JP2005074963A - Pre-coat aluminum alloy plate excellent in heat releasing, anti-injury ability and electrical conductivity - Google Patents

Pre-coat aluminum alloy plate excellent in heat releasing, anti-injury ability and electrical conductivity Download PDF

Info

Publication number
JP2005074963A
JP2005074963A JP2003311791A JP2003311791A JP2005074963A JP 2005074963 A JP2005074963 A JP 2005074963A JP 2003311791 A JP2003311791 A JP 2003311791A JP 2003311791 A JP2003311791 A JP 2003311791A JP 2005074963 A JP2005074963 A JP 2005074963A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy plate
coating film
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003311791A
Other languages
Japanese (ja)
Other versions
JP4523250B2 (en
Inventor
Tsutomu Usami
勉 宇佐見
Kazuhiro Hosomi
和弘 細見
Mitsuhiro Tamaoki
充宏 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2003311791A priority Critical patent/JP4523250B2/en
Publication of JP2005074963A publication Critical patent/JP2005074963A/en
Application granted granted Critical
Publication of JP4523250B2 publication Critical patent/JP4523250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pre-coat aluminum alloy plate excellent in all of heat-releasing, anti-injury ability and electrical conductivity. <P>SOLUTION: The plate comprises a substrate plate 2 composed of an aluminum alloy plate and pre-coat layers 3 and 4 formed on one or both surfaces of the substrate plate 2. At least one pre-coat layer 3 comprises a multi-layered coating film having two-layer structure, which is formed by laminating an under coating layer 31 comprising a first base resin 310 containing titanium oxide 311 and carbon black 312 to an upper coating layer 32 comprising the second base resin 320 into which granular synthetic resin beads 321 are dispersed. Preferably, the multi-layered coating film 3 is formed only on one surface of the substrate plate 2, and an electrical conductive film having single layer structure which comprises the third base resin 40 containing an electrical conductive material 41 is formed on the other surface of the substrate plate 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラズマディスプレイなどの電子機器あるいは家電用筐体に使用され、筐体内部の熱を放熱するのに好適な、プレコートアルミニウム合金板に関する。   The present invention relates to a precoated aluminum alloy plate that is used for an electronic device such as a plasma display or a housing for home appliances and is suitable for radiating heat inside the housing.

電子機器、電気機器のデジタル化に伴い、より高集積のLSI等の半導体が内蔵されるようになったことから、筐体内が今まで以上に加熱されるようになった。
ファン付きヒートシンクにより半導体を局部的に放熱する手段は従来からとられているが、さらに、最近になって、筐体内の全体的な熱を効率よく放熱するために、筐体を構成する板材料自体に放熱機能をもたらす要求が強く、それを満足させるために、種々の工夫がなされてきた。
With the digitization of electronic and electrical devices, semiconductors such as highly integrated LSIs have been built in, and the interior of the housing has been heated more than ever.
The means for locally dissipating the semiconductor by a heat sink with a fan has been conventionally used, but more recently, in order to efficiently dissipate the overall heat in the casing, the plate material that constitutes the casing There is a strong demand for providing a heat dissipation function in itself, and various ideas have been made to satisfy it.

例えば、工夫を凝らした板材としては、基板表面の塗膜にカーボンブラックとチタニアを特定量含有させ、熱放射率を60%以上としたもの(特許文献1)、基板表面の二層の塗膜の内層に、カーボンブラック、アルミナ、ジルコニア、チタニア、シリカ等を特定量含有させ、熱放射率を70%以上とするとともに、外層の熱線透過率を20%以上としたもの(特許文献2)、アルミニウム板の片面に、有機樹脂微粒子を含有する有機樹脂被膜を設けたもの(特許文献3)、金属層と樹脂層が、熱可塑性樹脂製繊維構造物を介して接合されたもの(特許文献4)などがある。   For example, as a well-developed plate material, a specific amount of carbon black and titania is contained in the coating film on the substrate surface and the thermal emissivity is 60% or more (Patent Document 1), and a two-layer coating film on the substrate surface A specific amount of carbon black, alumina, zirconia, titania, silica, and the like is contained in the inner layer of this material, and the heat emissivity is 70% or more and the heat ray transmittance of the outer layer is 20% or more (Patent Document 2), An aluminum plate provided with an organic resin coating containing organic resin fine particles on one side (Patent Document 3), and a metal layer and a resin layer joined together via a thermoplastic resin fiber structure (Patent Document 4) )and so on.

ところで、現在の電子機器等の筐体においては、上記のような放熱性だけでなく、導電性、及び耐傷付き性についても高い性能が要求されている。
しかしながら、上記従来の板材においては、放熱性、導電性、及び耐傷付き性を全て満足するものはなかった。
By the way, in the case of current electronic devices and the like, high performance is required not only for heat dissipation as described above, but also for conductivity and scratch resistance.
However, none of the conventional plate materials described above satisfy all of heat dissipation, conductivity, and scratch resistance.

特開2002−226783号公報JP 2002-226783 A 特開2002−228085号公報JP 2002-228085 A 特開2002−149083号公報JP 2002-149083 A 特開2000−286565号公報JP 2000-286565 A

本発明は、かかる従来の問題点に鑑みてなされたもので、放熱性、耐傷付き性及び導電性の全てに優れたプレコートアルミニウム合金板を提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a precoated aluminum alloy plate excellent in all of heat dissipation, scratch resistance and conductivity.

第1の発明は、アルミニウム合金板よりなる基板と、該基板の片面又は両面に形成したプレコート層とよりなり、
少なくとも一方の上記プレコート層は、第1のベース樹脂中に酸化チタン及びカーボンブラックを含有してなる下塗り層と、
第2のベース樹脂中に粒子状合成樹脂よりなる樹脂ビーズを分散させてなる上塗り層とを積層して二層構造を呈する複層塗膜よりなることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板にある(請求項1)。
1st invention consists of the board | substrate which consists of an aluminum alloy plate, and the precoat layer formed in the single side | surface or both surfaces of this board | substrate,
At least one of the precoat layers includes an undercoat layer containing titanium oxide and carbon black in the first base resin;
Heat dissipation, scratch resistance, and a multilayer coating film having a two-layer structure by laminating an overcoat layer in which resin beads made of particulate synthetic resin are dispersed in a second base resin It exists in the precoat aluminum alloy plate excellent in electroconductivity (Claim 1).

本発明のプレコートアルミニウム合金板は、上記のごとく、その片面または両面にプレコート層を有してなる。そして、片面にプレコート層がある場合には、そのプレコート層が上記複層塗膜よりなり、両面にプレコート層がある場合には、一方または両方のプレコート層が上記複層塗膜より構成されている。また、上記複層塗膜は、上記特定の構成よりなる下塗り層及び上塗り層を積層してなる二層構造を呈している。そのため、上記プレコートアルミニウム合金板は、放熱性、導電性、及び耐傷付き性に優れたものとなる。   As described above, the precoated aluminum alloy plate of the present invention has a precoat layer on one side or both sides thereof. And when there is a precoat layer on one side, the precoat layer consists of the above-mentioned multi-layer coating film, and when both sides have a pre-coat layer, one or both pre-coat layers are composed of the above-mentioned multi-layer coating film. Yes. The multilayer coating film has a two-layer structure in which an undercoat layer and an overcoat layer having the above-mentioned specific structure are laminated. Therefore, the precoated aluminum alloy plate is excellent in heat dissipation, conductivity, and scratch resistance.

