JP2005076451A - Control valve for variable displacement compressor - Google Patents

Control valve for variable displacement compressor Download PDF

Info

Publication number
JP2005076451A
JP2005076451A JP2003209471A JP2003209471A JP2005076451A JP 2005076451 A JP2005076451 A JP 2005076451A JP 2003209471 A JP2003209471 A JP 2003209471A JP 2003209471 A JP2003209471 A JP 2003209471A JP 2005076451 A JP2005076451 A JP 2005076451A
Authority
JP
Japan
Prior art keywords
chamber
pressure
valve
refrigerant
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209471A
Other languages
Japanese (ja)
Inventor
Toshiki Okii
俊樹 沖井
Yoshiyuki Kume
義之 久米
Toru Watanuki
徹 渡貫
Masayuki Imai
正幸 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2003209471A priority Critical patent/JP2005076451A/en
Publication of JP2005076451A publication Critical patent/JP2005076451A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a further more responsive control valve for a variable displacement compressor. <P>SOLUTION: The control valve comprises a valve body 120, a solenoid excitation part 130 and a pressure sensitive part 145. A pressure sensitive chamber 145a constituting the pressure sensitive part 145 is provided in the valve body 120. With the pressure sensitive chamber 145a, an introduction discharge port 123 for introducing refrigerant from a discharge pipe of the compressor, a flow-out discharge port 125 for making the refrigerant flow out to the discharge pipe on the downstream side, and a crank chamber port 126 communicating with the pressure sensitive chamber 145a via a valve chamber 121 communicate. For controlling the pressure of the refrigerant in the crank chamber port 126 with differential pressure (PdH-PdL) between the introduction discharge port 123 and the flow-out discharge port 125, a valve element 132a which is controlled to be opened/closed by the solenoid excitation part is provided in the valve chamber 121. Besides, a differential pressure sensitive body 145b integrated with the valve element 132a is provided in the pressure sensitive chamber 145a for holding differential pressure with a gap between the outer peripheral face of the differential pressure sensitive body 145b and the inner wall face of the valve chamber 121. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可変容量型圧縮機に適用される冷凍サイクルの制御弁に係り、特に、吐出圧領域からクランク室内への冷媒ガスの供給を制御する可変容量型圧縮機用の制御弁に関する。
【0002】
【従来の技術】
自動車用空調装置の冷凍サイクルに用いられる圧縮機は、エンジンにベルトで直結されていることから回転数制御を行うことができない。そこで、エンジンの回転数に制約されることなく適切な冷房能力を得るために圧縮容量(吐出量)を変えることができる可変容量型圧縮機が用いられている。
【0003】
該可変容量型圧縮機は、一般的に吸入管路に通じる吸入室から吸入した冷媒を圧縮して吐出管路に通じる吐出室に吐出し、制御弁で冷媒圧制御される調圧室(クランク室)の冷媒圧変化により冷媒の吐出量を変化させる構成となっている。下記特許文献1には、制御弁における弁体部が、弁室内での位置に応じて給気通路の開度を調節するもので、その感圧部材は冷媒回路に設定された2つの吐出圧の圧力監視点の差圧(PdH−PdL)に応じて変位するようにし、この変位は同差圧の変動を打ち消す側に圧縮機の吐出容量が変更するように、弁体部の位置決めに反映されるように構成されたもので、この手段によって、可変容量型圧縮機の給気通路の開度を調節するものである。
【0004】
【特許文献1】特開2002−81374号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記制御弁は、構造が複雑であり、また、可変容量型圧縮機の圧縮容量(吐出量)を変えるために、弁体部が弁室内での位置に応じて給気通路の開度を調節するものであることから、圧縮容量(吐出量)の調整に対する応答性に限界があり、応答性を更に向上させた機能を有する制御弁の実現が要望されていた。したがって、本発明は、一層の応答性の高い制御弁を実現することにある。
【0006】
【課題を解決する手段】
本発明は上記課題を達成するために、下記の手段を講じた。即ち、
