current spreading layer 6 is laminated and grown. At the same time as the growth of the current spreading layer 6 is completed, the heater is turned off and the temperature is lowered to complete the growth.

こうして成長したウェハは従来鏡面であり、表面平坦性も非常に良い。このウェハにチップ作製プロセスを行い、n型電極、p型電極を形成するとLEDチップが完成する。完成したチップの電極間に電流を流すことにより活性層3で発光する。発光した光はさまざまな方向に広がり、外部に光として取り出される。   The wafer thus grown is conventionally a mirror surface, and the surface flatness is very good. When a chip manufacturing process is performed on this wafer to form an n-type electrode and a p-type electrode, an LED chip is completed. The active layer 3 emits light by passing a current between the electrodes of the completed chip. The emitted light spreads in various directions and is extracted outside as light.

しかし活性層で発光した光は、全てを外部に取り出すことは困難である。それは、結晶中を伝搬する際に吸収されたり、ウェハ最表面と空気との界面で全反射してしまい外部に放出されないものがあるからである。   However, it is difficult to extract all the light emitted from the active layer to the outside. This is because some are absorbed when propagating through the crystal, or are totally reflected at the interface between the wafer outermost surface and air and are not released to the outside.

光の取り出し効率を高くするために、pn接合を有する半導体ウェハをチップ状に1つ1つ切断して得られるペレットの表面を粗面化する処理方法は、既に知られている。ペレットの表面を粗面化すると、光放出面と空気との界面で光が全反射する確率が下がるので、取り出し効率を高くすることができると考えられる。   In order to increase the light extraction efficiency, a processing method for roughening the surface of pellets obtained by cutting semiconductor wafers having pn junctions one by one into chips is already known. When the surface of the pellet is roughened, the probability that the light is totally reflected at the interface between the light emitting surface and the air is lowered, so that it is considered that the extraction efficiency can be increased.

またGaAsP混晶に対しては、そのペレットをBr2又はI2を水溶液中に含むエッチング液で処理して、主表面に微細な凹凸を形成た発光ダイオードが知られている(例えば、特許文献1参照)。
特開2000−196141号公報
For GaAsP mixed crystals, a light-emitting diode is known in which fine pellets are formed on the main surface by treating the pellet with an etching solution containing Br 2 or I 2 in an aqueous solution (for example, Patent Documents). 1).
JP 2000-196141 A

上記したように活性層で発光した光は、全てを外部に取り出すことは困難である。それは、結晶中を伝搬する際に吸収されたり、ウェハ最表面と空気との界面で全反射してしまい外部に放出されないものがあるからである。特に、気相成長法で作製したウェハ表面は平坦性が良好な為、光の全反射が起こりやすく、光の取り出し効率を低下させてしまう。そのため発光ダイオードの発光強度が低下する原因となる。   As described above, it is difficult to extract all the light emitted from the active layer to the outside. This is because some are absorbed when propagating through the crystal, or are totally reflected at the interface between the wafer outermost surface and air and are not released to the outside. In particular, since the wafer surface manufactured by the vapor phase growth method has good flatness, total reflection of light easily occurs, and the light extraction efficiency is lowered. For this reason, the light emission intensity of the light emitting diode is reduced.

しかしながら、特許文献1は湿式のエッチングにより表面を凹凸に荒らす技術であり、気相成長法で作製したウェハ表面を荒らす技術として適合性が悪い。   However, Patent Document 1 is a technique for roughening the surface by wet etching, and is poorly adaptable as a technique for roughening the surface of a wafer produced by vapor phase growth.

そこで、本発明の目的は、上記課題を解決し、成長プロセスと適合する方法で荒らした凹凸表面を持ち、これによりウェハ最表面での全反射による光取り出し効率低下の問題を解決した、発光強度の大きい発光ダイオードを提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems and to have a rough surface roughened by a method compatible with the growth process, thereby solving the problem of reduction in light extraction efficiency due to total reflection on the outermost surface of the wafer. It is to provide a light emitting diode having a large size.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る発光ダイオードは、気相成長法を用いて導電性基板上に、(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)からなるn型クラッド層、発光層、p型クラッド層及びAlx1-xAs(0≦x<1)もしくは(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)からなる電流分散層を順に積層したダブヘテロ構造の発光ダイオードにおいて、成長後に熱処理を施すことで最表面層である電流分散層の表面に凸凹を形成したことを特徴とする。 The light-emitting diode according to the first aspect of the present invention is obtained by forming (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1) on a conductive substrate using a vapor phase growth method. N-type cladding layer, light-emitting layer, p-type cladding layer and Al x G 1-x As (0 ≦ x <1) or (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦) A light-emitting diode having a dove heterostructure in which current distribution layers of 1 and 0 <y ≦ 1) are sequentially stacked are characterized in that unevenness is formed on the surface of the current distribution layer, which is the outermost surface layer, by performing heat treatment after growth. To do.