すなわち、上記複層塗膜を構成する上記下塗り層は、上記のごとく、第1のベース樹脂中に酸化チタン及びカーボンブラックを含有して構成されている。そのため、上記酸化チタン及びカーボンブラックの放熱性及び導電性によって、上記複層塗膜に放熱性及び導電性という機能を付加することができる。
また、上記複層塗膜を構成する上記上塗り層は、上記のごとく、第2のベース樹脂中に粒子状合成樹脂よりなる樹脂ビーズを分散させて構成してある。そのため、上記樹脂ビーズの存在によって、耐傷付き性を向上させることができる。
そして、上記下塗り層と上塗り層の二層構造によって、放熱性、導電性及び耐傷付き性という複数の機能を同時に発揮しうるプレコート層を形成することができるのである。
That is, the undercoat layer constituting the multilayer coating film is constituted by containing titanium oxide and carbon black in the first base resin as described above. Therefore, the functions of heat dissipation and conductivity can be added to the multilayer coating film by the heat dissipation and conductivity of the titanium oxide and carbon black.
Further, as described above, the overcoat layer constituting the multilayer coating film is constituted by dispersing resin beads made of particulate synthetic resin in the second base resin. Therefore, scratch resistance can be improved by the presence of the resin beads.
And by the two-layer structure of the undercoat layer and the overcoat layer, a precoat layer that can simultaneously exhibit a plurality of functions of heat dissipation, conductivity, and scratch resistance can be formed.

本発明において、上記下塗り層は、上記第1のベース樹脂として、数平均分子量5000〜30000のポリエステル樹脂を主成分として含有するポリエステル樹脂系塗料を用いてなり、ポリエステル樹脂100重量部に対して酸化チタンを3〜60重量部、カーボンブラックを0.2〜15重量部含有し、かつ、膜厚が1〜40μmであることが好ましい(請求項2)。   In the present invention, the undercoat layer uses a polyester resin-based paint containing a polyester resin having a number average molecular weight of 5000 to 30000 as a main component as the first base resin, and is oxidized with respect to 100 parts by weight of the polyester resin. It is preferable that 3 to 60 parts by weight of titanium, 0.2 to 15 parts by weight of carbon black are contained, and the film thickness is 1 to 40 μm.

すなわち、上記第1ベース樹脂として上記のごとくポリエステル樹脂系塗料を利用し、かつ、その数平均分子量を5000〜30000とすることが好ましい。上記ポリエステル樹脂系塗料としては、より具体的には、不飽和ポリエステル樹脂、脂肪酸変性したポリエステル樹脂(アルキド樹脂)、オイルフリーアルキド樹脂、綿状ポリエステル樹脂等がある。
また、この数平均分子量5000未満の場合には、塗膜の加工性が損なわれるという問題があり、一方、30000を超える場合には、塗膜の耐傷付き性が損なわれるという問題がある。
That is, it is preferable to use a polyester resin-based paint as described above as the first base resin and set the number average molecular weight to 5000 to 30000. More specifically, examples of the polyester resin-based paint include unsaturated polyester resins, fatty acid-modified polyester resins (alkyd resins), oil-free alkyd resins, and cotton-like polyester resins.
Further, when the number average molecular weight is less than 5000, there is a problem that the workability of the coating film is impaired. On the other hand, when it exceeds 30000, there is a problem that the scratch resistance of the coating film is impaired.

また、上記第1ベース樹脂に含有させる酸化チタンは、ポリエステル樹脂100重量部に対して3〜60重量部とすることが好ましい。3重量部未満の場合には熱放射性が低下するという問題があり、一方、60重量部を超える場合には、塗膜の加工性が損なわれるという問題がある。   Moreover, it is preferable that the titanium oxide contained in said 1st base resin shall be 3-60 weight part with respect to 100 weight part of polyester resins. When the amount is less than 3 parts by weight, there is a problem that the thermal radiation is lowered, while when it exceeds 60 parts by weight, there is a problem that the workability of the coating film is impaired.

また、上記第1ベース樹脂に含有させるカーボンブラックは、ポリエステル樹脂100重量部に対して0.2〜15重量部とすることが好ましい。0.2重量部未満の場合には熱放射性が低下するという問題があり、一方、10重量部を超える場合には、塗膜の加工性が損なわれるという問題がある。   The carbon black contained in the first base resin is preferably 0.2 to 15 parts by weight with respect to 100 parts by weight of the polyester resin. If the amount is less than 0.2 parts by weight, there is a problem that the thermal radiation is reduced, while if it exceeds 10 parts by weight, the processability of the coating film is impaired.

更に、上記下塗り層の膜厚は、1〜40μmであることが好ましい。膜厚が1μm未満の場合には、熱放射性が不十分となるという問題があり、一方、40μmを超える場合には、塗膜の加工性が損なわれ、熱放射性向上効果は飽和してくるという問題がある。   Furthermore, the thickness of the undercoat layer is preferably 1 to 40 μm. When the film thickness is less than 1 μm, there is a problem that the thermal radiation becomes insufficient. On the other hand, when it exceeds 40 μm, the workability of the coating film is impaired, and the effect of improving the thermal radiation is saturated. There's a problem.

次に、上記上塗り層は、上記第2のベース樹脂として、数平均分子量5000〜30000のポリエステル樹脂を主成分として含有するポリエステル樹脂系塗料を用いてなり、粒径Dが3〜90μmの上記樹脂ビーズをポリエステル樹脂100重量部に対して1〜200重量部含有し、上記樹脂ビーズが存在しない部分の膜厚Tが1〜30μmであり、かつ、上記粒径D/上記膜厚T(以下、D/Tと示す)が1〜3の範囲内にあることが好ましい(請求項3)。   Next, the overcoat layer is made of a polyester resin-based paint containing a polyester resin having a number average molecular weight of 5000 to 30000 as a main component as the second base resin, and the resin having a particle diameter D of 3 to 90 μm. 1 to 200 parts by weight of beads with respect to 100 parts by weight of the polyester resin, the film thickness T of the part where the resin beads do not exist is 1 to 30 μm, and the particle diameter D / the film thickness T (hereinafter, D / T) is preferably in the range of 1 to 3 (claim 3).

まず、上記第2ベース樹脂としても、上記のごとくポリエステル樹脂系塗料を利用し、かつ、その数平均分子量を5000〜30000とすることが好ましい。上記ポリエステル樹脂系塗料の具体例としては、例えば上記と同様のものがあり、また、数平均分子量の限定理由も上記と同様である。   First, as the second base resin, it is preferable to use a polyester resin-based paint as described above and set the number average molecular weight to 5000 to 30000. Specific examples of the polyester resin-based paint include those similar to those described above, and the reason for limiting the number average molecular weight is also the same as described above.

また、上記第2ベース樹脂に含有させる上記樹脂ビーズは、その粒径Dが3〜90μmであることが好ましい。粒径Dが3μm未満の場合には、樹脂ビーズの存在による耐傷付き性向上効果が十分に得られないという問題がある。一方、樹脂ビーズの粒径が90μmを超える場合には、上塗り層から脱落しやすくなるという問題がある。   The resin beads contained in the second base resin preferably have a particle size D of 3 to 90 μm. When the particle size D is less than 3 μm, there is a problem that the effect of improving the scratch resistance due to the presence of the resin beads cannot be obtained sufficiently. On the other hand, when the particle size of the resin beads exceeds 90 μm, there is a problem that the resin beads easily fall off from the overcoat layer.