請求項1記載の可変容量型圧縮機用の制御弁は、弁本体部120と、ソレノイド励磁部130と、感圧部145と、からなり、該感圧部145を構成する感圧室145aを弁本体部120内に設け、前記感圧室145aには、圧縮機の吐出管から冷媒を導入する導入吐出ポート123と、下流側の吐出管へ冷媒を流出させる流出吐出ポート125と、上記感圧室145aと弁室121を介して連通するクランク室ポート126と、を連通させ、導入吐出ポート123と流出吐出ポート125の差圧(PdH―PdL)により、クランク室ポート126の冷媒圧を制御させるに当って、前記感圧室145a内には、差圧感圧体145bが設けられ、該差圧感圧体145bの外周面と上記弁本体部120の内壁面との隙間により、差圧を保持させることを特徴とする。
【0007】
かかる特徴により、制御弁の感圧部145の構成が簡略化すると共に、応答性の高い制御を実現することができる。
【0008】
請求項2記載の可変容量型圧縮機用の制御弁は、可変容量型圧縮機用の制御弁であって、該制御弁内に感圧部145が設けられ、該感圧部145は、内部に感圧室145aが形成され、該感圧室145aには、弁棒132に一体の差圧感圧体145bが配設されると共に、感圧室145aの上部には、下方に突出するように弁棒受部121aが形成され、該弁棒受部121aは、弁棒132を支持すると共に、その下端により感圧体145bの最上動位置が設定され、前記感圧室145aの下部は圧縮機の導入吐出ポート(吐出冷媒圧PdH)に連結され、感圧室145aの上部は吐出管の下流側に連通する流出吐出ポート(冷媒圧PdL)が連結され、上記導入吐出ポートと流出吐出ポートとの間に、差圧感圧体145bが配設され、更に、該差圧感圧体145bは、図1に示すように、均一外形の円柱体からなり、その軸芯部に弁棒に固着され、更に、前記差圧感圧体145bの外周部に対向して位置する弁室壁面は、下部ほど径大に形成されていることを特徴とする。
【0009】
かかる特徴により、簡単な構成で、応答性の高い制御を実現することができる。
【0010】
【発明の実施の形態】
【実施形態1】
以下、本発明の実施形態を図面を用いて説明する。図1は本実施形態1の可変容量型圧縮機に用いられる制御弁の縦断面図、図2は上記可変容量型圧縮機の概略説明図、図3は上記可変容量型圧縮機内に配置された状態の制御弁の縦断面図である。なお、以下の説明において、上・下・左・右の表現を用いるが、これは図面上で説明するための便宜上のものであり、実際の位置関係はこれに限るものではない。
【0011】
先ず、実施形態1の制御弁を適用する可変容量型圧縮機について説明する。図2において、符号20は斜板式の可変容量型圧縮機であり、例えば、自動車の空調用冷凍サイクルに用いられているものである。冷媒としてはフロンガスが用いられるが、二酸化炭素を冷媒とする冷凍サイクルに適用してもよく、冷媒についてその種類を限定するものではない。この可変容量型圧縮機20は、フロントハウジング5と、該フロントハウジング5と一体のリヤハウジング6に支持されている。
【0012】
図2において、符号11は、気密に構成されたクランク室12(調圧室)内に配置された回転軸であり、エンジンに直結された駆動ベルト13aによって回転駆動されるプーリ13の軸位置に連結されていて、回転軸11の回転に従って、回転軸11に対して傾斜してクランク室12内に配置された揺動板14が揺動する。クランク室12内の周辺部に配置されたシリンダ15内には、ピストン17が往復動自在に配置されており、ロッド18によってピストン17と揺動板14とが連結されている。
【0013】
その結果、揺動板14が回転・揺動すると、ピストン17がシリンダ15内で往復動して、吸入室3からシリンダ15内に低圧の冷媒が吸入され、その冷媒がシリンダ15内で圧縮されて、高圧になり、その冷媒が吐出室4に吐出される。吸入室3には、上流側の蒸発器40側から吸入管路1を経由して冷媒が送り込まれ、吐出室4からはその下流側の凝縮器50側へ吐出管路2を経由して高圧冷媒が送り出される。
【0014】
上記揺動板14の傾斜角度はクランク室12内の冷媒圧(クランク室冷媒圧Pc)によって変化し、その揺動板14の傾斜角度によってピストン17のストロークの長さが変化し、シリンダ15からの冷媒の吐出量(即ち、圧縮容量)が変化する。吐出量は揺動板14が実線で示されるように傾斜している時が多く、二点鎖線で示されるように傾斜していない時は少ない。そして、揺動板14が回転軸11に対して垂直になれば吐出量はゼロになる。ただし、揺動板14が次第に傾斜のない状態(二点鎖線に近づく状態)に移行するにしたがって、回転軸11を囲んで装着された最低流量保持バネ19が揺動板14によって次第に圧縮される。
【0015】
その結果、最低流量保持バネ19から揺動板14への反力が次第に大きくなって、揺動板14が回転軸11に対して垂直の向きまでは到達せず、吐出量が最大吐出量の例えば3〜5%程度より少なくならないようになっている。
【0016】
次に、上記可変容量型圧縮機20に適用される制御弁100について詳細に説明する。
図1,3に示す制御弁100は、図2に示す可変容量型圧縮機20のリヤハウジング6側に設けられ、該リヤハウジング6に形成された制御弁用空間8内に、Oリングs1により防水性が保持された状態で、また、 Oリングs2,s3,s4,s5,s6により気密性が保持された状態で配設される。
【0017】
図1に示すように、制御弁100は、弁本体部120と、クランク室12内の冷媒圧Pcを制御して可変圧縮容量制御を行うためのソレノイド励磁部130と、感圧部145とで形成されており、前記ソレノイド励磁部130は、制御弁100の下部に配置され、上記ソレノイド励磁部130の上部には前記弁本体部120が配置され、該弁本体部120の内側には前記感圧部145が配置されている。
【0018】
ソレノイド励磁部130は、弁本体部120の下部にソレノイド部支持筒135を介して装着されているソレノイドハウジング131を備え、該ソレノイドハウジング131の内部には、ソレノイド130bと、該ソレノイド130bの励磁によって上下方向に移動するプランジャ133と、吸引子141と、を備えている。また、前記ソレノイド130bには、制御部(図示なし)によって制御される励磁電流を供給できるリード線161がコイルアセンブリ160を介して接続されている。
【0019】
弁本体部120の下部に連結されるソレノイドハウジング131の内部には、後述の弁棒132の下端部に固定されるプランジャ133が配設され、該プランジャ133は、前記弁本体部120の端部にOリングs3を介して密接状態に接するソレノイド部支持筒135に摺動可能に支持されている。
プランジャ133の内部に形成されるバネ室137には、弁棒132の下部が挿通されるとともに、前記弁棒132は、吸引子141に形成された孔に摺動可能に貫通状態で支持され、感圧室145aに突き出る状態で配置され、この弁棒132の下端は、バネ室137上部のバネホルダ136に当接している。前記プランジャ133と前記吸引子141との間には、プランジャ133を吸引子141側から離す方向に付勢するプランジャバネ133aが設けられている(プランジャバネ133aの付勢力の大きさは後述)。
【0020】
前記感圧部145は、弁本体部120の内部に配置され、その内部に感圧室145aが形成され、該感圧室145aには、弁棒132に一体の差圧感圧体145bが配設されている。
上記感圧室145aの上部には、弁座部121bの下方に突出するように弁棒受部121aが形成され、該弁棒受部121aはその弁棒支持孔により、弁棒132を支持すると共に、その下端により差圧感圧体145bの最上動位置を規定する。そして、前記感圧室145aの下部の流入側吐出ポート123を介して冷凍サイクルにおける圧縮機側の高圧側吐出管連通路(冷媒圧PdH)10に連結され、感圧室145aの上部の流出側吐出ポート125を介して冷凍サイクルにおける凝縮器(図示せず)側における低圧側吐出管連通路(冷媒圧PdL)7に連通する流出吐出ポートに連結される。