請求項2の発明は、請求項1記載の発光ダイオードにおいて、前記電流分散層の表面の凹凸の形成方法が、ガス雰囲気中又は真空中の熱処理であることを特徴とする。   According to a second aspect of the present invention, in the light-emitting diode according to the first aspect, the method for forming irregularities on the surface of the current dispersion layer is a heat treatment in a gas atmosphere or in a vacuum.

請求項3の発明は、請求項2記載の発光ダイオードにおいて、前記ガス雰囲気が、水素や窒素、不活性ガスであることを特徴とする。   According to a third aspect of the present invention, in the light-emitting diode according to the second aspect, the gas atmosphere is hydrogen, nitrogen, or an inert gas.

なお、不活性ガスとしては、アルゴンが好適に用いられる。   Argon is preferably used as the inert gas.

請求項4の発明は、請求項1〜3のいずれかに記載の発光ダイオードにおいて、前記熱処理の温度が前記電流分散層の成長温度であることを特徴とする。   According to a fourth aspect of the present invention, in the light emitting diode according to any one of the first to third aspects, the temperature of the heat treatment is a growth temperature of the current spreading layer.

請求項5の発明は、請求項4記載の発光ダイオードにおいて、前記電流分散層の成長終了後、キャリアガスである水素のみを流した状態で、そのまま所定時間、成長温度で熱処理を行って、電流分散層の表面に凸凹を形成したことを特徴とする。   According to a fifth aspect of the present invention, in the light-emitting diode according to the fourth aspect, after the growth of the current dispersion layer is completed, heat treatment is performed at a growth temperature for a predetermined time in a state where only hydrogen as a carrier gas is supplied. An uneven surface is formed on the surface of the dispersion layer.

<発明の要点>
本発明では、活性層で発光した光がウェハ表面から空気中へ放出するときに表面で全反射する確率を減少させる為に、表面層であるAlxGa1-xAs(0≦x<1)又は(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)電流分散層の表面を故意に凸凹に荒らしている。凸凹に荒らす手段としては、湿式のエッチングが知られている(特許文献1:特開2000−196141号公報)が、本発明では、ウェハ成長プロセス中に熱処理を行うことで、結晶表面を少し熱分解させて凸凹に荒らすことを可能にしている。熱処理の雰囲気は、成長プロセスで用いている窒素や水素の他、不活性ガスであるアルゴン等を用いる。また、真空中で行ってもよい。
<Key points of the invention>
In the present invention, in order to reduce the probability that the light emitted from the active layer is totally reflected on the surface when emitted from the wafer surface into the air, the surface layer is Al x Ga 1-x As (0 ≦ x <1). ) Or (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1) The surface of the current dispersion layer is intentionally roughened. Wet etching is known as a means for roughening the unevenness (Patent Document 1: Japanese Patent Laid-Open No. 2000-196141), but in the present invention, heat treatment is performed during the wafer growth process to slightly heat the crystal surface. It can be disassembled and roughened. As an atmosphere for the heat treatment, argon or the like, which is an inert gas, is used in addition to nitrogen and hydrogen used in the growth process. Moreover, you may carry out in a vacuum.

本発明において熱処理雰囲気に窒素や水素等を用いるのは、MOVPE法では一般に原料のキャリアガスとして水素や窒素が用いられるからである。水素や窒素は、成長させた結晶に対し不活性であること、更にはMOVPE法での成長プロセス中に使用している為、成長完了後に一貫して熱処理を行えば、新たな熱処理プロセスは不要となり、簡便、且つ短時間で熱処理が行える為である。真空中も成長した結晶に不活性であること、MOVPE法での成長プロセス中に簡便に行えることにより適している。   The reason why nitrogen or hydrogen is used in the heat treatment atmosphere in the present invention is that hydrogen or nitrogen is generally used as a carrier gas for the raw material in the MOVPE method. Since hydrogen and nitrogen are inert to the grown crystal and are used during the growth process by the MOVPE method, a new heat treatment process is not required if heat treatment is performed consistently after the growth is completed. This is because heat treatment can be performed easily and in a short time. It is more suitable for being inert to the grown crystal even in a vacuum and being easily performed during the growth process by the MOVPE method.