また、上記第2ベース樹脂に含有させる樹脂ビーズは、ポリエステル樹脂100重量部に対して1〜200重量部であることが好ましい。この含有量が1重量部未満の場合には、十分な耐傷付き性が得られないという問題があり、一方、200重量部を超える場合には、樹脂ビーズに対するベース樹脂の割合が少なすぎて、曲げ加工時に塗膜割れが発生しやすくなるという問題がある。   The resin beads contained in the second base resin are preferably 1 to 200 parts by weight with respect to 100 parts by weight of the polyester resin. When this content is less than 1 part by weight, there is a problem that sufficient scratch resistance cannot be obtained, while when it exceeds 200 parts by weight, the ratio of the base resin to the resin beads is too small, There is a problem that coating film cracking is likely to occur during bending.

また、上記上塗り層の上記樹脂ビーズが存在しない部分の膜厚Tは、1〜30μmであることが好ましい。膜厚Tが1μm未満の場合には、樹脂ビーズが脱落しやすいという問題があり、一方、30μmを超えると、塗料焼き付け時に乾燥しにくく健全な塗膜形成ができず、成形時にこの部分で割れが発生しやすくなって、プレス成形性が低下するという問題がある。   Moreover, it is preferable that the film thickness T of the part in which the said resin bead does not exist of the said overcoat is 1-30 micrometers. When the film thickness T is less than 1 μm, there is a problem that the resin beads are likely to drop off. On the other hand, when the film thickness exceeds 30 μm, it is difficult to dry when baking the paint, and a sound coating cannot be formed, and this part is cracked during molding. Is likely to occur, and there is a problem that press formability is lowered.

更に、上記D/Tが1〜3の範囲内にあることが好ましい。このD/Tが1未満の場合には耐傷付き性が十分に得られず、一方、3を超える場合には、樹脂ビーズが上塗り層から脱落し易いという問題がある。   Further, the D / T is preferably in the range of 1 to 3. When the D / T is less than 1, sufficient scratch resistance cannot be obtained. On the other hand, when the D / T exceeds 3, there is a problem that the resin beads easily fall off from the overcoat layer.

また、上記複層塗膜の上記上塗り層は、上記第1のベース樹脂100重量部に対して0.05〜3重量部のインナーワックスを含有していることが好ましい(請求項3)。この場合には、インナーワックスの存在によって、上記プレコートアルミニウム合金板の加工性を各段に向上させることができる。
上記インナーワックスの含有量は、上記第1のベース樹脂100重量部に対して0.05〜3重量部とすることが好ましい。インナーワックス含有量が0.05重量%未満の場合には、滑り性が悪化して成形性が低下するという問題があり、一方、3%を超えると、上記プレコートアルミニウム合金板を量産する際の製造過程においてコイルアップ等した場合に、インナーワックスが染み出して生産性を低下させる等の問題がある。
なお、上記インナーワックスとしては、例えば、ラノリン、カルナバ、ポリエチレン等を採用することができる。
Moreover, it is preferable that the said overcoat layer of the said multilayer coating film contains 0.05-3 weight part inner wax with respect to 100 weight part of said 1st base resins. In this case, due to the presence of the inner wax, the workability of the precoated aluminum alloy plate can be improved in each stage.
The content of the inner wax is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the first base resin. When the content of the inner wax is less than 0.05% by weight, there is a problem that the slipperiness is deteriorated and the formability is lowered. On the other hand, when the content exceeds 3%, the precoated aluminum alloy plate is mass-produced. When the coil is raised in the manufacturing process, there is a problem that the inner wax oozes out and decreases productivity.
As the inner wax, for example, lanolin, carnauba, polyethylene or the like can be used.

また、上記複層塗膜と上記基板との間には、化成処理被膜が形成されていることが好ましい(請求項5)。
上記化成処理被膜としては、リン酸クロメート、クロム酸クロメート等のクロメート処理、クロム化合物以外のリン酸チタンやリン酸ジルコニウム、リン酸モリブデン、リン酸亜鉛等によるノンクロメート処理等の化学皮膜処理、いわゆる化成処理により得られる皮膜が採用される。
Moreover, it is preferable that the chemical conversion treatment film is formed between the said multilayer coating film and the said board | substrate (Claim 5).
Examples of the chemical conversion treatment film include chromate treatment such as phosphate chromate and chromate chromate, chemical film treatment such as non-chromate treatment with titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate, etc. other than chromium compounds, so-called A film obtained by chemical conversion treatment is employed.

この化成処理皮膜の存在によって、アルミニウム合金板よりなる基板と上記複層塗膜との密着性を効果的に向上させることができる。また、優れた耐食性が実現されて、水、塩素化合物等の腐食性物質がアルミニウム合金板の表面に浸透した際に惹起される塗膜下腐食が抑制され、塗膜割れや塗膜剥離の防止を図ることができる。
なお、上記クロメート処理やノンクロメート処理等の化成処理方法には、反応型及び塗布型があるが、本発明においてはいずれの手法が採用されても何ら差し支えない。
The presence of this chemical conversion coating can effectively improve the adhesion between the substrate made of an aluminum alloy plate and the multilayer coating film. In addition, excellent corrosion resistance is realized, and corrosion under the coating caused when corrosive substances such as water and chlorine compounds permeate the surface of the aluminum alloy plate is suppressed, and prevention of coating cracking and peeling is prevented. Can be achieved.
The chemical conversion treatment methods such as chromate treatment and non-chromate treatment include a reaction type and a coating type, but any method may be adopted in the present invention.

また、上記複層塗膜の上記上塗り層は、顔料を含有していることが好ましい(請求項6)。この場合には、含有させる顔料の種類を選択することにより、様々な意匠を得ることができ、上記プレコートアルミニウム合金板によって作成しうる製品の多様性を高めることができる。
上記顔料としては、例えば、フェロシアン化第二鉄、塩基性硫酸アルミニウム、シリカ、アルミナ、雲母、硫酸バリウム、酸化チタン、酸化鉄、カーボンブラック、アルミニウム粉、ブロンズ粉、複合酸化物系顔料、有機顔料等がある。
Moreover, it is preferable that the said overcoat layer of the said multilayer coating film contains the pigment (Claim 6). In this case, by selecting the type of pigment to be included, various designs can be obtained, and the diversity of products that can be produced by the precoated aluminum alloy plate can be enhanced.
Examples of the pigment include ferric ferrocyanide, basic aluminum sulfate, silica, alumina, mica, barium sulfate, titanium oxide, iron oxide, carbon black, aluminum powder, bronze powder, complex oxide pigment, organic There are pigments.

また、上記基板の一方の面のみに上記複層塗膜が形成されており、上記基板の他方の面には、第3のベース樹脂中に電気導電性を有する導電性物質を含有した一層構造を呈する導電性塗膜が形成されていることが好ましい(請求項7)。この場合には、上記導電性塗膜の存在によって、上記プレコートアルミニウム合金板の導電性を更に高めることができる。   Further, the multilayer coating film is formed only on one surface of the substrate, and the other surface of the substrate has a single layer structure containing a conductive substance having electrical conductivity in the third base resin. It is preferable that a conductive coating film exhibiting the above is formed (Claim 7). In this case, the presence of the conductive coating can further increase the conductivity of the precoated aluminum alloy plate.

また、上記導電性塗膜は、上記第3のベース樹脂として、数平均分子量5000〜30000のポリエステル樹脂を主成分として含有するポリエステル樹脂系塗料を用いてなり、ポリエステル樹脂100重量部に対して上記導電性物質を5〜100重量部含有し、かつ、膜厚が5〜20μmであることが好ましい(請求項8)。   In addition, the conductive coating film uses a polyester resin-based paint containing a polyester resin having a number average molecular weight of 5,000 to 30,000 as a main component as the third base resin, and the above-mentioned amount with respect to 100 parts by weight of the polyester resin. It is preferable that the conductive material is contained in an amount of 5 to 100 parts by weight and the film thickness is 5 to 20 μm.