【0021】
そして、上記流入側吐出ポート123と流出側吐出ポート125との間の感圧室145a内には、差圧感圧体145bが配設されている。該差圧感圧体145bは、図1に示すように、均一外形の円柱体からなり、その軸芯部が弁棒132に固着されている。
また、前記差圧感圧体145bの外周に位置する弁室壁面121cは、下部ほど径大に形成され、その結果、弁室壁面121cと差圧感圧体145bの外周部との隙間cは下方ほど広く形成され、この隙間cは差圧感圧体145bが下方に位置するほど大きくなる。
【0022】
前記弁本体部120は、図1,3に示すように、上下に長い筒状体で、その軸芯部には孔部、即ち、上方から下方に順次、クランク室連通ポート126となる弁室121、弁孔122、及び感圧室145aがこの順に連通して形成されている。また、弁本体部120の上記軸芯部の連続する孔部には、上下に長い弁棒132が配置され、該弁棒132は、最上部の弁体132aと、径小部132dと、径大部132cと、プランジャ連結部132eと、からなる。
【0023】
上記弁室121内には前記弁体132aが配置されると共に、弁室121の上部はクランク室12に連通するクランク室連通ポート126が形成され、低圧のクランク室の冷媒ガスが導かれ、また、上記弁室121の底面には、吐出冷媒圧PdLの冷媒ガスが導かれる弁孔122が形成されている。また、前記弁孔122の周部は弁座部121bが構成されている。
【0024】
次に、制御弁100の作用について可変容量型圧縮機20の作動と共に説明する。可変容量型圧縮機20が運転状態において、ソレノイド励磁部130への通電がオフの状態では、弁体132aはフロー状態で「開」の位置にある。そして、この状態で、吐出冷媒差圧(PdH−PdL)の変動に伴ってクランク室冷媒圧Pcの冷媒圧制御はなされる。例えば、高圧側吐出管連通路10の冷媒圧が上昇して、吐出冷媒差圧が増大すると、弁棒132も上動し、弁体132aが上動して、「開」の程度が大となり、クランク室連通路9aへの冷媒流量が増大する。その結果、クランク室冷媒圧Pcが高くなり、揺動板14の傾斜角を起立化(回転軸11との角度を90度に近付け)させ、結果として、高圧側吐出管連通路10の冷媒圧を降下させる。
【0025】
また、リード線161からソレノイド励磁部130へ通電されると、吸引子141に吸引されて通電量に応じて弁棒132が所定長さ下動し、弁体132aは「開」から、更に「閉」方向へ移動する。
【0026】
そして、所定量の電流値においてソレノイド励磁部130の電磁力が一定の状態(制御状態)では、弁体132aは吐出冷媒差圧(PdH−PdH)の変動に伴ってクランク室(冷媒圧Pc)が開度調整(開閉)される。この間において、吐出冷媒圧PdHが上昇すると、差圧感圧体145bは上動し、弁体132aは「開」方向に移動するから、弁体132aの作用により、速やかにクランク室冷媒圧Pcが上降させ、もって、吐出冷媒圧PdHを下降させる。
【0027】
また、逆に、この間において、吐出冷媒差圧PdHが下降すると、差圧感圧体145bは下動し、弁体132aは「閉」方向に移動するから、弁体132aの作用により、速やかにクランク室冷媒圧Pcを下降させ、もって、吐出冷媒圧PdHを上昇させる。更に、ソレノイド130bへの通電電流値を変化させて制御弁100の電磁力を変えると、それに対応して、クランク室冷媒圧Pcが変化し、それによって圧縮容量(吐出量)が変更され、吐出冷媒差圧PdH−PdLが異なるレベルで一定に維持された状態になる。
【0028】
なお、ソレノイド130bへの通電電流値の制御は、エンジン、車室内外の温度、蒸発器センサ、その他各種条件を検知する複数のセンサからの検知信号が、CPU等を内蔵する制御部に入力され、その演算結果に基づく制御信号が制御部からソレノイド130bに送られて行われる。ソレノイド130bの駆動回路は、図示が省略されている。
【0029】
【発明の効果】
本発明によれば、低圧側の吐出管連通路(吐出冷媒圧PdL)からクランク室連通路(クランク室冷媒圧Pc)へのクランク室冷媒圧制御用の冷媒流量を速やかに増減でき、吐出冷媒圧による吐出冷媒圧の制御を円滑に行いうるようにした。
【図面の簡単な説明】
【図1】実施形態1に係る可変容量型圧縮機に用いられる制御弁の縦断面図。
【図2】上記可変容量型圧縮機の概略説明図。
【図3】上記可変容量型圧縮機内に配置された状態の制御弁の縦断面図。
【符号の説明】
PdH・・高圧側吐出冷媒圧 PdL・・低圧側吐出冷媒圧
Pc・・クランク室冷媒圧 c・・隙間 s1・・(防水用の)Oリング
s1,s2,s3,s4,s5,s6・・(気密用の)Oリング
1・・吸入管路 2・・吐出管路 3・・吸入室
4・・吐出室 5・・フロントハウジング 6・・リヤハウジング
7・・低圧側吐出管連通路 8・・制御弁用空間
9a・・クランク室連通路 10・・高圧側吐出管連通路 11・・回転軸
12・・クランク室 13・・プーリ 3a・・駆動ベルト 14・・揺動板
15・・シリンダ 17・・ピストン 18・・ロッド
19・・最低流量保持バネ 20・・可変容量型圧縮機
40・・蒸発器 50・・凝縮器
100・・(可変容量型圧縮機用の)制御弁 120・・弁本体部
121・・弁室 121a・・弁棒受部 121b・・弁座部
122・・弁孔 123・・流入側吐出ポート
125・・流出側吐出ポート 126・・クランク室連通ポート
127・・流入孔 130・・ソレノイド励磁部 130a・・プランジャ室
130b・・ソレノイド 131・・ソレノイドハウジング 132・・弁棒
132a・・弁体 132c・・径大部 132d・・径小部
132e・・プランジャ連結部 133・・プランジャ
133a・・プランジャバネ 135・・ソレノイド部支持筒
136・・バネホルダ 137・・バネ室 138・・緩衝バネ
139・・バネ受け体 141・・吸引子
145・・感圧部 145a・・感圧室 145b・・差圧感圧体
160・・コイルアセンブリ 161・・リード線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control valve for a refrigeration cycle applied to a variable capacity compressor, and more particularly to a control valve for a variable capacity compressor that controls supply of refrigerant gas from a discharge pressure region into a crank chamber.
[0002]
[Prior art]
The compressor used in the refrigeration cycle of the automotive air conditioner cannot directly control the rotational speed because it is directly connected to the engine by a belt. Therefore, a variable capacity compressor is used that can change the compression capacity (discharge amount) in order to obtain an appropriate cooling capacity without being restricted by the rotational speed of the engine.
