JP2005078848A - Separator for alkaline storage battery, and alkaline storage battery using it - Google Patents

Separator for alkaline storage battery, and alkaline storage battery using it Download PDF

Info

Publication number
JP2005078848A
JP2005078848A JP2003305040A JP2003305040A JP2005078848A JP 2005078848 A JP2005078848 A JP 2005078848A JP 2003305040 A JP2003305040 A JP 2003305040A JP 2003305040 A JP2003305040 A JP 2003305040A JP 2005078848 A JP2005078848 A JP 2005078848A
Authority
JP
Japan
Prior art keywords
separator
nonwoven fabric
fibers
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003305040A
Other languages
Japanese (ja)
Inventor
Shoki Miyamoto
唱起 宮本
Seijiro Ochiai
誠二郎 落合
Kaori Hatsushiro
香織 初代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2003305040A priority Critical patent/JP2005078848A/en
Publication of JP2005078848A publication Critical patent/JP2005078848A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for an alkaline storage battery excellent in stab resistance intensity, tension intensity, and solution retaining capability; and an alkaline storage battery using the separator improved in charge/discharge cycle life and excellent in shor circuit resistance. <P>SOLUTION: The separator is shaped in rectangle and made of nonwoven fabric of a synthetic resin made fiber. The basis weight of the nonwoven is ≤60 g/m<SP>2</SP>, the tension intensity in at least one direction out of two directions in height and width of the rectangle is ≥90 Newton (N)/5 cm, the tensile elongation rate is ≥18%, and the stab resistance intensity is ≥9 N. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルカリ蓄電池用セパレータおよび其れを用いたアルカリ蓄電池に関するもので、さらに詳しく言えば、合成樹脂繊維製の不織布からなり、薄型で機械的強度が強く、緻密なセパレータと該セパレータを適用した捲回式極板群を備えるニッケル−水素蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄電池に関するものである。   The present invention relates to an alkaline storage battery separator and an alkaline storage battery using the same. More specifically, the present invention is made of a non-woven fabric made of synthetic resin fibers, is thin, has high mechanical strength, and is applied with a dense separator. The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery provided with the wound electrode plate group.

従来、ポータブル機器用電源には、高エネルギー密度を有するニッケル−カドミウム蓄電池のようなアルカリ蓄電池が用いられてきた。
近年はこれらのポータブル機器には携帯電話、ノートパソコン、ハンディービデオカメラといった高度で多機能なものが普及し、前述したアルカリ蓄電池の需要が急速に増加し、さらに高エネルギー密度を有する種々の蓄電池への期待が高まってきている。
このような高エネルギー密度を有する蓄電池として実用化の最先端にあるものはニッケル−水素蓄電池である。
Conventionally, an alkaline storage battery such as a nickel-cadmium storage battery having a high energy density has been used as a power source for portable equipment.
In recent years, advanced and multifunctional devices such as mobile phones, notebook computers, and handy video cameras have become widespread in these portable devices, and the demand for the above-mentioned alkaline storage batteries has rapidly increased, and various storage batteries having high energy density have been developed. Expectations are growing.
A nickel-hydrogen storage battery is at the forefront of practical use as a storage battery having such a high energy density.

一方、前述した高度で多機能なポータブル機器は、多機能であるためにその消費電力は大きく、しかも小型化されているために電源としての蓄電池は、そのセル数が極力少なくされ、蓄電池の電圧は昇圧回路によって数V〜十数Vの作動圧まで昇圧される。
この昇圧回路は発熱部を有しているが、他の要素とともに機器の内部に高密度に実装されている。
そのため、機器の内部は高温になり、蓄電池もこのような高温の雰囲気下で使用されるのが通常である。
On the other hand, the above-mentioned advanced and multifunctional portable device is multifunctional and therefore consumes a large amount of power, and since it is miniaturized, the number of cells of the storage battery as a power source is reduced as much as possible. Is boosted to an operating pressure of several volts to several tens of volts by a booster circuit.
This booster circuit has a heat generating part, but is mounted with high density inside the device together with other elements.
For this reason, the inside of the device becomes high temperature, and the storage battery is usually used in such a high temperature atmosphere.

従来、このようなポータブル機器に用いられてきたニッケル−カドミウム蓄電池などのアルカリ蓄電池は、そのセパレータに高い親水性を有するポリアミド系樹脂からなる不織布が用いられたり、耐酸化性にすぐれているポリオレフィン系樹脂からなる不織布に界面活性剤処理を施して親水性を付与したものが用いられてきた。   Conventionally, alkaline storage batteries such as nickel-cadmium storage batteries that have been used in such portable devices are made of a non-woven fabric made of polyamide resin having high hydrophilicity for the separator, or polyolefin-based batteries with excellent oxidation resistance. A non-woven fabric made of a resin has been used in which a surfactant treatment is applied to impart hydrophilicity.

通常、蓄電池セパレータとしてナイロンやポリプロピレン繊維からなる乾式法で製造された不織布(以下、乾式不織布という)や、湿式抄紙法で製造された不織布(以下、湿式不織布という)が使用されている。
一般に、湿式不織布は緻密で優れた均一性を有するため、これを使用すれば耐短絡性の高いセパレータを得ることができる。
しかし、湿式不織布は、構成繊維の繊維長が短く、機械的強度の点で乾式不織布に劣ることが否めず、卷回時に破れやすいと言う問題がある。
一方、乾式不織布は、引っ張り強度が同程度の目付の湿式不織布に比べて大きく、これを蓄電池セパレータ用に用いた場合、卷回性に優れたものを得ることができる。
しかし、均一性という点では湿式不織布に劣り、繊維密度の粗密の差が大きいため、突き刺し強力が弱く、これをセパレータとして用いると、粗な部分において正極と負極が短絡しやすくなるという問題があった。
Usually, a nonwoven fabric (hereinafter referred to as a dry nonwoven fabric) made of nylon or polypropylene fiber or a nonwoven fabric (hereinafter referred to as a wet nonwoven fabric) manufactured by a wet papermaking method is used as a storage battery separator.
In general, since wet nonwoven fabrics are dense and have excellent uniformity, a separator with high short circuit resistance can be obtained by using this.
However, the wet nonwoven fabric has a short fiber length of the constituent fibers, cannot be inferior to the dry nonwoven fabric in terms of mechanical strength, and has a problem that it is easily broken during winding.
On the other hand, a dry nonwoven fabric is larger than a wet nonwoven fabric having a similar tensile strength, and when it is used for a storage battery separator, an excellent wound property can be obtained.
However, in terms of uniformity, it is inferior to wet nonwoven fabrics, and the difference in fiber density is large, so the piercing strength is weak. When this is used as a separator, there is a problem that the positive electrode and the negative electrode are easily short-circuited in the rough portion. It was.

従来、アルカリ蓄電池用セパレータとしてナイロン繊維、ポリプロピレン繊維等からなる乾式製造法の短繊維不織布(適当な長さに切断した繊維からなり、その繊維を互いに接着した不織布)が用いられてきた。
前記のごとく、セパレータの薄肉化が求められるようになり、従来の乾式製造法による短繊維不織布では、単純にその厚みを薄くするのみでは、円滑な電池反応を行わせるに必要な電解液量を保持する機能(この機能を保液性と呼ぶ)が維持できなくなってきた。
また、乾式製造法による短繊維不織布は、不織布を構成する繊維の繊維径が通常10μm以上であり、繊維間の空孔径が大きく、電池の正、負極を構成する粉末状の活物質の移行を防止する機能(この機能を絶縁性と呼ぶ)が、セパレータを薄くすることにより低下する問題があった。
Conventionally, short fiber non-woven fabrics (made of fibers cut into appropriate lengths and bonded to each other) made of nylon fibers, polypropylene fibers and the like have been used as separators for alkaline storage batteries.
As described above, it is required to reduce the thickness of the separator, and in the conventional short fiber nonwoven fabric produced by the dry manufacturing method, the amount of electrolytic solution necessary for performing a smooth battery reaction can be reduced by simply reducing the thickness. The function to hold (this function is called liquid retention) cannot be maintained.
Moreover, the short fiber nonwoven fabric by a dry manufacturing method has the fiber diameter of the fiber which comprises a nonwoven fabric normally 10 micrometers or more, the hole diameter between fibers is large, and the transfer of the powdery active material which comprises the positive | positive of a battery and a negative electrode There was a problem that the function to prevent (this function is called insulation) is lowered by making the separator thinner.

乾式製造法により、この問題を解決するにはセパレータを構成する繊維の径を細くすれば良いが、10μm以下の短繊維は、かさ高く、繊維同士の絡みが強いため、繊維をほぐして均一な厚みのウェブを形成することが難しくなり、コストの高いセパレータとなってしまう欠点がある。   In order to solve this problem by a dry manufacturing method, the diameter of the fiber constituting the separator may be reduced. However, short fibers of 10 μm or less are bulky and strong entanglement between fibers, so that the fibers are loosened and uniform. There is a drawback that it becomes difficult to form a web having a thickness, resulting in a costly separator.