上記第3ベース樹脂としても、上記のごとくポリエステル樹脂系塗料を利用し、かつ、その数平均分子量を5000〜30000とすることが好ましい。上記ポリエステル樹脂系塗料の具体例としては、例えば上記と同様のものがあり、また、数平均分子量の限定理由も上記と同様である。   As the third base resin, it is preferable to use a polyester resin-based paint as described above and set the number average molecular weight to 5000 to 30000. Specific examples of the polyester resin-based paint include those similar to those described above, and the reason for limiting the number average molecular weight is also the same as described above.

また、上記導電性物質の含有量は、ポリエステル樹脂100重量部に対して5〜100重量部であることが好ましい。導電性物質の含有量が5重量部未満の場合には、塗膜の導電性が不十分となるという問題があり、一方、100重量部を超える場合には、塗膜の意匠性を損なうという問題がある。   Moreover, it is preferable that content of the said electroconductive substance is 5-100 weight part with respect to 100 weight part of polyester resins. When the content of the conductive material is less than 5 parts by weight, there is a problem that the conductivity of the coating film becomes insufficient. On the other hand, when the content exceeds 100 parts by weight, the design property of the coating film is impaired. There's a problem.

また、上記導電性塗膜の膜厚は、5〜20μmであることが好ましい。膜厚が5μm未満の場合には、放熱性及び耐傷付き性を損なうという問題があり、一方、20μmを超える場合には、導電性を損なうという問題がある。   Moreover, it is preferable that the film thickness of the said conductive coating film is 5-20 micrometers. When the film thickness is less than 5 μm, there is a problem that heat dissipation and scratch resistance are impaired, while when it exceeds 20 μm, there is a problem that conductivity is impaired.

また、上記導電性物質は、0.2〜5μmの厚さ及び2〜50μmの長径を有する鱗片状のNiフィラー、および/または0.3〜20μmの直径を有する球状のNiフィラーよりなることが好ましい(請求項9)。
上記導電性物質としては、プレコート層に導電性能を付与することができるもの、例えば、Ni被覆グラファイト、Ni、金属酸化物、グラファイト、カーボンブラック等の公知の導電性物質を適用することができるが、その中でも特に、上記鱗片状のNiフィラーと球状のNiフィラーが好ましい。
The conductive substance may be composed of a scale-like Ni filler having a thickness of 0.2 to 5 μm and a major axis of 2 to 50 μm, and / or a spherical Ni filler having a diameter of 0.3 to 20 μm. Preferred (claim 9).
As the conductive material, a material capable of imparting conductive performance to the precoat layer, for example, a known conductive material such as Ni-coated graphite, Ni, metal oxide, graphite, or carbon black can be applied. Of these, the scale-like Ni filler and the spherical Ni filler are particularly preferable.

上記Niフィラーの形状は、鱗片状あるいは球状、あるいは両者の混合であればよい。
鱗片状の場合、厚さは0.2〜5μm、長径は2〜50μmとする。厚さが0.2μm未満あるいは長径が2μm未満の場合には、導電性が低下すると共に摺動性も低下する。厚さが5μmを超える、あるいは長径が50μmを超える場合には、導電層表面の平均粗さが粗くなりすぎて、この場合にも摺動性が低下する。より好ましいサイズは、厚さ0.5〜3μm、長径5〜30μmである。
球状の場合、直径は0.3〜20μmとする。0.3μm未満の場合、導電性が低下すると共に、摺動性が低下する。一方、20μmを超える場合、導電層表面の平均粗さが粗くなりすぎて、この場合も摺動性が低下する。より好ましい直径は1〜15μmである。
The shape of the Ni filler may be a scaly shape, a spherical shape, or a mixture of both.
In the case of scales, the thickness is 0.2 to 5 μm and the major axis is 2 to 50 μm. When the thickness is less than 0.2 μm or the major axis is less than 2 μm, the conductivity is lowered and the slidability is also lowered. When the thickness exceeds 5 μm or the major axis exceeds 50 μm, the average roughness of the surface of the conductive layer becomes too rough, and in this case, the slidability decreases. More preferable sizes are 0.5 to 3 μm in thickness and 5 to 30 μm in major axis.
In the case of a spherical shape, the diameter is 0.3 to 20 μm. When it is less than 0.3 μm, the conductivity is lowered and the slidability is lowered. On the other hand, when it exceeds 20 μm, the average roughness of the surface of the conductive layer becomes too rough, and in this case, the slidability decreases. A more preferable diameter is 1 to 15 μm.

なお、鱗片状Niフィラーと球状Niフィラーを混合する場合は、それらの重量比を、鱗片状Niフィラー量/球状Niフィラー量=1/3〜19/1とすることが好ましい上記重量比が1/3未満あるいは19/1を超える場合には、鱗片状Niフィラーと球状Niフィラーの存在バランスが悪く、導電性が低下しやすくなる。
また、球状のNiフィラーの場合、個々のNiフィラーが真球に近く、かつ、ベース塗膜厚に対し1〜5倍の直径である方が導電性に対して有利である。ここでいう真球とは、最大径/最小径=0.7〜1のことを言う。
In addition, when mixing flaky Ni filler and spherical Ni filler, it is preferable that those weight ratios shall be set to flaky Ni filler amount / spherical Ni filler amount = 1 / 3-19 / 1. When it is less than / 3 or exceeds 19/1, the balance between the scale-like Ni filler and the spherical Ni filler is poor, and the conductivity tends to decrease.
In the case of a spherical Ni filler, it is more advantageous for the conductivity that each Ni filler is close to a true sphere and has a diameter of 1 to 5 times the base coating thickness. The true sphere here means that the maximum diameter / minimum diameter = 0.7-1.

Niフィラーの含有量は、上記上塗り層の全体重量(第2のベース塗膜、Niフィラー、及び後述するインナーワックス等を含む合計重量)を100とした場合、3〜70重量部とすることが好ましい。鱗片状と球状の混合の場合は、両者の合計量が3〜70重量部とする。3重量部未満の場合、導電性が低下すると共に、摺動性が低下する。70重量部を超える場合、導電層表面の平均粗さが粗くなりすぎて、この場合にも摺動性が低下する。   The content of the Ni filler is 3 to 70 parts by weight when the total weight of the top coat layer (the total weight including the second base coating film, the Ni filler, and the inner wax described later) is 100. preferable. In the case of a scaly and spherical mixture, the total amount of both is 3 to 70 parts by weight. When the amount is less than 3 parts by weight, the conductivity is lowered and the slidability is lowered. When it exceeds 70 parts by weight, the average roughness of the surface of the conductive layer becomes too rough, and in this case, the slidability is lowered.

また、上記導電性塗膜も、上記複層塗膜の場合と同様に、上記第3のベース樹脂100重量部に対して0.05〜3重量部のインナーワックスを含有していることが好ましい(請求項10)。
また、上記導電性塗膜と上記基板との間には、上記複層塗膜と上記基板との間と同様に、化成処理被膜が形成されていることが好ましい(請求項11)。
Moreover, it is preferable that the said conductive coating film also contains 0.05-3 weight part inner wax with respect to 100 weight part of said 3rd base resin similarly to the case of the said multilayer coating film. (Claim 10).
Moreover, it is preferable that the chemical conversion treatment film is formed between the said conductive coating film and the said board | substrate like the said multilayer coating film and the said board | substrate (Claim 11).