[0003]
The variable capacity compressor generally compresses refrigerant sucked from a suction chamber that leads to a suction pipe, discharges it into a discharge chamber that leads to a discharge pipe, and controls a refrigerant pressure by a control valve (crank). The refrigerant discharge amount is changed by changing the refrigerant pressure in the chamber. In Patent Document 1 below, a valve body portion in a control valve adjusts the opening of an air supply passage according to a position in a valve chamber, and the pressure sensitive member has two discharge pressures set in a refrigerant circuit. The displacement is reflected in accordance with the differential pressure (PdH-PdL) at the pressure monitoring point, and this displacement is reflected in the positioning of the valve body so that the discharge capacity of the compressor is changed to cancel the fluctuation of the differential pressure. By this means, the opening degree of the air supply passage of the variable displacement compressor is adjusted.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-81374
[Problems to be solved by the invention]
However, the control valve has a complicated structure, and in order to change the compression capacity (discharge amount) of the variable capacity compressor, the opening degree of the air supply passage depends on the position of the valve body in the valve chamber. Therefore, there is a limit to the response to the adjustment of the compression capacity (discharge amount), and there has been a demand for the realization of a control valve having a function that further improves the response. Therefore, the present invention is to realize a control valve with higher responsiveness.
[0006]
[Means for solving the problems]
In order to achieve the above object, the present invention has taken the following measures. That is,
The control valve for a variable displacement compressor according to claim 1 includes a valve main body 120, a solenoid excitation unit 130, and a pressure sensing unit 145, and a pressure sensing chamber 145 a constituting the pressure sensing unit 145 is provided. Provided in the valve body 120, the pressure sensing chamber 145a has an introduction discharge port 123 for introducing the refrigerant from the discharge pipe of the compressor, an outflow discharge port 125 for allowing the refrigerant to flow out to the discharge pipe on the downstream side, and the above-mentioned feeling. The pressure chamber 145a communicates with the crank chamber port 126 communicating with the valve chamber 121, and the refrigerant pressure in the crank chamber port 126 is controlled by the differential pressure (PdH-PdL) between the introduction discharge port 123 and the outflow discharge port 125. In doing so, a differential pressure-sensitive body 145b is provided in the pressure-sensitive chamber 145a, and the differential pressure is maintained by a gap between the outer peripheral surface of the differential pressure-sensitive body 145b and the inner wall surface of the valve body 120. Let It is characterized in.
[0007]
With such a feature, the configuration of the pressure-sensitive portion 145 of the control valve is simplified, and control with high response can be realized.