これらの問題を解決する方法として、以下のようなものが提案されている。
溶融ポリマーを高速気流中に押し出し、牽引細化し、移動するスクリーン上に捕集して不織布とする方法において、複数のポリマーノズルが直線上に配置され、そのポリマーノズル列の両側に高速気流を形成する一対の気体スリットノズルが配置されているメルトブロー法によりメルトブロー不織布を製造し、これをセパレータとするというものである。
メルトブロー不織布は極細繊維から構成されているため、空隙率を高くすることができ、単位体積当たりの電解液量をより多く保持できる。
また、繊維間の空孔径を小さくできるため、セパレータを薄くしても絶縁性が確保でき、前記の問題を解決するために有効である。
As methods for solving these problems, the following have been proposed.
In the method of extruding molten polymer into a high-speed air stream, drawing it into a thin film and collecting it on a moving screen to form a nonwoven fabric, multiple polymer nozzles are arranged in a straight line, forming a high-speed air stream on both sides of the polymer nozzle array A melt blown nonwoven fabric is produced by a melt blow method in which a pair of gas slit nozzles are arranged, and this is used as a separator.
Since the melt blown nonwoven fabric is composed of ultrafine fibers, the porosity can be increased, and the amount of electrolyte solution per unit volume can be maintained more.
Moreover, since the pore diameter between fibers can be reduced, insulation can be ensured even if the separator is thinned, which is effective in solving the above-described problems.

しかし、メルトブロー不織布は繊維径が細化されているものの、分子配向と結晶化はそれほど進まず、通常法で紡糸延伸された繊維に比べると、低分子配向、低結晶性となり繊維自身の強度が低くなってしまう欠点を持っている。
また、不織布としても繊維配向がマシンの流れ方向だけでなく直角方向及び厚み方向にも配向しており比較的ランダムであるため、さらに機械的強度が低くなってしまうという欠点も合わせて持っている。
アルカリ蓄電池の組立工程において、正極板と負極板にセパレータを挟んで、渦巻き状に巻き込む工程があるが、強度の低いメルトブロー不織布のみで構成されているアルカリ電池セパレータは、この工程でセパレータに対して巻き込み方向に張力が加わり、セパレータが切断してしまう不都合があった。
However, although the melt blown nonwoven fabric has a reduced fiber diameter, the molecular orientation and crystallization do not progress so much, and the fiber itself has low molecular orientation and low crystallinity compared to the fiber that is spun and drawn by the usual method, and the strength of the fiber itself is low. Has the disadvantage of becoming lower.
Also, as a nonwoven fabric, the fiber orientation is oriented not only in the machine flow direction but also in the perpendicular direction and the thickness direction, and is relatively random, so it has the disadvantage that the mechanical strength is further reduced. .
In the process of assembling the alkaline storage battery, there is a step of winding the separator between the positive electrode plate and the negative electrode plate and winding it in a spiral shape. There was an inconvenience that the separator was cut due to the tension applied in the winding direction.

一般に、不織布の強度を向上させるには目付を増やせばよいが、セパレータの厚みを一定にした場合、目付の増加はセパレータ内部の空隙率を低下させることとなり、セパレータの性能として重要な保液性、通気性(蓄電池の充電時、正極で発生した酸素ガスを負極へ円滑に移動させる機能)を損なってしまう。
また、目付のアップは製造コストのアップにつながり、特に製造コストの高いメルトブロー不織布においては問題である。
このようにメルトブロー不織布を用いて厚みの薄いセパレータを作ると極板間の絶縁性、電解液の保液性は維持することはできるが、反面、強度、通気性については低下させてしまう欠点がある。
In general, the basis weight should be increased to improve the strength of the nonwoven fabric. However, when the separator thickness is kept constant, the increase in the basis weight will decrease the porosity inside the separator, which is an important liquid retention property as separator performance. The air permeability (function of smoothly moving oxygen gas generated at the positive electrode to the negative electrode during charging of the storage battery) is impaired.
Further, the increase in the basis weight leads to an increase in manufacturing cost, and is a problem particularly in a melt blown nonwoven fabric having a high manufacturing cost.
In this way, when a thin separator is made using a melt blown nonwoven fabric, the insulation between the electrodes and the liquid retention of the electrolyte can be maintained, but on the other hand, there is a drawback that the strength and air permeability are reduced. is there.

従来のアルカリ蓄電池用として、特にニッケル−水素蓄電池に適したセパレータとしては、下記のものが知られている。
先ず、異物などによりセパレータが破損するのを抑制し、かつ高い保液性を有する電池用セパレータ、およびショート率の少ない電池特性を有する電池を提供することを目的とした、「電池用セパレータを構成する全繊維質量に対して熱接着性繊維(A)が質量比で0.1以上含有し、前記熱接着性繊維(A)により構成繊維を熱接着した湿式不織布の少なくとも片面に、湿式抄紙ウェブからなり、湿式抄紙ウェブを構成する全繊維質量に対して熱接着性繊維(B)が質量比で0.1以上含有している湿式抄紙ウェブ層が積層され、前記湿式不織布と前記湿式抄紙ウェブ層との層間が熱接着性繊維(A)および熱接着性繊維(B)から選ばれる少なくとも一つの繊維により熱接着されて結合一体化しており、JIS−L−1086の6.19.1におけるはく離強さが0.1〜5Nの範囲であることを特徴とするもの。」(例えば、特許文献1参照)
As separators suitable for conventional alkaline storage batteries and particularly suitable for nickel-hydrogen storage batteries, the following are known.
First, a battery separator that has a purpose of providing a battery separator that suppresses damage to the separator due to foreign matter and the like and that has high liquid retention properties and a battery that has a low short-circuit rate is provided. A wet papermaking web on at least one side of a wet nonwoven fabric in which the heat-adhesive fiber (A) is contained in a mass ratio of 0.1 or more with respect to the total fiber mass and the constituent fibers are heat-bonded by the heat-adhesive fiber (A) A wet papermaking web layer containing 0.1 or more of heat-adhesive fibers (B) in a mass ratio with respect to the total fiber mass constituting the wet papermaking web, and laminating the wet nonwoven fabric and the wet papermaking web The interlayer between the layers is bonded and integrated by heat bonding with at least one fiber selected from the heat-adhesive fiber (A) and the heat-adhesive fiber (B). 6.19 of JIS-L-1086 Those peel strength at 1, characterized in that in the range of 0.1~5N. "(E.g., see Patent Document 1)

また、無水銀化にともなう酸化亜鉛デンドライト等による内部短絡を防止することのできる緻密性と、重放電性能の向上が図れる保液性を同時に充足する緻密で電解液の保液率を高めたセパレータ紙、具体的には緻密性として気密度2秒/100ml〜100秒/100mlの範囲、保液性として保液率550%以上のアルカリ電池用セパレータ紙を提供することを目的とした、「アルカリ電池における陽極活物質と陰極活物質とを隔離するためのセパレータ紙において、該セパレータ紙は陽極活物質と陰極活物質との内部短絡を防止するための緻密性を維持する緻密層と、電解液の保液率を高めるための保液層とを積層一体化してなる構成、該セパレータ紙は緻密性を有する緻密層と、保液性を有する保液層とを積層一体化してなり、前記緻密層によって酸化亜鉛デンドライトに起因する内部短絡を阻止するとともに、前記保液層によって電池の重放電に適するように電解液の保液率を高める構成、及び該セパレータ紙は緻密性を有する緻密層と、保液性を有する保液層とを積層一体化してなり、前記緻密層は叩解可能な耐アルカリ性セルロース繊維と合成繊維とを混抄し、該叩解可能な耐アルカリ性セルロース繊維を20重量%〜80重量%の範囲で含有し、かつ、該叩解可能な耐アルカリ性セルロース繊維の叩解の程度がCSFの値で500ml〜0mlの範囲であり、又前記保液層は耐アルカリ性セルロース繊維と合成繊維とを混抄し、該耐アルカリ性セルロース繊維を20重量%〜80重量%の範囲で含有し、かつ、該耐アルカリ性セルロース繊維の叩解の程度がCSFの値で700ml以上であるアルカリ電池用セパレータ紙。」(例えば、特許文献2参照)   In addition, a dense separator that can prevent internal short circuit due to zinc oxide dendrites, etc. due to anhydrous silver, and a liquid retaining property that can improve heavy discharge performance, and has a high electrolyte retention rate. An object of the present invention is to provide an alkaline battery separator paper having a density of 2 seconds / 100 ml to 100 seconds / 100 ml as a denseness and a liquid retention of 550% or more as a liquid retention property. Separator paper for separating an anode active material and a cathode active material in a battery, wherein the separator paper is a dense layer that maintains a denseness to prevent an internal short circuit between the anode active material and the cathode active material, and an electrolytic solution The separator paper is laminated and integrated with a liquid retaining layer for increasing the liquid retention rate, and the separator paper is formed by laminating and integrating a dense layer having a dense property and a liquid retaining layer having a liquid retaining property, A structure in which an internal short circuit caused by zinc oxide dendrite is prevented by the dense layer, and the liquid retention rate of the electrolytic solution is increased by the liquid retention layer so as to be suitable for heavy discharge of the battery, and the separator paper has a dense layer And a liquid-retaining layer having liquid-retaining properties are laminated and integrated, and the dense layer is a mixture of beatingable alkali-resistant cellulose fibers and synthetic fibers, and the beatingable alkali-resistant cellulose fibers are 20 wt% to The beating degree of the alkali-resistant cellulose fibers that are contained in the range of 80% by weight and the beating ability is in the range of 500 ml to 0 ml in terms of CSF, and the liquid retaining layer is made of alkali-resistant cellulose fibers and synthetic fibers. And the alkali-resistant cellulose fiber is contained in the range of 20% by weight to 80% by weight, and the degree of beating of the alkali-resistant cellulose fiber is CSF. Alkaline battery separator paper with a value not less than 700 ml. "(E.g., see Patent Document 2)