(実施例1)
本発明の実施例に係るプレコートアルミニウム合金板につき、図1を用いて更に詳しく説明する。
本例では、後述するごとく、複数種類のプレコートアルミニウム合金板(A1〜A26、B1〜B26)を作製し、その性能を評価した。
(Example 1)
The precoated aluminum alloy plate according to the embodiment of the present invention will be described in more detail with reference to FIG.
In this example, as will be described later, a plurality of types of precoated aluminum alloy plates (A1 to A26, B1 to B26) were produced and their performance was evaluated.

本例で作製したプレコートアルミニウム合金板1は、図1に示すごとく、アルミニウム合金板よりなる基板2と、該基板2の両面に形成したプレコート層3、4とよりなる。
一方の上記プレコート層3は、第1のベース樹脂310中に酸化チタン311及びカーボンブラック312を含有してなる下塗り層31と、第2のベース樹脂320中に粒子状合成樹脂よりなる樹脂ビーズ321を分散させてなる上塗り層32とを積層した二層構造を呈する複層塗膜よりなる。
また、他方のプレコート層4は、第3のベース樹脂40中に電気導電性を有する導電性物質41を含有した一層構造を呈する導電性塗膜よりなる。
以下、この構成をさらに詳しく説明する。
As shown in FIG. 1, the precoated aluminum alloy plate 1 produced in this example includes a substrate 2 made of an aluminum alloy plate and precoat layers 3 and 4 formed on both surfaces of the substrate 2.
One precoat layer 3 includes an undercoat layer 31 containing titanium oxide 311 and carbon black 312 in the first base resin 310, and resin beads 321 made of particulate synthetic resin in the second base resin 320. It consists of the multilayer coating film which exhibits the two-layer structure which laminated | stacked the topcoat layer 32 which disperse | distributes.
The other precoat layer 4 is composed of a conductive coating film having a single layer structure in which a conductive material 41 having electrical conductivity is contained in the third base resin 40.
Hereinafter, this configuration will be described in more detail.

まず、アルミニウム合金板よりなる基板2として、表1に示す化学成分を有する高強度材(GC150)、板厚1.0mm、調質Oの板を使用した。
この基板2に、脱脂処理を施した後、化成皮膜51、52を形成する下地処理を施した。表2には、本例で採用した4種類の化成処理(a〜d)を示す。
First, as a substrate 2 made of an aluminum alloy plate, a high-strength material (GC150) having chemical components shown in Table 1, a plate thickness of 1.0 mm, and a tempered O plate was used.
The substrate 2 was subjected to a degreasing treatment and then a base treatment for forming the chemical conversion films 51 and 52. Table 2 shows the four types of chemical conversion treatments (ad) adopted in this example.

Figure 2005074963
Figure 2005074963

Figure 2005074963
Figure 2005074963

化成処理aは、リン酸クロメート処理によって、クロム付着量が20mg/m2となるように反応型クロメート皮膜を形成するものである。具体的には、化成処理液に試料を浸漬することにより化成処理を行い、水洗後、約100℃の雰囲気で乾燥させた。
化成処理bは、反応型ジルコニウム処理によって、ジルコニウム付着量が10mg/m2となるように反応型ノンクロメート皮膜を形成するものである。具体的には、化成処理液に試料を浸漬することにより化成処理を行い、水洗後、約100℃の雰囲気で乾燥させた。
In the chemical conversion treatment a, a reactive chromate film is formed by phosphoric acid chromate treatment so that the amount of chromium deposited is 20 mg / m 2 . Specifically, the chemical conversion treatment was performed by immersing the sample in the chemical conversion treatment solution, washed with water, and dried in an atmosphere of about 100 ° C.
In the chemical conversion treatment b, a reactive non-chromate film is formed by reactive zirconium treatment so that the amount of zirconium deposited becomes 10 mg / m 2 . Specifically, the chemical conversion treatment was performed by immersing the sample in the chemical conversion treatment solution, washed with water, and dried in an atmosphere of about 100 ° C.

化成処理cは、塗布型クロメート処理によって、クロム付着量が20mg/m2となるように塗布型クロメート皮膜を形成するものである。具体的には、バーコート法により処理剤を塗布した後、約100℃の雰囲気で乾燥させた。
化成処理dは、塗布型ジルコニウム処理によって、ジルコニウム付着量が10mg/m2となるように塗布型ノンクロメート皮膜を形成するものである。具体的には、バーコート法により処理剤を塗布した後、約100℃の雰囲気で乾燥させた。
In the chemical conversion treatment c, a coating-type chromate film is formed by coating-type chromate treatment so that the chromium adhesion amount is 20 mg / m 2 . Specifically, the treatment agent was applied by a bar coating method and then dried in an atmosphere at about 100 ° C.
In the chemical conversion treatment d, a coating-type non-chromate film is formed by coating-type zirconium treatment so that the amount of zirconium deposited becomes 10 mg / m 2 . Specifically, the treatment agent was applied by a bar coating method and then dried in an atmosphere at about 100 ° C.

上記プレコート層3、4を構成する各層の第1〜第3のベース樹脂310、320、40としては、表3に示すごとく、東洋紡績(株)製の数平均分子量の異なる2種類のポリエステル樹脂(AとB)を準備した。
また、上塗り層32に含有させる樹脂ビーズ321としては、表4に示すごとく、6種類のものを準備した。
As the first to third base resins 310, 320, and 40 of each layer constituting the precoat layers 3 and 4, as shown in Table 3, two types of polyester resins having different number average molecular weights manufactured by Toyobo Co., Ltd. (A and B) were prepared.
Further, as shown in Table 4, six types of resin beads 321 to be contained in the overcoat layer 32 were prepared.

Figure 2005074963
Figure 2005074963

Figure 2005074963
Figure 2005074963

また、上塗り層32には、上記樹脂ビーズ321の他に着色顔料322を含有させた。本例において含有させる着色顔料は、ポリエステル樹脂100重量部に対し、酸化チタン80重量部、鉄黄3重量部、カーボンブラック1重量部、弁柄1重量部を配合し、灰色塗料とした。   Further, the top coat layer 32 contained a color pigment 322 in addition to the resin beads 321. The color pigment contained in this example was a gray paint by blending 80 parts by weight of titanium oxide, 3 parts by weight of iron yellow, 1 part by weight of carbon black, and 1 part by weight of a petal with respect to 100 parts by weight of the polyester resin.

また、下塗り層31に添加した上記酸化チタンおよびカーボンブラックは、顔料としても機能するものである。
また、上記導電性塗膜よりなるプレコート層4に含有させた導電性物質としては、表5に示すごとく、2種類の形状(I、II)のものを用いた。種類(I)は、短径/長径比が0.1未満の球状のNiフィラーであり、種類(II)は、短径/長径比が約0.7のフレーク状(鱗片状)のNiフィラーである。
The titanium oxide and carbon black added to the undercoat layer 31 also functions as a pigment.
Further, as shown in Table 5, two kinds of shapes (I, II) were used as the conductive substance contained in the precoat layer 4 made of the conductive coating film. Type (I) is a spherical Ni filler having a minor axis / major axis ratio of less than 0.1, and type (II) is a flaky (scale-like) Ni filler having a minor axis / major axis ratio of about 0.7. It is.