[0008]
The control valve for a variable displacement compressor according to claim 2 is a control valve for a variable displacement compressor, and a pressure sensitive portion 145 is provided in the control valve, and the pressure sensitive portion 145 A pressure-sensitive chamber 145a is formed in the pressure-sensitive chamber 145a. A differential pressure-sensitive body 145b integrated with the valve rod 132 is disposed in the pressure-sensitive chamber 145a, and protrudes downward from the upper portion of the pressure-sensitive chamber 145a. A valve rod receiving portion 121a is formed, the valve rod receiving portion 121a supports the valve rod 132, and the uppermost moving position of the pressure sensitive body 145b is set by the lower end thereof, and the lower portion of the pressure sensitive chamber 145a is a compressor. The outlet discharge port (refrigerant pressure PdL) connected to the downstream side of the discharge pipe is connected to the upper portion of the pressure sensing chamber 145a, and the introduction discharge port, the outflow discharge port, Is provided with a differential pressure-sensitive body 145b, As shown in FIG. 1, the differential pressure-sensitive body 145b is composed of a cylindrical body having a uniform outer shape, and is fixed to a valve stem at the shaft core portion, and is further positioned opposite to the outer peripheral portion of the differential pressure-sensitive body 145b. The valve chamber wall surface to be formed is formed to have a larger diameter at the lower part.
[0009]
With this feature, it is possible to realize control with high responsiveness with a simple configuration.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a control valve used in the variable displacement compressor of the first embodiment, FIG. 2 is a schematic explanatory view of the variable displacement compressor, and FIG. 3 is arranged in the variable displacement compressor. It is a longitudinal cross-sectional view of the control valve in a state. In the following description, upper, lower, left, and right expressions are used. However, this is for convenience of explanation on the drawings, and the actual positional relationship is not limited to this.
[0011]
First, a variable displacement compressor to which the control valve of Embodiment 1 is applied will be described. In FIG. 2, reference numeral 20 denotes a swash plate type variable capacity compressor, which is used in, for example, an air conditioning refrigeration cycle of an automobile. As the refrigerant, chlorofluorocarbon is used, but the refrigerant may be applied to a refrigeration cycle using carbon dioxide as a refrigerant, and the kind of the refrigerant is not limited. The variable capacity compressor 20 is supported by a front housing 5 and a rear housing 6 integrated with the front housing 5.
[0012]
In FIG. 2, reference numeral 11 denotes a rotating shaft disposed in an airtight crank chamber 12 (pressure regulating chamber), which is positioned at the axial position of a pulley 13 that is rotationally driven by a driving belt 13 a directly connected to the engine. The swinging plate 14 that is connected and tilted with respect to the rotating shaft 11 and disposed in the crank chamber 12 swings as the rotating shaft 11 rotates. A piston 17 is disposed in a reciprocating manner in a cylinder 15 disposed in the periphery of the crank chamber 12, and the piston 17 and the swing plate 14 are connected by a rod 18.
[0013]
As a result, when the swing plate 14 rotates and swings, the piston 17 reciprocates in the cylinder 15, and low-pressure refrigerant is sucked into the cylinder 15 from the suction chamber 3, and the refrigerant is compressed in the cylinder 15. Thus, the pressure becomes high and the refrigerant is discharged into the discharge chamber 4. Refrigerant is fed into the suction chamber 3 from the upstream evaporator 40 side via the suction pipe 1, and from the discharge chamber 4 to the downstream condenser 50 side via the discharge pipe 2, the high pressure. The refrigerant is sent out.
[0014]
The inclination angle of the swing plate 14 changes depending on the refrigerant pressure in the crank chamber 12 (crank chamber refrigerant pressure Pc), and the stroke length of the piston 17 changes depending on the inclination angle of the swing plate 14. The refrigerant discharge amount (that is, the compression capacity) changes. The discharge amount is often when the oscillating plate 14 is tilted as indicated by a solid line, and is small when it is not tilted as indicated by a two-dot chain line. When the swing plate 14 is perpendicular to the rotating shaft 11, the discharge amount becomes zero. However, as the swing plate 14 gradually shifts to a state having no inclination (a state approaching the two-dot chain line), the minimum flow rate holding spring 19 that is mounted around the rotating shaft 11 is gradually compressed by the swing plate 14. .
[0015]
As a result, the reaction force from the minimum flow rate holding spring 19 to the swing plate 14 gradually increases, and the swing plate 14 does not reach the direction perpendicular to the rotary shaft 11, and the discharge amount is the maximum discharge amount. For example, it does not become less than about 3 to 5%.
[0016]
Next, the control valve 100 applied to the variable displacement compressor 20 will be described in detail.
A control valve 100 shown in FIGS. 1 and 3 is provided on the rear housing 6 side of the variable displacement compressor 20 shown in FIG. 2 and is placed in a control valve space 8 formed in the rear housing 6 by an O-ring s1. It is disposed in a state where waterproofness is maintained and in a state where airtightness is maintained by O-rings s2, s3, s4, s5, s6.
[0017]
As shown in FIG. 1, the control valve 100 includes a valve main body 120, a solenoid excitation unit 130 for controlling the refrigerant pressure Pc in the crank chamber 12 to perform variable compression capacity control, and a pressure sensing unit 145. The solenoid exciter 130 is disposed below the control valve 100, the valve main body 120 is disposed above the solenoid exciter 130, and the sensation is disposed inside the valve main body 120. A pressure part 145 is arranged.