また、活物質の移動防止機能、通気度、電解液の保持性に優れた電池用セパレータを提供することを目的とした、「目付10g/m2以上のメルトブローウェブと、メルトブローウェブに水流絡合処理を施した水流絡合不織布とを熱圧着により積層一体化したことを特徴とする電池用セパレータ。」(例えば、特許文献3参照) In addition, with the aim of providing a battery separator with excellent active material migration prevention function, air permeability, and electrolyte retention, a melt blow web having a basis weight of 10 g / m 2 or more and a water flow entanglement with the melt blow web A separator for a battery characterized by being laminated and integrated with a hydroentangled nonwoven fabric that has been treated. "(See, for example, Patent Document 3)

また、活物質の移動防止機能、通気度、強度を阻害することなく、電解液の保持性を向上させた電池用セパレータを提供することを目的とした、「目付10g/m2以上のメルトブロー不織布と、短繊維ウェブからなる水流絡合不織布とを熱圧着により積層一体化したことを特徴とする電池用セパレータ。」を、請求項2の発明は、「目付10g/m2以上の短繊維ウェブと目付5g/m2以上のメルトブローウェブとからなり、該短繊維ウェブと該メルトブローウェブの重量比が30:70乃至80:20である水流絡合不織布と、目付10g/m2以上のメルトブロー不織布とを、熱圧着により積層一体化したことを特徴とする電池用セパレータ。」を、そして請求項3の発明は、「短繊維ウェブが分割繊維によって形成されていることを特徴とする請求項1または2記載の電池用セパレータ。」(例えば、特許文献4参照) Further, movement prevention function of the active material, the air permeability without inhibiting strength, aimed to provide a battery separator having improved retention of the electrolytic solution, "basis weight 10 g / m 2 or more meltblown nonwoven And a hydroentangled nonwoven fabric made of short fiber webs which are laminated and integrated by thermocompression bonding. The invention of claim 2 states that “short fiber webs having a basis weight of 10 g / m 2 or more”. consists and basis weight 5 g / m 2 or more meltblown web, a hydro-entangled nonwoven fabric weight ratio of the short fiber web and the meltblown web is 30:70 to 80:20, basis weight 10 g / m 2 or more meltblown nonwoven And a separator for a battery characterized by being laminated and integrated by thermocompression bonding, and the invention of claim 3 is characterized in that “the short fiber web is formed of split fibers”. Or the battery cell according to 2 Palator. "(For example, see Patent Document 4)

さらに、保液性や親水性に優れ、且つ高温時の耐酸化性に優れたポリオレフィン系セパレータを用いたアルカリ蓄電池を提供するために、「アルカリ蓄電池のセパレータがエチレンビニルアルコール共重合体とポリオレフィン重合体から構成された分割型複合繊維とポリオレフィン系繊維からなり、且つ該分割型複合繊維が80〜100%分割されて0.5デニール以下に微繊維化された不織布であることを特徴とするもの。」(例えば、特許文献5参照)   Furthermore, in order to provide an alkaline storage battery using a polyolefin-based separator that has excellent liquid retention and hydrophilicity and excellent oxidation resistance at high temperatures, an alkaline storage battery separator is made of an ethylene vinyl alcohol copolymer and a polyolefin polymer. What is characterized by being a non-woven fabric composed of split composite fiber and polyolefin fiber composed of coalesced, and split into 80-100% and micronized to less than 0.5 denier (For example, see Patent Document 5).

特開2002−124242号公報(0008)(0009)JP 2002-124242 A (0008) (0009) 特開平10−92411号公報(0025)(0026)JP-A-10-92411 (0025) (0026) 特開平5−174806号公報(0006)(0007)JP-A-5-174806 (0006) (0007) 特開平5−182654号公報(0006)(0007)JP-A-5-182654 (0006) (0007) 特開平7−254399号公報(0003)(0004)JP 7-254399 A (0003) (0004)

前記のように、従来の乾式製造法による不織布においては、絶縁性、保液性を確保しようとすると、どうしても厚みを薄くすることができなかった。
また、絶縁性、保液性を確保するために提案されたメルトブロー不織布は、強度、通気性において極端に劣り、また製造コストにおいても劣るためほとんど実用化されていない。
また、両者の長所のみを生かすために、上述のメルトブロー不織布と乾式製造法による不織布との積層一体化は性能、製造コストの面でまだ不十分である。
As described above, in the non-woven fabric produced by the conventional dry manufacturing method, the thickness could not be reduced by any means in order to ensure insulation and liquid retention.
Moreover, the melt blown nonwoven fabric proposed in order to ensure insulation and liquid retention is hardly put to practical use because it is extremely inferior in strength and air permeability and also in production cost.
Moreover, in order to make use of only the advantages of both, the lamination integration of the above melt blown nonwoven fabric and the nonwoven fabric by the dry production method is still insufficient in terms of performance and production cost.

上記したセパレータのうち、湿式抄紙法を用いた2層を抄きあわせる方法では、実用的な引っ張り強度を有するが、繊維長が短いために耐突き刺し強度に劣りショート率が高くなってしまうという問題があった。   Among the separators described above, the method of combining two layers using the wet papermaking method has a practical tensile strength, but the fiber length is short, so the puncture resistance is inferior and the short rate is increased. was there.

また、不織布支持体層又は、乾式不織布層を設けて引っ張り強度を高めているが、不織布支持体層や乾式不織布層自体の空隙が大きく、バリやデンドライドによる短絡を防止するのは困難であるという問題があった。   Moreover, although the nonwoven fabric support layer or the dry nonwoven fabric layer is provided to increase the tensile strength, the nonwoven fabric support layer or the dry nonwoven fabric layer itself has a large gap, and it is difficult to prevent short circuit due to burrs or dendrites. There was a problem.

また、分割性複合繊維の長繊維を用いて乾式抄紙し、構成成分ごとに分割して交絡させて形成した不織布は、機械的強度は大であるが、目付を低下させ、セパレータの薄型化を図ろうとすると目が粗くなってしまい、電池生産時にセパレータ貫通による短絡発生率が増加するという問題もあった。   In addition, non-woven fabrics formed by dry paper making using long fibers of splittable composite fibers and split and entangled for each constituent component have high mechanical strength, but reduce the basis weight and make the separator thinner. Attempting to do so would make the eyes rough, and there was also a problem that the incidence of short-circuiting due to separator penetration increased during battery production.

さらに、上記分割性複合繊維の短繊維を用いて湿式抄紙し、構成成分ごとに分割して交絡させて形成した不織布は、緻密で均一であるので低目付で薄型化が図れるが、機械的強度が小であるため、電池生産時切断による短絡発生率が増加するという問題点もあった。   Furthermore, the non-woven fabric formed by wet papermaking using the short fibers of the above-described splittable composite fibers and divided for each component and entangled is dense and uniform, so it can be thinned with a low basis weight, but the mechanical strength However, there is also a problem that the occurrence rate of a short circuit due to cutting during battery production increases.

本発明の課題(目的)は、前記従来技術の欠点に鑑みてなされたものであり、耐突き刺し強度、機械的強度および保液性に優れたアルカリ蓄電池用のセパレータを安価に提供すること、及び該アルカリ蓄電池用セパレータを用いて、充放電サイクル寿命が改善され、且つ耐短絡性に優れたアルカリ蓄電池を提供することにある。   The problem (object) of the present invention is made in view of the drawbacks of the prior art, and provides an alkaline storage battery separator excellent in puncture resistance, mechanical strength and liquid retention at low cost, and An object of the present invention is to provide an alkaline storage battery having improved charge / discharge cycle life and excellent short-circuit resistance using the separator for alkaline storage battery.

上記課題を解決するために、
合成樹脂製繊維の不織布からなるアルカリ蓄電池用セパレータであって、前記不織布の目付量が60g/m2 以下であり、長手方向と幅方向のうち少なくとも長手方向の引っ張り強度が90ニュートン(N)/5cm以上、引っ張り伸び率が18%以上であり、耐突き刺し強度が9ニュートン(N)以上であるアルカリ蓄電池用セパレータ。(請求項1)
また、前記不織布の目付量を30〜60g/m2 とする。(請求項2)
また、前記不織布の目付量を30〜50g/m2 とする。(請求項3)
また、前記不織布の厚さを50〜140μmとする。(請求項4)
また、前記不織布が、合成樹脂製繊維の長さが15mmを超える長繊維、平均繊維径が10μm以下で長さが15mm以下の短繊維、および熱接着性繊維で構成された不織布であって、前記長繊維、短繊維、及び熱接着性繊維で構成された基布を複数枚積層し、基布同士を接着して一体化した不織布とする。(請求項5)
また、前記請求項1〜5に記載のアルカリ蓄電池用セパレータを間に挟んで正極板と負極板を積層した積層体を、ロール状に捲回した捲回式極板群を備えるアルカリ蓄電池であって、
前記セパレータの、引っ張り強度が90ニュートン(N)/5cm以上、引っ張り伸び率が18%以上である長手方向を極板群の捲回軸に対して略垂直に配置したするアルカリ蓄電池。(請求項6)
To solve the above problem,
A separator for an alkaline storage battery comprising a non-woven fabric of synthetic resin fibers, wherein the non-woven fabric has a basis weight of 60 g / m 2 or less, and a tensile strength in at least the longitudinal direction of the longitudinal direction and the width direction is 90 Newton (N) / An alkaline storage battery separator having a tensile elongation of 5% or more, a tensile elongation of 18% or more, and a puncture resistance of 9 Newtons (N) or more. (Claim 1)
The basis weight of the nonwoven fabric is 30 to 60 g / m 2 . (Claim 2)
The basis weight of the nonwoven fabric is 30 to 50 g / m 2 . (Claim 3)
Moreover, the thickness of the said nonwoven fabric shall be 50-140 micrometers. (Claim 4)
The non-woven fabric is a non-woven fabric composed of long fibers having a synthetic resin fiber length exceeding 15 mm, short fibers having an average fiber diameter of 10 μm or less and a length of 15 mm or less, and heat-adhesive fibers, A plurality of base fabrics composed of the long fibers, the short fibers, and the heat-adhesive fibers are laminated, and the base fabrics are bonded together to form a nonwoven fabric. (Claim 5)
An alkaline storage battery comprising a wound electrode plate group in which a laminate in which a positive electrode plate and a negative electrode plate are laminated with the alkaline storage battery separator according to claim 1 interposed therebetween is wound into a roll. And
An alkaline storage battery in which a longitudinal direction of the separator having a tensile strength of 90 Newton (N) / 5 cm or more and a tensile elongation of 18% or more is arranged substantially perpendicular to the winding axis of the electrode plate group. (Claim 6)