Figure 2005074963
Figure 2005074963

また、上記複層塗膜よりなるプレコート層3における上塗り層32と、上記導電性塗膜よりなるプレコート層4には、いずれもインナーワックスを含有させた。インナーワックスとして、ポリエチレンワックスとカルナバワックスを用いた。   The topcoat layer 32 in the precoat layer 3 made of the multilayer coating film and the precoat layer 4 made of the conductive coating film both contained an inner wax. Polyethylene wax and carnauba wax were used as the inner wax.

また、塗装については次のように行った。
塗料ごとに、ポリエステル樹脂、メラミン系架橋剤(ポリエステル樹脂100重量部に対し10重量部)、各種顔料、樹脂ビーズ、導電性物質等を混合機で十分に撹拌し、試験に供した。これらの塗料それぞれを、下地処理を施したアルミニウム合金よりなる基板2に、バーコート法により塗布し、温度250℃で2分間焼付け処理し、塗膜を形成した。
塗装の順序は、表面のプレコート層3における下塗り層31、裏面の導電性塗膜4、最後に表面の上塗り層32の順に行った。各層の乾燥塗膜厚みは、下塗り層31、上塗り層32が12μm、導電性塗膜4が12μmとなるようにした。
The painting was performed as follows.
For each paint, a polyester resin, a melamine-based cross-linking agent (10 parts by weight with respect to 100 parts by weight of the polyester resin), various pigments, resin beads, conductive materials, and the like were sufficiently stirred with a mixer and subjected to the test. Each of these coating materials was applied to the substrate 2 made of an aluminum alloy subjected to the base treatment by a bar coating method, and baked at a temperature of 250 ° C. for 2 minutes to form a coating film.
The order of coating was performed in the order of the undercoat layer 31 in the precoat layer 3 on the surface, the conductive coating film 4 on the back surface, and finally the topcoat layer 32 on the surface. The dry coating thickness of each layer was such that the undercoat layer 31 and the topcoat layer 32 were 12 μm, and the conductive coating film 4 was 12 μm.

次に、下記に示す3種類の評価試験を実施した。
<放熱性>
放熱性は、熱放射率を測定することにより行った。測定する熱放射率は、2.5〜25μmの波長領域において表面の分光反射率から下記(1)式により算出される放射率αであり、プランクの熱放射スペクトル分布において293Kとした場合の相対値を考慮した放射率である。なお、この熱放射率を求めるための分光反射率は、分光光度計を用いて測定した。また、熱放射率は、上塗り層32と導電性塗膜4の表面から測定した。
α=(1−∫G(λ)・R(λ)d(λ)×100 ・・・・・(1)
ただし、G(λ)は、プランクの熱放射スペクトル分布において293Kとした場合の相対値であり、R(λ)は、分光反射率である。
評価は3段階とし、熱放射率90%以上の場合を3点、熱放射率80%以上90%未満の場合を2点、熱放射率80%未満の場合を1点とした。この場合、2点以上を合格とした。
Next, the following three types of evaluation tests were performed.
<Heat dissipation>
The heat dissipation was performed by measuring the thermal emissivity. The thermal emissivity to be measured is an emissivity α calculated by the following formula (1) from the spectral reflectance of the surface in the wavelength range of 2.5 to 25 μm, and relative to the case of 293 K in Planck's thermal radiation spectrum distribution. The emissivity considering the value. In addition, the spectral reflectance for calculating | requiring this thermal emissivity was measured using the spectrophotometer. The thermal emissivity was measured from the surface of the topcoat layer 32 and the conductive coating film 4.
α = (1−∫G (λ) · R (λ) d (λ) × 100 (1)
However, G (λ) is a relative value in the case of 293K in the Planck's thermal radiation spectrum distribution, and R (λ) is a spectral reflectance.
The evaluation was made in three stages, 3 points when the thermal emissivity was 90% or more, 2 points when the thermal emissivity was 80% or more and less than 90%, and 1 point when the thermal emissivity was less than 80%. In this case, two or more points were accepted.

<耐傷付き性>
耐傷付き性は、バウデン試験により実施した。すなわち、荷重100gで直径0.25インチの鋼球を試料台に載置した試料の塗膜表面において往復摺動させ、塗膜破れが発生するまでの回数で評価した。
評価は3段階とし、摺動回数100回以上の場合を3点、摺動回数50回以上の場合100回未満の場合を2点、摺動回数50回未満の場合を1点とした。この場合、2点以上を合格とした。
<Scratch resistance>
The scratch resistance was measured by a Bowden test. That is, a steel ball having a diameter of 0.25 inches with a load of 100 g was slid back and forth on the coating film surface of the sample placed on the sample table, and the number of evaluations until the coating film breakage was evaluated.
The evaluation was made in three stages: 3 points when the sliding number was 100 times or more, 2 points when the sliding number was 50 times or more, and 2 points when the sliding number was less than 50 times, and 1 point. In this case, two or more points were accepted.

<導電性>
導電性は、円筒電極法により接触抵抗値を測定することにより評価した。円筒電極法は、3mm径の円筒形の電極を、裏面表面に載せ、導電性塗膜4を貫通しない荷重である100gを付与し、この状態で脱膜した基板2と針の間の電気抵抗値を電気抵抗計で測定した。
評価は3段階とし、接触抵抗値1Ω未満の場合を3点、接触抵抗値1Ω以上3Ω未満の場合を2点、接触抵抗値3Ω以上の場合を1点とした。この場合、2点以上を合格とした。
<Conductivity>
The conductivity was evaluated by measuring a contact resistance value by a cylindrical electrode method. In the cylindrical electrode method, a cylindrical electrode having a diameter of 3 mm is placed on the back surface, and 100 g, which is a load that does not penetrate the conductive coating film 4, is applied. The value was measured with an electric resistance meter.
The evaluation was made in three stages, 3 points when the contact resistance value was less than 1Ω, 2 points when the contact resistance value was 1Ω or more and less than 3Ω, and 1 point when the contact resistance value was 3Ω or more. In this case, two or more points were accepted.

<潤滑性>
潤滑性も、バウデン試験により実施した。すなわち、加重100gで直径0.25インチの鋼球を試料台に載置した試料の塗膜表面において100回往復摺動させた時の摩擦係数を測定した。
評価は3段階とし、摩擦係数が0.05以上0.1未満の場合を3点、0.1以上0.3未満の場合を2点、0.3以上の場合を1点とした。この場合、2点以上を合格とした。
<Lubricity>
Lubricity was also measured by the Bowden test. That is, the friction coefficient was measured when the steel ball having a weight of 100 g and a diameter of 0.25 inch was reciprocated 100 times on the surface of the coating film of the sample placed on the sample table.
The evaluation was made in three stages, and the case where the friction coefficient was 0.05 or more and less than 0.1 was 3 points, the case where the friction coefficient was 0.1 or more and less than 0.3 was 2 points, and the case where it was 0.3 or more was 1 point. In this case, two or more points were accepted.

評価結果を表6〜表9に示す。   The evaluation results are shown in Tables 6-9.

Figure 2005074963
Figure 2005074963

Figure 2005074963
Figure 2005074963

Figure 2005074963
Figure 2005074963

Figure 2005074963
Figure 2005074963

表6、表7より知られるごとく、試料A1〜A16は、表面の複層塗膜3における各要件が、すべて本発明の範囲内に属するものであり、全ての評価項目において優れた特性を示した。これに対し、試料A17〜A26は、複層塗膜3を構成する要素のいずれかが本発明の範囲から外れるものであり、少なくとも1つの評価項目において本発明品に比べて劣っていた。   As can be seen from Tables 6 and 7, Samples A1 to A16 have all the requirements in the multilayer coating film 3 on the surface within the scope of the present invention, and show excellent characteristics in all evaluation items. It was. On the other hand, samples A17 to A26 were inferior to the product of the present invention in at least one evaluation item, as any of the elements constituting the multilayer coating film 3 deviated from the scope of the present invention.