[0018]
The solenoid exciter 130 includes a solenoid housing 131 attached to the lower part of the valve main body 120 via a solenoid support cylinder 135. Inside the solenoid housing 131, there is a solenoid 130b and excitation of the solenoid 130b. A plunger 133 that moves in the vertical direction and a suction element 141 are provided. In addition, a lead wire 161 capable of supplying an exciting current controlled by a control unit (not shown) is connected to the solenoid 130b via a coil assembly 160.
[0019]
Inside the solenoid housing 131 connected to the lower part of the valve main body 120, a plunger 133 fixed to a lower end portion of a valve rod 132, which will be described later, is disposed. The plunger 133 is an end of the valve main body 120. Are slidably supported by a solenoid support cylinder 135 in close contact with each other via an O-ring s3.
The lower portion of the valve rod 132 is inserted into the spring chamber 137 formed inside the plunger 133, and the valve rod 132 is supported in a slidable manner through a hole formed in the suction element 141, It arrange | positions in the state which protrudes in the pressure sensitive chamber 145a, and the lower end of this valve rod 132 is contact | abutting to the spring holder 136 of the spring chamber 137 upper part. A plunger spring 133a is provided between the plunger 133 and the suction element 141 to bias the plunger 133 in a direction away from the suction element 141 (the magnitude of the biasing force of the plunger spring 133a will be described later).
[0020]
The pressure-sensitive portion 145 is disposed inside the valve body 120, and a pressure-sensitive chamber 145a is formed therein. In the pressure-sensitive chamber 145a, a differential pressure-sensitive body 145b integrated with the valve rod 132 is disposed. Has been.
A valve rod receiving portion 121a is formed on the pressure sensing chamber 145a so as to protrude below the valve seat portion 121b, and the valve rod receiving portion 121a supports the valve rod 132 through its valve rod support hole. At the same time, the uppermost moving position of the differential pressure sensitive body 145b is defined by the lower end thereof. Then, it is connected to the high-pressure side discharge pipe communication passage (refrigerant pressure PdH) 10 on the compressor side in the refrigeration cycle via the inflow-side discharge port 123 at the lower part of the pressure-sensitive chamber 145a, and the outflow side at the upper part of the pressure-sensitive chamber 145a. The discharge port 125 is connected to an outflow discharge port communicating with the low pressure side discharge pipe communication path (refrigerant pressure PdL) 7 on the condenser (not shown) side in the refrigeration cycle via the discharge port 125.
[0021]
A differential pressure-sensitive body 145 b is disposed in the pressure-sensitive chamber 145 a between the inflow side discharge port 123 and the outflow side discharge port 125. As shown in FIG. 1, the differential pressure-sensitive body 145 b is formed of a cylindrical body having a uniform outer shape, and the shaft core portion is fixed to the valve rod 132.
Further, the valve chamber wall surface 121c located on the outer periphery of the differential pressure sensitive body 145b is formed to have a larger diameter at the lower portion, and as a result, the gap c between the valve chamber wall surface 121c and the outer peripheral portion of the differential pressure sensitive body 145b is decreased downward. Widely formed, the gap c increases as the differential pressure-sensitive body 145b is positioned below.
[0022]
As shown in FIGS. 1 and 3, the valve body 120 is a cylindrical body that is long in the vertical direction, and has a hole in the axial center, that is, a valve chamber that becomes the crank chamber communication port 126 sequentially from the top to the bottom. 121, the valve hole 122, and the pressure sensing chamber 145a are formed to communicate in this order. In addition, a long valve rod 132 is arranged in the upper and lower portions in a continuous hole portion of the shaft core portion of the valve main body portion 120. The valve rod 132 includes an uppermost valve body 132a, a small diameter portion 132d, and a diameter. It consists of a large part 132c and a plunger connecting part 132e.
[0023]
The valve body 132a is disposed in the valve chamber 121, and a crank chamber communication port 126 that communicates with the crank chamber 12 is formed in the upper portion of the valve chamber 121 so that the refrigerant gas in the low-pressure crank chamber is guided. A valve hole 122 through which a refrigerant gas having a discharge refrigerant pressure PdL is guided is formed in the bottom surface of the valve chamber 121. In addition, a valve seat 121b is formed around the valve hole 122.
[0024]
Next, the operation of the control valve 100 will be described together with the operation of the variable displacement compressor 20. When the variable displacement compressor 20 is in an operating state and the energization to the solenoid exciting unit 130 is off, the valve element 132a is in the “open” position in the flow state. In this state, the refrigerant pressure control of the crank chamber refrigerant pressure Pc is performed in accordance with the fluctuation of the discharged refrigerant differential pressure (PdH−PdL). For example, when the refrigerant pressure in the high-pressure side discharge pipe communication passage 10 rises and the discharge refrigerant differential pressure increases, the valve rod 132 also moves up, the valve body 132a moves up, and the degree of “open” becomes large. The refrigerant flow rate to the crank chamber communication passage 9a increases. As a result, the crank chamber refrigerant pressure Pc is increased, and the inclination angle of the swing plate 14 is raised (the angle with the rotary shaft 11 is brought close to 90 degrees). As a result, the refrigerant pressure in the high-pressure side discharge pipe communication passage 10 is increased. Descent.
[0025]
In addition, when the solenoid exciting unit 130 is energized from the lead wire 161, the valve element 132 is attracted by the attractor 141 and moved down by a predetermined length in accordance with the energization amount. Move in the “Close” direction.
[0026]
When the electromagnetic force of the solenoid exciting unit 130 is constant (control state) at a predetermined amount of current value, the valve body 132a is moved to the crank chamber (refrigerant pressure Pc) as the discharge refrigerant differential pressure (PdH-PdH) varies. Is adjusted (opened / closed). During this time, when the discharge refrigerant pressure PdH rises, the differential pressure-sensitive body 145b moves up and the valve body 132a moves in the “open” direction, so that the crank chamber refrigerant pressure Pc is quickly increased by the action of the valve body 132a. As a result, the discharged refrigerant pressure PdH is lowered.
[0027]
Conversely, during this time, when the discharged refrigerant differential pressure PdH decreases, the differential pressure sensitive body 145b moves downward, and the valve body 132a moves in the “closed” direction. The chamber refrigerant pressure Pc is lowered, thereby raising the discharge refrigerant pressure PdH. Furthermore, when the electromagnetic current of the control valve 100 is changed by changing the value of the energization current to the solenoid 130b, the crank chamber refrigerant pressure Pc changes accordingly, and the compression capacity (discharge amount) is changed accordingly. The refrigerant differential pressure PdH−PdL is kept constant at different levels.
[0028]
In addition, the control of the energization current value to the solenoid 130b is performed by inputting detection signals from a plurality of sensors for detecting various conditions such as an engine, a temperature inside and outside the vehicle, an evaporator sensor, and the like to a control unit including a CPU or the like. A control signal based on the calculation result is sent from the control unit to the solenoid 130b. The drive circuit of the solenoid 130b is not shown.
[0029]
【The invention's effect】
According to the present invention, the refrigerant flow for crank chamber refrigerant pressure control from the low-pressure side discharge pipe communication path (discharge refrigerant pressure PdL) to the crank chamber communication path (crank chamber refrigerant pressure Pc) can be quickly increased and decreased. The discharge refrigerant pressure can be controlled smoothly by the pressure.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a control valve used in a variable displacement compressor according to a first embodiment.
FIG. 2 is a schematic explanatory diagram of the variable capacity compressor.
FIG. 3 is a longitudinal sectional view of a control valve in a state disposed in the variable displacement compressor.
[Explanation of symbols]
PdH ·· High pressure side refrigerant pressure PdL · · Low pressure side refrigerant pressure Pc ·· Crank chamber refrigerant pressure c ·· Gap s1 ·· O-rings (for waterproofing) s1, s2, s3, s4, s5, s6 O-ring 1 (for airtightness) ・ ・ Suction pipe 2 ・ ・ Discharge pipe 3 ・ ・ Suction chamber 4 ・ ・ Discharge chamber 5 ・ ・ Front housing 6 ・ ・ Rear housing 7 ・ ・ Low-pressure side discharge pipe communication path 8 ・· Control valve space 9a · · Crank chamber communication passage 10 · · High-pressure side discharge pipe communication passage 11 · · Rotary shaft 12 · · Crank chamber 13 · · Pulley 3a · · Drive belt 14 · · Swing plate 15 · · Cylinder 17 .. Piston 18.. Rod 19.. Minimum flow rate retaining spring 20.. Variable displacement compressor 40. Evaporator 50. Condenser 100 .. Control valve (for variable displacement compressor) 120. Valve body 121 ··· Valve chamber 121a · · Valve stem receiving part 21b ··· Valve seat 122 · · Valve hole 123 · · Inlet side discharge port 125 · · Outlet side discharge port 126 · · Crank chamber communication port 127 · · Inlet port 130 · · Solenoid excitation portion 130a · · Plunger chamber 130b · · Solenoid 131 · · Solenoid housing 132 · · Valve stem 132a · · Valve body 132c · · Large diameter portion 132d · · Small diameter portion 132e · · Plunger connection portion 133 · · Plunger 133a · · Plunger spring 135 · · Solenoid support Cylinder 136 ·· Spring holder 137 · · Spring chamber 138 · · Buffer spring 139 · · Spring receiver 141 · · Suction element 145 · · Pressure sensing portion 145a · · Pressure sensing chamber 145b · · Differential pressure sensing body 160 · · Coil assembly 161 .. Lead wire

Claims (2)

弁本体部と、ソレノイド励磁部と、感圧部と、からなり、該感圧部を構成する感圧室を弁本体部内に設け、前記感圧室には、圧縮機の吐出管から冷媒を導入する導入吐出ポートと、下流側の吐出管へ冷媒を流出させる流出吐出ポートと、上記感圧室と弁室を介して連通するクランク室ポートと、を連通させ、導入吐出ポートと流出吐出ポートの差圧により、クランク室ポートの冷媒圧を制御させるに当って、前記感圧室内には、差圧感圧体が設けられ、該差圧感圧体の外周面と上記弁本体室の内壁面との隙間により、差圧を保持させることを特徴とする可変容量型圧縮機用の制御弁。A valve body part, a solenoid exciting part, and a pressure sensing part are provided, and a pressure sensing chamber constituting the pressure sensing part is provided in the valve body part, and refrigerant is supplied to the pressure sensing chamber from a discharge pipe of a compressor. The introduction discharge port and the outflow discharge port communicate with each other through the introduction discharge port to be introduced, the outflow discharge port for allowing the refrigerant to flow out to the discharge pipe on the downstream side, and the crank chamber port communicating with the pressure sensing chamber via the valve chamber. When the refrigerant pressure in the crank chamber port is controlled by the differential pressure, a differential pressure-sensitive body is provided in the pressure-sensitive chamber, and an outer peripheral surface of the differential pressure-sensitive body and an inner wall surface of the valve body chamber A control valve for a variable capacity compressor, characterized in that the differential pressure is maintained by the gap. 可変容量型圧縮機用の制御弁であって、該制御弁内に感圧部が設けられ、該感圧部は、内部に感圧室が形成され、該感圧室には、弁棒に一体の差圧感圧体が配設されると共に、感圧室の上部には、下方に突出するように弁棒受部が形成され、該弁棒受部は、弁棒を支持すると共に、その下端により感圧体の最上動位置が設定され、前記感圧室の下部は圧縮機の導入吐出ポート(吐出冷媒圧PdH)に連結され、感圧室の上部は吐出管の下流側に連通する流出吐出ポート(冷媒圧PdL)が連結され、上記導入吐出ポートと流出吐出ポートとの間に、差圧感圧体が配設され、更に、該差圧感圧体は、均一外形の円柱体からなり、その軸芯部に弁棒に固着され、更に、前記差圧感圧体の外周部に対向して位置する弁室壁面は、下部ほど径大に形成されていることを特徴とする制御弁。A control valve for a variable displacement compressor, wherein a pressure sensing part is provided in the control valve, and the pressure sensing part has a pressure sensing chamber formed therein. An integral differential pressure-sensitive body is disposed, and a valve rod receiving portion is formed on the upper portion of the pressure sensing chamber so as to protrude downward. The valve rod receiving portion supports the valve rod, and The uppermost position of the pressure sensitive body is set by the lower end, the lower part of the pressure sensitive chamber is connected to the introduction discharge port (discharge refrigerant pressure PdH) of the compressor, and the upper part of the pressure sensitive chamber communicates with the downstream side of the discharge pipe. An outflow / discharge port (refrigerant pressure PdL) is connected, and a differential pressure-sensitive body is disposed between the introduction discharge port and the outflow / discharge port, and the differential pressure-sensitive body is a cylindrical body having a uniform outer shape. The valve chamber wall surface, which is fixed to the valve stem at the shaft core portion and is opposed to the outer peripheral portion of the differential pressure sensing body, is formed with a larger diameter toward the lower portion. Control valve, characterized by being.
JP2003209471A 2003-08-29 2003-08-29 Control valve for variable displacement compressor Pending JP2005076451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209471A JP2005076451A (en) 2003-08-29 2003-08-29 Control valve for variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209471A JP2005076451A (en) 2003-08-29 2003-08-29 Control valve for variable displacement compressor

Publications (1)

Publication Number Publication Date
JP2005076451A true JP2005076451A (en) 2005-03-24

Family

ID=34402384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209471A Pending JP2005076451A (en) 2003-08-29 2003-08-29 Control valve for variable displacement compressor

Country Status (1)

Country Link
JP (1) JP2005076451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247504A (en) * 2006-03-15 2007-09-27 Saginomiya Seisakusho Inc Control valve, variable displacement type compressor and refrigeration cycle apparatus
JP2007298006A (en) * 2006-05-02 2007-11-15 Saginomiya Seisakusho Inc Control valve, variable displacement type compressor and refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247504A (en) * 2006-03-15 2007-09-27 Saginomiya Seisakusho Inc Control valve, variable displacement type compressor and refrigeration cycle apparatus
JP2007298006A (en) * 2006-05-02 2007-11-15 Saginomiya Seisakusho Inc Control valve, variable displacement type compressor and refrigeration cycle device
JP4663575B2 (en) * 2006-05-02 2011-04-06 株式会社鷺宮製作所 Control valve, variable capacity compressor and refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
JP4456906B2 (en) Control valve for variable capacity compressor
JP3963619B2 (en) Compression capacity controller for refrigeration cycle
JP4422512B2 (en) Control valve for variable capacity compressor
US20050265853A1 (en) Control valve for variable displacement compressor
WO2006137270A1 (en) Capacity control valve
JP2005291190A (en) Control valve for variable displacement compressor
JP2001099060A (en) Control valve for variable displacement compressor
KR20060050534A (en) Control valve for variable displacement compressor
JP3917347B2 (en) Air conditioner for vehicles
JP2007303416A (en) Variable displacement compressor
JP4070425B2 (en) Compression capacity controller for refrigeration cycle
JP4418309B2 (en) Control valve for variable capacity compressor
JP2001328424A (en) Air conditioner
JP2005076451A (en) Control valve for variable displacement compressor
JPWO2002101237A1 (en) Variable capacity compressor
JP2005291142A (en) Control device and pressure control valve for variable displacement compressor
JP3886290B2 (en) Capacity control device for variable capacity compressor
JP2004316429A (en) Control valve for variable capacitance type compressor
JP2006070902A (en) Variable displacement type compressor
JP2005105935A (en) Control valve for variable displacement compressor
JP3996357B2 (en) Variable capacity compressor and capacity control valve for variable capacity compressor
JP2006125292A (en) Control valve for variable displacement compressor
JPH09280169A (en) Capacity control device for variable displacement compressor
JP2008032026A (en) Compression capacity control device of refrigerating cycle
JP2002168173A (en) Control device for variable displacement compressor