JP2005076045A5 - - Google Patents

Download PDF

Info

Publication number
JP2005076045A5
JP2005076045A5 JP2003304477A JP2003304477A JP2005076045A5 JP 2005076045 A5 JP2005076045 A5 JP 2005076045A5 JP 2003304477 A JP2003304477 A JP 2003304477A JP 2003304477 A JP2003304477 A JP 2003304477A JP 2005076045 A5 JP2005076045 A5 JP 2005076045A5
Authority
JP
Japan
Prior art keywords
alloy powder
ppm
rare earth
fine
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304477A
Other languages
Japanese (ja)
Other versions
JP2005076045A (en
JP4247977B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003304477A priority Critical patent/JP4247977B2/en
Priority claimed from JP2003304477A external-priority patent/JP4247977B2/en
Publication of JP2005076045A publication Critical patent/JP2005076045A/en
Publication of JP2005076045A5 publication Critical patent/JP2005076045A5/ja
Application granted granted Critical
Publication of JP4247977B2 publication Critical patent/JP4247977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明者等は微粉末を大気中に放置したところ、微粉末に窒素が多く存在すると窒素量が減少するとともに、酸素量が増加しやすいこと、換言すれば微粉末の窒素量を制御することによりその後の大気との接触による酸素量の増加を抑制できることを本発明者等は確認した。具体的には、窒素量が250ppm以下の場合に酸素量の増加を抑制できることを知見した。微粉末中に窒素はRNの形態で存在すると解され、大気に接触することにより式(1)の反応あるいは式(1)の反応に伴う微粉末の表面状態変化や発熱により酸化が進むと考えられる。
RN+3HO→R(OH)+NH…(1)
微粉末の窒素量を250ppm以下に制御するための手法はいくつか考えられる。例えば、微粉砕に気流粉砕機を使用する場合、その雰囲気を純窒素ではなく500〜4500ppmの濃度で酸素を混入すること、より好ましくは2000〜3500ppmの濃度で酸素を混入することが有効である。
When the present inventors left the fine powder in the atmosphere, the amount of nitrogen decreases and the amount of oxygen tends to increase if there is a lot of nitrogen in the fine powder, in other words, the amount of nitrogen in the fine powder is controlled. Thus, the present inventors have confirmed that an increase in the amount of oxygen due to subsequent contact with the atmosphere can be suppressed. Specifically, it has been found that an increase in the amount of oxygen can be suppressed when the amount of nitrogen is 250 ppm or less. It is understood that nitrogen is present in the form of RN in the fine powder, and it is thought that oxidation proceeds by contact with the atmosphere due to the reaction of formula (1) or the change in surface condition of the fine powder accompanying the reaction of formula (1) and heat generation. It is done.
RN + 3H 2 O → R (OH) 3 + NH 3 (1)
Several methods for controlling the nitrogen content of the fine powder to 250 ppm or less are conceivable. For example, when using an airflow pulverizer for fine pulverization, it is effective to mix oxygen at a concentration of 500 to 4500 ppm, more preferably 2000 to 3500 ppm, instead of pure nitrogen. .

本発明は以上の知見に基づくものであり、R−T−B(ただし、RはYを含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)系永久磁石の製造用合金粉末であって、窒素量が120〜250ppm、酸素量が4000〜5500ppmである永久磁石用合金粉末により前記課題を解決する。
また、本発明の永久磁石用合金粉末は、単一の組成を有する合金から構成することができるが、後述する混合法に適用することもできる。混合法は高磁気特性を得るために有効な手法であり、本発明を適用することにより高磁気特性を安定して得ることができるという利点を有することになる。混合法に適用する場合、永久磁石用合金粉末は、R14B相を主体とする第1の合金粉末と、第1の合金粉末よりRを多く含む第2の合金粉末とを少なくとも含む混合物から構成されることになる。
The present invention is based on the above findings, and R-T-B (where R is one or more of rare earth elements including Y, T is one or two essential elements of Fe, Fe and Co) The above-mentioned problems are solved by an alloy powder for producing permanent magnets having at least two kinds of transition magnets, wherein the amount of nitrogen is 120 to 250 ppm and the amount of oxygen is 4000 to 5500 ppm .
Moreover, although the alloy powder for permanent magnets of this invention can be comprised from the alloy which has a single composition, it can also apply to the mixing method mentioned later. The mixing method is an effective technique for obtaining high magnetic characteristics, and has the advantage that high magnetic characteristics can be stably obtained by applying the present invention. When applied to the mixing method, the alloy powder for permanent magnet includes at least a first alloy powder mainly composed of an R 2 T 14 B phase and a second alloy powder containing more R than the first alloy powder. It will consist of a mixture.

Claims (5)

R−T−B(ただし、RはYを含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)系永久磁石の製造用合金粉末であって、
窒素量が120〜250ppm、酸素量が4000〜5500ppmであることを特徴とする永久磁石用合金粉末。
Production of R-T-B (where R is one or more of rare earth elements including Y and T is one or more transition metal elements in which Fe or Fe and Co are essential) based permanent magnets Alloy powder for
An alloy powder for permanent magnets, wherein the nitrogen content is 120 to 250 ppm and the oxygen content is 4000 to 5500 ppm .
14B相を主体とする第1の合金粉末と、前記第1の合金粉末よりRを多く含む第2の合金粉末とを少なくとも含む混合物から構成されることを特徴とする請求項に記載の永久磁石用合金粉末。 Claim wherein the first alloy powder mainly comprising R 2 T 14 B phase, in that they are composed of the first of the second mixture at least containing an alloy powder containing a large amount of R than the alloy powder 1 The alloy powder for permanent magnets described in 1. R−T−B(ただし、RはYを含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)系永久磁石の合金原料を粗粉砕する粗粉砕工程と、
前記粗粉砕工程で得られる粗粉末を酸素濃度が500〜4500ppmの不活性ガス雰囲気中で気流粉砕する微粉砕工程と、
前記微粉砕工程で得られる微粉末を成形し成形体を得る工程と、
前記成形体を焼結する焼結工程と、を備えることを特徴とする希土類永久磁石の製造方法。
R-T-B (where R is one or more rare earth elements including Y and T is one or more transition metal elements in which Fe or Fe and Co are essential) based permanent magnet alloys A coarse pulverization step for coarsely pulverizing the raw materials;
A fine pulverization step in which the coarse powder obtained in the coarse pulverization step is air-flow pulverized in an inert gas atmosphere having an oxygen concentration of 500 to 4500 ppm;
Molding the fine powder obtained in the fine grinding step to obtain a molded body;
And a sintering step of sintering the molded body.
酸素濃度が2000〜3500ppmの不活性ガス雰囲気中で前記気流粉砕することを特徴とする請求項記載の希土類永久磁石の製造方法。 The method for producing a rare earth permanent magnet according to claim 3 , wherein the airflow pulverization is performed in an inert gas atmosphere having an oxygen concentration of 2000 to 3500 ppm. 前記微粉砕工程で得られた前記微粉末を所定量の酸素を含む不活性ガス雰囲気中に所定時間保持した後に、前記微粉末を大気中で取り扱うことを特徴とする請求項又は記載の希土類永久磁石の製造方法。 Wherein after holding a predetermined time in an inert gas atmosphere the fine powder obtained in the milling step containing a predetermined amount of oxygen, the fine powder according to claim 3 or 4, wherein the handling in the atmosphere A method for producing a rare earth permanent magnet.
JP2003304477A 2003-08-28 2003-08-28 Rare earth permanent magnet manufacturing method Expired - Lifetime JP4247977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304477A JP4247977B2 (en) 2003-08-28 2003-08-28 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304477A JP4247977B2 (en) 2003-08-28 2003-08-28 Rare earth permanent magnet manufacturing method

Publications (3)

Publication Number Publication Date
JP2005076045A JP2005076045A (en) 2005-03-24
JP2005076045A5 true JP2005076045A5 (en) 2006-10-12
JP4247977B2 JP4247977B2 (en) 2009-04-02

Family

ID=34408153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304477A Expired - Lifetime JP4247977B2 (en) 2003-08-28 2003-08-28 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4247977B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283100A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for cutting rare earth alloy powder molding
JP4640585B2 (en) * 2005-03-31 2011-03-02 Tdk株式会社 Rare earth magnet manufacturing method
KR102170875B1 (en) 2011-10-24 2020-10-28 가부시키가이샤 니콘 Illumination optical assembly, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
CN109478452B (en) R-T-B sintered magnet
US7244318B2 (en) Method for preparation of permanent magnet
JP2004165482A (en) R-Fe-B SYSTEM SINTERED MAGNET
JPWO2009107397A1 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2016136705A1 (en) Method for manufacturing r-t-b based sintered magnet
CN110431646B (en) Method for producing R-T-B sintered magnet
JP2003193208A (en) Magnet material and production method therefor
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP2005076045A5 (en)
JP6249275B2 (en) Method for producing RTB-based sintered magnet
CN111052276B (en) Method for producing R-T-B sintered magnet
US10706997B2 (en) Preparation of MnBi LTP magnet by direct sintering
JPH08203715A (en) Raw material for permanent magnet and manufacture thereof
JPS62133040A (en) Rare-earth permanent magnet material
JP6229938B2 (en) R-T-B sintered magnet
JPH11323508A (en) Rare earth metal-iron-nitrogen magnetic material and its production
JP2016037611A (en) Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder
JP4247977B2 (en) Rare earth permanent magnet manufacturing method
JP7315889B2 (en) Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP4604528B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2003124013A (en) Bonded magnet, its manufacturing method, and magnet material used therefor
JPH05175026A (en) Manufacture of rare earth permanent magnet
JPS62158852A (en) Permanent magnet material
JP2000114012A (en) Magnetic material and manufacture thereof