同様に、表8、表9より知られるごとく、試料B1〜B16は、裏面の導電性塗膜4における各要件が、すべて本発明の範囲内に属するものであり、全ての評価項目において優れた特性を示した。これに対し、試料B17〜B26は、導電性塗膜4を構成する要素のいずれかが本発明の範囲から外れるものであり、少なくとも1つの評価項目において本発明品に比べて劣っていた。   Similarly, as is known from Tables 8 and 9, in Samples B1 to B16, all the requirements in the conductive film 4 on the back are all within the scope of the present invention, and excellent in all evaluation items. The characteristics are shown. On the other hand, Samples B17 to B26 are inferior to the product of the present invention in at least one evaluation item because any of the elements constituting the conductive coating film 4 is out of the scope of the present invention.

実施例におけるプレコートアルミニウム合金板の構成を示す説明図。Explanatory drawing which shows the structure of the precoat aluminum alloy plate in an Example.

符号の説明Explanation of symbols

1 プレコートアルミニウム合金板
2 基板
3 プレコート層(複層塗膜)
31 下塗り層
310 第1のベース塗料
311 酸化チタン
312 カーボンブラック
32 上塗り層
320 第2のベース塗料
321 樹脂ビーズ
322 顔料
4 プレコート層(導電性塗膜)
40 第3のベース塗料
41 導電性物質
51、52 化成処理被膜
1 Pre-coated aluminum alloy plate 2 Substrate 3 Pre-coated layer (multi-layer coating film)
31 Undercoat layer 310 First base paint 311 Titanium oxide 312 Carbon black 32 Overcoat layer 320 Second base paint 321 Resin beads 322 Pigment 4 Precoat layer (conductive coating film)
40 Third base paint 41 Conductive material 51, 52 Chemical conversion coating

Claims (11)

アルミニウム合金板よりなる基板と、該基板の片面又は両面に形成したプレコート層とよりなり、
少なくとも一方の上記プレコート層は、第1のベース樹脂中に酸化チタン及びカーボンブラックを含有してなる下塗り層と、
第2のベース樹脂中に粒子状合成樹脂よりなる樹脂ビーズを分散させてなる上塗り層とを積層した二層構造を呈する複層塗膜よりなることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。
It consists of a substrate made of an aluminum alloy plate and a precoat layer formed on one or both sides of the substrate,
At least one of the precoat layers includes an undercoat layer containing titanium oxide and carbon black in the first base resin;
Heat dissipation, scratch resistance, and conductivity characterized by comprising a multi-layer coating film having a two-layer structure in which a resin layer made of particulate synthetic resin is dispersed in a second base resin and an overcoat layer. Precoated aluminum alloy plate with excellent properties.
請求項1において、上記下塗り層は、上記第1のベース樹脂として、数平均分子量5000〜30000のポリエステル樹脂を主成分として含有するポリエステル樹脂系塗料を用いてなり、ポリエステル樹脂100重量部に対して酸化チタンを3〜60重量部、カーボンブラックを0.2〜15重量部含有し、かつ、膜厚が1〜40μmであることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   2. The undercoat layer according to claim 1, wherein the first base resin is a polyester resin-based paint containing a polyester resin having a number average molecular weight of 5000 to 30000 as a main component, and is based on 100 parts by weight of the polyester resin. Precoat excellent in heat dissipation, scratch resistance and conductivity, containing 3 to 60 parts by weight of titanium oxide, 0.2 to 15 parts by weight of carbon black, and having a film thickness of 1 to 40 μm Aluminum alloy plate. 請求項1又は2において、上記上塗り層は、上記第2のベース樹脂として、数平均分子量5000〜30000のポリエステル樹脂を主成分として含有するポリエステル樹脂系塗料を用いてなり、粒径Dが3〜90μmの上記樹脂ビーズをポリエステル樹脂100重量部に対して1〜200重量部含有し、上記樹脂ビーズが存在しない部分の膜厚Tが1〜30μmであり、かつ、上記粒径D/上記膜厚Tが1〜3の範囲内にあることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   3. The overcoat layer according to claim 1, wherein the overcoat layer comprises a polyester resin-based paint containing, as a main component, a polyester resin having a number average molecular weight of 5000 to 30000 as the second base resin, and the particle size D is 3 to 3. The resin beads of 90 μm are contained in an amount of 1 to 200 parts by weight with respect to 100 parts by weight of the polyester resin, the film thickness T of the part where the resin beads are not present is 1 to 30 μm, and the particle diameter D / the film thickness A precoated aluminum alloy plate excellent in heat dissipation, scratch resistance and conductivity, wherein T is in the range of 1 to 3. 請求項1〜3のいずれか1項において、上記複層塗膜の上記上塗り層は、上記第1のベース樹脂100重量部に対して0.05〜3重量部のインナーワックスを含有していることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   In any 1 item | term of Claims 1-3, the said top coat layer of the said multilayer coating film contains 0.05-3 weight part inner wax with respect to 100 weight part of said 1st base resins. A precoated aluminum alloy plate excellent in heat dissipation, scratch resistance and conductivity. 請求項1〜4のいずれか1項において、上記複層塗膜と上記基板との間には、化成処理被膜が形成されていることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   In any one of Claims 1-4, it is excellent in heat dissipation, scratch resistance, and electroconductivity characterized by the chemical conversion treatment film being formed between the said multilayer coating film and the said board | substrate. Pre-coated aluminum alloy plate. 請求項1〜5のいずれか1項において、上記複層塗膜の上記上塗り層は、顔料を含有していることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   6. The precoated aluminum alloy plate according to claim 1, wherein the overcoat layer of the multilayer coating film contains a pigment, and is excellent in heat dissipation, scratch resistance, and conductivity. . 請求項1〜6のいずれか1項において、上記基板の一方の面のみに上記複層塗膜が形成されており、上記基板の他方の面には、第3のベース樹脂中に電気導電性を有する導電性物質を含有した一層構造を呈する導電性塗膜が形成されていることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   7. The multilayer coating film according to claim 1, wherein the multilayer coating film is formed only on one surface of the substrate, and the other surface of the substrate is electrically conductive in a third base resin. A precoated aluminum alloy plate excellent in heat dissipation, scratch resistance and conductivity, characterized in that a conductive coating film having a single layer structure containing a conductive substance having a thermal conductivity is formed. 請求項7において、上記導電性塗膜は、上記第3のベース樹脂として、数平均分子量5000〜30000のポリエステル樹脂を主成分として含有するポリエステル樹脂系塗料を用いてなり、ポリエステル樹脂100重量部に対して上記導電性物質を5〜100重量部含有し、かつ、膜厚が5〜20μmであることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   8. The conductive coating film according to claim 7, wherein the conductive coating film comprises a polyester resin-based paint containing a polyester resin having a number average molecular weight of 5000 to 30000 as a main component as the third base resin. On the other hand, a precoated aluminum alloy plate excellent in heat dissipation, scratch resistance and conductivity, containing 5 to 100 parts by weight of the conductive material and having a film thickness of 5 to 20 μm. 請求項7又は8において、上記導電性物質は、0.2〜5μmの厚さ及び2〜50μmの長径を有する鱗片状のNiフィラー、および/または0.3〜20μmの直径を有する球状のNiフィラーよりなることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   9. The conductive material according to claim 7, wherein the conductive substance is a flaky Ni filler having a thickness of 0.2 to 5 μm and a major axis of 2 to 50 μm, and / or a spherical Ni having a diameter of 0.3 to 20 μm. A precoated aluminum alloy plate excellent in heat dissipation, scratch resistance and conductivity, characterized by comprising a filler. 請求項7〜9のいずれか1項において、上記導電性塗膜は、上記第3のベース樹脂100重量部に対して0.05〜3重量部のインナーワックスを含有していることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   The conductive film according to any one of claims 7 to 9, wherein the conductive coating contains 0.05 to 3 parts by weight of an inner wax with respect to 100 parts by weight of the third base resin. Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity. 請求項7〜10のいずれか1項において、上記導電性塗膜と上記基板との間には、化成処理被膜が形成されていることを特徴とする放熱性、耐傷付き性及び導電性に優れたプレコートアルミニウム合金板。   In any one of Claims 7-10, it is excellent in the heat dissipation, scratch resistance, and electroconductivity characterized by the chemical conversion treatment film being formed between the said electroconductive coating film and the said board | substrate. Pre-coated aluminum alloy plate.
JP2003311791A 2003-09-03 2003-09-03 Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity Expired - Fee Related JP4523250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311791A JP4523250B2 (en) 2003-09-03 2003-09-03 Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311791A JP4523250B2 (en) 2003-09-03 2003-09-03 Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity

Publications (2)

Publication Number Publication Date
JP2005074963A true JP2005074963A (en) 2005-03-24
JP4523250B2 JP4523250B2 (en) 2010-08-11

Family

ID=34413257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311791A Expired - Fee Related JP4523250B2 (en) 2003-09-03 2003-09-03 Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity

Country Status (1)

Country Link
JP (1) JP4523250B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312243A (en) * 2005-05-06 2006-11-16 Sumitomo Light Metal Ind Ltd Precoated aluminum alloy plate excellent in radiation properties, scratch resistance and conductivity
JP2007098636A (en) * 2005-09-30 2007-04-19 Sumitomo Light Metal Ind Ltd Precoated metal sheet excellent in hurting prevention property and slidability in relation to object to be contacted and molding
WO2008078562A1 (en) * 2006-12-26 2008-07-03 Kabushiki Kaisha Kobe Seiko Sho Precoated metal sheet and process for producing the same
JP2008201053A (en) * 2007-02-21 2008-09-04 Nippon Steel Corp Surface-treated metal plate
KR100952884B1 (en) * 2005-11-22 2010-04-16 후루카와 스카이 가부시키가이샤 Pre-coated Metal Sheet for Slot-in Drive Cases
US20110236632A1 (en) * 2008-12-03 2011-09-29 Tomoaki Hosokawa Coated metal material and method of production of same
JP2016007821A (en) * 2014-06-26 2016-01-18 積水樹脂プラメタル株式会社 Laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193508A (en) * 1997-01-10 1998-07-28 Sumitomo Metal Ind Ltd Pre-coated steel plate
JP2001205730A (en) * 1999-10-26 2001-07-31 Furukawa Electric Co Ltd:The Resin coated metal sheet for electronic apparatus component excellent in electroconductivity, manufacturing method therefor and electronic apparatus component using the same
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193508A (en) * 1997-01-10 1998-07-28 Sumitomo Metal Ind Ltd Pre-coated steel plate
JP2001205730A (en) * 1999-10-26 2001-07-31 Furukawa Electric Co Ltd:The Resin coated metal sheet for electronic apparatus component excellent in electroconductivity, manufacturing method therefor and electronic apparatus component using the same
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312243A (en) * 2005-05-06 2006-11-16 Sumitomo Light Metal Ind Ltd Precoated aluminum alloy plate excellent in radiation properties, scratch resistance and conductivity
JP4681345B2 (en) * 2005-05-06 2011-05-11 住友軽金属工業株式会社 Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity
JP2007098636A (en) * 2005-09-30 2007-04-19 Sumitomo Light Metal Ind Ltd Precoated metal sheet excellent in hurting prevention property and slidability in relation to object to be contacted and molding
JP4616746B2 (en) * 2005-09-30 2011-01-19 住友軽金属工業株式会社 Pre-coated metal plate and molded product with excellent damage prevention and slidability against contacted objects
KR100952884B1 (en) * 2005-11-22 2010-04-16 후루카와 스카이 가부시키가이샤 Pre-coated Metal Sheet for Slot-in Drive Cases
US8119222B2 (en) 2005-11-22 2012-02-21 Furukawa-Sky Aluminum Corp. Pre-coated metal sheet for slot-in drive cases
TWI401157B (en) * 2005-11-22 2013-07-11 Furukawa Sky Aluminum Corp Pre-coated metal sheet for slot-in drive cases
WO2008078562A1 (en) * 2006-12-26 2008-07-03 Kabushiki Kaisha Kobe Seiko Sho Precoated metal sheet and process for producing the same
JP2008201053A (en) * 2007-02-21 2008-09-04 Nippon Steel Corp Surface-treated metal plate
US20110236632A1 (en) * 2008-12-03 2011-09-29 Tomoaki Hosokawa Coated metal material and method of production of same
US9933550B2 (en) * 2008-12-03 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Coated metal material and method of production of same
JP2016007821A (en) * 2014-06-26 2016-01-18 積水樹脂プラメタル株式会社 Laminate

Also Published As

Publication number Publication date
JP4523250B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
KR101677470B1 (en) Heat dissipating member for led light bulb
JP4978511B2 (en) Painted steel sheets, processed products, and flat panel TVs
JP4634747B2 (en) High-performance resin-coated aluminum material with excellent heat dissipation
JP4523250B2 (en) Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity
JP4787372B1 (en) Resin-coated aluminum alloy plate
JP2004098624A (en) Precoat aluminum alloy sheet having excellent flaw resistance
JP2015085561A (en) Black coated metal plate
JP2006312243A (en) Precoated aluminum alloy plate excellent in radiation properties, scratch resistance and conductivity
JP4914014B2 (en) Pre-coated aluminum alloy plate with excellent heat dissipation
TWI437186B (en) Light emitting diode bulb member and manufacturing method thereof
JP4782043B2 (en) Surface-treated metal plate
JP4818485B2 (en) Pre-coated metal plate and manufacturing method thereof
JP4922746B2 (en) Resin-coated aluminum material, casing for electronic device or household appliance using the same, and electronic device or household appliance using the casing
JP2004243310A (en) Heat radiating surface-treated metal plate and case for electronic apparatus
KR101279287B1 (en) Precoating aluminum plate for electronic equipment
JP2008155392A (en) Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case
JP4576145B2 (en) High reflection pre-coated aluminum alloy plate
JP2007181984A (en) Resin-coated aluminum sheet material which is excellent in heat dissipating property, conductivity and processability
JP2005262841A (en) Resin coated aluminum material excellent in processability and heat radiation
US6670031B1 (en) Resin-coated metal sheet for parts of electronic machinery and tools and production method thereof
JP4252818B2 (en) Painted steel sheet with high cooling capacity
JP3954421B2 (en) Double-sided precoated aluminum plate excellent in press formability and conductivity and press working method using the same
JP2004134722A (en) Cabinet for electric/electronic apparatus with high cooling power
JP4980268B2 (en) Resin-coated steel sheet with excellent scratch resistance
JP5789242B2 (en) Coated metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4523250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees