JP2005076507A - Fuel consumption measuring device - Google Patents

Fuel consumption measuring device Download PDF

Info

Publication number
JP2005076507A
JP2005076507A JP2003306776A JP2003306776A JP2005076507A JP 2005076507 A JP2005076507 A JP 2005076507A JP 2003306776 A JP2003306776 A JP 2003306776A JP 2003306776 A JP2003306776 A JP 2003306776A JP 2005076507 A JP2005076507 A JP 2005076507A
Authority
JP
Japan
Prior art keywords
oxygen
supply
amount
gas
fuel consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306776A
Other languages
Japanese (ja)
Inventor
Akinobu Moriyama
明信 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003306776A priority Critical patent/JP2005076507A/en
Publication of JP2005076507A publication Critical patent/JP2005076507A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel consumption measuring device capable of measuring fuel consumption without requiring drastic modification in an automobile side and applicable to measurement of fuel consumption of a stationary fuel cell power generating device and a conventional internal combustion engine without being limited to a fuel cell vehicle. <P>SOLUTION: A supplying oxygen state measuring means 100 calculates oxygen amount supplied to a power source 10, and a discharging oxygen state measuring means 200 calculates oxygen amount discharged from the power source 10. An oxygen consumption arithmetic circuit 300 calculates oxygen consumption in the power source 10 based on the supplied and discharged oxygen amount. A fuel consumption arithmetic circuit 400 determines fuel amount consumed by the power source 10 based on the oxygen consumption. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、動力源で消費される燃料の量を測定する装置に関する。   The present invention relates to an apparatus for measuring the amount of fuel consumed by a power source.

自動車の燃料消費量測定方法には、法規で定められている試験モード(日本では10−15モード燃費)では、カーボンバランス法が国際標準として用いられている。このカーボンバランス法は、内燃機関の自動車に採用されているが、近年、地球環境問題から研究開発が盛んな燃料電池車には適用が困難であり、燃料電池車の燃費測定方法が検討されている。   As a method for measuring fuel consumption of automobiles, the carbon balance method is used as an international standard in a test mode (10-15 mode fuel consumption in Japan) defined by laws and regulations. This carbon balance method is used in automobiles with internal combustion engines, but in recent years it has been difficult to apply to fuel cell vehicles that are actively researched and developed due to global environmental problems, and methods for measuring fuel consumption of fuel cell vehicles have been studied. Yes.

その技術は、非特許文献1及び非特許文献2にて記載されているように、(1)水素燃料タンクの重量を測定する重量法、(2)水素燃料タンク内の圧力を測定する圧力法、(3)水素燃料タンクからの流量を測定する流量法が主に検討されている。
自動車研究、第24巻第10号、2002年10月、p.49-55 2003 JSAE Annual Congress、2003年5月21日、2003年春季大会、学術講演会前刷集No.19-03、p.5-8
As described in Non-Patent Document 1 and Non-Patent Document 2, the technique includes (1) a weight method for measuring the weight of the hydrogen fuel tank, and (2) a pressure method for measuring the pressure in the hydrogen fuel tank. (3) The flow rate method for measuring the flow rate from the hydrogen fuel tank is mainly studied.
Automotive Research, Vol. 24, No. 10, October 2002, p.49-55 2003 JSAE Annual Congress, May 21, 2003, 2003 Spring Conference, Academic Lecture Preprint No.19-03, p.5-8

しかしながら、この従来技術では自動車に搭載される水素燃料タンクを測定対象物にすることが困難なため、前述の(1)〜(3)のいずれの方法も別に設けた専用水素燃料タンクを測定対象物としなければならず、試験自動車に専用水素燃料タンクを接続させる必要がある。すなわち、自動車側に接続機構および燃料供給ライン切り替え機構を備えなければならない。これは、自動車のコストアップ、重量アップを招くだけでなく、信頼性や安全性の低下を招く恐れがある。   However, with this conventional technology, it is difficult to make a hydrogen fuel tank mounted on a vehicle an object to be measured. It is necessary to connect a dedicated hydrogen fuel tank to the test vehicle. That is, a connection mechanism and a fuel supply line switching mechanism must be provided on the automobile side. This not only increases the cost and weight of the automobile, but also may decrease reliability and safety.

本発明は、このような従来の課題に着目してなされたもので、自動車側に大幅な改造を必要とせず、燃費測定が可能とするとともに、燃料電池車に限らず定置形の燃料電池発電装置や従来の内燃機関の燃費測定にも適用可能な燃料消費量測定装置を提供することを目的とする。   The present invention has been made paying attention to such a conventional problem, and does not require significant modification on the automobile side, enables fuel consumption measurement, and is not limited to a fuel cell vehicle. It is an object of the present invention to provide a fuel consumption measuring device that can also be applied to the fuel consumption measurement of an apparatus or a conventional internal combustion engine.

そのため本発明では、動力源に供給される酸素の状態と、動力源から排出される酸素の状態とを測定し、これらの測定結果に基づき動力源での酸素消費量を算出し、この酸素消費量に基づき動力源で消費された燃料量を求める。   Therefore, in the present invention, the state of oxygen supplied to the power source and the state of oxygen discharged from the power source are measured, and the oxygen consumption at the power source is calculated based on these measurement results. The amount of fuel consumed by the power source is determined based on the amount.

本発明によれば、燃料供給ラインを改造することなく、比較的簡便な構成で燃料消費量が測定できる。特に、自動車の場合、その効果は大である。   According to the present invention, the fuel consumption can be measured with a relatively simple configuration without modifying the fuel supply line. Particularly in the case of automobiles, the effect is great.

以下、図面を用いて本発明の第1の実施形態について説明する。
図1は、本発明の第1実施形態に係る基本構成を示す図である。図2は、供給酸素状態測定手段100及び排出酸素状態測定手段200を説明する図である。
燃料を消費して動力を発生する動力源10には、例えば水素タンク等の燃料源2と、大気中の酸素等の酸素源3とが配管を介して接続され、これらから燃料及び酸素が供給されるように構成している。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a basic configuration according to the first embodiment of the present invention. FIG. 2 is a diagram for explaining the supply oxygen state measurement means 100 and the exhaust oxygen state measurement means 200.
For example, a fuel source 2 such as a hydrogen tank and an oxygen source 3 such as oxygen in the atmosphere are connected via a pipe to a power source 10 that generates power by consuming fuel. Fuel and oxygen are supplied from these sources. It is configured to be.

動力源10は、供給された燃料及び酸素を燃焼に用いることで動力を得て、これを出力する。
動力源10にて燃料及び酸素を消費した後のガスが、排気管4から排出される。
ここで、酸素源3と動力源10との間に供給酸素状態測定手段100を、動力源10の下流位置に排出酸素状態測定手段200を、それぞれ配設している。これらの測定手段100,200の時間遅れを補正するガス検出タイミング位相補正機能を持った酸素消費量演算回路300と、酸素消費量から燃料消費量に変換する燃料消費量演算回路400とを配設している。
The power source 10 obtains power by using the supplied fuel and oxygen for combustion, and outputs this power.
The gas after consuming fuel and oxygen at the power source 10 is discharged from the exhaust pipe 4.
Here, the supply oxygen state measurement means 100 is disposed between the oxygen source 3 and the power source 10, and the exhaust oxygen state measurement means 200 is disposed downstream of the power source 10. An oxygen consumption calculation circuit 300 having a gas detection timing phase correction function for correcting the time delay of these measuring means 100 and 200 and a fuel consumption calculation circuit 400 for converting oxygen consumption into fuel consumption are provided. doing.

酸素消費量算出手段300は、供給酸素状態測定手段100と排出酸素状態測定手段200との検出タイミング位相差分を、供給酸素量または動力源10の負荷の少なくとも一方に応じて補正する。燃料消費量演算回路400の演算結果は、図示しないデジタル出力部および/またはアナログ出力部に出力される。
次に、図2の燃料消費量算出フローチャートを用いて、この構成における作用について説明する。
The oxygen consumption amount calculation means 300 corrects the detection timing phase difference between the supply oxygen state measurement means 100 and the exhaust oxygen state measurement means 200 according to at least one of the supply oxygen amount and the load of the power source 10. The calculation result of the fuel consumption calculation circuit 400 is output to a digital output unit and / or an analog output unit (not shown).
Next, the operation of this configuration will be described using the fuel consumption calculation flowchart of FIG.

ステップ1(図には「S1」と示す。以下同様)では、供給酸素状態測定手段100にて供給酸素量QO2-INを測定する。
ステップ2では、排出酸素状態測定手段200にて排出酸素量QO2-EXを測定する。
ステップ3では、酸素消費量演算回路300にて供給酸素量QO2-INから排出酸素量QO2-EXを差し引いて酸素消費量QO2(=QO2-IN−QO2-EX)を算出する。これにより動力源10にて消費された酸素量を算出する。
In step 1 (shown as “S1” in the figure. The same applies hereinafter), the supply oxygen state measurement means 100 measures the supply oxygen amount Q O2-IN .
In step 2, the exhausted oxygen state measuring means 200 measures the exhausted oxygen amount Q O2-EX .
In step 3, the oxygen consumption amount calculation circuit 300 subtracts the exhausted oxygen amount Q O2-EX from the supplied oxygen amount Q O2-IN to calculate the oxygen consumption amount Q O2 (= Q O2-IN −Q O2-EX ). . Thus, the amount of oxygen consumed by the power source 10 is calculated.

ここで、供給酸素量QO2-INと排出酸素量QO2-EXとには、主にガス輸送遅れに起因した時間(位相)遅れが存在する。この時間遅れは、定常状態(燃料消費量が変動しない状態)での運転時には問題無いが、過渡状態(燃料消費量が変動する状態)での運転時には、大きな誤差要因となるため、的確な補正を実施する必要がある。
そして、検出タイミング(位相)遅れがガス流量に強く依存することから、供給酸素量QO2-INの情報を酸素消費量演算回路300に入力し、予め求めておいた供給酸素量及び検出タイミング(位相)遅れ量の関係マップから補正している。なお、関係マップに代えて関係式を用いて補正量を算出してもよい。これにより、動力源10で消費された酸素消費量QO2をリアルタイムに測定する。
Here, the supply oxygen amount Q O2-IN and the exhaust oxygen amount Q O2-EX have a time (phase) delay mainly due to a gas transport delay. This time delay is not a problem during operation in the steady state (the fuel consumption does not vary), but is a significant error factor during operation in the transient state (the fuel consumption varies). It is necessary to carry out.
Since the detection timing (phase) delay strongly depends on the gas flow rate, information on the supply oxygen amount Q O2-IN is input to the oxygen consumption calculation circuit 300, and the supply oxygen amount and detection timing (preliminarily obtained) It is corrected from the relationship map of the phase) delay amount. Note that the correction amount may be calculated using a relational expression instead of the relation map. Thus, the oxygen consumption Q O2 consumed by the power source 10 is measured in real time.

ステップ4では、燃料消費量演算回路400にて酸素消費量QO2から燃料消費量QFUELを算出する。
この算出実行例として、燃料電池車の場合は、2H2+O2→2H2Oの反応式に基づき、次式で求められる。
FUEL(g/sec)=QO2(g/sec)× 2× Kmr <式1>
ここで、2は反応係数、Kmrは水素/酸素の分子量比(1/16)であるから、次式にて表される。
In step 4, the fuel consumption amount calculation circuit 400 calculates the fuel consumption amount Q FUEL from the oxygen consumption amount Q O2 .
As an example of this calculation execution, in the case of a fuel cell vehicle, the following equation is obtained based on the reaction formula of 2H 2 + O 2 → 2H 2 O.
Q FUEL (g / sec) = Q O2 (g / sec) × 2 × Kmr <Formula 1>
Here, 2 is the reaction coefficient, and Kmr is the molecular weight ratio (1/16) of hydrogen / oxygen, and is expressed by the following equation.

FUEL(g/sec)=QO2(g/sec)× 0.125 <式2>
例えば、従来の内燃機関(化石燃料)の場合は、CmHn+(m+n/2)・O2→m・CO2+(n/2)・H2Oの反応式に基づき、次式で求められる。
FUEL(g/sec)=QO2(g/sec)×(m+n/2)× KCH <式3>
ここで、mは燃料の平均炭素原子数、nは燃料の平均水素原子数、KCHは燃料量に変換する変換係数であり、これらを予め求めておけば、燃料電池車の場合と同様に、酸素消費量QO2から燃料消費量QFUELが求められる。
Q FUEL (g / sec) = Q O2 (g / sec) × 0.125 <Formula 2>
For example, in the case of a conventional internal combustion engine (fossil fuel), the following equation is obtained based on the reaction formula of CmHn + (m + n / 2) · O 2 → m · CO 2 + (n / 2) · H 2 O. It is done.
Q FUEL (g / sec) = Q O2 (g / sec) × (m + n / 2) × K CH <Formula 3>
Here, m is the average number of carbon atoms in the fuel, n is the average number of hydrogen atoms in the fuel, and K CH is a conversion coefficient for conversion into the amount of fuel. The fuel consumption Q FUEL is obtained from the oxygen consumption Q O2 .

図3は、本発明の第1の実施形態を示す図である。なお図1の基本構成と同じ構成・作用部は同一符号を付してその説明を省略する。そして、酸素消費量演算回路300及び燃料消費量演算回路400を省略して示している。
前述の供給酸素状態測定手段100は、供給空気流量計110と、この近傍の第1酸素濃度センサ120と第1水分濃度センサ130とから構成されており、これらが酸素源3から動力源10の間に、順に配設されている。
FIG. 3 is a diagram showing a first embodiment of the present invention. In addition, the same structure and action part as the basic structure of FIG. 1 attaches | subjects the same code | symbol, and abbreviate | omits the description. The oxygen consumption calculation circuit 300 and the fuel consumption calculation circuit 400 are not shown.
The supply oxygen state measuring means 100 is composed of a supply air flow meter 110, a first oxygen concentration sensor 120 and a first moisture concentration sensor 130 in the vicinity thereof, which are connected to the power source 10 from the oxygen source 3. They are arranged in order.

供給空気流量計110は、例えばラミナーフロメータ等の高精度の空気流量計や、熱式空気流量計などを用いる。第1酸素濃度センサ120は、酸素濃度を検知する手段として一般に知られるジルコニア式酸素濃度計を用いる。第1水分濃度センサ130は、空気(供給ガス)中の水分濃度(空気中の水分量:%)を検知可能である。
なお、酸素源3から動力源10に供給される空気の温度および湿度が管理されている状態であれば、マップなどを用いることで、供給空気中の酸素濃度C1-WETおよび水分濃度Kc1が予め算出でき、第1酸素濃度センサ120および第1水分濃度センサ130を用いる必要がなくなる。
As the supply air flow meter 110, for example, a highly accurate air flow meter such as a laminar flow meter, a thermal air flow meter, or the like is used. The first oxygen concentration sensor 120 uses a zirconia oxygen analyzer generally known as a means for detecting the oxygen concentration. The first moisture concentration sensor 130 can detect the moisture concentration (the amount of moisture in the air:%) in the air (supply gas).
If the temperature and humidity of the air supplied from the oxygen source 3 to the power source 10 are controlled, the oxygen concentration C1- WET and the moisture concentration Kc1 in the supply air can be determined in advance by using a map or the like. The first oxygen concentration sensor 120 and the first moisture concentration sensor 130 need not be used.

また前述(図1)の排出酸素状態測定手段200は、燃焼器210と、この近傍の第2酸素濃度センサ220と第2水分濃度センサ230とから構成されており、これらが動力源10から排気の流れ方向に、順に配設されている。
燃焼器210は、動力源10から排出された排出ガスを燃焼することで、排出ガス中に未燃燃料が存在する場合でも燃料を消費(酸化)させることで、仕事をしないで排出される燃料も燃料消費分とカウントすることができる。第2酸素濃度センサ220は、酸素濃度を検知する手段として一般に知られるジルコニア式酸素濃度計を用いる。第2水分濃度センサ230は、排気ガス中の水分濃度(%)を検知可能である。
The exhaust oxygen state measuring means 200 described above (FIG. 1) includes a combustor 210, a second oxygen concentration sensor 220 and a second moisture concentration sensor 230 in the vicinity thereof, which are exhausted from the power source 10. Are arranged in order in the flow direction.
The combustor 210 burns the exhaust gas discharged from the power source 10 and consumes (oxidizes) the fuel even when unburned fuel is present in the exhaust gas. Can also be counted as fuel consumption. The second oxygen concentration sensor 220 uses a zirconia oxygen analyzer generally known as a means for detecting the oxygen concentration. The second moisture concentration sensor 230 can detect the moisture concentration (%) in the exhaust gas.

次に、図4の供給酸素状態算出フローチャートを用いて、この構成における作用について説明する。
ステップ11では、供給空気流量計110の出力信号に基づいて供給空気流量QAIR-WET(g/sec)を算出する。
ステップ12では、第1酸素濃度センサ120の出力信号に基づいて供給酸素濃度(第1酸素濃度)C1-WET(%)を算出する。
Next, the operation in this configuration will be described using the supply oxygen state calculation flowchart of FIG.
In step 11, the supply air flow rate Q AIR-WET (g / sec) is calculated based on the output signal of the supply air flow meter 110.
In step 12, the supply oxygen concentration (first oxygen concentration) C1 -WET (%) is calculated based on the output signal of the first oxygen concentration sensor 120.

ステップ13では、第1水分濃度センサ130の信号に基づいて、供給空気中の水分濃度Kc1(%)を算出する。
ステップ14では、動力源10への供給酸素量QO2-IN(mol/sec)を次式により算出する。
O2-IN=Km-O2×C1-WET / 100 <式4>
なお、Km-O2は、質量流量からモル流量に変換する変換係数である。
In step 13, based on the signal from the first moisture concentration sensor 130, the moisture concentration Kc1 (%) in the supply air is calculated.
In step 14, the amount of oxygen Q O2-IN (mol / sec) supplied to the power source 10 is calculated by the following equation.
Q O2-IN = Km -O2 × C1 -WET / 100 <Formula 4>
Km -O2 is a conversion coefficient for converting from a mass flow rate to a molar flow rate.

ステップ15では、第1水分濃度センサ130の測定値Kc1(%)を用いて、供給ガスが基準水分濃度(供給ガス中の水分を低減させた後の水分濃度)、すなわち乾燥状態である場合の供給空気量QAIR-DRY(mol/sec)を次式により算出する。
AIR-DRY=Km-AIR×QAIR-WET / (100−Kc1) <式5>
なお、Km-AIRは質量流量からモル流量に変換する変換係数である。
In step 15, when the measured value Kc1 (%) of the first moisture concentration sensor 130 is used, the supply gas is in a reference moisture concentration (water concentration after the moisture in the supply gas is reduced), that is, in a dry state. Supply air quantity Q AIR-DRY (mol / sec) is calculated by the following formula.
Q AIR-DRY = Km -AIR × Q AIR-WET / (100−Kc1) <Formula 5>
Km- AIR is a conversion coefficient for converting from a mass flow rate to a molar flow rate.

ステップ16では、水分濃度Kc1を用いて、供給ガスが乾燥状態である場合の供給酸素濃度C1-DRY(%)を次式により算出する。
C1-DRY=C1-WET / (100−Kc1) <式6>
これにより、供給空気中の水分濃度(第1水分濃度)に基づいて供給酸素濃度を補正する。
In step 16, the supply oxygen concentration C1- DRY (%) when the supply gas is in a dry state is calculated by the following equation using the moisture concentration Kc1.
C1 -DRY = C1 -WET / (100−Kc1) <Formula 6>
Thus, the supply oxygen concentration is corrected based on the moisture concentration in the supply air (first moisture concentration).

ステップ17では、供給空気量QAIR-DRY(mol/sec)と、供給酸素濃度C1-DRY(%)とを乗算することで、すなわち次式により水分濃度補正後の供給酸素量QO2-IN-DRY(mol/sec)を算出する。
O2-IN-DRY=QAIR-DRY×C1-DRY <式7>
次に、図5の排出酸素状態算出フローチャートを用いて、この構成における作用について説明する。
In step 17, by multiplying the supply air amount Q AIR-DRY (mol / sec) by the supply oxygen concentration C1 -DRY (%), that is, the supply oxygen amount Q O2-IN after the moisture concentration correction by the following equation: -DRY (mol / sec) is calculated.
Q O2-IN-DRY = Q AIR-DRY × C1 -DRY <Formula 7>
Next, the operation in this configuration will be described using the exhaust oxygen state calculation flowchart of FIG.

ステップ21では、第2酸素濃度センサ220の信号に基づいて排出酸素濃度C2- WET(%)を算出する。
ステップ22では、第2水分濃度センサ230の信号に基づいて排出ガス中の水分濃度Kc2(%)を算出する。
ステップ23では、Kc2を用いて、排出ガスが乾燥状態である場合の排出酸素濃度C2-DRY(%)を次式により算出する。
In step 21, the exhaust oxygen concentration C2 -WET (%) is calculated based on the signal from the second oxygen concentration sensor 220.
In step 22, the moisture concentration Kc2 (%) in the exhaust gas is calculated based on the signal from the second moisture concentration sensor 230.
In step 23, the exhaust oxygen concentration C2- DRY (%) when the exhaust gas is in a dry state is calculated by the following equation using Kc2 .

C2-DRY=C2-WET / (100−Kc2) <式8>
これにより、排出空気中の水分濃度(第2水分濃度)に基づいて排出酸素濃度を補正する。
ステップ24では、排出酸素濃度C2-DRYと、ステップ14にて算出した供給空気流量QAIR-DRY(mol/sec)とを乗算することで、すなわち次式により、排出ガスが基準水分濃度(排出ガス中の水分を低減させた後の水分濃度)、すなわち乾燥状態にある場合の排出酸素量QO2-EX-DRY(mol/sec)を算出する。
C2 -DRY = C2 -WET / (100−Kc2) <Equation 8>
Thereby, the exhaust oxygen concentration is corrected based on the water concentration (second water concentration) in the exhaust air.
In step 24, the exhaust gas concentration is calculated by multiplying the exhaust oxygen concentration C2 -DRY by the supply air flow rate Q AIR-DRY (mol / sec) calculated in step 14, that is, the exhaust gas is converted into the reference moisture concentration (discharge Moisture concentration after reducing the moisture in the gas), that is, the amount of discharged oxygen Q O2-EX-DRY (mol / sec) in the dry state is calculated.

O2-EX-DRY=C2-DRY×QAIR-DRY <式9>
以上述べたようにして供給酸素量QO2-IN-DRYと排出酸素量QO2-EX-DRYとが算出される。そして、前述の通り、酸素消費量演算回路300にて酸素消費量QO2-DRY(=QO2-IN-DRY−QO2-EX-DRY)を算出し、燃料消費量演算回路400にて燃料消費量QFUELを算出する。
なお、前述の供給酸素濃度C1-DRYと排出酸素濃度C2-DRYとは、それぞれ次式にて表わされる。
Q O2-EX-DRY = C2 -DRY × Q AIR-DRY <Formula 9>
As described above, the supply oxygen amount Q O2-IN-DRY and the exhaust oxygen amount Q O2-EX-DRY are calculated. Then, as described above, the oxygen consumption calculation circuit 300 calculates the oxygen consumption Q O2-DRY (= Q O2-IN-DRY −Q O2-EX-DRY ), and the fuel consumption calculation circuit 400 calculates the fuel. Calculate consumption Q FUEL .
The above-mentioned supply oxygen concentration C1 -DRY and exhaust oxygen concentration C2 -DRY are represented by the following equations, respectively.

C1-DRY=QO2-IN-DRY /QAIR-DRY <式10>
C2-DRY=(QO2-IN-DRY−QO2)/ (QAIR-DRY −QO2) <式11>
そして、<式10>及び<式11>式からQAIR-DRYを消去して酸素消費量QO2-DRYを次式にて求めてもよい。
O2-DRY=QO2-IN-DRY×(C1-DRY − C2-DRY)/ (C1-DRY×(1− C2-DRY)) <式12>
ここで燃料電池システムの場合は、供給酸素濃度C1-DRY及び排出酸素濃度C2-DRYと、供給空気量QAIR-DRYとを同一の水分濃度レベル(最も好ましいのは水分を除去したドライ状態)に換算して扱うことで、水分濃度の影響を排除できる。
C1 -DRY = Q O2-IN-DRY / Q AIR-DRY <Formula 10>
C2 -DRY = (Q O2 -IN -DRY -Q O2 ) / (Q AIR-DRY -Q O2 ) <Formula 11>
Then, Q AIR-DRY may be eliminated from Equation 10 and Equation 11, and the oxygen consumption Q O2-DRY may be obtained by the following equation.
Q O2-DRY = Q O2-IN-DRY × (C1 -DRY − C2 -DRY ) / (C1 -DRY × (1- C2 -DRY )) <Formula 12>
Here, in the case of a fuel cell system, the supply oxygen concentration C1 -DRY, the exhaust oxygen concentration C2 -DRY, and the supply air amount Q AIR-DRY are the same moisture concentration level (most preferably in a dry state with moisture removed). The effect of moisture concentration can be eliminated by converting to

このように供給空気流量計110の測定値QAIR-WET (g/sec)、第1酸素濃度センサ120の測定値C1-WET (%)、第1水分濃度センサ130の測定値Kc1(%)、第2酸素濃度センサ220の測定値C2-WET (%)、第2水分濃度センサ230の測定値Kc2(%)から酸素消費量QO2-DRYが求められ、さらに前述の<式2>あるいは<式3>にて、燃料消費量QFUELが求められるのである。 Thus, the measured value Q AIR-WET (g / sec) of the supply air flow meter 110, the measured value C1 -WET (%) of the first oxygen concentration sensor 120, and the measured value Kc1 (%) of the first moisture concentration sensor 130 The oxygen consumption Q O2-DRY is obtained from the measured value C2 -WET (%) of the second oxygen concentration sensor 220 and the measured value Kc2 (%) of the second moisture concentration sensor 230, and further, the above-described <Equation 2> or The fuel consumption amount Q FUEL is obtained from <Equation 3>.

本実施形態によれば、動力源10に供給される酸素の状態を測定する供給酸素状態測定手段100と、動力源10から排出される酸素の状態を測定する排出酸素状態測定手段200と、供給酸素状態測定手段100及び排出酸素状態測定手段200の測定結果QO2-IN、QO2-EXに基づき動力源10での酸素消費量QO2を算出する酸素消費量算出手段300と、酸素消費量算出手段300の算出結果に基づき動力源10で消費された燃料量QFUELを求める燃料消費量算出手段400と、を備える。このため、燃料供給ラインを改造することなく、比較的簡便な構成で燃料消費量QO2が測定できるという効果がある。特に、自動車の場合、その効果は大である。 According to the present embodiment, supply oxygen state measurement means 100 for measuring the state of oxygen supplied to the power source 10, exhaust oxygen state measurement means 200 for measuring the state of oxygen discharged from the power source 10, and supply Oxygen consumption calculating means 300 for calculating the oxygen consumption Q O2 at the power source 10 based on the measurement results Q O2-IN and Q O2-EX of the oxygen state measuring means 100 and the exhausted oxygen state measuring means 200, and the oxygen consumption And a fuel consumption amount calculating means 400 for obtaining a fuel amount Q FUEL consumed by the power source 10 based on the calculation result of the calculating means 300. Therefore, there is an effect that the fuel consumption Q O2 can be measured with a relatively simple configuration without modifying the fuel supply line. Particularly in the case of automobiles, the effect is great.

また本実施形態によれば、供給酸素状態測定手段100は、動力源10への供給ガス量QAIRを検知する供給ガス量検知手段110と、供給ガス中の酸素濃度C1を検知する第1酸素濃度検知手段120と、を有し、供給ガス量QAIR及び第1酸素濃度C1に基づいて供給酸素量QO2-INを算出する(ステップ17)。このため、比較的安価で簡便な構成で実現できるという効果がある。具体的には、供給ガス量検知手段110としては、ラミナーフロメータ等の高精度空気流量計や、熱式空気流量計などを用いることができ、酸素濃度検知手段も一般に知られるジルコニア式酸素濃度計、また水分濃度補正手段も安価な温湿度センサを用いることができる。 Further, according to the present embodiment, the supply oxygen state measurement means 100 includes the supply gas amount detection means 110 that detects the supply gas amount Q AIR to the power source 10 and the first oxygen that detects the oxygen concentration C1 in the supply gas. Concentration detection means 120, and calculates the supply oxygen amount Q O2-IN based on the supply gas amount Q AIR and the first oxygen concentration C1 (step 17). For this reason, there exists an effect that it can implement | achieve with a comparatively cheap and simple structure. Specifically, as the supply gas amount detection means 110, a high-precision air flow meter such as a laminar flow meter, a thermal air flow meter, or the like can be used, and the oxygen concentration detection means is also generally known. An inexpensive temperature / humidity sensor can be used for the meter and the moisture concentration correcting means.

また本実施形態によれば、供給酸素状態測定手段100は、更に供給ガス中の水分濃度Kc1を検知する第1水分濃度検知手段130を有し、供給ガス量QAIR-WET、第1酸素濃度C1-WET及び第1水分濃度Kc1に基づいて基準水分濃度(供給ガス中の水分を低減させた後の水分濃度)での供給酸素量QO2-IN-DRYを算出する(ステップ17)。このため、供給ガス中の水分濃度を考慮して正確な供給酸素量QO2-IN-DRYの測定ができる。 Further, according to the present embodiment, the supply oxygen state measurement means 100 further includes the first moisture concentration detection means 130 for detecting the moisture concentration Kc1 in the supply gas, and the supply gas amount Q AIR-WET , the first oxygen concentration. Based on C1- WET and the first moisture concentration Kc1, the supply oxygen amount Q O2-IN-DRY at the reference moisture concentration (water concentration after the moisture in the supply gas is reduced) is calculated (step 17). For this reason, it is possible to accurately measure the supplied oxygen amount Q O2-IN-DRY in consideration of the water concentration in the supplied gas.

また本実施形態によれば、第1酸素濃度検知手段120及び第1水分濃度検知手段130は、供給ガスが空気である場合に、空気の温度および湿度から空気中の酸素濃度C1-WETおよび水分濃度Kc1を算出する。このため、供給空気の温度および湿度が管理されている場合には、酸素濃度検出器(酸素濃度センサ)120と水分濃度検出器(湿度センサ)130を省くことができ、さらに簡便で安価な構成で良いという効果がある。 Further, according to the present embodiment, the first oxygen concentration detection means 120 and the first moisture concentration detection means 130, when the supply gas is air, the oxygen concentration C1- WET and moisture in the air from the temperature and humidity of the air. The concentration Kc1 is calculated. For this reason, when the temperature and humidity of the supply air are controlled, the oxygen concentration detector (oxygen concentration sensor) 120 and the moisture concentration detector (humidity sensor) 130 can be omitted, and the configuration is simpler and less expensive. It has the effect of being good.

また本実施形態によれば、排出酸素状態測定手段200は、動力源10からの排出ガス中の酸素濃度C2-WETを検知する第2酸素濃度検知手段220を有し、供給ガス量QAIR-DRY及び第2酸素濃度C2に基づいて排出酸素量QO2-EXを算出する(ステップ24)。このため、比較的簡便な構成で排出酸素量が測定できる。
また本実施形態によれば、排出酸素状態測定手段300は、更に排出ガス中の水分濃度Kc2を検知する第2水分濃度検知手段230を有し、供給ガス量QAIR-DRY、第2酸素濃度C2-WET及び第2水分濃度Kc2に基づいて基準水分濃度(排出ガス中の水分を低減させた後の水分濃度)での排出酸素量QO2-EX-DRYを算出する(ステップ24)。このため、更に排出ガス中の水分濃度を補正することで水分による影響(気相←→液相の相変化)を抑え、測定精度を大幅に向上させることができる。
Further, according to the present embodiment, the exhaust oxygen state measurement means 200 includes the second oxygen concentration detection means 220 that detects the oxygen concentration C2- WET in the exhaust gas from the power source 10, and the supply gas amount Q AIR- Based on DRY and the second oxygen concentration C2, the exhausted oxygen amount Q O2-EX is calculated (step 24). For this reason, the amount of discharged oxygen can be measured with a relatively simple configuration.
Further, according to the present embodiment, the exhaust oxygen state measurement means 300 further includes the second moisture concentration detection means 230 for detecting the moisture concentration Kc2 in the exhaust gas, and the supply gas amount Q AIR-DRY , the second oxygen concentration. Based on C2- WET and the second moisture concentration Kc2, the exhausted oxygen amount Q O2-EX-DRY at the reference moisture concentration (the moisture concentration after reducing the moisture in the exhaust gas) is calculated (step 24). For this reason, by further correcting the moisture concentration in the exhaust gas, the influence of moisture (gas phase ← → phase change of liquid phase) can be suppressed, and the measurement accuracy can be greatly improved.

また本実施形態によれば、酸素消費量算出手段300は、供給酸素状態測定手段100と排出酸素状態測定手段200との検出タイミング位相差分を、供給酸素量QO2-IN-DRYまたは動力源10の負荷の少なくとも一方に応じて補正する。このため、供給酸素量小(低負荷)から供給酸素量大(高負荷)の広い範囲で的確に検出タイミングの位相差分を補正できる。よって、定常状態だけでなく、過渡状態での燃費も精度良くリアルタイムに測定できる。 In addition, according to the present embodiment, the oxygen consumption amount calculation means 300 uses the detected oxygen phase difference between the supply oxygen state measurement means 100 and the exhaust oxygen state measurement means 200 as the supply oxygen amount Q O2-IN-DRY or the power source 10. Correction is made according to at least one of the loads. For this reason, the phase difference of the detection timing can be accurately corrected in a wide range from a small supply oxygen amount (low load) to a large supply oxygen amount (high load). Therefore, the fuel consumption not only in the steady state but also in the transient state can be accurately measured in real time.

図6は、本発明の第2の実施形態を示す図である。
前述のように供給空気流量計110より上流に、供給空気の温度および湿度を所定の状態に維持する手段(図示せず)を設けており、これによりマップ等を用いることで、前述の供給空気中の酸素濃度(第1酸素濃度)C1および水分濃度Kc1(%)を算出する。
このため、図示の通り、供給側には供給空気流量計110のみを取り付けてあり、第1の実施形態にて示した第1酸素濃度センサ120および第1水分濃度センサ130を省略している。
FIG. 6 is a diagram showing a second embodiment of the present invention.
As described above, means (not shown) for maintaining the temperature and humidity of the supply air in a predetermined state is provided upstream of the supply air flow meter 110, and by using a map or the like, the above-described supply air is provided. The oxygen concentration (first oxygen concentration) C1 and the water concentration Kc1 (%) in the medium are calculated.
For this reason, as shown, only the supply air flow meter 110 is attached to the supply side, and the first oxygen concentration sensor 120 and the first moisture concentration sensor 130 shown in the first embodiment are omitted.

本実施形態では、排出側には、第1燃焼器210を通過した後の排出ガスを分流するためのラインとして、排出ガス分流管5を排気管4に接続し、この分流管5に、第2燃焼器211、排出ガス冷却器240、及び第2酸素濃度センサ220をそれぞれ上流から順に配設している。
第2燃焼器211は、第1燃焼器210による燃焼が十分でなく、無視できない未燃燃料が排出された場合でも、その分を燃焼させる。なお燃焼器211は、分流ガス分の未燃ガスを燃焼させるだけで良く、比較的小さい燃焼器でよい。
In the present embodiment, the exhaust gas branch pipe 5 is connected to the exhaust pipe 4 as a line for diverting the exhaust gas after passing through the first combustor 210 on the exhaust side, Two combustors 211, an exhaust gas cooler 240, and a second oxygen concentration sensor 220 are arranged in order from the upstream.
Even when unburnable unburned fuel is discharged, the second combustor 211 burns that amount even when combustion by the first combustor 210 is not sufficient. The combustor 211 only needs to burn the unburned gas corresponding to the diverted gas, and may be a relatively small combustor.

排出ガス冷却器240は、第2燃焼器211から排出されたガスを所定温度(例えば100℃)以下に冷却する。ここでは、排出ガス冷却器240により排出ガス温度を100℃以下にしている。これは、排出ガス中の水分を凝縮させ、飽和水蒸気状態とすることで、水分濃度をガス温度で観ることができるからである。なお、排出ガス冷却器240による冷却を強力にして、10℃以下にまで下げれば、水分濃度は一定量と見做すことができ、リアルタイムに水分濃度を検知しなくても良い構成となる。   The exhaust gas cooler 240 cools the gas discharged from the second combustor 211 to a predetermined temperature (for example, 100 ° C.) or lower. Here, the exhaust gas temperature is set to 100 ° C. or less by the exhaust gas cooler 240. This is because the moisture concentration can be observed at the gas temperature by condensing the moisture in the exhaust gas to a saturated water vapor state. Note that if the cooling by the exhaust gas cooler 240 is strengthened and lowered to 10 ° C. or less, the moisture concentration can be regarded as a constant amount, and the moisture concentration does not need to be detected in real time.

第2酸素濃度センサ220は、排出ガスの排出酸素濃度C2を検知可能であり、排出ガス温度が所定温度以下に下がった部位に配置されている。
次に、図7の供給酸素状態算出フローチャートを用いて、この構成における作用について説明する。
ステップ31では、供給空気の温度および湿度を所定の値に制御する。これにより、空気中の酸素濃度も不変であるので、酸素濃度センサや水分濃度センサは不要になる。なお、供給空気の湿度は、水分による影響を少なくするために乾燥状態にすることが好ましい。
The second oxygen concentration sensor 220 can detect the exhaust oxygen concentration C2 of the exhaust gas, and is disposed at a site where the exhaust gas temperature has fallen below a predetermined temperature.
Next, the operation in this configuration will be described using the supply oxygen state calculation flowchart of FIG.
In step 31, the temperature and humidity of the supply air are controlled to predetermined values. Thereby, since the oxygen concentration in the air is not changed, an oxygen concentration sensor and a moisture concentration sensor become unnecessary. The humidity of the supply air is preferably in a dry state in order to reduce the influence of moisture.

ステップ32では、供給空気流量計110の出力信号に基づいて供給空気流量QAIR-DRY(g/sec)を算出する。
ステップ33では、供給空気流量QAIR-DRYに基づいて供給酸素量QO2-IN-DRY(mol/sec)を求める。ここでは、マップまたは前述の式7を用いることにより供給酸素量QO2-IN-DRYを算出する。
In step 32, the supply air flow rate Q AIR-DRY (g / sec) is calculated based on the output signal of the supply air flow meter 110.
In step 33, a supply oxygen amount Q O2-IN-DRY (mol / sec) is obtained based on the supply air flow rate Q AIR-DRY . Here, the supply oxygen amount Q O2-IN-DRY is calculated by using the map or the above-described equation 7.

本実施形態によれば、第2酸素濃度検知手段220は、燃料消費後の排出ガスを分流させたライン(排気ガス分流管5)に設けた分流ガス燃焼手段(第2燃焼器)211の下流位置に配置する。このため、排出ガス中に未燃の燃料が存在する場合でも、分流ガス分だけを燃焼させれば良く、小さな燃焼器でも成立させることができ、大幅なコストアップもなく精度向上ができるという効果がある。   According to this embodiment, the second oxygen concentration detection means 220 is downstream of the diverted gas combustion means (second combustor) 211 provided in the line (exhaust gas diversion pipe 5) where the exhaust gas after fuel consumption is diverted. Place in position. For this reason, even when unburned fuel is present in the exhaust gas, it is sufficient to burn only the diverted gas, and even a small combustor can be established, and the accuracy can be improved without significant cost increase. There is.

また本実施形態によれば、第2酸素濃度検知手段220は、排出ガス温度が所定温度以下に下がった部位に配置するため、水分濃度検知を高応答な温度検出器ででき、過渡運転時の燃費測定の精度向上が図れるという効果がある。
また本実施形態によれば、第2酸素濃度検知手段220は、排出ガス温度を10℃以下に下げる冷却器240の下流位置に配置するため、排出ガス中の水分の影響を小さくすることができ、さらに精度向上ができるという効果がある。
In addition, according to the present embodiment, the second oxygen concentration detection means 220 is arranged at a portion where the exhaust gas temperature has fallen below the predetermined temperature, so that the moisture concentration detection can be performed with a highly responsive temperature detector, and at the time of transient operation This has the effect of improving the accuracy of fuel consumption measurement.
Further, according to the present embodiment, the second oxygen concentration detection means 220 is arranged at the downstream position of the cooler 240 that lowers the exhaust gas temperature to 10 ° C. or lower, so that the influence of moisture in the exhaust gas can be reduced. Further, there is an effect that accuracy can be further improved.

図8は、本発明の第3の実施形態を示す図である。
本実施形態では、排気管4に配置された燃焼器210の下流に、排出ガス中の酸素濃度(第2酸素濃度)を検知手段として第2酸素濃度センサ220及び第3酸素濃度センサ221を設けている。そして、これらの酸素濃度センサ220、221との間に、排出ガスを希釈する希釈ガス供給管250を接続し、排気管4に流入する希釈ガスの供給量を測定する希釈ガス流量計251を設けている。
FIG. 8 is a diagram showing a third embodiment of the present invention.
In the present embodiment, the second oxygen concentration sensor 220 and the third oxygen concentration sensor 221 are provided downstream of the combustor 210 disposed in the exhaust pipe 4 using the oxygen concentration (second oxygen concentration) in the exhaust gas as detection means. ing. A dilution gas supply pipe 250 for diluting the exhaust gas is connected between the oxygen concentration sensors 220 and 221 and a dilution gas flow meter 251 for measuring the supply amount of the dilution gas flowing into the exhaust pipe 4 is provided. ing.

そして、第2酸素濃度センサ220が希釈ガス供給前の排出ガス中の酸素濃度C2を測定し、第3酸素濃度センサ221が希釈ガス供給後の排出ガス中の酸素濃度C3を測定する。
供給酸素量QO2-IN-DRYは、第2の実施形態と同じく算出する(図7参照)。
排出酸素量QO2-EX-DRYは、以下のようにして求める。先ず、供給空気流量計110の信号に基づき算出された供給空気流量QAIR-DRY(g/sec)に基づいて希釈酸素量q3(mol/sec)を次式により算出する。
Then, the second oxygen concentration sensor 220 measures the oxygen concentration C2 in the exhaust gas before supplying the dilution gas, and the third oxygen concentration sensor 221 measures the oxygen concentration C3 in the exhaust gas after supplying the dilution gas.
The supplied oxygen amount Q O2-IN-DRY is calculated as in the second embodiment (see FIG. 7).
The exhausted oxygen amount Q O2-EX-DRY is obtained as follows. First, based on the supply air flow rate Q AIR-DRY (g / sec) calculated based on the signal from the supply air flow meter 110, the diluted oxygen amount q3 (mol / sec) is calculated by the following equation.

q3=Km-DRY×QAIR-DRY×0.2095 <式13>
ここで、0.2095は乾燥空気中の酸素分圧、Km-DRYは質量流量からモル流量に変換する変換係数である。
この希釈酸素量q3、第2酸素濃度センサ220の測定値C2-WET (%)、第3酸素濃度センサ221の測定値C3-WET (%)、及び排出酸素量QO2-EX-DRYには、次式の関係がある。
q3 = Km -DRY × Q AIR-DRY × 0.2095 <Formula 13>
Here, 0.2095 is the oxygen partial pressure in the dry air, and Km -DRY is a conversion coefficient for converting from a mass flow rate to a molar flow rate.
The diluted oxygen q3, measurements C2 of the second oxygen concentration sensor 220 -WET (%), measured value C3 -WET third oxygen concentration sensor 221 (%), and the discharge amount of oxygen Q O2-EX-DRY is There is a relationship of the following equation.

C2-WET=QO2-EX-DRY / QAIR-DRY <式14>
C3-WET=(QO2-EX-DRY+q3)/(QAIR-DRY+q3) <式15>
以上のようにC2-WET、C3-WETの濃度をそれぞれの流量比と考えることで、<式14>及び<式15>より、以下の式が導かれる。
O2-EX-DRY= C2-WET・q3(C3-WET−1)/(C2-WET−C3-WET) <式16>
以上のようにして排出酸素量QO2-EX-DRYが求められる。
C2 -WET = Q O2-EX-DRY / Q AIR-DRY <Formula 14>
C3 -WET = (Q O2-EX-DRY + q3) / (Q AIR-DRY + q3) <Formula 15>
As described above, by considering the concentrations of C 2 -WET and C 3 -WET as the respective flow rate ratios, the following expressions are derived from <Expression 14> and <Expression 15>.
Q O2-EX-DRY = C2 -WET q3 (C3 -WET -1) / (C2 -WET -C3 -WET ) <Formula 16>
The exhausted oxygen amount Q O2-EX-DRY is obtained as described above.

よって、酸素消費量QO2-DRYは、供給酸素量QO2-IN-DRYから排出酸素量QO2-EX-DRYを差し引いて(QO2-IN-DRY−QO2-EX-DRY)算出され、前述の<式3>によって、燃料消費量QFUEL が求められる。
以上、消費量の単位を瞬時値としてg/secで説明してきたが、この瞬時値を積分すれば、消費量g、あるいはモード燃費(km/g、km/L) 等のデータに変換できる。
Therefore, the oxygen consumption amount Q O2-DRY is calculated by subtracting the exhausted oxygen amount Q O2-EX-DRY from the supplied oxygen amount Q O2-IN-DRY (Q O2-IN-DRY -Q O2-EX-DRY ). The fuel consumption amount Q FUEL is obtained by the above-described <Expression 3>.
The unit of consumption has been described in terms of g / sec as an instantaneous value. However, if this instantaneous value is integrated, it can be converted into data such as consumption g or mode fuel consumption (km / g, km / L).

本実施形態によれば、燃料消費後の排出ガス中に外部から希釈ガスを供給する希釈ガス供給手段250と、希釈ガス供給手段250により供給される希釈ガス量q3を検知する希釈ガス供給量検知手段と、を備え、排出酸素状態測定手段200は、第2酸素濃度検知手段として、希釈ガス供給手段の上流及び下流にて酸素濃度を検知する手段220,221を有し、希釈ガス供給量q3と希釈ガス供給手段の上流及び下流の酸素濃度C2,C3とから排出酸素量QO2-EX-DRYを算出する。このため、化石燃料を燃焼させて動力を得る内燃機関のように、供給(空気)ガス量と燃焼後の排出ガス量が異なる場合でも、燃焼後の排出ガス量を個別に求めれば、排出ガス中の酸素量が測定できる。すなわち、直接水素形燃料電池だけでなく、改質形燃料電池や内燃機関(爆発燃焼)にも本発明が適用できる。 According to the present embodiment, the dilution gas supply means 250 for supplying dilution gas from the outside into the exhaust gas after fuel consumption, and the dilution gas supply amount detection for detecting the dilution gas amount q3 supplied by the dilution gas supply means 250 The exhaust oxygen state measuring means 200 has means 220, 221 for detecting the oxygen concentration upstream and downstream of the dilution gas supply means as the second oxygen concentration detection means, and the dilution gas supply amount q3 And the exhausted oxygen amount Q O2-EX-DRY is calculated from the oxygen concentrations C2 and C3 upstream and downstream of the dilution gas supply means. For this reason, even when the amount of supplied (air) gas and the amount of exhaust gas after combustion are different, as in an internal combustion engine that obtains power by burning fossil fuel, if the amount of exhaust gas after combustion is determined individually, the exhaust gas The amount of oxygen inside can be measured. That is, the present invention can be applied not only to a direct hydrogen fuel cell but also to a reformed fuel cell and an internal combustion engine (explosion combustion).

燃料消費量測定装置の基本構成を示す図The figure which shows the basic composition of the fuel consumption measuring device 供給酸素状態測定手段及び排出酸素状態測定手段を説明する図The figure explaining supply oxygen state measurement means and exhaust oxygen state measurement means 第1の実施形態の構成を示す図The figure which shows the structure of 1st Embodiment. 供給酸素状態算出フローチャートSupply oxygen state calculation flowchart 排出酸素状態算出フローチャートExhaust oxygen state calculation flowchart 第2の実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment. 供給酸素状態算出フローチャートSupply oxygen state calculation flowchart 第3の実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment.

符号の説明Explanation of symbols

2 燃料源
3 酸素源
10 動力源
100 供給酸素状態測定手段
120 第1酸素濃度センサ
130 第1水分濃度センサ
200 排出酸素状態測定手段
210 燃焼器
220 第2酸素濃度センサ
221 第3酸素濃度センサ
230 第2水分濃度センサ
240 排出ガス冷却器
250 希釈ガス供給管
251 希釈ガス流量計
300 酸素消費量演算回路
400 燃料消費量演算回路
2 Fuel source
3 Oxygen source
10 Power source
100 Supply oxygen state measurement means
120 First oxygen concentration sensor
130 First moisture concentration sensor
200 Exhaust oxygen status measurement means
210 combustor
220 Second oxygen concentration sensor
221 Third oxygen concentration sensor
230 Second moisture concentration sensor
240 exhaust gas cooler
250 Dilution gas supply pipe
251 Dilution gas flow meter
300 Oxygen consumption calculation circuit
400 Fuel consumption calculation circuit

Claims (11)

動力源に供給される酸素の状態を測定する供給酸素状態測定手段と、
動力源から排出される酸素の状態を測定する排出酸素状態測定手段と、
前記供給酸素状態測定手段及び前記排出酸素状態測定手段の測定結果に基づき動力源での酸素消費量を算出する酸素消費量算出手段と、
前記酸素消費量算出手段の算出結果に基づき前記動力源で消費された燃料量を求める燃料消費量算出手段と、
を備えることを特徴とする燃料消費量測定装置。
Supply oxygen state measuring means for measuring the state of oxygen supplied to the power source;
Exhaust oxygen state measuring means for measuring the state of oxygen discharged from the power source,
Oxygen consumption calculation means for calculating oxygen consumption at a power source based on the measurement results of the supply oxygen state measurement means and the exhaust oxygen state measurement means;
Fuel consumption calculation means for determining the amount of fuel consumed by the power source based on the calculation result of the oxygen consumption calculation means;
A fuel consumption measuring device comprising:
前記供給酸素状態測定手段は、
動力源への供給ガス量を検知する供給ガス量検知手段と、
供給ガス中の酸素濃度を検知する第1酸素濃度検知手段と、を有し、
前記供給ガス量及び前記第1酸素濃度に基づいて供給酸素量を算出することを特徴とする請求項1記載の燃料消費量測定装置。
The supply oxygen state measuring means includes
Supply gas amount detecting means for detecting the amount of gas supplied to the power source;
First oxygen concentration detection means for detecting the oxygen concentration in the supply gas,
2. The fuel consumption measuring device according to claim 1, wherein the supply oxygen amount is calculated based on the supply gas amount and the first oxygen concentration.
前記供給酸素状態測定手段は、
更に供給ガス中の水分濃度を検知する第1水分濃度検知手段を有し、
前記供給ガス量、前記第1酸素濃度及び前記第1水分濃度に基づいて基準水分濃度での供給酸素量を算出することを特徴とする請求項2記載の燃料消費量測定装置。
The supply oxygen state measuring means includes
Furthermore, it has the 1st moisture concentration detection means which detects the moisture concentration in supply gas,
3. The fuel consumption measuring apparatus according to claim 2, wherein a supply oxygen amount at a reference moisture concentration is calculated based on the supply gas amount, the first oxygen concentration, and the first moisture concentration.
前記第1酸素濃度検知手段及び前記第1水分濃度検知手段は、供給ガスが空気である場合に、空気の温度および湿度から空気中の酸素濃度および水分濃度を推定するものであることを特徴とする請求項3記載の燃料消費量測定装置。   The first oxygen concentration detection means and the first moisture concentration detection means estimate the oxygen concentration and moisture concentration in the air from the temperature and humidity of the air when the supply gas is air. The fuel consumption measuring device according to claim 3. 前記排出酸素状態測定手段は、
動力源からの排出ガス中の酸素濃度を検知する第2酸素濃度検知手段を有し、
前記供給ガス量及び前記第2酸素濃度に基づいて排出酸素量を算出することを特徴とする請求項2〜請求項4のいずれか1つに記載の燃料消費量測定装置。
The exhaust oxygen state measuring means includes
A second oxygen concentration detecting means for detecting the oxygen concentration in the exhaust gas from the power source;
5. The fuel consumption measuring device according to claim 2, wherein an exhaust oxygen amount is calculated based on the supply gas amount and the second oxygen concentration.
前記排出酸素状態測定手段は、
更に排出ガス中の水分濃度を検知する第2水分濃度検知手段を有し、
前記供給ガス量、第2酸素濃度及び前記第2水分濃度に基づいて基準水分濃度での排出酸素量を算出することを特徴とする請求項5記載の燃料消費量測定装置。
The exhaust oxygen state measuring means includes
Furthermore, it has a second moisture concentration detection means for detecting the moisture concentration in the exhaust gas,
6. The fuel consumption measuring device according to claim 5, wherein an exhaust oxygen amount at a reference moisture concentration is calculated based on the supply gas amount, the second oxygen concentration, and the second moisture concentration.
前記第2酸素濃度検知手段は、燃料消費後の排出ガスを分流させたラインに設けた分流ガス燃焼手段の下流位置に配置することを特徴とする請求項5または請求項6記載の燃料消費量測定装置。   7. The fuel consumption amount according to claim 5, wherein the second oxygen concentration detection means is arranged at a downstream position of the diverted gas combustion means provided in a line where the exhaust gas after fuel consumption is diverted. measuring device. 前記第2酸素濃度検知手段は、排出ガス温度が所定温度以下に下がった部位に配置することを特徴とする請求項5〜請求項7のいずれか1つに記載の燃料消費量測定装置。   The fuel consumption measuring device according to any one of claims 5 to 7, wherein the second oxygen concentration detecting means is disposed at a portion where the exhaust gas temperature has fallen below a predetermined temperature. 前記第2酸素濃度検知手段は、排出ガス温度を10℃以下に下げる冷却器の下流位置に配置することを特徴とする請求項5〜請求項8のいずれか1つに記載の燃料消費量測定装置。   9. The fuel consumption measurement according to claim 5, wherein the second oxygen concentration detection means is arranged at a downstream position of a cooler that lowers the exhaust gas temperature to 10 ° C. or less. apparatus. 燃料消費後の排出ガス中に外部から希釈ガスを供給する希釈ガス供給手段と、
前記希釈ガス供給手段により供給される希釈ガス量を検知する希釈ガス供給量検知手段と、を備え、
前記排出酸素状態測定手段は、
前記第2酸素濃度検知手段として、前記希釈ガス供給手段の上流及び下流にて酸素濃度を検知する手段を有し、
前記希釈ガス供給量と前記希釈ガス供給手段の上流及び下流の酸素濃度とから排出酸素量を算出することを特徴とする請求項5〜請求項9のいずれか1つに記載の燃料消費量測定装置。
Dilution gas supply means for supplying dilution gas from the outside into the exhaust gas after fuel consumption;
Dilution gas supply amount detection means for detecting the dilution gas amount supplied by the dilution gas supply means,
The exhaust oxygen state measuring means includes
As the second oxygen concentration detection means, there is means for detecting the oxygen concentration upstream and downstream of the dilution gas supply means,
The fuel consumption measurement according to any one of claims 5 to 9, wherein an exhaust oxygen amount is calculated from the dilution gas supply amount and oxygen concentrations upstream and downstream of the dilution gas supply means. apparatus.
前記酸素消費量算出手段は、前記供給酸素状態測定手段と前記排出酸素状態測定手段との検出タイミング位相差分を、供給酸素量または動力源の負荷の少なくとも一方に応じて補正することを特徴とする請求項1〜請求項10のいずれか1つに記載の燃料消費量測定装置。   The oxygen consumption calculation means corrects a detection timing phase difference between the supply oxygen state measurement means and the exhaust oxygen state measurement means according to at least one of the supply oxygen amount and the load of the power source. The fuel consumption measuring device according to any one of claims 1 to 10.
JP2003306776A 2003-08-29 2003-08-29 Fuel consumption measuring device Pending JP2005076507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306776A JP2005076507A (en) 2003-08-29 2003-08-29 Fuel consumption measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306776A JP2005076507A (en) 2003-08-29 2003-08-29 Fuel consumption measuring device

Publications (1)

Publication Number Publication Date
JP2005076507A true JP2005076507A (en) 2005-03-24

Family

ID=34409766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306776A Pending JP2005076507A (en) 2003-08-29 2003-08-29 Fuel consumption measuring device

Country Status (1)

Country Link
JP (1) JP2005076507A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020868A (en) * 2011-07-13 2013-01-31 Panasonic Corp Fuel cell system
CN103180520A (en) * 2010-10-27 2013-06-26 洋马株式会社 Power transmission device
JP2016113906A (en) * 2014-12-11 2016-06-23 日産自動車株式会社 Egr estimation device for internal combustion engine and egr estimation method for internal combustion engine
JP2017002764A (en) * 2015-06-08 2017-01-05 日立オートモティブシステムズ株式会社 Engine control device for mixed fuel of alcohol and gasoline
JP2021141751A (en) * 2020-03-06 2021-09-16 日新電機株式会社 Electrical power system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180520A (en) * 2010-10-27 2013-06-26 洋马株式会社 Power transmission device
JP2013020868A (en) * 2011-07-13 2013-01-31 Panasonic Corp Fuel cell system
JP2016113906A (en) * 2014-12-11 2016-06-23 日産自動車株式会社 Egr estimation device for internal combustion engine and egr estimation method for internal combustion engine
JP2017002764A (en) * 2015-06-08 2017-01-05 日立オートモティブシステムズ株式会社 Engine control device for mixed fuel of alcohol and gasoline
JP2021141751A (en) * 2020-03-06 2021-09-16 日新電機株式会社 Electrical power system
JP7429857B2 (en) 2020-03-06 2024-02-09 日新電機株式会社 power system

Similar Documents

Publication Publication Date Title
JP4746239B2 (en) Method for obtaining NOx concentration
EP1333270A1 (en) Exhaust emissions analysis system
BR112012015668B1 (en) method and apparatus for measuring and controlling the egr rate in an internal combustion engine
CN102213705A (en) Oxygen sensor performance test device for simulating working condition of automobile
US20150233578A1 (en) Method for regulating a heating unit, and heating unit
JP3262682B2 (en) Air-fuel ratio sensor characteristic analyzer
US20190064035A1 (en) Exhaust Gas Analysis Device, Exhaust Gas Analysis Method and Storage Medium Recording Programs for Exhaust Gas Analysis Device
JP2005076507A (en) Fuel consumption measuring device
WO2022211111A1 (en) System for measuring amount of consumed hydrogen
EP2778651B1 (en) Exhaust gas analyzing apparatus
US11808732B2 (en) Method for monitoring a gas sensor
JP2006284508A (en) On-vehicle exhaust gas analyzer
JP2005123139A (en) Fuel cell system
JPH11183422A (en) Gas detector
JP5735252B2 (en) Gas mixing device for power generation system
JP2009210299A (en) NOx SENSOR, EXHAUST EMISSION CONTROL SYSTEM, AND NOx MEASURING METHOD
US20140093971A1 (en) System and Method for Determining Concentration of Oxygen in Chemical Mixtures
US20230366827A1 (en) Exhaust gas analysis device, exhaust gas analysis method, and program storage medium for exhaust gas analysis device
Berg et al. Influence of Exhaust Gas Composition on Measured Total and Exhaust Flow Using a CVS with Critical Flow Venturi and Smooth Approach Orifice
JP2004132212A (en) Exhaust gas flow rate measuring method
JP2698399B2 (en) Acoustic combustion gas temperature measurement device
CN111503628B (en) Method for measuring gas boiler flue gas recirculation rate
US20230102536A1 (en) Method for determining a gas concentration and gas concentration sensor
Thiel et al. Equations and methods for testing hydrogen fuel consumption using exhaust emissions
JPH06118075A (en) Ammonia analyzer