JP2008155392A - Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case - Google Patents

Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case Download PDF

Info

Publication number
JP2008155392A
JP2008155392A JP2006344110A JP2006344110A JP2008155392A JP 2008155392 A JP2008155392 A JP 2008155392A JP 2006344110 A JP2006344110 A JP 2006344110A JP 2006344110 A JP2006344110 A JP 2006344110A JP 2008155392 A JP2008155392 A JP 2008155392A
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
film
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344110A
Other languages
Japanese (ja)
Inventor
Makoto Tongu
頓宮真柱
Toshiki Maezono
前園利樹
Masaji Saito
斉藤正次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2006344110A priority Critical patent/JP2008155392A/en
Publication of JP2008155392A publication Critical patent/JP2008155392A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin-coated aluminum material excellent in radiation properties, conductivity, processability, and solvent resistance, a case for an electronic instrument or the like using the material, and an electronic instrument etc. <P>SOLUTION: The resin-coated aluminum material includes a chemical conversion film and a thermosetting resin coat formed on the conversion film. The thermosetting resin coat includes a thermosetting resin in which 10-50 pts.mass of a melamine resin is incorporated with 100 pts.mass of a polyester resin component, graphite powder having an average particle size of 0.1-30 μm, nickel powder having an average maximum length of 0.5-100 μm, and calcium ion exchange type silica. With respect to 100 pts.wt. of the thermosetting resin, 3-50 pts.wt. of the graphite powder, 1-10 pts.mass of carbon black, 10-100 pts.wt. of the nickel powder, and 3-60 pts.wt. of the calcium ion exchange type silica are incorporated. The thickness of the thermosetting resin coat is 5 μm or below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内部で熱を発する電子機器、家電製品等の筐体、放熱板、反射板等に用いる樹脂被覆アルミニウム材に関し、より詳細には、放熱性及び導電性、ならびに、加工性、耐溶剤性及び耐食性に優れた高機能の樹脂被覆アルミニウム材に関する。更に本発明は、前記樹脂被覆アルミニウム材を用いた電子機器用又は家電製品用の筐体、ならびに、この筐体を用いた電子機器又は家電製品に関する。   The present invention relates to a resin-coated aluminum material used for a housing such as an electronic device that emits heat, a household electrical appliance, a heat sink, a reflector, and the like, and more specifically, heat dissipation and conductivity, workability, The present invention relates to a highly functional resin-coated aluminum material excellent in solvent resistance and corrosion resistance. Furthermore, this invention relates to the housing | casing for electronic devices or household appliances using the said resin coating aluminum material, and the electronic device or household appliances using this housing | casing.

電子機器の小型化、高性能化に伴い、これらの電子部品から放出される熱が、狭い空間に蓄積されることが多くなり、該空間からの排熱が問題となってきている。つまり、電子機器内の発熱による機器内部の高温化は、精密な電子機器本体の性能を損なう恐れがあるため、熱を効率よく外部へ排出することが重要な課題となっている。   With the downsizing and high performance of electronic devices, heat emitted from these electronic components is often accumulated in a narrow space, and exhaust heat from the space has become a problem. That is, since the high temperature inside the device due to heat generation in the electronic device may impair the performance of the precise electronic device body, it is an important issue to efficiently discharge the heat to the outside.

このような課題を解決するために、特許文献1には、低コストで加工性及び放熱性の良好な材料として、金属等からなる基材表面に外層被膜と内層被膜とを設けた熱放射性表面処理材であって、熱放射率70%以上の顔料を乾燥重量の0.03〜70重量%含有する内層被膜を用いた熱放射性表面処理材料が記載されている。この顔料は赤外線放射性でありこれを含む樹脂塗装を施した材料は、有機被膜のため無機被膜と比較すると曲げ加工性が向上する。しかしながら、この材料は加工強度の高いプレス成形等によって筐体等に成形されるが、この有機被膜の表面潤滑性が乏しいため、加工性が十分であるとはいえない。そのために、加工部の耐食性が劣るという品質劣化の問題、ならびに、大きな被膜割れや傷が発生すると商品価値や生産性が低下してコスト上昇を招く等の問題があった。
特開2002−228085号公報
In order to solve such problems, Patent Document 1 discloses a heat-radiating surface in which an outer layer coating and an inner layer coating are provided on a substrate surface made of metal or the like as a low-cost material with good workability and heat dissipation. A heat-radiating surface-treating material using an inner layer coating containing 0.03-70% by weight of a dry weight of a pigment having a heat emissivity of 70% or more is described. This pigment is infrared-radiative, and a resin-coated material containing this pigment is an organic film, so that bending workability is improved as compared with an inorganic film. However, although this material is molded into a casing or the like by press molding or the like with high processing strength, it cannot be said that the workability is sufficient because the surface lubricity of the organic coating is poor. For this reason, there are problems of quality deterioration that the corrosion resistance of the processed portion is inferior, and problems that the product value and productivity are reduced when a large film crack or scratch occurs, leading to an increase in cost.
JP 2002-228085 A

さらに、CD−ROMなどのドライブケース、パーソナル・コンピュータ関連機器や計測器などの電子機器部品用材料としては、従来から精密な電子機器本体の性能を損なわない電気特性(アース性、シールド性)を具備することが要求されていた。このような要求を満たす材料として、特許文献2には、表面に0.1〜10μmの厚さの樹脂被覆層を設けた電子機器部品用樹脂被覆金属板が記載されている。ここで、樹脂被覆層は、ポリエステル系、エポキシ系、フェノール系、アルキド系の1種又は2種以上と、樹脂100重量部に対し2〜60重量部のニッケル粉末とを含む。このニッケル粉末は、最大長径の平均値が0.1〜100μmの球状、スパイク球状、又は鱗片状の互いに独立した単体粒子及びニッケル粒子が互いに結合した鎖形ニッケルからなる群から選ばれる少なくとも1種から選択される。
特開2001−205730号公報
Furthermore, as a material for electronic device parts such as drive cases such as CD-ROM, personal computer related equipment and measuring instruments, electrical characteristics (grounding and shielding properties) that do not impair the performance of precision electronic equipment have been hitherto. It was required to have. As a material that satisfies such requirements, Patent Document 2 describes a resin-coated metal plate for electronic device components having a surface provided with a resin coating layer having a thickness of 0.1 to 10 μm. Here, the resin coating layer includes one or more of polyester, epoxy, phenol, and alkyd, and 2 to 60 parts by weight of nickel powder with respect to 100 parts by weight of the resin. The nickel powder is at least one selected from the group consisting of spherical, spike spherical, or scaly single particles having an average maximum major axis of 0.1 to 100 μm and chain nickel in which nickel particles are bonded to each other. Selected from.
JP 2001-205730 A

特許文献3には、金属板の表面に樹脂被膜が設けられた電気電子機器用の金属板が記載されている。ここで、樹脂被膜は、アクリル系樹脂、エポキシ系樹脂、及びウレタン系樹脂の群から選ばれる少なくとも1種を樹脂成分とし、水分1〜50重量%と潤滑剤0.1〜20重量%を含有し、且つ厚みが0.05〜5μmである。
特開2002−275656号公報
Patent Document 3 describes a metal plate for electric and electronic equipment in which a resin film is provided on the surface of the metal plate. Here, the resin film contains at least one selected from the group of acrylic resin, epoxy resin, and urethane resin as a resin component, and contains 1 to 50% by weight of moisture and 0.1 to 20% by weight of lubricant. And the thickness is 0.05 to 5 μm.
JP 2002-275656 A

特許文献4には、帯電防止性(表面導電性)の付与、ならびに、プレス加工における被膜割れや被膜剥離の発生防止を目的とした両面プレコートアルミニウム板が記載されている。この両面プレコートアルミニウム板は、アルミニウム板の一方の面に第一の有機樹脂系塗料を塗布、硬化させて潤滑性被膜を形成し、他方の面に導電性物質を含有する第二の有機樹脂系塗料を塗布、硬化させて導電性被膜を形成したもので、プレス成形性及び導電性に優れる。
特開2003−286585号公報
Patent Document 4 describes a double-side pre-coated aluminum plate for the purpose of imparting antistatic properties (surface conductivity) and preventing the occurrence of coating cracking and coating peeling in press working. This double-sided pre-coated aluminum plate is a second organic resin system containing a conductive film on the other surface, which is formed by applying and curing a first organic resin-based paint on one surface of the aluminum plate and curing. A coating film is applied and cured to form a conductive film, which is excellent in press moldability and conductivity.
JP 2003-286585 A

上記特許文献1〜4に記載される導電性樹脂被覆アルミニウム材等では、導電性についての要求にはある程度対応することができていた。しかしながら、近年の電子機器の小型化、高機能化に伴い前述のように電子部品から放出される熱が多量となっている。その結果、上記電子機器部品用材料では筐体内部の熱が筐体内に篭り、精密な電子機器本体の性能を損なう問題が起こっている。熱放射性樹脂被膜の膜厚を厚くすることで放熱性を向上させることが可能である。しかしながら、膜厚を厚くすると電気絶縁性の樹脂成分に導電性付与成分が十分に被覆されて導電性が低下する傾向があるため、導電性と放熱性の両立は非常に困難であった。   In the conductive resin-coated aluminum materials and the like described in Patent Documents 1 to 4 above, it has been possible to meet the demand for conductivity to some extent. However, with recent downsizing and higher functionality of electronic devices, a large amount of heat is released from electronic components as described above. As a result, in the electronic device component material, the heat inside the housing is transferred into the housing, and there is a problem of impairing the performance of the precise electronic device body. It is possible to improve heat dissipation by increasing the thickness of the thermal radiation resin coating. However, when the film thickness is increased, the electrically insulative resin component is sufficiently covered with the conductivity-imparting component and the conductivity tends to be lowered. Therefore, it is very difficult to achieve both conductivity and heat dissipation.

特許文献5には、かかる導電性と放熱性の両立を図るプレコートアルミニウム板として、グラファイト粉末とニッケル粉末を含有する熱硬化性樹脂被膜を設けたものが記載されている。
特開2005−305993号公報
Patent Document 5 describes a precoated aluminum plate that is provided with a thermosetting resin film containing graphite powder and nickel powder as a pre-coated aluminum plate that achieves both conductivity and heat dissipation.
JP 2005-305993 A

このようなアルミニウム材は、放熱性と導電性の両方を満足するものであるが、グラファイト粉末を被膜中に含有する場合には、グラファイトが被膜中で層状の凝集物となることがある。その結果、グラファイトが被膜から脱落し易くなるとともに耐食性が低下する。近年では電気・電子機器筐体等の製造は日本国内のみならず台湾・東南アジア諸国等で広く行なわれている。それらの国々へ輸出したアルミニウム材が保管される場合等において、日本の環境よりも温度・湿度が厳しい環境に曝されることも多いため、アルミニウム材が十分な耐食性を有することが重要となる。また、プレス成形等において加工性が厳しい場合、表面から黒色顔料が脱落することにより成形不具合が発生し、製品歩留が低下するという問題がある。   Such an aluminum material satisfies both heat dissipation and electrical conductivity, but when graphite powder is contained in the coating, the graphite may form a layered aggregate in the coating. As a result, the graphite is easily removed from the coating and the corrosion resistance is lowered. In recent years, the manufacture of electrical and electronic equipment casings has been widely performed not only in Japan but also in Taiwan and Southeast Asian countries. When aluminum materials exported to these countries are stored, it is often exposed to environments where the temperature and humidity are more severe than those in Japan, so it is important that the aluminum materials have sufficient corrosion resistance. Further, when workability is severe in press molding or the like, there is a problem that a black pigment is dropped from the surface to cause a molding defect and a product yield is lowered.

本発明は、良好な放熱性と導電性の両方を具備し、且つ、加工性、耐溶剤性及び耐食性に優れた樹脂被覆アルミニウム材、この樹脂被覆アルミニウム材を用いた電子機器用又は家電製品用の筐体、ならびに、この筐体を用いた電子機器又は家電製品に関する。   The present invention provides a resin-coated aluminum material having both good heat dissipation and conductivity, and excellent workability, solvent resistance and corrosion resistance, and for electronic equipment or household appliances using the resin-coated aluminum material. And an electronic device or household appliance using the casing.

本発明者らは日々積み重ねた研究の結果、両面に化成皮膜を設けたアルミニウム基材の少なくとも一方の面に、ポリエステル系樹脂とメラミン系樹脂からなる熱硬化性樹脂、グラファイト粉末、カーボンブラック及びニッケル粉末を含有する樹脂被膜を設けることにより、放熱性ならびに導電性の両性能を向上し得ることを見出した。そして、更なる研究により、このような樹脂被膜中にカルシウムイオン交換型シリカを添加することによって、放熱性及び導電性、ならびに、加工性及び耐溶剤性といった諸性能を低下させることなく、耐食性と共にグラファイトの凝集防止作用を向上し得ることを見出した。そして、更に研究を重ねることにより、各成分の添加量や性状の適正範囲を見出して本発明を完成させるに至った。   As a result of daily research, the present inventors have found that at least one surface of an aluminum base material provided with a chemical conversion film on both sides has a thermosetting resin composed of a polyester resin and a melamine resin, graphite powder, carbon black and nickel. It has been found that by providing a resin coating containing powder, both heat dissipation and conductivity can be improved. And by further research, by adding calcium ion exchange-type silica in such a resin film, without reducing the heat dissipation and conductivity, and various performances such as workability and solvent resistance, along with corrosion resistance It has been found that the anti-aggregation action of graphite can be improved. Further, by further research, the present invention was completed by finding the appropriate amount of each component and the appropriate range of properties.

本発明は請求項1において、アルミニウム又はアルミニウム合金の基材と、当該基材の両面に形成した化成皮膜と、当該化成皮膜の少なくとも一方の上に形成した熱硬化性樹脂被膜とを備えた樹脂被覆アルミニウム材であって、前記熱硬化性樹脂被膜が、ポリエステル系樹脂成分100質量部に対しメラミン系樹脂成分10〜50質量部を配合した熱硬化性樹脂と、0.1〜30μmの平均粒径を有するグラファイト粉末と、カーボンブラックと、0.5〜100μmの最大長径平均値を有するニッケル粉末と、カルシウムイオン交換型シリカとを含み、グラファイト粉末が熱硬化性樹脂100重量部に対して3〜50重量部含有され、カーボンブラックが熱硬化性樹脂100質量部に対して1〜10質量部含有され、ニッケル粉末が熱硬化性樹脂100重量部に対して10〜100重量部含有され、カルシウムイオン交換型シリカが熱硬化性樹脂100重量部に対して3〜60重量部含有され、当該熱硬化性樹脂被膜の膜厚が5μm以下であることを特徴とする樹脂被覆アルミニウム材とした。   The present invention is the resin according to claim 1, comprising a base material of aluminum or an aluminum alloy, a chemical conversion film formed on both surfaces of the base material, and a thermosetting resin film formed on at least one of the chemical conversion film. It is a coated aluminum material, and the thermosetting resin film is a thermosetting resin in which 10 to 50 parts by mass of a melamine resin component is blended with 100 parts by mass of a polyester resin component, and an average particle size of 0.1 to 30 μm. Including graphite powder having a diameter, carbon black, nickel powder having a maximum average length of 0.5 to 100 μm, and calcium ion exchanged silica, and the graphite powder is 3 parts by weight per 100 parts by weight of the thermosetting resin. -50 parts by weight, 1 to 10 parts by mass of carbon black with respect to 100 parts by mass of thermosetting resin, and nickel powder being thermosetting 10 to 100 parts by weight with respect to 100 parts by weight of resin, 3 to 60 parts by weight of calcium ion exchanged silica with respect to 100 parts by weight of thermosetting resin, and the film thickness of the thermosetting resin film is 5 μm. The resin-coated aluminum material was characterized as follows.

本発明は請求項2において、熱硬化性樹脂被膜が、分散剤としてアニオン性化合物、カチオン性化合物、非イオン性化合物及び高分子型化合物から選択される少なくとも一種を含有するようにした。   According to the present invention, in claim 2, the thermosetting resin film contains at least one selected from an anionic compound, a cationic compound, a nonionic compound and a polymer compound as a dispersant.

本発明は請求項3において、一方の化成皮膜上に熱硬化性樹脂被膜を形成し、他方の化成皮膜上に白色顔料を含有する白色樹脂被膜を形成するようにした。   According to a third aspect of the present invention, a thermosetting resin film is formed on one chemical conversion film, and a white resin film containing a white pigment is formed on the other chemical conversion film.

本発明は請求項4において、請求項1〜3のいずれか一項に記載の樹脂被覆アルミニウム材を用いた電子機器用又は家電製品用の筐体とした。更に請求項5において、このような筐体を用いた電子機器又は家電製品とした。   This invention made it the housing | casing for electronic devices or household appliances using the resin-coated aluminum material as described in any one of Claims 1-3 in Claim 4. Furthermore, in Claim 5, it was set as the electronic device or household appliances using such a housing | casing.

本発明の高機能樹脂被覆アルミニウム材は、熱の放射性及び表面導電性に優れ、良好な表面潤滑性により耐プレス加工性にも優れる。本発明の樹脂被覆アルミニウム材は更に、反射性、耐溶剤性及び耐食性に優れる。したがって、この樹脂被覆アルミニウム材は、パーソナル・コンピュータ等の電子機器、冷蔵庫等の家電製品、エアコンの室内機や室外機のラジエターなど、熱の放散が必要とされるものの筐体材料として極めて有用である。   The highly functional resin-coated aluminum material of the present invention is excellent in heat radiation and surface conductivity, and is excellent in press workability due to good surface lubricity. The resin-coated aluminum material of the present invention is further excellent in reflectivity, solvent resistance and corrosion resistance. Therefore, this resin-coated aluminum material is extremely useful as a housing material for materials that require heat dissipation, such as electronic devices such as personal computers, home appliances such as refrigerators, indoor units of air conditioners, and radiators of outdoor units. is there.

A.樹脂被覆アルミニウム材
A−1.アルミニウム基材
本発明に用いるアルミニウム基材は特に限定されるものではないが、筐体を形成・保持するに足る強度を有し、また絞り加工、曲げ加工時において十分なプレス成形加工性を有することから1000系、3000系及び5000系のアルミニウム合金板が好ましい。アルミニウム基材としては、0.1〜2.0mm厚さのものが通常用いられる。
A. Resin-coated aluminum material
A-1. Aluminum base material The aluminum base material used in the present invention is not particularly limited, but has sufficient strength to form and hold a casing, and has sufficient press workability during drawing and bending. Therefore, 1000 series, 3000 series and 5000 series aluminum alloy plates are preferred. As the aluminum substrate, those having a thickness of 0.1 to 2.0 mm are usually used.

A−2.化成皮膜
アルミニウム基材面に形成する化成皮膜には、塗布型及び反応型の皮膜を用いることができる。塗布型及び反応型の皮膜のいずれでもよく特に制限されるものではないが、アルミニウム基材と樹脂被膜の両方に対して密着性が良好な反応型化成皮膜を用いるのが好ましい。反応型化成皮膜とは、具体的にはリン酸クロメート、クロム酸クロメート等のクロメート処理や、リン酸ジルコニウム、リン酸チタニウム等のノンクロメート処理で形成される皮膜である。特にリン酸クロメート皮膜が、汎用性、コストの点で好ましく、環境への配慮という点ではクロムを含まないノンクロメート処理で行なうことが好ましい。アルミニウム基材面に熱硬化性樹脂被膜を直接形成するのではなく、アルミニウム基材と熱硬化性樹脂被膜との間に化成皮膜を設けることにより、熱硬化性樹脂被膜の密着性が向上する。これによって、熱硬化性樹脂被膜のクラック発生を防止する効果が向上して加工性が良好となる。
A-2. As the chemical conversion film formed on the surface of the chemical conversion aluminum substrate, a coating type film and a reactive type film can be used. Either a coating type film or a reactive type film may be used, and it is not particularly limited. However, it is preferable to use a reactive chemical film having good adhesion to both the aluminum substrate and the resin film. Specifically, the reactive chemical film is a film formed by a chromate treatment such as phosphoric acid chromate or chromate chromate or a non-chromate treatment such as zirconium phosphate or titanium phosphate. In particular, a phosphoric acid chromate film is preferable from the viewpoint of versatility and cost, and from the viewpoint of environmental considerations, it is preferable to perform non-chromate treatment without containing chromium. Rather than directly forming the thermosetting resin film on the aluminum substrate surface, the adhesion of the thermosetting resin film is improved by providing a chemical conversion film between the aluminum substrate and the thermosetting resin film. Thereby, the effect of preventing the occurrence of cracks in the thermosetting resin film is improved, and the workability is improved.

A−3.熱硬化性樹脂被膜
アルミニウム基材の両面に形成された化成皮膜の一方の上又は両方の上には、赤外線領域において、特に5〜12μmの波長領域において優れた赤外線吸収(放射)性を示す熱硬化性樹脂被膜が形成される。このような熱硬化性樹脂被膜のベース樹脂にはポリエステル系樹脂成分とメラミン系樹脂成分を含む熱硬化性樹脂が用いられ、メラミン系樹脂成分で架橋したポリエステル系樹脂が好適に用いられる。熱硬化性樹脂被膜には、グラファイト粉末、カーボンブラック、ニッケル粉末及びカルシウムイオン交換型シリカが含有される。
A-3. Thermosetting resin coating Heat on one or both of the chemical conversion coatings formed on both sides of the aluminum substrate exhibits excellent infrared absorption (radiation) properties in the infrared region, particularly in the 5-12 μm wavelength region. A curable resin film is formed. A thermosetting resin containing a polyester resin component and a melamine resin component is used as the base resin of such a thermosetting resin film, and a polyester resin crosslinked with a melamine resin component is preferably used. The thermosetting resin coating contains graphite powder, carbon black, nickel powder, and calcium ion exchange type silica.

(1)ベース樹脂
電子機器からの放射熱はプランクの法則に従い、波長8〜10μmにピークを有する赤外線領域の熱放射性を向上させることが放熱性向上に有効である。ポリエステル系樹脂成分とメラミン系樹脂成分を含む樹脂を用いることによって、このような放熱性を向上することができる。なお、キルヒホッフの法則より熱放射率と熱吸収率は等しく、赤外線の吸収性の高い材料は、赤外線の放射も高い材料といえる。
(1) Base resin According to Planck's law, the radiant heat from an electronic device is effective in improving the heat dissipation by improving the thermal radiation in the infrared region having a peak at a wavelength of 8 to 10 μm. By using a resin containing a polyester resin component and a melamine resin component, such heat dissipation can be improved. According to Kirchhoff's law, a material having high thermal emissivity and thermal absorption rate and having high infrared absorption can be said to have high infrared emission.

用いるポリエステル系樹脂としては、加工性と塗装性の観点から数平均分子量が8000〜25000のものが好ましい。数平均分子量が8000未満では、熱硬化性樹脂被膜の可撓性低下による曲げ加工性の低下を招く。一方、数平均分子量が25000を超えると、被膜用塗料の粘度が急激に上昇することにより塗装性の低下を招く。また、ガラス転移温度については、加工性と被膜硬度の観点から−10〜70℃のものが好ましい。ガラス転移温度が−10より低いと被膜硬度の低下に伴う柔軟化によりプレス成形等の加工時に疵が発生し易い。一方、ガラス転移温度が70℃を超えると、被膜の柔軟性低下により曲げ加工性の低下が生じる。ポリエステル樹脂の種類としては、オイルフリーポリエステル樹脂、変性タイプポリエステル樹脂及び不飽和ポリエステル樹脂等が挙げられる。ポリエステル樹脂は多価カルボン酸と多価アルコールを反応させて得ることができる。多価カルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、トリメリト酸等の芳香族多価カルボン酸や、アジピン酸、コハク酸、セバシン酸等の脂肪族多価カルボン酸が挙げられる。多価アルコールとしてはプロピレングリコール、エチレングリコール、グリセリン、トリメチロールプロパン、1,6−ヘキサンジオール、ペンタエリスリトール等が挙げられる。   As the polyester resin to be used, those having a number average molecular weight of 8000 to 25000 are preferred from the viewpoint of processability and paintability. When the number average molecular weight is less than 8000, bending workability is lowered due to a decrease in flexibility of the thermosetting resin film. On the other hand, when the number average molecular weight exceeds 25000, the viscosity of the coating material for coating increases rapidly, resulting in a decrease in paintability. The glass transition temperature is preferably −10 to 70 ° C. from the viewpoint of workability and film hardness. If the glass transition temperature is lower than −10, wrinkles are likely to occur during processing such as press molding due to softening accompanying a decrease in coating hardness. On the other hand, when the glass transition temperature exceeds 70 ° C., bending workability is reduced due to a decrease in flexibility of the coating film. Examples of the polyester resin include oil-free polyester resins, modified polyester resins, and unsaturated polyester resins. The polyester resin can be obtained by reacting a polyvalent carboxylic acid and a polyhydric alcohol. Examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and trimellitic acid, and aliphatic polyvalent carboxylic acids such as adipic acid, succinic acid, and sebacic acid. Examples of the polyhydric alcohol include propylene glycol, ethylene glycol, glycerin, trimethylolpropane, 1,6-hexanediol, pentaerythritol and the like.

メラミン系樹脂としては、メチル化メラミン系樹脂、イソブチル化メラミン系樹脂、n−ブチル化メラミン系樹脂等が用いられるが、加工性の点からメチル化メラミン系樹脂が好ましい。メラミン系樹脂は広範囲の赤外線波長域において赤外線放射性(吸収性)が良好であり、ポリエステル系樹脂100重量部に対して10〜50重量部、好ましくは20〜40重量部の割合で配合される。メラミン系樹脂の配合割合が10重量部未満では、被膜の架橋度が不十分となり、耐溶剤性、曲げ加工性及びその他塗膜の一般物性が低下する。アルミニウム基材を用いて電子機器や家電製品の筐体を製造する際にはプレス成形等が用いられるが、成形時にはプレス油等を使用するため成形後適当な溶剤を用いて洗浄する必要がある。このため、熱硬化性樹脂被膜の耐溶剤性が劣るとプレス油の使用が困難となる。一方、メラミン系樹脂の配合割合が50重量部を超えると、架橋反応が進行し過ぎて塗膜が硬くなり、曲げ加工性、潤滑性が低下する。   As the melamine-based resin, methylated melamine-based resin, isobutylated melamine-based resin, n-butylated melamine-based resin and the like are used, and methylated melamine-based resin is preferable from the viewpoint of workability. The melamine resin has good infrared radiation (absorptivity) in a wide infrared wavelength range, and is blended at a ratio of 10 to 50 parts by weight, preferably 20 to 40 parts by weight with respect to 100 parts by weight of the polyester resin. When the blending ratio of the melamine-based resin is less than 10 parts by weight, the degree of crosslinking of the film becomes insufficient, and the solvent resistance, bending workability and other general physical properties of the coating film are deteriorated. Press molding or the like is used when manufacturing a housing for an electronic device or home appliance using an aluminum base material. However, since pressing oil or the like is used at the time of molding, it is necessary to clean it with an appropriate solvent after molding. . For this reason, if the solvent resistance of the thermosetting resin film is inferior, it becomes difficult to use press oil. On the other hand, when the blending ratio of the melamine-based resin exceeds 50 parts by weight, the crosslinking reaction proceeds excessively, the coating film becomes hard, and bending workability and lubricity are deteriorated.

(2)グラファイト粉末及びカーボンブラック
塗膜への潤滑性付与として、また赤外線放射性による放熱性付与として、熱硬化性樹脂被膜にはグラファイト粉末が含有される。用いるグラファイト粉末の平均粒径は、0.1〜30μm、好ましくは0.1〜20μmである。平均粒径が0.1μm未満では、グラファイト粉末の分散性が低下し塗料化が困難となり、また超微細粉末への加工コストも高くなる。一方、平均粒径が30μmを超えると、グラファイト粉末が熱硬化性樹脂被膜から脱落し易くなり、耐食性、耐溶剤性及び曲げ加工性の低下を招く。
(2) Graphite powder and carbon black Graphite powder is contained in the thermosetting resin film to impart lubricity to the coating film and to impart heat dissipation by infrared radiation. The average particle size of the graphite powder used is 0.1 to 30 μm, preferably 0.1 to 20 μm. If the average particle size is less than 0.1 μm, the dispersibility of the graphite powder is lowered, making it difficult to form a coating material, and the processing cost into an ultrafine powder is increased. On the other hand, if the average particle size exceeds 30 μm, the graphite powder tends to fall off from the thermosetting resin coating, resulting in a decrease in corrosion resistance, solvent resistance and bending workability.

グラファイト粉末は、ベース樹脂である熱硬化性樹脂100重量部に対して3〜50重量部の割合で含有される。含有割合が3重量部未満では、熱硬化性樹脂被膜の単位面積当たりにおけるグラファイト粉末の絶対量が不足し放熱性向上の効果が十分に得られない。一方、含有割合が50重量部を超えると熱硬化性樹脂被膜の成膜が困難となり、グラファイト粉末が樹脂塗膜から脱落しやすくなり、耐食性、耐溶剤性、及び成形加工性が低下する。   The graphite powder is contained in a proportion of 3 to 50 parts by weight with respect to 100 parts by weight of the thermosetting resin as the base resin. If the content is less than 3 parts by weight, the absolute amount of graphite powder per unit area of the thermosetting resin film is insufficient, and the effect of improving heat dissipation cannot be sufficiently obtained. On the other hand, when the content exceeds 50 parts by weight, it becomes difficult to form a thermosetting resin film, and the graphite powder easily falls off from the resin film, resulting in a decrease in corrosion resistance, solvent resistance, and moldability.

前記カーボンブラックは、グラファイトと同様に放熱性付与材として有効である。カーボンブラックとグラファイトを混合添加することにより、グラファイトの添加量を抑えつつ性能を満足できる。グラファイトのみを添加した場合、添加量を抑えると凝集を起こしにくくなり耐食性や加工性、耐溶剤性等の向上が期待できるものの、本発明における主要な物性である放熱性を所望の値とすることが困難となる。またカーボンブラックのみを添加した場合、グラファイトの赤外線放射性と比べてカーボンブラックの赤外線放射性は若干劣るため所望の放熱性を得ることが困難である。これらのことからグラファイトとカーボンブラックを併用することにより放熱性、導電性、加工性、耐食性、耐溶剤性といった諸性能を全て充足することが可能となる。また一般的にはカーボンブラックと比較するとグラファイトは高価であり、グラファイト添加量を抑えることでコストを抑えることも可能となり経済的である。カーボンブラックは、熱硬化性樹脂100質量部に対して1〜10質量部を添加する。添加量が1質量部未満の場合、放熱性の効果が十分ではなく劣る。また10質量部を超えると、1次粒子径がnmレベルであるため表面積が非常に大きいカーボンブラックの添加量が過剰となり、塗料粘度が急激に上昇し塗料作製が困難となる。   The carbon black is effective as a heat dissipating material like graphite. By adding and mixing carbon black and graphite, the performance can be satisfied while suppressing the amount of graphite added. When only graphite is added, if the amount added is suppressed, it is difficult to cause agglomeration, and improvement in corrosion resistance, workability, solvent resistance, etc. can be expected, but heat dissipation, which is the main physical property in the present invention, should be a desired value. It becomes difficult. When only carbon black is added, the infrared radiation of carbon black is slightly inferior to the infrared radiation of graphite, making it difficult to obtain the desired heat dissipation. From these facts, the combined use of graphite and carbon black makes it possible to satisfy all the performances such as heat dissipation, conductivity, workability, corrosion resistance, and solvent resistance. In general, graphite is more expensive than carbon black, and it is economical because it is possible to reduce the cost by suppressing the amount of graphite added. Carbon black adds 1-10 mass parts with respect to 100 mass parts of thermosetting resins. When the addition amount is less than 1 part by mass, the heat dissipation effect is not sufficient and is inferior. On the other hand, when the amount exceeds 10 parts by mass, the amount of carbon black having a very large surface area becomes excessive because the primary particle diameter is at the nm level, and the viscosity of the coating material increases rapidly, making it difficult to prepare the coating material.

本発明に用いるグラファイト粉末及びカーボンブラックの種類は特に制限されるものではない。グラファイトの場合、具体的には人造タイプと天然タイプがあり、人造タイプには石油等を原料として製造されたものや天然タイプのものを化学処理したものがある。また天然タイプには土状、鱗片状、鱗状等の種類があり、これらの中から1種又は2種以上混合したものでも良い。またカーボンブラックには粉状、粒状、フレーク状等の種類があり、更に導電性や分散性を高めるために表面処理を施したものもある。これらの中から1種又は2種以上混合したもので良い。   The types of graphite powder and carbon black used in the present invention are not particularly limited. In the case of graphite, specifically, there are an artificial type and a natural type, and the artificial type includes those manufactured using petroleum or the like as raw materials and those obtained by chemically treating natural types. Natural types include earth, scales, scales, etc., and one or a mixture of two or more of these may be used. Carbon black is classified into powder, granule, flake, and the like, and some are subjected to a surface treatment to improve conductivity and dispersibility. One or a mixture of two or more of these may be used.

なお、赤外線放射性顔料としてはグラファイト及びカーボンブラックの他に、一般に鉄マンガン系や銅クロム系等の金属酸化物が知られているが、波長10μm以下の赤外線放射性が劣る。   In addition to graphite and carbon black, metal oxides such as iron-manganese and copper-chromium are generally known as infrared radioactive pigments, but infrared radiation having a wavelength of 10 μm or less is inferior.

(3)ニッケル粉末
塗膜への導電性付与として、熱硬化性樹脂被膜にはニッケル粉末が含有される。ニッケル粉末には球状、鎖型、鱗片状等の種類があり特に制限されるものではないが、鎖型、鱗片状のものが特に加工性、導電性ともに良好であり好ましい。これらの種類中から1種又は2種以上を混合したものが用いられる。
(3) Nickel powder Nickel powder is contained in the thermosetting resin film to impart conductivity to the coating film. There are various types of nickel powder, such as spherical, chain-like, and scale-like, and there is no particular limitation. However, chain-like and scale-like ones are particularly preferred because both workability and conductivity are good. A mixture of one or more of these types is used.

用いるニッケル粉末の最大長径の平均値は、0.5〜100μmである。最大長径の平均値が0.5μm未満では、導電性のバラツキが大きく不安定となり結果として導電性が低下する。一方、最大長径の平均値が100μmを超えると、ニッケル粉末が熱硬化性樹脂被膜から脱落し易くなるため耐食性、耐溶剤性、曲げ加工性が低下する。   The average value of the maximum major axis of the nickel powder used is 0.5 to 100 μm. If the average value of the maximum major axis is less than 0.5 μm, the variation in conductivity becomes large and unstable, resulting in a decrease in conductivity. On the other hand, if the average value of the maximum major axis exceeds 100 μm, the nickel powder tends to be detached from the thermosetting resin film, so that the corrosion resistance, solvent resistance, and bending workability are lowered.

ニッケル粉末は、ベース樹脂である熱硬化性樹脂100重量部に対して10〜100重量部の割合で含有される。ニッケル粉末以外の金属粉末でも導電性付与には有効であるが、特に材料コストと導電性能のバランスからニッケル粉末が用いられる。ニッケル粉末の含有割合が10重量部未満では、十分な導電性付与効果が得られない。一方、含有割合が100重量部を超えると熱硬化性樹脂被膜の成膜が困難となり、ニッケル粉末が樹脂被膜から脱落し易くなって耐食性、耐溶剤性、成形加工性が低下する。   The nickel powder is contained at a ratio of 10 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin as the base resin. Metal powders other than nickel powder are effective for imparting electrical conductivity, but nickel powder is particularly used from the balance of material cost and conductive performance. When the content ratio of the nickel powder is less than 10 parts by weight, a sufficient conductivity imparting effect cannot be obtained. On the other hand, when the content exceeds 100 parts by weight, it is difficult to form a thermosetting resin film, and nickel powder is easily removed from the resin film, resulting in a decrease in corrosion resistance, solvent resistance, and moldability.

(4)カルシウムイオン交換型シリカ
熱硬化性樹脂被膜には、カルシウムイオン交換型シリカも含有される。カルシウムイオン交換型シリカとはシリカ表面のシラノール基にカルシウムイオンが結合したものであり、通常、防錆顔料として非常に有効である。
(4) Calcium ion exchange type silica The thermosetting resin coating also contains calcium ion exchange type silica. Calcium ion-exchanged silica is one in which calcium ions are bonded to silanol groups on the silica surface and is usually very effective as a rust preventive pigment.

本発明者らは、このようなカルシウムイオン交換型シリカを塗膜塗料に添加することにより、塗料の分散時や塗装する際の再撹拌時において、塗料内部でシリカ粒子の衝突が起こることによりグラファイトの凝集を防ぐ作用が得られることを見出した。その結果、凝集物生成の防止作用によって、外観向上、耐溶剤性向上、耐食性向上、顔料脱落の低減という格別の効果が得られる。すなわちカルシウムイオン交換型シリカを用いることで、カルシウムイオン交換型シリカ自身の耐食性への作用とともにグラファイトの凝集防止による耐溶剤性や耐食性の向上、顔料脱落の低減といった作用が得られ、これらの作用は相乗的に有効である。   By adding such calcium ion exchange type silica to the paint film, the present inventors have made it possible for the silica particles to collide inside the paint when the paint is dispersed or during re-stirring. It has been found that an effect of preventing the aggregation of can be obtained. As a result, special effects of improving appearance, improving solvent resistance, improving corrosion resistance, and reducing pigment loss are obtained by the action of preventing the formation of aggregates. In other words, by using calcium ion exchange type silica, the effect of calcium ion exchange type silica itself on the corrosion resistance, as well as the improvement of solvent resistance and corrosion resistance by preventing the aggregation of graphite, and the reduction of pigment dropout are obtained. Synergistically effective.

カルシウムイオン交換型シリカは、ベース樹脂である熱硬化性樹脂100重量部に対して3〜60重量部、好ましくは4〜20重量部の割合で含有される。カルシウムイオン交換型シリカの含有割合が3重量部未満では、十分な耐食性の向上作用を得ることができず、またグラファイトの凝集防止作用も不足して耐溶剤性や耐食性向上の効果も十分に得ることが困難である。一方、含有割合が60重量部を超えると、塗膜中におけるカルシウムイオン交換型シリカの絶対量が過剰となり、塗膜の割れや剥離が発生し易くなり、且つ潤滑性及び耐溶剤性が劣る。
なお、用いるカルシウムイオン交換型シリカの平均粒径としては、1〜10μmのものが好ましい。1μm未満では十分な耐食作用やグラファイトの凝集防止作用を得ることができず、10μmを超えると塗膜の割れや剥離は発生し易くなる。
The calcium ion exchange type silica is contained in a proportion of 3 to 60 parts by weight, preferably 4 to 20 parts by weight, with respect to 100 parts by weight of the thermosetting resin as the base resin. When the content of calcium ion-exchanged silica is less than 3 parts by weight, it is not possible to obtain a sufficient effect of improving the corrosion resistance, and a sufficient effect of improving the solvent resistance and corrosion resistance is obtained due to insufficient anti-aggregation action of graphite. Is difficult. On the other hand, when the content ratio exceeds 60 parts by weight, the absolute amount of calcium ion exchanged silica in the coating film becomes excessive, cracking and peeling of the coating film are likely to occur, and lubricity and solvent resistance are inferior.
In addition, as an average particle diameter of the calcium ion exchange type | mold silica to be used, a thing of 1-10 micrometers is preferable. If it is less than 1 μm, sufficient corrosion resistance and anti-flocculation action of graphite cannot be obtained, and if it exceeds 10 μm, cracking and peeling of the coating film are likely to occur.

(5)分散剤
熱硬化性樹脂被膜には、分散剤を含有させてもよい。分散剤としては、アニオン性化合物、カチオン性化合物、非イオン性化合物、高分子型化合物等が挙げられる。これら同種の化合物に含まれる1種又は2種以上、或いは、これら異なる化合物に含まれる2種以上を含有させることができる。アニオン性化合物としては硫酸塩系、スルホン酸塩系、リン酸塩系等の化合物が挙げられる。カチオン性化合物としては、アミン類、アミン塩系やアンモニウム塩系等の化合物が挙げられる。非イオン性化合物としてはエステル系、エーテル系、フェノール系等の化合物が挙げられる。高分子型化合物としては種々のポリマーを単独で、若しくは混合したもの等で数多くの種類が挙げられる。
(5) Dispersant The thermosetting resin film may contain a dispersant. Examples of the dispersant include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound. One or two or more kinds contained in these same compounds, or two or more kinds contained in these different compounds can be contained. Examples of the anionic compound include sulfate-based, sulfonate-based, and phosphate-based compounds. Examples of the cationic compound include amines, amine salts, ammonium salts, and the like. Nonionic compounds include esters, ethers, phenols and the like. As the polymer compound, there are many types including various polymers singly or as a mixture.

このような分散剤を熱硬化性樹脂被膜に含有させることで、グラファイトと熱硬化性樹脂との濡れ性が向上し、グラファイト粉末を熱硬化性樹脂被膜が十分に被覆でき、脱落を防止できる。分散剤の含有割合としては、ベース樹脂である熱硬化性樹脂100重量部に対して30重量部以下とするのが好ましい。分散剤が30重量部を超えると、塗膜塗料の粘度が上昇し易くなり貯蔵安定性が低下し、また樹脂塗膜中のニッケル粉末がかえって凝集し易くなるため導電性が低下することもある。更に、樹脂塗膜の硬化阻害を引き起こし耐溶剤性も低下することもある。   By including such a dispersant in the thermosetting resin film, the wettability between graphite and the thermosetting resin is improved, and the graphite powder can be sufficiently covered with the thermosetting resin film, thereby preventing the dropping. The content ratio of the dispersant is preferably 30 parts by weight or less with respect to 100 parts by weight of the thermosetting resin as the base resin. If the dispersant exceeds 30 parts by weight, the viscosity of the coating film paint tends to increase and storage stability is lowered, and the nickel powder in the resin coating film tends to aggregate instead, so the conductivity may decrease. . Furthermore, the resin coating film may be inhibited from curing, and the solvent resistance may be lowered.

(6)熱硬化性樹脂被膜の形成
熱硬化性樹脂被膜を形成するには、アルミニウム基材表面に形成した化成処理皮膜表面に、熱硬化性樹脂被膜用の液状の被膜塗料を塗装(塗布)しこれを焼付ける。
このような被膜塗料は、ベース樹脂である熱硬化性樹脂、グラファイト粉末、カーボンブラック、ニッケル粉末、カルシウムイオン交換型シリカ、ならびに、必要に応じて分散剤、後述する潤滑性付与成分や添加剤を、溶媒に溶解、分散して調製される。このような溶媒には、各成分を溶解又は分散できるものであれば特に限定されるものではなく、一般的な有機溶剤を用いることができる。
(6) Formation of thermosetting resin film In order to form a thermosetting resin film, a liquid film coating for a thermosetting resin film is applied (applied) to the chemical conversion film surface formed on the surface of the aluminum substrate. Bake this.
Such a coating is composed of a thermosetting resin as a base resin, graphite powder, carbon black, nickel powder, calcium ion exchanged silica, and, if necessary, a dispersant, a lubricity-imparting component and an additive described later. It is prepared by dissolving and dispersing in a solvent. The solvent is not particularly limited as long as each component can be dissolved or dispersed, and a general organic solvent can be used.

塗膜塗料の塗布方法としては、ロールコーター法、ロールスクイズ法、ケミコーター法、エアナイフ法、浸漬法、スプレー法、静電塗装法等の方法が用いられ、被膜の均一性に優れ、生産性が良好なロールコーター法が好ましい。また、被膜の乾燥には一般的な加熱法、誘電加熱法等が用いられる。   As the coating method of the coating film paint, methods such as a roll coater method, a roll squeeze method, a chemi coater method, an air knife method, a dipping method, a spray method, and an electrostatic coating method are used. A good roll coater method is preferred. For drying the coating, a general heating method, dielectric heating method, or the like is used.

被膜形成する際の焼付けは、焼付け温度(到達表面温度)が200〜250℃で、焼付け時間が30〜90秒の条件で行うのが好ましい。被膜形成における焼付け温度が200℃未満である場合や、焼付け時間が30秒未満である場合には、被膜が十分に形成されず被膜密着性が低下する。焼付け温度が250℃を超える場合や、焼付け温度が90秒を超える場合には、被膜成分が変性することになる。   Baking at the time of forming the film is preferably performed under the conditions that the baking temperature (reached surface temperature) is 200 to 250 ° C. and the baking time is 30 to 90 seconds. When the baking temperature in forming the film is less than 200 ° C. or when the baking time is less than 30 seconds, the film is not sufficiently formed and the film adhesion is deteriorated. When the baking temperature exceeds 250 ° C. or when the baking temperature exceeds 90 seconds, the coating component is denatured.

(7)熱硬化性樹脂被膜の膜厚
熱硬化性樹脂被膜の膜厚は5μm以下とする。膜厚が5μmを超えると、樹脂被膜中におけるグラファイト粉末の絶対量が過剰となり被膜の割れや剥離が発生し易くなる。また、膜厚が5μmを超えると、電気絶縁性である熱硬化性樹脂成分によって導電性付与成分であるニッケル粉末が被覆され易くなり導電性が低下する恐れがある。したがって、被膜の割れや剥離、ならびに、導電性の低下を更に防止するには、熱硬化性樹脂被膜の膜厚を1.5μm以下とするのが好ましい。
(7) Film thickness of thermosetting resin film The film thickness of a thermosetting resin film shall be 5 micrometers or less. When the film thickness exceeds 5 μm, the absolute amount of the graphite powder in the resin film becomes excessive, and the film tends to crack or peel off. On the other hand, if the film thickness exceeds 5 μm, the electroconductive thermosetting resin component is likely to be coated with the nickel powder, which is a conductivity-imparting component, and the conductivity may be lowered. Accordingly, in order to further prevent cracking and peeling of the coating and decrease in conductivity, it is preferable that the thickness of the thermosetting resin coating is 1.5 μm or less.

A−4.白色樹脂被膜
アルミニウム基材の両面に形成された化成皮膜の一方の上に上記熱硬化性樹脂被膜が形成される場合には、他方の化成皮膜の上に白色樹脂被膜を形成することができる。白色樹脂被膜とは白色顔料を含有する樹脂被覆膜であり、これを反射面とすることによって反射性と放熱性、導電性を満足する材料を作製することができる。このような白色樹脂被膜を備えた樹脂被覆アルミニウム材は、光に対する面を白色樹脂被覆膜とすることで液晶反射板や各種照明用反射板用途に用いることが可能である。
A-4. When the said thermosetting resin film is formed on one of the chemical conversion films formed on both surfaces of the white resin coated aluminum base, the white resin film can be formed on the other chemical conversion film. The white resin film is a resin coating film containing a white pigment. By using this as a reflection surface, a material satisfying reflectivity, heat dissipation, and conductivity can be produced. The resin-coated aluminum material provided with such a white resin film can be used for liquid crystal reflectors and various illumination reflectors by using a white resin-coated film as a surface for light.

白色樹脂被膜のベース樹脂としては、フッ素系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂の中から選択される少なくとも一種の熱硬化性樹脂が用いられる。白色顔料としては、酸化チタン、亜鉛華、硫化亜鉛、硫酸バリウム、炭酸カルシウムの中から選ばれた少なくとも一種からなる顔料が用いられる。   As the base resin of the white resin film, at least one thermosetting resin selected from fluorine resin, epoxy resin, polyester resin, acrylic resin, and urethane resin is used. As the white pigment, a pigment composed of at least one selected from titanium oxide, zinc white, zinc sulfide, barium sulfate, and calcium carbonate is used.

白色顔料は、ベース樹脂100重量部に対して70〜150重量部の割合で含有される。含有割合が70重量部未満では十分な反射効果が得られず、150重量部を超えると塗膜の割れや剥離が発生し易くなる。白色樹脂被覆膜の膜厚は、30〜150μmであるのが好ましい。20μm未満では十分な反射効果が得られず、150μmを超えても反射効果が飽和して不経済となる。   The white pigment is contained in a proportion of 70 to 150 parts by weight with respect to 100 parts by weight of the base resin. When the content ratio is less than 70 parts by weight, a sufficient reflection effect cannot be obtained, and when it exceeds 150 parts by weight, the coating film is easily cracked or peeled off. The thickness of the white resin coating film is preferably 30 to 150 μm. If the thickness is less than 20 μm, a sufficient reflection effect cannot be obtained. If the thickness exceeds 150 μm, the reflection effect is saturated and uneconomical.

白色樹脂被膜は、化成処理被膜表面にその液状被膜塗料を塗装(塗布)し、これを焼付けることによって形成される。この塗膜塗料の溶媒、ならびに、塗布、焼付けの方法及び条件は、上述の熱硬化性樹脂被膜と同様に行なわれる。   The white resin film is formed by painting (applying) the liquid film paint on the surface of the chemical conversion film and baking it. The solvent of the coating film paint, and the method and conditions of application and baking are performed in the same manner as the thermosetting resin film described above.

A−5.潤滑性付与成分
本発明に係る樹脂被覆アルミニウム材の加工性を更に向上させる目的で、ベース樹脂である熱硬化性樹脂に潤滑性付与成分を添加してもよい。潤滑性付与成分としては、ポリエチレンワックス等の合成ワックス、PTFE(ポリテトラフルオロエチレン)等のフッ素系樹脂ワックス、マイクロクリスタリンワックス等の石油ワックス、ミツロウ、ラノリン等の動物ワックス、カルナバワックス等の植物ワックス、等の潤滑剤が用いられる。潤滑性付与成分の添加量としては、ベース樹脂である熱硬化性樹脂100重量部に対して30重量部以下であることが好ましい。潤滑性付与成分が30重量部を超えると、耐溶剤性の低下、ブロッキング、導電性低下、加工時における塗膜カスの発生等が起こり、電子機器や家電製品の筐体などの材料として好適ではない。
A-5. Lubricating component For the purpose of further improving the workability of the resin-coated aluminum material according to the present invention, a lubricating component may be added to the thermosetting resin that is the base resin. Lubricating agents include synthetic waxes such as polyethylene wax, fluorine resin waxes such as PTFE (polytetrafluoroethylene), petroleum waxes such as microcrystalline wax, animal waxes such as beeswax and lanolin, and plant waxes such as carnauba wax. , Etc. are used. The addition amount of the lubricity-imparting component is preferably 30 parts by weight or less with respect to 100 parts by weight of the thermosetting resin as the base resin. When the lubricity-imparting component exceeds 30 parts by weight, solvent resistance decreases, blocking, conductivity decreases, and coating film residue occurs during processing, which is suitable as a material for housings of electronic devices and home appliances. Absent.

A−6.添加剤
熱硬化性樹脂被膜用の塗料には、塗装性及びプレコート材としての一般性能を確保するために通常の塗料に使用される、溶剤、レベリング剤、ワキ防止剤、つや消し剤等を適宜含有させてもよい。
A-6. Additives The coating for thermosetting resin coatings contains solvents, leveling agents, anti-bacterial agents, matting agents, etc., which are used in ordinary coatings to ensure paintability and general performance as precoat materials. You may let them.

なお、本発明に係る樹脂被覆アルミニウム材では、その両面に熱硬化性樹脂被膜が形成された形態でもよく、一方の面に熱硬化性樹脂被膜が形成され他方の面に白色樹脂被膜が形成された形態でもよく、一方の面に熱硬化性樹脂被膜が形成され他方の面に本発明で規定する以外の樹脂被膜が形成された形態でもよい。これらの形態は、樹脂被覆アルミニウム材の用途や要求特性により適宜選択される。   Note that the resin-coated aluminum material according to the present invention may have a form in which a thermosetting resin film is formed on both surfaces thereof, a thermosetting resin film is formed on one surface, and a white resin film is formed on the other surface. Alternatively, a thermosetting resin film may be formed on one surface and a resin film other than that defined in the present invention may be formed on the other surface. These forms are appropriately selected depending on the application and required characteristics of the resin-coated aluminum material.

一方の化成処理皮膜上に塗布した熱硬化性樹脂被膜用塗料と、他方の化成処理皮膜上に塗布した白色樹脂被膜用塗料は、同時に焼付けしても別個に焼付けしてもよい。また、一方の化成処理皮膜上に塗布した本発明に用いる熱硬化性樹脂被膜用塗料と、他方の化成処理皮膜上に塗布した本発明で規定する以外の樹脂被膜用塗料も、同時に焼付けしても別個に焼付けしてもよい。   The thermosetting resin film coating applied on one chemical conversion coating and the white resin coating applied on the other chemical conversion coating may be baked simultaneously or separately. In addition, the thermosetting resin film paint used in the present invention applied on one chemical conversion coating and the resin film paint other than that prescribed in the present invention applied on the other chemical conversion coating are simultaneously baked. May be baked separately.

B.電子機器用又は家電製品用の筐体
上述のようにして作成される樹脂被覆アルミニウム材は、その表面に揮発性プレス油を塗布してからプレス加工等の成形加工を施すことによって、パーソナルコンピュータなどの電子機器用の筐体又は冷蔵庫などの家電製品用の筐体が作製される。成形加工時に用いられるプレス油は通常粘度が高いものが多く、加工後の洗浄が必要であり多量の洗浄剤(有機溶剤)を必要とする。しかし本発明の樹脂被覆アルミニウム材は表面の潤滑性に優れるため、粘度が小さいプレス油でも好適に使用することが可能であり、この場合加工後の洗浄を簡略化することも可能である。また使用するプレス油の量を減らすことも可能である。
B. Housing for electronic equipment or home appliances The resin-coated aluminum material produced as described above is applied to a volatile press oil on the surface and then subjected to a molding process such as a press process, and so on. A housing for an electronic device or a housing for a household electric appliance such as a refrigerator is manufactured. Many press oils used at the time of molding are usually high in viscosity and need to be cleaned after processing, requiring a large amount of cleaning agent (organic solvent). However, since the resin-coated aluminum material of the present invention is excellent in surface lubricity, it can be suitably used even with a press oil having a low viscosity. In this case, cleaning after processing can be simplified. It is also possible to reduce the amount of press oil used.

C.電子機器又は家電製品
本発明に係る樹脂被覆アルミニウム材を用いて作成された筐体は、更に細かな曲げ加工等が施され、また表面に塗装が施される場合もある。そして、その内部に様々な装置や部品が内蔵されて、所望の電子機器や家電製品に組み立てられる。
C. Electronic equipment or home appliances The case made using the resin-coated aluminum material according to the present invention is further subjected to fine bending or the like, and the surface may be painted. And various apparatuses and components are built in the inside, and it assembles into a desired electronic device and household appliances.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1〜18及び比較例1〜10
まず、熱硬化性樹脂被膜用の塗料を以下のようにして調製した。市販のポリエステル樹脂100重量部に、メチル化メラミン樹脂を表1に示す割合で添加した熱硬化性樹脂を作製した。次にこの(ポリエステル樹脂とメチル化メラミン樹脂を合わせた)熱硬化性樹脂(全部を基準に)100重量部に対し、グラファイト、カーボンブラック、ニッケル、カルシウムイオン交換型シリカ、分散剤のそれぞれを表1に示す重量部加え、これをシクロヘキサノン及び高沸点芳香族ナフサを主成分とする有機溶媒(いわゆる「シンナー」)中に分散して、熱硬化性樹脂被膜用の塗料を調製した。ここで、例えば実施例1は、有機溶媒約1kgに対して、ポリエステル樹脂は400g、メチル化メラミン樹脂は100g、グラファイトは100g、カーボンブラックは50g、ニッケルは240g、カルシウムイオン交換型シリカは40g、分散剤は15gを配合した。
Examples 1-18 and Comparative Examples 1-10
First, a paint for a thermosetting resin film was prepared as follows. A thermosetting resin was prepared by adding methylated melamine resin at a ratio shown in Table 1 to 100 parts by weight of a commercially available polyester resin. Next, with respect to 100 parts by weight of the thermosetting resin (based on the total of the polyester resin and the methylated melamine resin), graphite, carbon black, nickel, calcium ion exchanged silica, and a dispersant are represented. 1 parts by weight were added and dispersed in an organic solvent (so-called “thinner”) mainly composed of cyclohexanone and high-boiling aromatic naphtha to prepare a coating material for a thermosetting resin film. Here, for example, in Example 1, 400 g of polyester resin, 100 g of methylated melamine resin, 100 g of graphite, 50 g of carbon black, 240 g of nickel, 40 g of calcium ion exchanged silica, about 1 kg of organic solvent, As a dispersant, 15 g was blended.

Figure 2008155392
Figure 2008155392

次いで、このようにして調製した塗料を用いて、以下のようにして樹脂被覆アルミニウ材を作成した。
アルミニウム板(JIS A5052、板厚0.5mm)をアルミニウム基材に用いた。この基材を、市販のアルミニウム用脱脂剤にて脱脂処理を行ない、水洗後に乾燥した。次いで、脱脂処理したアルミニウム基材を、市販のリン酸クロメート処理液を用いて、皮膜中のクロム量が30±5mg/mとなるように化成処理を行った。更に、化成処理したアルミニウム基材の両面に表1に示す塗料をロールコーターで塗装し、PMT(最高到達板温度)200℃〜250℃にて60秒間焼付けした。このようにして作製した樹脂被覆アルミニウム材4の模式的断面図を図1に示す。図中1は熱硬化性樹脂被膜、2は化成皮膜、3はアルミニウム基材である。
Next, using the coating material thus prepared, a resin-coated aluminum material was prepared as follows.
An aluminum plate (JIS A5052, plate thickness 0.5 mm) was used as the aluminum substrate. This base material was degreased with a commercially available aluminum degreasing agent, dried after washing with water. Next, the aluminum substrate subjected to the degreasing treatment was subjected to chemical conversion treatment using a commercially available phosphoric acid chromate treatment solution so that the chromium amount in the film was 30 ± 5 mg / m 2 . Furthermore, the coating material shown in Table 1 was applied to both surfaces of the chemical conversion treated aluminum substrate with a roll coater, and baked at PMT (maximum plate temperature) 200 ° C. to 250 ° C. for 60 seconds. A schematic cross-sectional view of the resin-coated aluminum material 4 thus produced is shown in FIG. In the figure, 1 is a thermosetting resin film, 2 is a chemical conversion film, and 3 is an aluminum substrate.

作製した樹脂被覆アルミニウム材の試料について下記の試験方法にて性能評価を行った。各試験方法の詳細を以下に示す。   Performance evaluation was performed by the following test method about the sample of the produced resin-coated aluminum material. Details of each test method are shown below.

(導電性試験)
試料の導電性は、四端子法により、銀製のプローブ(直径5mm、先端2.5R)を荷重100gで塗膜面に接触させたときの電気抵抗値を測定した。測定値は、◎:4Ω以下、○:4Ωを越え7Ω以下、△:7Ωを越え10Ω以下、×:10Ωを超える、の基準で評価した。電気抵抗値が10Ωを超える場合、電子機器部品に加工した際に所望の電気特性(アース性やシールド性)が得られないため×を不合格とし、それ以外を合格とした。
(Conductivity test)
The electrical conductivity of the sample was measured by the four-terminal method when the silver probe (diameter 5 mm, tip 2.5R) was brought into contact with the coating surface with a load of 100 g. The measured values were evaluated based on the following criteria: A: 4Ω or less, ○: 4Ω to more than 7Ω, Δ: more than 7Ω to 10Ω or less, ×: more than 10Ω. When the electrical resistance value exceeded 10Ω, the desired electrical characteristics (grounding property and shielding property) could not be obtained when processed into an electronic device component, and therefore x was rejected, and the others were passed.

(放熱性試験)
放熱性試験は、下記のように筐体を作製して筐体表面温度を測定することによって行った。上述の樹脂被覆アルミニウム材により、底面が150mm×150mm、高さ100mmの筐体を作製した。作製した筐体を図2に示す。図中5は光源であり、その他は図1と同じである。なお、熱硬化性樹脂被膜1とアルミニウム基材3の間に設けた化成皮膜の表示を省略している。この筐体の内部に光源5として60Wの電球を設置して通電し、発光・発熱させ、筐体内部の温度が定常状態となった時点における筐体表面の温度を測定した。
(Heat dissipation test)
The heat dissipation test was performed by preparing a housing as described below and measuring the surface temperature of the housing. A casing having a bottom surface of 150 mm × 150 mm and a height of 100 mm was produced from the resin-coated aluminum material. The produced housing is shown in FIG. In the figure, reference numeral 5 denotes a light source, and the others are the same as in FIG. In addition, the display of the chemical conversion film provided between the thermosetting resin film 1 and the aluminum base material 3 is abbreviate | omitted. A 60 W light bulb was installed as the light source 5 inside the case, energized to emit light and generate heat, and the temperature of the case surface when the temperature inside the case reached a steady state was measured.

測定値は、◎:28℃以下、○:28℃を超え30℃以下、○△:30℃を超え32℃以下、△:32℃を超え35℃以下、×:35℃を超える、の基準で評価した。筐体表面が35℃を超えると温度の低下が小さく、放熱性が不足するため筐体表面温度は35℃を超える×を不合格とし、それ以外を合格とした。   Measurement values are: ◎: 28 ° C. or less, ○: 28 ° C. to 30 ° C., △: 30 ° C. to 32 ° C., Δ: 32 ° C. to 35 ° C., x: 35 ° C. It was evaluated with. When the housing surface exceeded 35 ° C., the temperature drop was small and the heat dissipation was insufficient, so that the housing surface temperature exceeded 35 ° C. x was rejected, and the others were accepted.

(加工性試験:潤滑性)
加工性のうち、潤滑性は神鋼造機社製附着滑り試験機(バウデン式)にて摩擦係数の測定を行ない、○:0.10未満、△:0.10以上0.15未満であるが使用可能、×:0.15以上で使用不可、の基準で評価した。○と△を合格とし、×を不合格とした。
(Workability test: Lubricity)
Among the workability, the lubricity is measured by the coefficient of friction using a slip tester (Bowden type) manufactured by Shinko Machine Co., Ltd .: ○: Less than 0.10, Δ: 0.10 or more and less than 0.15 Evaluation was made based on the criteria of possible, x: not less than 0.15 and unusable. ○ and Δ were accepted and x was rejected.

(加工性試験:曲げ加工性)
加工性のうち、曲げ加工性は評価面を外側にして180°3T曲げを行ない、熱硬化性樹脂被膜の割れを目視で観察し、◎:塗膜の割れなし、○:非常に軽微な塗膜の割れがあるが良好、△:小さな塗膜の割れあるが使用可能、×:大きな塗膜割れあり使用不可、の基準で評価した。◎、○及び△を合格とし、×を不合格とした。
(Workability test: Bending workability)
Among the workability, the bending workability is 180 ° 3T bending with the evaluation surface outside, and the crack of the thermosetting resin film is visually observed. ◎: No crack of the paint film, ○: Very light coating Evaluation was made based on the criteria that there was a crack in the film but good, Δ: there was a crack in the small coating, but it could be used, and x: there was a crack in the large coating that was not usable. ◎, ○, and Δ were accepted, and x was rejected.

(加工性試験:テープ試験)
曲げ加工性試験の観察終了後、曲げ部にセロハンテープを密着させ、テープを急激に剥離した際の塗膜の剥離具合を観察するテープ試験を行ない、塗膜の剥離性を評価した。評価は、○:剥離なし、△:軽微の剥離あるが使用可能、×:剥離ありの基準で評価した。◎及び△を合格とし、×を不合格とした。
(Processability test: Tape test)
After the observation of the bending workability test, a cellophane tape was adhered to the bent portion, and a tape test was performed to observe the degree of peeling of the coating film when the tape was peeled off rapidly to evaluate the peeling property of the coating film. Evaluation was based on the criteria of ○: no peeling, Δ: slight peeling but usable, ×: peeling. ◎ and △ were accepted, and x was rejected.

(加工性試験:耐色落ち性)
熱硬化性樹脂被膜表面を、市販のワイパーで5回、手で擦り、ワイパーに付着した黒色を目視で観察し、塗膜の耐色落ち性を評価した。評価は、◎:黒色が全く付着しない、○:非常に軽微な付着で良好、○△:軽微な付着あり、△:付着するものの使用可能、×:激しい付着あり、の基準で評価した。◎、○、○△及び△を合格とし、×を不合格とした。
(Processability test: Color fading resistance)
The surface of the thermosetting resin coating was rubbed with a commercially available wiper five times by hand, and the black color adhered to the wiper was visually observed to evaluate the color fading resistance of the coating. The evaluation was based on the following criteria: ◎: Black does not adhere at all, ○: Very slight adhesion is good, △: Minor adhesion, Δ: Adhered material can be used, ×: Vigorous adhesion. ◎, ○, ○ △ and △ were accepted, and x was rejected.

(耐溶剤性試験)
耐溶剤性の試験はワイパーに塩素系溶剤であるトリクレン溶液を染み込ませ、一定の荷重(1kg)をかけながら試料表面を30回ラビングし、試験後の表面状態を目視にて評価した。評価は○:塗膜の剥がれなく良好、○△:軽微な塗膜の剥がれがあるが良好、△:塗膜に剥がれが見られるものの使用可能、×:塗膜の剥がれが激しく使用不能、の基準で評価した。○、○△及び△を合格とし、×を不合格とした。
(Solvent resistance test)
The solvent resistance test was carried out by impregnating a wiper with a trichlene solution as a chlorinated solvent, rubbing the sample surface 30 times while applying a constant load (1 kg), and visually evaluating the surface condition after the test. Evaluation: ○: Good without peeling of coating film, ○ △: Slight peeling of coating film is good, △: Can be used even though peeling of coating film is observed, ×: Unusable coating film is severely peeled off Evaluated by criteria. ○, ○ △ and △ were accepted, and x was rejected.

(耐食性試験)
耐食性はスガ試験機社製キャス試験機CASSER−12L−ISOを用い、塩水噴霧試験(塩水濃度:5%)により評価した。100時間噴霧後、ならびに、200時間噴霧後の樹脂被覆アルミニウム材表面の腐食をそれぞれ観察して評価した。評価は◎:腐食なし、○:非常に軽微な腐食があるが良好、○△:軽微な腐食あり、△:腐食が見られるものの使用可能、×:腐食が激しく使用不能、の基準で評価した。◎、○、○△及び△を合格とし、×を不合格とした。
(Corrosion resistance test)
Corrosion resistance was evaluated by a salt spray test (salt concentration: 5%) using a CAS tester CASSER-12L-ISO manufactured by Suga Test Instruments Co., Ltd. The corrosion of the resin-coated aluminum material surface after spraying for 100 hours and after spraying for 200 hours was observed and evaluated. Evaluation was based on the following criteria: ◎: No corrosion, ○: Very slight corrosion but good, △: Minor corrosion, △: Corrosion is observed but usable, ×: Corrosion is severe and unusable . ◎, ○, ○ △ and △ were accepted, and x was rejected.

導電性、加工性、耐溶剤性の各試験による評価結果を、表1に示す。表1に示される結果から明らかなように、実施例1〜18は、放熱性、導電性ともに良好であり、加工性、耐溶剤性及び耐食性についても良好であった。   Table 1 shows the evaluation results of the conductivity, processability, and solvent resistance tests. As is clear from the results shown in Table 1, Examples 1 to 18 were good in heat dissipation and conductivity, and good in workability, solvent resistance and corrosion resistance.

一方、比較例1〜10は、放熱性、導電性、加工性、耐溶剤性及び耐食性のいずれかが不合格であり、電子機器用又は家電製品用の樹脂被覆アルミニウム材としては不適当であった。   On the other hand, Comparative Examples 1 to 10 failed in any of heat dissipation, conductivity, workability, solvent resistance and corrosion resistance, and were unsuitable as resin-coated aluminum materials for electronic devices or home appliances. It was.