請求項1〜5に記載の本発明のアルカリ蓄電池用セパレータは、上述のような繊維材料を用いて形成されているため、湿式抄紙基布並みの地合いの緻密化と親水性の向上が改善されるため、耐圧縮性に優れており電解液保持性に優れている。
また、請求項6に記載の本発明のアルカリ蓄電池は、請求項1〜5に係るアルカリ蓄電池用セパレータを備えているため、充放電サイクル寿命が改善され、また耐短絡性に有効である。
Since the separator for an alkaline storage battery according to the first to fifth aspects of the present invention is formed using the fiber material as described above, the densification and hydrophilicity improvement similar to a wet papermaking base fabric is improved. Therefore, it has excellent compression resistance and excellent electrolyte solution retention.
Moreover, since the alkaline storage battery of this invention of Claim 6 is equipped with the separator for alkaline storage batteries which concerns on Claims 1-5, charging / discharging cycle life is improved and it is effective for short circuit resistance.

以下、本発明の実施の形態を説明する。
本発明のセパレータは、合成樹脂製繊維の不織布からなり、目付量が60g/m2以下のアルカリ蓄電池用セパレータであって、長手方向と幅方向のうち少なくとも長手方向の引っ張り強度が90ニュートン(N)/5cm以上、引っ張り伸び率が18%以上であり、耐突き刺し強度が9ニュートン(N)以上であるアルカリ蓄電池用セパレータである。
Embodiments of the present invention will be described below.
The separator of the present invention is an alkaline storage battery separator made of a synthetic resin fiber nonwoven fabric and having a basis weight of 60 g / m 2 or less, and has a tensile strength of 90 Newton (N ) / 5 cm or more, a tensile elongation is 18% or more, and a puncture strength is 9 Newtons (N) or more.

また、本発明に係るアルカリ蓄電池は、前記セパレータを間に挟んで正極板と負極板を積層した積層体を、ロール状に捲回した捲回式極板群を備えるアルカリ蓄電池であって、前記セパレータの、引っ張り強度が90ニュートン(N)/5cm以上、引っ張り伸び率が18%以上、耐突き刺し強度が9ニュートン(N)以上である長手方向を極板群の捲回軸に対して略垂直に配置した捲回式極板群を備えたアルカリ蓄電池である。   Further, the alkaline storage battery according to the present invention is an alkaline storage battery comprising a wound electrode plate group obtained by winding a laminate in which a positive electrode plate and a negative electrode plate are laminated with the separator interposed therebetween, in a roll shape, The longitudinal direction of the separator having a tensile strength of 90 Newton (N) / 5 cm or more, a tensile elongation of 18% or more, and a puncture strength of 9 Newton (N) or more is substantially perpendicular to the winding axis of the electrode plate group. It is an alkaline storage battery provided with the wound-type electrode plate group arranged in the above.

本発明に係るアルカリ蓄電池用セパレータは、さらに、乾式法により作製した不織布であって、厚さが50〜140μm、目付量が60g/m2 以下、好ましくは30〜60
g/m2 以下、さらに好ましくは30〜50g/m2 である請求項1または請求項2に記載のアルカリ蓄電池用セパレータである。
厚さが50μm、目付量が30g/m2 未満の場合には、セパレータの引っ張り強度や耐突き刺し強度が低く、捲回式極板群を組み立てたときにセパレータの絶縁が破壊され短絡を生じる虞がある。
厚さが140μm、目付量が60g/m2 を超える場合は、セパレータの占有体積が大きくなって、活物質充填量が低下するために電池容量の低下を来す虞がある。
The separator for an alkaline storage battery according to the present invention is a non-woven fabric produced by a dry method, and has a thickness of 50 to 140 μm and a basis weight of 60 g / m 2 or less, preferably 30 to 60.
It is g / m < 2 > or less, More preferably, it is 30-50 g / m < 2 >, The separator for alkaline storage batteries of Claim 1 or Claim 2.
When the thickness is 50 μm and the basis weight is less than 30 g / m 2 , the tensile strength and puncture resistance of the separator are low, and the insulation of the separator may be destroyed and short circuit may occur when the wound electrode group is assembled. There is.
When the thickness is 140 μm and the basis weight is more than 60 g / m 2 , the occupied volume of the separator is increased, and the active material filling amount is decreased, which may cause a decrease in battery capacity.

本発明では、60g/m2以下という小さい目付量で前記のように高い引っ張り強度と耐突き刺し強度を得るために、本発明においては、不織布を構成する合成樹脂製繊維を、長繊維、平均繊維径が10μm以下である極細の短繊維および熱接着性繊維とし、該不織布に親水化処理を施したものとした。
ここでいう長繊維とは長さが15mmを超える繊維を、短繊維とは長さが15mm以下の繊維をいう。
In the present invention, in order to obtain high tensile strength and puncture resistance as described above with a small basis weight of 60 g / m 2 or less, in the present invention, the synthetic resin fibers constituting the nonwoven fabric are long fibers, average fiber diameters. These were ultrafine short fibers and heat-adhesive fibers having a thickness of 10 μm or less, and the nonwoven fabric was subjected to a hydrophilic treatment.
The long fiber here means a fiber having a length of more than 15 mm, and the short fiber means a fiber having a length of 15 mm or less.

長繊維の材質は特に限定されるものではないが、引っ張り強度が大きくて熱接着性があるものが好ましく、それに加えて親水性を有するものであれば、さらに好ましい。
具体的には、ポリプロピレンやプロピレンとビニルアルコールのコポリマー、ポリエチレン等が好適である。
長繊維の繊維径も特に限定されるものではないが、緻密な不織布を形成するためには、繊維度0.5デニール以下の細い繊維とするのが好ましい。
このような目的に適するものとして、後記の分割型繊維を分割して作製した繊維が挙げられる。
前記極細の短繊維は、前記長繊維に絡んで不織布の平均的な緻密性を高めるとともに、不織布に粗密のムラができるのを抑制するのに有効である。
短繊維の材質も特に限定されるものではないが、例えば、ポリプロピレンやポリエチレン繊維が好適である。
また、前記熱接着性繊維としては、ポリエチレンが好適である。
The material of the long fiber is not particularly limited, but a material having a high tensile strength and thermal adhesiveness is preferable, and a material having hydrophilicity in addition thereto is more preferable.
Specifically, polypropylene, a copolymer of propylene and vinyl alcohol, polyethylene and the like are preferable.
The fiber diameter of the long fibers is not particularly limited, but in order to form a dense nonwoven fabric, it is preferable to use fine fibers having a fiber degree of 0.5 denier or less.
A fiber suitable for such a purpose is a fiber produced by dividing a split fiber described later.
The ultrafine short fibers are effective in increasing the average denseness of the nonwoven fabric entangled with the long fibers and suppressing the unevenness of the nonwoven fabric.
The material of the short fiber is not particularly limited, but for example, polypropylene or polyethylene fiber is suitable.
Moreover, polyethylene is suitable as the thermal adhesive fiber.

不織布を構成する繊維の構成を前記構成とすることによって、目付量が小さくても、引っ張り強度および耐突き刺し強度が高い不織布を得ることができる。
不織布を構成する繊維のうち、主として前記長繊維同士が熱接着性繊維によって接着されることによって、高い引っ張り強度を有する不織布が得られると考えられる。
また、不織布を構成する繊維のうち主として極細の短繊維が不織布の緻密性を高め、且つ、この極細の短繊維が熱接着性繊維の仲立ちで前記長繊維に接着されることによって高い耐突き刺し強度を有する不織布が得られるものと考えられる。
引っ張り強度、耐突き刺し強度の高い不織布を得るためには、不織布中に前記極細短繊維が約30wt%、熱接着性繊維が約20wt%含むことが好ましい。
By setting the configuration of the fibers constituting the nonwoven fabric to the above configuration, a nonwoven fabric having high tensile strength and high puncture strength can be obtained even if the basis weight is small.
It is considered that a nonwoven fabric having a high tensile strength can be obtained by mainly bonding the long fibers among the fibers constituting the nonwoven fabric with heat-adhesive fibers.
Also, among the fibers constituting the non-woven fabric, the ultra-fine short fibers mainly increase the density of the non-woven fabric, and the ultra-fine short fibers are bonded to the long fibers in the middle of the heat-bonding fibers, thereby providing high puncture resistance. It is thought that the nonwoven fabric which has this is obtained.
In order to obtain a nonwoven fabric having high tensile strength and puncture resistance, the nonwoven fabric preferably contains about 30 wt% of the ultrafine short fibers and about 20 wt% of heat-adhesive fibers.

本発明においては、前記繊維で構成された基布を複数枚積層させた不織布とすることが好ましい。
前記本発明に係る不織布のように長繊維を適用した不織布を湿式法で作製することは難しく、乾式法で作製する。
また、乾式法は長繊維を用いた不織布の作製に適し、製造コストも安いが、不織布の厚さが大きくになるに従い、その緻密性が低下する傾向にある。同じ厚さの不織布であっても、薄い基布を複数枚積層した方が、緻密な不織布が得られやすい。
さらに複数枚の基布を積み重ねて加熱圧着して一体化することにより、重ね合わせた基布と基布の界面に位置する熱接着性繊維により基布の界面を接合させて一体化することによって、繊維同士の結合点を増やし、1層式に比べて、さらに引っ張り強度、耐突き刺し強度を高めることができる。
In this invention, it is preferable to set it as the nonwoven fabric which laminated | stacked multiple sheets of the base fabric comprised with the said fiber.
It is difficult to produce a nonwoven fabric using long fibers such as the nonwoven fabric according to the present invention by a wet method, and it is produced by a dry method.
In addition, the dry method is suitable for producing a nonwoven fabric using long fibers, and the production cost is low, but the denseness tends to decrease as the thickness of the nonwoven fabric increases. Even if the nonwoven fabric has the same thickness, it is easier to obtain a dense nonwoven fabric by laminating a plurality of thin base fabrics.
Furthermore, by stacking and integrating a plurality of base fabrics by thermocompression bonding, the base fabric interface is joined and integrated by thermal adhesive fibers located at the interface between the overlapped base fabric and the base fabric. By increasing the bonding point between the fibers, the tensile strength and puncture resistance can be further increased as compared with the single-layer type.

前記基布は、乾式法で作製したものであって、その目付量が10〜50g/m2 であることが好ましい。
該目付量が10g/m2 未満であって粗密のムラの小さいものを作製することは困難であって、引っ張り強度も極めて小さいため、重ね合わせも難しいという欠点がある。
また、目付量が50g/m2 を超えると、基布の緻密性が低下し、それに伴って引っ張り強度、耐突き刺し強度が低下する虞がある。
The base fabric is produced by a dry method, and the basis weight is preferably 10 to 50 g / m 2 .
The basis weight is less than 10 g / m 2 , and it is difficult to produce a product with small density unevenness, and since the tensile strength is extremely small, there is a drawback that superposition is difficult.
On the other hand, if the basis weight exceeds 50 g / m 2 , the denseness of the base fabric is lowered, and the tensile strength and puncture resistance may be lowered accordingly.

(セパレータの作製と物性調査)
ポリプロピレン樹脂繊維成分とポリエチレン樹脂繊維成分とが円周方向に交互に隣接し合いかつ互いに分割可能なように複合紡糸された分割性繊維を分割した平均長さ20mm、繊維度0.25デニールの長繊維(A)と、ポリプロピレン樹脂を芯部分としかつポリエチレン樹脂を鞘部分とする芯鞘構造を有する、繊維度1.5デニール、長さ10μmの熱溶着性繊維の(B)、ポリプロピレン樹脂製の平均繊維径が5μm、平均長さ5mmの極細短繊維(C)とを重量比で5:3:2均一に混合し、目付量20g/m2の乾式スパンレース基布を調製した。
そして、この基布を2枚積層させてシリンダードライヤーで加熱し、2枚の基布を接着させて一体化した厚さ100μm、目付量40g/m2の不織布を得た。
得られた不織布の両面に放電量1.0kw・min/m2でコロナ放電処理を施し、不織布に親水性を付与した。
なお、ここでいう、セパレータの厚さはJIS L 1913のA法(試料に0.5kPaの圧力を掛けたときの厚さ)によって測定した値である。
(Manufacture of separator and investigation of physical properties)
Polypropylene resin fiber component and polyethylene resin fiber component are alternately adjacent to each other in the circumferential direction, and an average length of 20 mm and a fiber degree of 0.25 denier are obtained by dividing the split fibers that are composite-spun so that they can be separated from each other. Fiber (A), a core-sheath structure having a polypropylene resin as a core part and a polyethylene resin as a sheath part, (B) of a heat-weldable fiber having a fiber degree of 1.5 denier and a length of 10 μm, made of polypropylene resin An ultrafine fiber (C) having an average fiber diameter of 5 μm and an average length of 5 mm was uniformly mixed at a weight ratio of 5: 3: 2 to prepare a dry spunlace base fabric having a basis weight of 20 g / m 2 .
Then, two sheets of this base fabric were laminated and heated with a cylinder dryer, and the two base fabrics were bonded and integrated to obtain a nonwoven fabric having a thickness of 100 μm and a basis weight of 40 g / m 2 .
The both surfaces of the obtained nonwoven fabric were subjected to corona discharge treatment with a discharge amount of 1.0 kW · min / m 2 to impart hydrophilicity to the nonwoven fabric.
In addition, the thickness of a separator here is the value measured by A method (Thickness when a pressure of 0.5 kPa is applied to a sample) of JIS L 1913.

コロナ放電処理を施した不織布を、引っ張り強度の強い方向{機械方向(MD方向)}が長辺になるように不織布を所定の寸法に裁断して、引っ張り試験用サンプル、突き刺し試験用サンプルおよびAAサイズの円筒型電池用のセパレータとした。   A non-woven fabric that has been subjected to corona discharge treatment is cut into a predetermined size such that the direction of strong tensile strength {machine direction (MD direction)} is the long side, and a tensile test sample, a piercing test sample, and AA A separator for a cylindrical battery of a size.

作製したセパレータの評価方法を以下に説明する。
(引っ張り試験)
それぞれ5×20cmの試験片を切り取り、JIS−L−1096に規定された方法に準じて引っ張り強度を測定した。
ここでは、つかみ間隔を100mm、引っ張り速度を300mm/分にそれぞれ設定し、試験片が切断したときの引っ張り加重(kg)を読み取り該サンプルの引っ張り強度とした。 また、前記引っ張り荷重が最大に達したときのつかみ間隔の増加(mm)のもとのつかみ間隔(100mm)に対する比率(%)を求め、該サンプルの引っ張り伸び率とした。
(突き刺し試験)
不織布サンプルの耐突き刺し強度をカトーテック株式会社製ハンデイ―圧縮試験機(タイプKES−G5)形を用いて測定した。
具体的には、縦30mm、横100mmに裁断した試料を、直径11mmの円筒状透孔を有する台上に、該透孔を覆うようにサンプル1枚を載置し、中央部に直径が11mmの透孔を設けた縦46mm、横86mm、厚さ7mmのアルミニウム板からなるサンプルホルダーを載置し、前記台とサンプルホルダーでサンプルを狭持した後、先端部に直径が1mmφの球状部を有し、底面の直径が2.2mm、長さが18.7mmの円錐状の針を2mm/秒の速度で、前記押さえ板の透孔の中央においてサンプルに貫通させたときの最大荷重を測定し、該最大荷重をもって耐突き刺し強度とした。
The evaluation method of the produced separator is demonstrated below.
(Tensile test)
Each 5 × 20 cm test piece was cut out and the tensile strength was measured according to the method defined in JIS-L-1096.
Here, the gripping interval was set to 100 mm and the pulling speed was set to 300 mm / min, and the tensile load (kg) when the test piece was cut was read and used as the tensile strength of the sample. Further, the ratio (%) of the increase (mm) in the gripping interval when the tensile load reached the maximum to the original gripping interval (100 mm) was determined and used as the tensile elongation rate of the sample.
(Puncture test)
The puncture resistance of the nonwoven fabric sample was measured using a handy compression tester (type KES-G5) manufactured by Kato Tech Co., Ltd.
Specifically, a sample cut to a length of 30 mm and a width of 100 mm is placed on a table having a cylindrical through hole with a diameter of 11 mm so as to cover the through hole, and the diameter is 11 mm at the center. A sample holder made of an aluminum plate with a length of 46 mm, a width of 86 mm, and a thickness of 7 mm was placed. After holding the sample between the table and the sample holder, a spherical portion with a diameter of 1 mmφ was formed at the tip. The maximum load is measured when a sample is passed through the center of the through hole of the holding plate at a speed of 2 mm / sec with a conical needle having a bottom diameter of 2.2 mm and a length of 18.7 mm. The maximum load was used as puncture resistance.

(アルカリ蓄電池用正極板の作製)
硫酸アンモニウムと水酸化ナトリウムを含み、pHを12±0.2に、温度を45±2℃に設定した反応浴に該反応浴を激しく撹拌しながら、硫酸ニッケル、硫酸亜鉛および硫酸コバルトを含む水溶液と硫酸アンモニウム水溶液、水酸化ナトリウム水溶液を少量づつ添加した。
この間、反応浴の温度とpHを前記範囲内に納まるように制御した。
これにより、水酸化亜鉛および水酸化コバルトが固溶した水酸化ニッケル粒子を生成させた。
該粒子に含まれるニッケル、亜鉛およびコバルトの比率は金属単体換算でそれぞれ58wt%、3.7wt%、1.2wt%であった。
(Preparation of positive electrode plate for alkaline storage battery)
An aqueous solution containing nickel sulfate, zinc sulfate and cobalt sulfate while vigorously stirring the reaction bath in a reaction bath containing ammonium sulfate and sodium hydroxide, having a pH set to 12 ± 0.2 and a temperature set to 45 ± 2 ° C. Ammonium sulfate aqueous solution and sodium hydroxide aqueous solution were added little by little.
During this time, the temperature and pH of the reaction bath were controlled so as to be within the above ranges.
As a result, nickel hydroxide particles in which zinc hydroxide and cobalt hydroxide were dissolved were generated.
The ratios of nickel, zinc, and cobalt contained in the particles were 58 wt%, 3.7 wt%, and 1.2 wt%, respectively, in terms of simple metal.

次に、pHを12±0.2に設定した水酸化ナトリウム水溶液に上記水酸化ニッケル粒子を浸漬させた反応浴に、該反応浴を撹拌しながら、硫酸コバルトの水溶液と水酸化ナトリウムの水溶液を少量づつ添加した。
この間、反応浴のpHを前記範囲内に納まるように制御した。
これにより、前記水酸化ニッケル粉末の表面に水酸化コバルトからなる被覆層を形成させた複合粒子を生成させた。
複合粒子に占める表面層の比率は7wt%であった。
Next, an aqueous solution of cobalt sulfate and an aqueous solution of sodium hydroxide are added to a reaction bath in which the nickel hydroxide particles are immersed in an aqueous solution of sodium hydroxide having a pH of 12 ± 0.2 while stirring the reaction bath. Small portions were added.
During this time, the pH of the reaction bath was controlled so as to be within the above range.
This produced composite particles in which a coating layer made of cobalt hydroxide was formed on the surface of the nickel hydroxide powder.
The ratio of the surface layer to the composite particles was 7 wt%.

濃度が10wt%の水酸化ナトリウム水溶液400gに、前記複合粒子100gを投入して撹拌しながら、次亜塩素酸ナトリウム溶液45mlを加えて酸化処理をした。反応浴の温度は60℃、反応時間は30分間とした。
その後、反応浴から複合粒子を炉別し、水洗、脱水をした。得られた複合粒子に含まれる繊維金属元素(Ni、Co)の平均酸化数は2.15であった。
前記酸化処理を施した複合粒子に、濃度30wt%の水酸化ナトリウム水溶液20gを添加して、撹拌しながら温度80℃で2時間加熱処理を行った。
その後、水洗乾燥して正極(ニッケル電極)用活物質粒子を得た。
While adding 100 g of the composite particles to 400 g of an aqueous sodium hydroxide solution having a concentration of 10 wt% and stirring, 45 ml of sodium hypochlorite solution was added for oxidation treatment. The temperature of the reaction bath was 60 ° C., and the reaction time was 30 minutes.
Thereafter, the composite particles were separated from the reaction bath by furnace, washed with water and dehydrated. The average oxidation number of the fiber metal elements (Ni, Co) contained in the obtained composite particles was 2.15.
To the composite particles subjected to the oxidation treatment, 20 g of a 30 wt% sodium hydroxide aqueous solution was added, followed by heat treatment at a temperature of 80 ° C. for 2 hours with stirring.
Then, it washed with water and dried and obtained the active material particle for positive electrodes (nickel electrode).

得られた正極用活物質粒子、酸化イッテルビウム粉末、0.6wt%のカルボキシメチルセルロース(CMC)水溶液と、40wt%ポリテトラエチレン粉末の分散液とを重量比で75.7:1.0:22.9:0.4で混合して正極用活物質ペーストを得た。
該活物質ペーストを厚さ1.4mm、面密度450g/m2の発泡ニッケルからなる正極用基板に充填し、乾燥後ロール掛けして厚さ0.8mmの極板とした。
該極板を所定の寸法に裁断してAAサイズの円筒型電池用正極板とした。得られた正極板の活物質充填容量は2000mAhであった。
The obtained positive electrode active material particles, ytterbium oxide powder, 0.6 wt% carboxymethyl cellulose (CMC) aqueous solution, and 40 wt% polytetraethylene powder dispersion were 75.7: 1.0: 22. 9: 0.4 mixed to obtain a positive electrode active material paste.
The active material paste was filled in a positive electrode substrate made of foamed nickel having a thickness of 1.4 mm and a surface density of 450 g / m 2 , dried and rolled to obtain an electrode plate having a thickness of 0.8 mm.
The electrode plate was cut into a predetermined size to obtain a positive electrode plate for an AA cylindrical battery. The active material filling capacity of the obtained positive electrode plate was 2000 mAh.

(アルカリ蓄電池用負極板の作製)
平均粒径が40μm、MmNi3.8Al0.3Co0.7Mn0.2(Mmは、ミッシュメタルであり、La30%、Ce50%、Pr5%およびNd15%からなる混合物である)で表される組成を有する水素吸蔵合金粉末を、pHを3.6に調整した温度60℃の酢酸−酢酸ナトリウム緩衝溶液中に浸漬した後、水洗して乾燥した。
その後、この水素吸蔵合金粉末99.5重量部と酸化イッテルビウム粉末0.5重量部とを混合し、この混合物84wt%にポリテトラフロロエチレン粉末1wt%、CMCの1wt%水溶液15wt%を添加してペーストとした。
該ペーストを、厚さが0.06mm、開口径が1mm、開口率が40%のニッケルメッキを施した鋼板からなるパンチングメタルの両面に塗布して乾燥した後、ロール掛けして厚さを0.3mmにした後、所定の寸法に裁断してAAサイズの円筒型電池用の負極板とした。 なお、該負極板の活物質充填容量の活物質充填容量は2400mAhであった。
(Preparation of alkaline storage battery negative electrode plate)
Hydrogen storage having an average particle size of 40 μm and a composition represented by MmNi3.8Al0.3Co0.7Mn0.2 (Mm is a misch metal, a mixture of La30%, Ce50%, Pr5% and Nd15%) The alloy powder was immersed in an acetic acid-sodium acetate buffer solution at a temperature of 60 ° C. adjusted to pH 3.6, then washed with water and dried.
Thereafter, 99.5 parts by weight of this hydrogen storage alloy powder and 0.5 part by weight of ytterbium oxide powder were mixed, and 1 wt% of polytetrafluoroethylene powder and 15 wt% of 1 wt% aqueous solution of CMC were added to 84 wt% of this mixture. A paste was used.
The paste was applied to both sides of a punched metal plate made of nickel-plated steel having a thickness of 0.06 mm, an opening diameter of 1 mm, and an opening ratio of 40%, dried and then rolled to reduce the thickness to 0 After 3 mm, it was cut into a predetermined size to obtain a negative electrode plate for an AA size cylindrical battery. The active material filling capacity of the negative electrode plate was 2400 mAh.

(極板群の作製と耐短絡性調査)
前記AAサイズの円筒型電池用の正極板と負極板の間に前記セパレータを、その長手方向を捲回軸に対して垂直方向に配置して積層し、渦巻き状に巻き取り、AAサイズの円筒型電池用の極板群を作製した。
極板群を1000個作製し、作製した極板群全てにつき正極板と負極板の間の電気絶縁性を調べた。
(Production of electrode plate group and short-circuit resistance investigation)
The separator is laminated between a positive electrode plate and a negative electrode plate for an AA size cylindrical battery, the longitudinal direction of which is arranged in a direction perpendicular to the winding axis, wound up in a spiral shape, and an AA size cylindrical battery. An electrode plate group was prepared.
1000 electrode plate groups were prepared, and the electrical insulation between the positive electrode plate and the negative electrode plate was examined for all of the prepared electrode plate groups.

(円筒形ニッケル水素蓄電池の作製)
前記AAサイズの円筒型電池用の極板群のうち電気絶縁性に異常の認められなかった(正極と負極間に短絡が発生してないもの)を選択し、該極板群を、側面の肉厚が0.18mmの円筒状の金属ケース内に当該電極群を収納し、また、7Mの水酸化カリウムと1Mの水酸化リチウムとを含む水溶液からなる電解液を金属ケース内に注入した。
ここで、電解液の注入量は、正極板の容量1Ah当たり1.15mlに設定した。電解液の注入後、安全弁を備えた金属製の蓋体を用いて金属ケースを封口し、AAサイズの円筒型ニッケル−水素蓄電池を得た。
(充放電サイクル試験)
前記、AAサイズ円筒形ニッケル水素蓄電池を5個用意し、定法にて化成を行ったのち、周囲温度20℃において充放電サイクル試験に供した。
該サイクル試験において、1ItAで1.5時間充電、1.0時間休止、終止電圧1.0V、1ItA放電を1サイクルとし、該充放電サイクルを繰り返し行った。
放電容量が、初期の80%になったサイクル数をもってサイクル寿命とした。
(Production of cylindrical nickel-metal hydride storage battery)
The electrode group for the AA size cylindrical battery was selected so that no abnormality was found in the electrical insulation (no short circuit occurred between the positive electrode and the negative electrode). The electrode group was housed in a cylindrical metal case having a wall thickness of 0.18 mm, and an electrolytic solution made of an aqueous solution containing 7M potassium hydroxide and 1M lithium hydroxide was injected into the metal case.
Here, the injection amount of the electrolytic solution was set to 1.15 ml per 1 Ah capacity of the positive electrode plate. After injecting the electrolytic solution, the metal case was sealed using a metal lid provided with a safety valve to obtain an AA size cylindrical nickel-hydrogen storage battery.
(Charge / discharge cycle test)
Five AA size cylindrical nickel metal hydride storage batteries were prepared, subjected to chemical conversion by a conventional method, and then subjected to a charge / discharge cycle test at an ambient temperature of 20 ° C.
In this cycle test, charging / discharging cycle was repeated with 1 ItA charging for 1.5 hours, 1.0 hour rest, final voltage of 1.0 V, and 1 ItA discharging as one cycle.
The cycle life was defined as the number of cycles at which the discharge capacity reached 80% of the initial value.

実施例1と同じ繊維構成からなり、目付量が22.5g/m2である基布2枚を積層し、実施例1と同様に加熱処理をして接着し、一体化した。実施例1と同様にコロナ放電処理し、目付量45g/m2、厚み110μmのセパレータを得た。
得られたセパレータを実施例1と同様引っ張り試験、突き刺し試験に供した。
また、該セパレータを適用して前記実施例1と同様にしてAAサイズの円筒型電池用の捲回式極板群を作製し、実施例1と同様に正極板と負極板間の電気絶縁性を調べた。
Two base fabrics having the same fiber configuration as in Example 1 and having a basis weight of 22.5 g / m 2 were laminated, heat-treated in the same manner as in Example 1, and bonded and integrated. Corona discharge treatment was performed in the same manner as in Example 1 to obtain a separator having a basis weight of 45 g / m 2 and a thickness of 110 μm.
The obtained separator was subjected to a tensile test and a piercing test in the same manner as in Example 1.
Further, by applying the separator, a wound electrode plate group for AA size cylindrical batteries was produced in the same manner as in Example 1, and the electrical insulation between the positive electrode plate and the negative electrode plate was obtained in the same manner as in Example 1. I investigated.

(比較例1)
実施例1と同じ繊維構成からなり、目付量が40g/m2、厚み100μmの乾式スパンレースの不織布を作製し、該不織布の両面に実施例1と同様にコロナ放電処理を施し、セパレータを得た。
得られたセパレータを実施例1と同様引っ張り試験、突き刺し試験に供した。
また、該セパレータを適用して前記実施例1と同様にしてAAサイズの円筒型電池用の捲回式極板群を作製し、実施例1と同様に正極板と負極板間の電気絶縁性を調べた。
さらに、前記円筒型電池用の極板群のうち電気絶縁性に異常の認められなかった(正極と負極間に短絡が発生してないもの)を選択し、実施例1と同様にAAサイズの円筒形電池を作製し、充放電サイクル試験に供した。
(Comparative Example 1)
A dry spunlace nonwoven fabric having the same fiber configuration as in Example 1 and having a basis weight of 40 g / m 2 and a thickness of 100 μm was produced, and both sides of the nonwoven fabric were subjected to corona discharge treatment in the same manner as in Example 1 to obtain a separator. It was.
The obtained separator was subjected to a tensile test and a piercing test in the same manner as in Example 1.
Further, by applying the separator, a wound electrode plate group for AA size cylindrical batteries was produced in the same manner as in Example 1, and the electrical insulation between the positive electrode plate and the negative electrode plate was obtained in the same manner as in Example 1. I investigated.
Furthermore, the electrode group for the cylindrical battery was selected so that there was no abnormality in electrical insulation (no short circuit occurred between the positive electrode and the negative electrode). A cylindrical battery was prepared and subjected to a charge / discharge cycle test.

(比較例2)
前記繊維径が14μm、長さが30mm、ポリプロピレンを芯とし、ポリエチレンを鞘とする芯鞘形繊維を用い乾式法にて目付量が40g/m2、厚みが110μmの不織布を作製した。該不織布の両面に実施例1と同様にコロナ放電処理を施し、セパレータを得た。
得られたセパレータを実施例1と同様引っ張り試験、突き刺し試験に供した。
(Comparative Example 2)
A nonwoven fabric having a fiber diameter of 14 μm, a length of 30 mm, a core-sheath fiber having polypropylene as a core and polyethylene as a sheath, and a basis weight of 40 g / m 2 and a thickness of 110 μm was prepared by a dry method. Corona discharge treatment was performed on both surfaces of the nonwoven fabric in the same manner as in Example 1 to obtain a separator.
The obtained separator was subjected to a tensile test and a piercing test in the same manner as in Example 1.

上記実施例1及び比較例1のセパレータを構成する不織布の表面拡大写真(倍率×100)を図1に示す。
実施例1のものでは、比較例1にものに比較して地合いが緻密であることが分かる。
The surface enlarged photograph (magnification x100) of the nonwoven fabric which comprises the separator of the said Example 1 and the comparative example 1 is shown in FIG.
It can be seen that the texture of Example 1 is denser than that of Comparative Example 1.

表1に、実施例1,2、および比較例1,2のセパレータの引っ張り強度、引っ張り伸び率、耐突き刺し強度、および極板群(試験個数1000個)中の短絡発生個数を示す。
なお、表1の「目付量」は基布の目付量であって、実施例1および2のセパレータは基布2枚で構成されているので、セパレータとしての目付量は、表1の値のそれぞれ2倍である40g/m2及び45g/m2となる。
Table 1 shows the tensile strength, tensile elongation, puncture resistance, and number of short-circuit occurrences in the electrode plate group (1000 test pieces) of the separators of Examples 1 and 2 and Comparative Examples 1 and 2.
The “weight per unit area” in Table 1 is the amount per unit area of the base fabric, and the separators of Examples 1 and 2 are composed of two base fabrics. a 40 g / m 2 and 45 g / m 2 is 2-fold, respectively.

Figure 2005078848
Figure 2005078848

表1に示したとおり、実施例1及び2に係るセパレータの引っ張り強度は、91(N/5cm)、99(N/5cm)と、いづれも90(N/5cm)以上の大きな値であるのに対して、比較例1及び2のセパレータの引っ張り強度は、62(N/5cm)、30(N/5cm)と小さい値であった。
また、実施例1及び2に係るセパレータの伸び率は、18.1(%)、19.5(%)と、いづれも18(%)以上であるのに対して、比較例1及び2のセパレータの伸び率は、8.4(%)、5.0(%)と半分以下であった。
また、実施例1及び2に係るセパレータの耐突き刺し強度は、9.0(N)、11.7(N)と、いづれも9(N)以上であるのに対して、比較例1及び2のセパレーの耐突き刺し強度は、5.9(N)、3.2(N)と低い値であった。
As shown in Table 1, the tensile strengths of the separators according to Examples 1 and 2 are 91 (N / 5cm) and 99 (N / 5cm), both of which are large values of 90 (N / 5cm) or more. On the other hand, the tensile strengths of the separators of Comparative Examples 1 and 2 were as small as 62 (N / 5 cm) and 30 (N / 5 cm).
Further, the elongation percentages of the separators according to Examples 1 and 2 were 18.1 (%) and 19.5 (%), both of which were 18 (%) or more, whereas those of Comparative Examples 1 and 2 The elongation percentage of the separator was 8.4 (%) and 5.0 (%), which were less than half.
Further, the puncture resistance of the separators according to Examples 1 and 2 is 9.0 (N) and 11.7 (N), both of which are 9 (N) or more, while Comparative Examples 1 and 2 The piercing-resistant strength of the Separe of 5.9 (N) and 3.2 (N) was a low value.

表1に示した如く、本発明の実施例1および実施例2のセパレータが、比較例に比べて引っ張り強度、耐突き刺し強度が高いのは、実施例のセパレータが厚さの小さい2枚の基布を積層したものであるので、前記図1に示したように緻密な不織布が得られたこと、また、2枚の基布を熱接着によって一体化したものであるので、熱接着によって結合された繊維同士の交点が増えたためと考えられる。
また、実施例のセパレータの引っ張り伸び率が比較例に比べて大きい値となったのは、実施例のセパレータの場合、繊維同士の結合点が増えたことにより、不織布が伸びて繊維と繊維が相互に位置を変えても切れにくくなったこと、また、殊に極細短繊維が緻密に充填されており、不織布が伸びても繊維の粗な部分が生成し難くなったためと考えられる。
As shown in Table 1, the separators of Examples 1 and 2 of the present invention have higher tensile strength and puncture resistance than the comparative examples. Since the fabrics are laminated, a dense nonwoven fabric is obtained as shown in FIG. 1, and since the two base fabrics are integrated by thermal bonding, they are bonded by thermal bonding. This is thought to be because the number of intersections between the fibers increased.
Moreover, the tensile elongation rate of the separator of the example was larger than that of the comparative example. In the case of the separator of the example, the increase in the number of bonding points between fibers caused the nonwoven fabric to stretch and the fibers and fibers This is considered to be because it became difficult to cut even if the positions were changed from each other, and it was difficult to produce a coarse portion of the fiber, particularly because the ultrafine short fibers were densely packed and the nonwoven fabric was stretched.

また、表1に示す如く、実施例1および実施例2に係る極板群の短絡発生個数は、いずれも0であるのに対して、比較例1および比較例2の極板群はの短絡発生個数は、9個,37個であった。
目付量が40g/m2 、45g/m2 と小さいセパレータを用いたにも拘わらず、実施例に係る極板群に短絡が生じなかったのは、前記の通り、実施例に係るセパレータの引っ張り強度、耐突き刺し強度が高く、且つ、引っ張り伸び率が大きいことによるものと考えられる。
Further, as shown in Table 1, the number of short-circuit occurrences of the electrode plate groups according to Example 1 and Example 2 are both 0, whereas the electrode plate groups of Comparative Example 1 and Comparative Example 2 are short-circuited. The number of occurrences was 9 and 37.
Basis weight despite using small separator and 40g / m 2, 45g / m 2, the short circuit in the electrode plate group in accordance with Example did not occur, as described above, tension of the separator according to Example This is probably because the strength and puncture resistance are high and the tensile elongation is large.

表1に示す如く、本発明の実施例1及び実施例2のセパレータは、引っ張り強度、伸び率、耐突き刺し強度及び短絡発生個数のいずれにも優れているので、アルカリ蓄電池用のセパレータとして適用することが有効であることがわかる。   As shown in Table 1, the separators of Example 1 and Example 2 of the present invention are excellent in all of tensile strength, elongation rate, puncture strength, and number of occurrence of short-circuits, and thus are applied as separators for alkaline storage batteries. Can be seen to be effective.

次に、実施例1及び比較例1のAAサイズの円筒形ニッケル水素蓄電池のサイクル試験結果を表2に示す。   Next, Table 2 shows the cycle test results of the AA size cylindrical nickel metal hydride storage batteries of Example 1 and Comparative Example 1.

Figure 2005078848
Figure 2005078848

表2に示したとおり、比較例1の場合には、サンプルNo.1の235サイクルの如く極端にサイクル寿命の短いものが散見されるのに比べて、実施例1の場合はサンプルNo.1〜No.5の全てが500サイクルを超えるサイクル寿命を有しており、実施例1のものがサイクル性能が優れていることがわかる。
その理由としては、ニッケル水素蓄電池を繰り返し充放電した場合、極板の厚さが増加する傾向が認められ、極板の厚さが増加するとセパレータに対して押圧が加わる。
そして、比較例1の場合は、実施例1に比べてセパレータの引っ張り強度、耐突き刺し強度が劣るため、充放電を繰り返し行ったときに、セパレータに前記押圧が加わることによって、不織布を構成する繊維が移動して局部的に繊維の粗な部分が生じた為に、セパレータの隔離機能が低下してサイクル性能が劣る結果が出たものと考えられる。
As shown in Table 2, in the case of Comparative Example 1, in the case of Example 1, the sample No. 1 was compared with the sample having the extremely short cycle life like 235 cycles of Sample No. 1. It can be seen that all of No. 5 have a cycle life exceeding 500 cycles, and that of Example 1 has excellent cycle performance.
The reason is that when the nickel-metal hydride storage battery is repeatedly charged and discharged, a tendency to increase the thickness of the electrode plate is recognized, and when the thickness of the electrode plate increases, pressure is applied to the separator.
And in the case of the comparative example 1, since the tensile strength of a separator and a puncture-proof strength are inferior compared with Example 1, when repeating charging / discharging, the fiber which comprises a nonwoven fabric by adding the said press to a separator. It is considered that the result of inferior cycle performance due to a decrease in the separator function of the separator is caused by the fact that the coarse portion of the fiber is locally generated due to the movement of.

また、前記サイクル試験における実施例1のNo.1〜No.3及び比較例1のNo.1,No.3,No.4の放電容量の低下の傾向を図2に示す。
なお、図2では、200サイクル近辺までは、実施例1のNo.1〜No.3及び比較例1のNo.1〜No.3に差が無いので、同一の符号で示し、それ以上のサイクル数において、相互に差が生じた部分から異なった符号で示している。
In addition, FIG. 2 shows the tendency of the discharge capacities of No. 1 to No. 3 of Example 1 and No. 1, No. 3, and No. 4 of Comparative Example 1 in the cycle test.
In FIG. 2, since there is no difference between No. 1 to No. 3 of Example 1 and No. 1 to No. 3 of Comparative Example 1 up to around 200 cycles, the same reference numerals are used, and more than that. The number of cycles is indicated by a different symbol from the portion where the difference occurs.

本発明のアルカリ蓄電池用セパレータは、上述のような繊維材料を用いて形成されているため、湿式抄紙基布並みの地合いの緻密化と親水性の向上が改善されるため、耐圧縮性に優れており電解液保持性に優れていると共に、本発明のニッケル水素電池は、本発明に係るアルカリ蓄電池用セパレータを備えているため、充放電サイクル寿命が改善され、また耐短絡性に有効であるので、産業上の利用性は極めて大きい。   Since the separator for alkaline storage batteries of the present invention is formed using the fiber material as described above, it is excellent in compression resistance because it improves the densification and hydrophilicity improvement of the wet papermaking base fabric. In addition, the nickel metal hydride battery of the present invention is provided with the alkaline storage battery separator according to the present invention, so that the charge / discharge cycle life is improved and the short circuit resistance is effective. Therefore, industrial applicability is extremely large.

実施例1及び比較例1のアルカリ蓄電池用セパレータを構成する不織布の表面拡大写真である。It is the surface enlarged photograph of the nonwoven fabric which comprises the separator for alkaline storage batteries of Example 1 and Comparative Example 1. サイクル試験における実施例1のNo.1〜No.3及び比較例1のNo.1,No.3,No.4の放電容量の低下の傾向を示すグラフである。It is a graph which shows the tendency of the fall of the discharge capacity of No. 1-No. 3 of Example 1 and No. 1, No. 3, No. 4 of the comparative example 1 in a cycle test.

Claims (6)

合成樹脂製繊維の不織布からなるアルカリ蓄電池用セパレータであって、
前記不織布の目付量が60g/m2 以下であり、長手方向と幅方向のうち少なくとも長手方向の引っ張り強度が90ニュートン(N)/5cm以上、引っ張り伸び率が18%以上であり、耐突き刺し強度が9ニュートン(N)以上であることを特徴とするアルカリ蓄電池用セパレータ。
A separator for an alkaline storage battery comprising a nonwoven fabric of synthetic resin fibers,
The basis weight of the nonwoven fabric is 60 g / m 2 or less, the tensile strength in at least the longitudinal direction of the longitudinal direction and the width direction is 90 Newton (N) / 5 cm or more, the tensile elongation is 18% or more, and the puncture resistance Is a separator for alkaline storage batteries, characterized in that it is 9 Newtons (N) or more.
前記不織布の目付量が30〜60g/m2 であることを特徴とする請求項1に記載のアルカリ蓄電池用セパレータ。 Alkaline separator for storage batteries according to claim 1, wherein the basis weight of the nonwoven fabric is 30 to 60 g / m 2. 前記不織布の目付量が30〜50g/m2 であることを特徴とする請求項1に記載のアルカリ蓄電池用セパレータ。 Alkaline separator for storage batteries according to claim 1, wherein the basis weight of the nonwoven fabric is 30 to 50 g / m 2. 前記不織布の厚さが50〜140μmであることを特徴とする請求項1〜3のいずれか1項に記載のアルカリ蓄電池用セパレータ。 4. The alkaline storage battery separator according to claim 1, wherein the nonwoven fabric has a thickness of 50 to 140 μm. 前記不織布が、合成樹脂製繊維の長さが15mmを超える長繊維、平均繊維径が10μm以下で長さが15mm以下の短繊維、および熱接着性繊維で構成された不織布であって、前記長繊維、短繊維、及び熱接着性繊維で構成された基布を複数枚積層し、基布同士を接着して一体化した不織布であることを特徴とする請求項1〜4のいずれか1項に記載のアルカリ蓄電池用セパレータ。 The non-woven fabric is a non-woven fabric composed of long fibers having a synthetic resin fiber length exceeding 15 mm, short fibers having an average fiber diameter of 10 μm or less and a length of 15 mm or less, and heat-bonding fibers, 5. A nonwoven fabric obtained by laminating a plurality of base fabrics composed of fibers, short fibers, and heat-adhesive fibers, and bonding the base fabrics together to integrate them. The separator for alkaline storage batteries described in 1. 前記請求項1〜5に記載のアルカリ蓄電池用セパレータを間に挟んで正極板と負極板を積層した積層体を、ロール状に捲回した捲回式極板群を備えるアルカリ蓄電池であって、
前記セパレータの、引っ張り強度が90ニュートン(N)/5cm以上、引っ張り伸び率が18%以上である長手方向を極板群の捲回軸に対して略垂直に配置したことを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising a wound electrode group in which a laminate in which a positive electrode plate and a negative electrode plate are stacked with the alkaline storage battery separator according to any one of claims 1 to 5 interposed therebetween is wound in a roll shape,
An alkaline storage battery characterized in that a longitudinal direction of the separator having a tensile strength of 90 Newton (N) / 5 cm or more and a tensile elongation of 18% or more is arranged substantially perpendicular to the winding axis of the electrode plate group. .
JP2003305040A 2003-08-28 2003-08-28 Separator for alkaline storage battery, and alkaline storage battery using it Pending JP2005078848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305040A JP2005078848A (en) 2003-08-28 2003-08-28 Separator for alkaline storage battery, and alkaline storage battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305040A JP2005078848A (en) 2003-08-28 2003-08-28 Separator for alkaline storage battery, and alkaline storage battery using it

Publications (1)

Publication Number Publication Date
JP2005078848A true JP2005078848A (en) 2005-03-24

Family

ID=34408551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305040A Pending JP2005078848A (en) 2003-08-28 2003-08-28 Separator for alkaline storage battery, and alkaline storage battery using it

Country Status (1)

Country Link
JP (1) JP2005078848A (en)

Similar Documents

Publication Publication Date Title
JP5006546B2 (en) Battery separator and battery using the same
KR100499217B1 (en) Alkaline battery separator and process for producing the same
JPWO2008047542A1 (en) Alkaline battery separator, method for producing the same, and alkaline battery
JP2001155709A (en) Separator for battery
JP4800527B2 (en) Non-woven fabric, battery using the non-woven fabric, and capacitor using the non-woven fabric
JP4886205B2 (en) Battery separator and battery using the same
JP2006269384A (en) Separator for alkaline battery
JP5048231B2 (en) Battery separator and battery using the same
JP3678081B2 (en) Battery separator and battery using the same
JP3914331B2 (en) Alkaline battery separator
JP4410394B2 (en) Battery separator
JP2000215873A (en) Alkaline storage battery and its manufacture
JP4450518B2 (en) Battery separator and battery
JP2005078848A (en) Separator for alkaline storage battery, and alkaline storage battery using it
JP4291794B2 (en) Battery separator and battery using the same
JP4410406B2 (en) Battery separator
JP4868756B2 (en) Battery separator and battery
JP2002124242A (en) Separator for battery, its manufacturing method, and battery with the same incorporated therein
JP2005116514A (en) Separator for battery and its manufacturing method
JP4065637B2 (en) Battery separator and method for producing the same
JP4058202B2 (en) Alkaline battery
JP4258682B2 (en) Alkaline storage battery
JP2003109568A (en) Separator for battery, and battery using the same
JP2003234097A (en) Battery and separator therefor
JPH11297295A (en) Separator for battery and its manufacture and battery using it