以上説明したように本発明によれば、成長後に熱処理を施すことで最表面層である電流分散層の表面に凸凹を形成しているので、湿式エッチングにより凹凸を形成する場合に較べ、LEDの気相成長との適合性が極めて良い。   As described above, according to the present invention, unevenness is formed on the surface of the current spreading layer, which is the outermost surface layer, by performing a heat treatment after growth. Very good compatibility with vapor phase growth.

従って、本発明を用いれば、簡便にウェハ最表面を凸凹に荒らすことができる為、光の取り出し効率がよくなり、発光ダイオードにした時の発光強度が高くなる。   Therefore, if the present invention is used, the outermost surface of the wafer can be easily roughened, so that the light extraction efficiency is improved and the light emission intensity is increased when a light emitting diode is formed.

また、本発明を用いたエピタキシャルウェハは表面が凸凹しているために電極形成時の接触面積が増え、コンタクト抵抗が減少する。これによりLED特性の一つである順方向電圧(Vf)を減少させることができる。   Moreover, since the surface of the epitaxial wafer using the present invention is uneven, the contact area during electrode formation increases and the contact resistance decreases. Thereby, the forward voltage (Vf) which is one of the LED characteristics can be reduced.

以下、本発明の実施の形態を図示の実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on the illustrated examples.

<実施例1>
まず従来例として、有機金属気相成長法を用いて、従来技術の方法でLED用エピタキシャルウェハ(図2)を成長した。この従来例の成長の一例を下記に示す。
<Example 1>
First, as a conventional example, an epitaxial wafer for LED (FIG. 2) was grown by a conventional method using metal organic vapor phase epitaxy. An example of the growth of this conventional example is shown below.

図2において、650℃に加熱したn型GaAs基板1上にn型AlGaInPクラッド層2、アンドープAlGaInP活性層3、p型AlGaInPクラッド層4、更に最表面に(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)もしくはAlxGa1-xAs(0≦x<1)の電流分散層6を積層成長する。電流分散層6の成長終了と同時にヒータを切り、冷却した。成長したウェハ表面は鏡面であり、平坦性も良好だった。 In FIG. 2, an n-type AlGaInP cladding layer 2, an undoped AlGaInP active layer 3, a p-type AlGaInP cladding layer 4 on an n-type GaAs substrate 1 heated to 650 ° C., and (Al x Ga 1-x ) y In on the outermost surface. A current spreading layer 6 of 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1) or Al x Ga 1-x As (0 ≦ x <1) is stacked and grown. At the same time as the growth of the current spreading layer 6, the heater was turned off and cooled. The grown wafer surface was mirror-like and had good flatness.

次に本実施例にかかる成長方法で作製したLED用エピタキシャルウェハ(図1)の成長を記す。   Next, the growth of the epitaxial wafer for LEDs (FIG. 1) produced by the growth method according to this example will be described.

最表面層であるAlGaInPもしくはAlGaAsの電流分散層6までは、図2の従来の成長と同じく成長した。電流分散層6成長終了後、原料の供給を断ち、キャリアガスである水素のみで、そのまま15分間成長温度で熱処理を行い、その後冷却し取り出した。   Up to the AlGaInP or AlGaAs current spreading layer 6 which is the outermost surface layer was grown in the same manner as the conventional growth of FIG. After the growth of the current dispersion layer 6 was completed, the supply of the raw material was cut off, and heat treatment was performed at the growth temperature for 15 minutes using only hydrogen as a carrier gas, and then cooled and taken out.

取り出したウェハ表面を電子顕微鏡で観察したところ、電流分散層6の表面が細かく凸凹に荒れていた。作製したエピタキシャルウェハの断面模式図を図1に記す。この図1中には、凸凹5aの有るAlGaInPもしくはAlGaAs電流分散層が符号5で示されている。   When the surface of the taken-out wafer was observed with an electron microscope, the surface of the current dispersion layer 6 was finely roughened. A schematic cross-sectional view of the produced epitaxial wafer is shown in FIG. In FIG. 1, an AlGaInP or AlGaAs current distribution layer having irregularities 5 a is indicated by reference numeral 5.

これら従来例(図2)と本実施例(図1)の成長方法で作成したウェハを、それぞれチップ作製プロセスにかけてn型電極、p型電極を形成し、発光ダイオードチップを作成した。これらの発光ダイオードチップに20mAの電流を流して発光させ、その発光強度を比較した。従来の成長方法で作製したウェハの発光ダイオードチップ(図2)は発光強度が100mcdだったの対し、本実施例の製造方法のウェハの発光ダイオードチップ(図1)については120mcdと20%も輝度が向上していた。   The wafers produced by the growth methods of the conventional example (FIG. 2) and the present example (FIG. 1) were each subjected to a chip production process to form an n-type electrode and a p-type electrode, thereby producing a light-emitting diode chip. These light emitting diode chips were caused to emit light by flowing a current of 20 mA, and the light emission intensities were compared. The wafer light emitting diode chip (FIG. 2) produced by the conventional growth method had a light emission intensity of 100 mcd, whereas the wafer light emitting diode chip (FIG. 1) of the manufacturing method of this embodiment had a brightness of 120 mcd and 20%. Had improved.

<実施例2>
まず従来例として、有機金属気相成長法を用いて、従来技術の方法でLED用エピタキシャルウェハ(図3)を成長した。下記に成長の一例を示す。
<Example 2>
First, as a conventional example, an epitaxial wafer for LED (FIG. 3) was grown by a conventional method using metal organic vapor phase epitaxy. An example of growth is shown below.

基板をヒータにて650℃に加熱し、そこにキャリアガスとして水素を用いてIII族原料となるTMG、TMA、TMI、V族原料となるAsH3、PH3、ドーパントとなるH2Se(セレン化水素)、DEZ(ジエチル亜鉛)を必要に応じ供給し成長を行った。 The substrate is heated to 650 ° C. with a heater, and hydrogen is used as a carrier gas therefor, TMG, TMA, TMI as group III materials, AsH 3 and PH 3 as group V materials, and H 2 Se (selenium as a dopant). Hydrogen chloride) and DEZ (diethylzinc) were supplied as needed for growth.

図3に成長したLED用エピタキシャルウェハ(従来例)の断面模式図を記す。SiドープGaAs基板上7にSeドープGaAsバッファ層8、SeドープAlGaInPクラッド層9、アンドープAlGaInP活性層10、ZnドープAlGaInPクラッド層11を順に積層成長し、最後にZnドープAlGaAs電流分散層12を成長し、成長完了と同時にヒータを切り冷却した。成長したウェハ表面は鏡面であり、平坦性も良好だった。   FIG. 3 is a schematic cross-sectional view of a grown epitaxial wafer for LED (conventional example). A Se-doped GaAs buffer layer 8, a Se-doped AlGaInP cladding layer 9, an undoped AlGaInP active layer 10, and a Zn-doped AlGaInP cladding layer 11 are sequentially stacked on the Si-doped GaAs substrate 7, and finally a Zn-doped AlGaAs current distribution layer 12 is grown. When the growth was completed, the heater was turned off and cooled. The grown wafer surface was mirror-like and had good flatness.

次に本発明にかかる成長方法で作製したLED用エピタキシャルウェハ(図4)の成長を記す。   Next, the growth of the epitaxial wafer for LEDs (FIG. 4) produced by the growth method according to the present invention will be described.

最表面層であるZnドープAlGaAs電流分散層12までは図3の従来の成長と同じく成長した。電流分散層12の成長終了後、原料であるTMG、TMA、DEZ及びAsH3の供給を断ち、キャリアガスである水素のみで、そのまま15分間成長温度で熱処理を行い、その後冷却し取り出した。 The growth up to the Zn-doped AlGaAs current spreading layer 12 which is the outermost surface layer is the same as the conventional growth of FIG. After the growth of the current spreading layer 12, the supply of the raw materials TMG, TMA, DEZ and AsH 3 was cut off, and the heat treatment was carried out at the growth temperature for 15 minutes as it was using only the carrier gas, and then cooled and taken out.

取り出したウェハ表面を電子顕微鏡で観察したところ、電流分散層12の表面が細かく凸凹に荒れていた。作製したエピタキシャルウェハの断面模式図を図4に記す。この図4中には、凸凹13aの有るZnドープAlGaAs電流分散層が符号13で示されている。   When the surface of the taken-out wafer was observed with an electron microscope, the surface of the current dispersion layer 12 was finely roughened. A schematic cross-sectional view of the produced epitaxial wafer is shown in FIG. In FIG. 4, a Zn-doped AlGaAs current distribution layer having unevenness 13 a is indicated by reference numeral 13.

これら従来例(図3)と本実施例(図4)の成長方法で作成したウェハを、それぞれチップ作製プロセスにかけてn型電極、p型電極を形成し、発光ダイオードチップを作成した。これらの発光ダイオードチップに、20mAの電流を流して発光させ、その発光強度を比較した。従来の成長方法で作製したウェハの発光ダイオードチップ(図3)は発光強度が100mcdであったの対し、本実施例の製造方法のウェハの発光ダイオードチップ(図4)については120mcdと20%も輝度が向上していた。   The wafers produced by the growth methods of the conventional example (FIG. 3) and the present example (FIG. 4) were each subjected to a chip production process to form an n-type electrode and a p-type electrode, thereby producing a light-emitting diode chip. These light emitting diode chips were caused to emit light by passing a current of 20 mA, and the light emission intensity was compared. The light emitting diode chip (FIG. 3) of the wafer produced by the conventional growth method had an emission intensity of 100 mcd, whereas the wafer light emitting diode chip (FIG. 4) of the manufacturing method of this example was 120 mcd, which is 20%. The brightness was improved.

<他の実施例、変形例>
上記実施例では、凹凸を形成するための熱処理を、成長完了後そのまま一貫して行ったが、一度MOVPE装置から取り出して、別の熱処理炉で熱処理を行い表面を凸凹に荒らす方法も考えられる。
<Other embodiments and modifications>
In the above embodiment, the heat treatment for forming the unevenness is performed consistently after the growth is completed, but it is also conceivable to take it out of the MOVPE apparatus and perform the heat treatment in another heat treatment furnace to roughen the surface.

また上記実施例では、熱処理中の雰囲気を水素としたが、AsH3を微量に混ぜた混合ガスでもよい。さらに、水素、窒素、アルゴンの混合ガス雰囲気であってもよい。 In the above embodiment, the atmosphere during the heat treatment was hydrogen, or a mixed gas by mixing AsH 3 in a trace amount. Furthermore, a mixed gas atmosphere of hydrogen, nitrogen, and argon may be used.

本発明の実施例にかかる発光ダイオード用エピタキシャルウェハのチップ断面模式図である。It is a chip | tip cross-section schematic diagram of the epitaxial wafer for light emitting diodes concerning the Example of this invention. 従来技術の発光ダイオード用エピタキシャルウェハの断面模式図である。It is a cross-sectional schematic diagram of the epitaxial wafer for light emitting diodes of a prior art. 従来技術の発光ダイオード用エピタキシャルウェハの断面模式図である。It is a cross-sectional schematic diagram of the epitaxial wafer for light emitting diodes of a prior art. 本発明の実施例にかかる発光ダイオード用エピタキシャルウェハのチップ断面模式図である。It is a chip | tip cross-section schematic diagram of the epitaxial wafer for light emitting diodes concerning the Example of this invention.

符号の説明Explanation of symbols

1 基板
2 クラッド層
3 活性層
4 クラッド層
5、6 電流分散層
5a 凸凹
7 基板
8 バッファ層
9 クラッド層
10 活性層
11 クラッド層
12、13 電流分散層
13a 凸凹
DESCRIPTION OF SYMBOLS 1 Substrate 2 Cladding layer 3 Active layer 4 Cladding layer 5 and 6 Current distribution layer 5a Concavity and convexity 7 Substrate 8 Buffer layer 9 Cladding layer 10 Active layer 11 Cladding layer 12 and 13 Current dispersion layer 13a Concavity and convexity

Claims (5)

気相成長法を用いて導電性基板上に、(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)からなるn型クラッド層、発光層、p型クラッド層及びAlx1-xAs(0≦x<1)もしくは(AlxGa1-xyIn1-yP(0≦x≦1、0<y≦1)からなる電流分散層を順に積層したダブヘテロ構造の発光ダイオードにおいて、
成長後に熱処理を施すことで最表面層である電流分散層の表面に凸凹を形成したことを特徴とする発光ダイオード。
An n-type cladding layer made of (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1) is formed on a conductive substrate using a vapor phase growth method, A current comprising a p-type cladding layer and Al x G 1-x As (0 ≦ x <1) or (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y ≦ 1) In a light-emitting diode having a dove heterostructure in which dispersion layers are sequentially stacked,
A light emitting diode characterized by forming irregularities on the surface of a current spreading layer which is the outermost surface layer by performing a heat treatment after growth.
請求項1記載の発光ダイオードにおいて、
前記電流分散層の表面の凹凸の形成方法が、ガス雰囲気中又は真空中の熱処理であることを特徴とする発光ダイオード。
The light emitting diode according to claim 1.
The light emitting diode according to claim 1, wherein the method for forming irregularities on the surface of the current spreading layer is a heat treatment in a gas atmosphere or in a vacuum.
請求項2記載の発光ダイオードにおいて、
前記ガス雰囲気が、水素や窒素、不活性ガスであることを特徴とする発光ダイオード。
The light emitting diode according to claim 2.
A light emitting diode, wherein the gas atmosphere is hydrogen, nitrogen, or an inert gas.
請求項1〜3のいずれかに記載の発光ダイオードにおいて、
前記熱処理の温度が前記電流分散層の成長温度であることを特徴とする発光ダイオード。
In the light emitting diode in any one of Claims 1-3,
The light-emitting diode, wherein the temperature of the heat treatment is a growth temperature of the current spreading layer.
請求項4記載の発光ダイオードにおいて、
前記電流分散層の成長終了後、キャリアガスである水素のみを流した状態で、そのまま所定時間、成長温度で熱処理を行って、電流分散層の表面に凸凹を形成したことを特徴とする発光ダイオード。
The light emitting diode according to claim 4.
After completion of the growth of the current spreading layer, light-emitting diodes are characterized in that the surface of the current spreading layer is formed by heat treatment as it is for a predetermined time while flowing only hydrogen as a carrier gas. .
JP2003306577A 2003-08-29 2003-08-29 Light emitting diode Pending JP2005079266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306577A JP2005079266A (en) 2003-08-29 2003-08-29 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306577A JP2005079266A (en) 2003-08-29 2003-08-29 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2005079266A true JP2005079266A (en) 2005-03-24

Family

ID=34409623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306577A Pending JP2005079266A (en) 2003-08-29 2003-08-29 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2005079266A (en)

Similar Documents

Publication Publication Date Title
JP4989978B2 (en) Nitride-based light emitting device and manufacturing method thereof
KR101241477B1 (en) Nitride semiconductor light-emitting device and manufacturing method thereof
US7646027B2 (en) Group III nitride semiconductor stacked structure
US20090121214A1 (en) Iii-nitride semiconductor light-emitting device and manufacturing method thereof
WO2007083647A1 (en) Nitride semiconductor light-emitting device
KR20080040359A (en) Light emitting device having vertical topoloty and method of making the same
JPWO2005122290A1 (en) Nitride semiconductor light emitting device
JP2011517098A (en) Method for the production of semipolar (Al, In, Ga, B) N-based light emitting diodes
JP6181661B2 (en) Nitride semiconductor light emitting device
JP3667995B2 (en) GaN quantum dot structure manufacturing method and use thereof
JPH11112030A (en) Production of iii-v compound semiconductor
JP2001068733A (en) Semiconductor element, semiconductor light-emitting element and manufacture thereof and formation of quantum box
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
JP2000332288A (en) Gallium nitride system semiconductor light emitting element and its manufacture
JPWO2005038936A1 (en) Light emitting device and manufacturing method thereof
JP2005079266A (en) Light emitting diode
JP3874779B2 (en) Ge-doped n-type group III nitride semiconductor layered product, method for producing the same, and group III nitride semiconductor light-emitting device using the same
JP2006019459A (en) Epitaxial wafer for light-emitting diode
JPH10173231A (en) Gallium nitride-based compound semiconductor light emitting element
JP7319559B2 (en) Nitride semiconductor light emitting device
JPH08213651A (en) Semiconductor device having contact resistance reducing layer
JP2005347497A (en) Method of manufacturing compound semiconductor
JP2006013473A (en) Group iii nitride semiconductor light emitting element
JP2006156802A (en) Group iii nitride semiconductor device
JP2005235797A (en) Semiconductor light-emitting device