具体的には、比較例1は、カルシウム交換型シリカの添加量が不十分であるため、耐食性(200時間噴霧)が劣っていた。
比較例2は、カルシウム交換型シリカの添加量が過剰であるため、耐食性は良好であるものの、曲げ加工を行なうとカルシウム交換型シリカが基点となって割れが生じ、曲げ加工性が劣っていた。また表面積に対してカルシウム交換型シリカの量が多過ぎるため、潤滑性、耐溶剤性が劣っていた。
比較例3は、ニッケル粉末の添加量が不十分であるため、導電性が劣っていた。
比較例4は、ニッケル粉末の添加量が過剰であるため、熱硬化性樹脂被膜の成膜が妨げられ、ニッケル粉末が樹脂層から脱落し曲げ加工性、耐溶剤性、耐食性(200時間噴霧)が劣っていた。
比較例5は、ニッケル粉末の最大長径の平均値が小さいため、導電性が劣っていた。
比較例6は、ニッケル粉末の最大長径の平均値が大きいため、曲げ加工を行うとニッケル粉末が基点となって割れが生じ、曲げ加工性が劣っていた。またニッケル粉末が脱落しやすくなるため耐溶剤性、耐食性(200時間噴霧)が劣っていた。
比較例7は、グラファイト粉末の添加量が不十分であるため、放熱性が劣っていた。
比較例8は、カーボンブラックの添加量が過剰であるため、塗装時に樹脂被膜が成膜しなかったことから評価に至らなかった。
比較例9は、グラファイト粉末の添加量が過剰であるため、グラファイト粉末が樹脂層から脱落し、曲げ加工性、耐溶剤性、耐食性(200時間)、耐色落ち性が劣っていた。
比較例10は、グラファイト粉末の平均粒径が大きいため、テープ試験を行なうとグラファイト粉末が基点となって割れが生じ剥離性が劣っていた。またグラファイト粉末が脱落し易くなるため耐溶剤性、耐食性(200時間噴霧試験)、耐色落ち性が劣っていた。
比較例11は、熱硬化性樹脂被膜の膜厚が厚いため、ニッケル粉末が電気絶縁性である樹脂に被覆され過ぎて導電性が劣っていた。
Specifically, Comparative Example 1 was inferior in corrosion resistance (200 hour spraying) because the amount of calcium-exchanged silica added was insufficient.
In Comparative Example 2, since the addition amount of the calcium exchange type silica is excessive, the corrosion resistance is good. However, when bending is performed, the calcium exchange type silica is used as a starting point to cause cracking, and the bending workability is inferior. . Moreover, since there was too much quantity of calcium exchange-type silica with respect to a surface area, lubricity and solvent resistance were inferior.
Comparative Example 3 was inferior in conductivity because the amount of nickel powder added was insufficient.
In Comparative Example 4, since the amount of nickel powder added is excessive, film formation of the thermosetting resin film is hindered, and the nickel powder falls off from the resin layer, so that bending workability, solvent resistance, and corrosion resistance (200 hour spray) Was inferior.
In Comparative Example 5, the average value of the maximum major axis of the nickel powder was small, so the conductivity was inferior.
In Comparative Example 6, since the average value of the maximum major axis of the nickel powder was large, when bending was performed, cracking occurred with the nickel powder serving as a base point, and bending workability was inferior. Moreover, since the nickel powder was easily removed, the solvent resistance and corrosion resistance (200 hours spraying) were inferior.
In Comparative Example 7, the heat dissipation was inferior because the amount of graphite powder added was insufficient.
In Comparative Example 8, since the amount of carbon black added was excessive, a resin film was not formed at the time of painting, so evaluation was not achieved.
In Comparative Example 9, since the amount of graphite powder added was excessive, the graphite powder dropped off from the resin layer, and bending workability, solvent resistance, corrosion resistance (200 hours), and color fading resistance were inferior.
In Comparative Example 10, since the average particle diameter of the graphite powder was large, when the tape test was performed, the graphite powder became a base point and cracks occurred, and the peelability was poor. Moreover, since the graphite powder was easily removed, the solvent resistance, corrosion resistance (200 hour spray test) and color fading resistance were poor.
In Comparative Example 11, since the thermosetting resin film was thick, the nickel powder was too coated with an electrically insulating resin and the conductivity was inferior.

実施例26、27
実施例26では実施例1と同様の熱硬化性樹脂被膜用の塗料を、実施例27では実施例12と同様の熱硬化性樹脂被膜用の塗料をそれぞれ調製した。また、実施例1と同様にして、アルミニウム基材を脱脂処理、水洗、乾燥し、その後、脱脂処理したアルミニウム基材の両面に化成処理を施した。更に、化成処理したアルミニウム基材の一方の面に、実施例26では実施例1と同じ塗料を同様にして、実施例27では実施例12と同じ塗料を同様にしてロールコーターで塗装した。
次いで、化成処理したアルミニウム基材の他方の面に、白色樹脂被膜用塗料を実施例1と同様のロールコーターを用いて同様に塗装した。白色樹脂被膜用塗料は、アクリル系樹脂100重量部に対して酸化チタン120重量部を含有する塗料である。
Examples 26 and 27
In Example 26, the same thermosetting resin coating material as in Example 1 was prepared, and in Example 27, the same thermosetting resin coating material as in Example 12 was prepared. Further, in the same manner as in Example 1, the aluminum substrate was degreased, washed and dried, and then subjected to chemical conversion treatment on both surfaces of the degreased aluminum substrate. Further, the same coating material as that of Example 1 was applied in Example 26 in the same manner as in Example 1 and the same coating material as that of Example 12 was applied in Example 27 in the same manner to one surface of the chemical conversion treated aluminum substrate.
Subsequently, the coating for white resin film was similarly applied to the other surface of the chemical conversion treated aluminum base using the same roll coater as in Example 1. The coating material for white resin coating is a coating material containing 120 parts by weight of titanium oxide with respect to 100 parts by weight of acrylic resin.

このようにアルミニウム基材の一方面に熱硬化性樹脂被膜塗料を、他方面に白色樹脂被膜塗料を塗装したものを、実施例1と同様の条件で焼付けた。実施例26及び27ともに、焼付け後における熱硬化性樹脂被膜の厚さは1.0μm、白色樹脂被膜の厚さは110μmであった。   Thus, what applied the thermosetting resin film coating material to the one surface of the aluminum base material and applied the white resin film coating material to the other surface was baked under the same conditions as in Example 1. In both Examples 26 and 27, the thickness of the thermosetting resin film after baking was 1.0 μm, and the thickness of the white resin film was 110 μm.

このようにして作製した試料について、導電性、放熱性、加工性、耐溶剤性、耐食性の各試験を実施例1と同様にして行った。評価結果を表2に示す。   With respect to the sample thus produced, tests for conductivity, heat dissipation, workability, solvent resistance, and corrosion resistance were carried out in the same manner as in Example 1. The evaluation results are shown in Table 2.

Figure 2008155392
Figure 2008155392

更に、実施例26、27では、下記のようにして光反射性試験も行ない、光反射性も評価した。   Furthermore, in Examples 26 and 27, a light reflectivity test was also performed as follows, and light reflectivity was also evaluated.

(光反射性試験)
全反射率はスガ試験機社製多光源分光測色計MSC−IS−2DH(積分球使用、拡散光照明8°方向受光)を用い、波長550nmでの全反射率(正反射成分を含む)をBaSO製白板を標準板とした時の光反射性試験に対する百分率で表した。なお、液晶反射板として用いるためには、全反射率が90%以上であることが適しており、90%以上を使用可能レベルの合格(○)とした。光反射性試験の結果も表2に併せて示す。
(Light reflectivity test)
Total reflectance is a multi-light source spectrocolorimeter MSC-IS-2DH (using an integrating sphere, diffuse light illumination 8 ° direction light reception) manufactured by Suga Test Instruments Co., Ltd. Was expressed as a percentage with respect to the light reflectivity test when a white plate made of BaSO 4 was used as a standard plate. In addition, in order to use as a liquid crystal reflecting plate, it is suitable that the total reflectivity is 90% or more, and 90% or more was determined to be acceptable (O). The results of the light reflectivity test are also shown in Table 2.

表2に示される結果から明らかなように、実施例26、27では、放熱性、導電性ともに良好であり、加工性、耐溶剤性及び耐食性についても良好であった。また、実施例26、27では、光反射面の全反射率はいずれも95%と優れた光反射性を示した。   As is clear from the results shown in Table 2, in Examples 26 and 27, both heat dissipation and conductivity were good, and workability, solvent resistance, and corrosion resistance were also good. In Examples 26 and 27, the total reflectance of the light reflecting surface was 95%, indicating an excellent light reflectivity.

本発明の樹脂被覆アルミニウム材は、良好な導電性、放熱性、加工性(潤滑性、曲げ加工性、剥離性)、耐溶剤性及び耐食性を有する。したがって、本発明の樹脂被覆アルミニウム材は、パーソナル・コンピュータ、エアコンの室外機や室内機のラジエター、冷蔵庫等の家電製品等、内部で熱を発生する電子部品、家電製品等の筐体や放熱板、反射板等の材料として好適である。また、白色樹脂被膜を更に設けた場合には反射性にも優れるので、アース性、シールド性、帯電防止性を必要とするCD−ROM等のドライブケース、パーソナル・コンピュータ関連機器や計測器等の電子機器部品材料用の筐体材料としても好適である。   The resin-coated aluminum material of the present invention has good conductivity, heat dissipation, workability (lubricity, bending workability, peelability), solvent resistance and corrosion resistance. Therefore, the resin-coated aluminum material of the present invention is a housing or a heat sink for an electronic component that generates heat internally, such as a personal computer, an outdoor unit of an air conditioner, a radiator of an indoor unit, a household appliance such as a refrigerator, or the like. It is suitable as a material such as a reflector. Further, when a white resin coating is further provided, it is excellent in reflectivity, so that a drive case such as a CD-ROM, a personal computer related device, a measuring instrument, etc. that require grounding, shielding, and antistatic properties are required. It is also suitable as a housing material for electronic device component materials.

本発明の樹脂被覆アルミニウム材を模式的に示す断面図である。It is sectional drawing which shows typically the resin-coated aluminum material of this invention. 本発明の樹脂被覆アルミニウム材の放熱性を評価する装置を模式的に示す断面図である。It is sectional drawing which shows typically the apparatus which evaluates the heat dissipation of the resin-coated aluminum material of this invention.

符号の説明Explanation of symbols

1 熱硬化性樹脂被膜
2 化成皮膜
3 アルミニウム基材
4 熱硬化性樹脂被覆アルミニウム材
5 光源
DESCRIPTION OF SYMBOLS 1 Thermosetting resin film 2 Chemical conversion film 3 Aluminum base material 4 Thermosetting resin coating aluminum material 5 Light source

Claims (5)

アルミニウム又はアルミニウム合金の基材と、当該基材の両面に形成した化成皮膜と、当該化成皮膜の少なくとも一方の上に形成した熱硬化性樹脂被膜と、を備えた樹脂被覆アルミニウム材であって、
前記熱硬化性樹脂被膜が、ポリエステル系樹脂成分100質量部に対してメラミン系樹脂成分10〜50質量部を配合した熱硬化性樹脂と、0.1〜30μmの平均粒径を有するグラファイト粉末と、カーボンブラックと、0.5〜100μmの最大長径平均値を有するニッケル粉末と、カルシウムイオン交換型シリカとを含み、グラファイト粉末が熱硬化性樹脂100重量部に対して3〜50重量部含有され、カーボンブラックが熱硬化性樹脂100質量部に対して1〜10質量部含有され、ニッケル粉末が熱硬化性樹脂100重量部に対して10〜100重量部含有され、カルシウムイオン交換型シリカが熱硬化性樹脂100重量部に対して3〜60重量部含有され、当該熱硬化性樹脂被膜の膜厚が5μm以下であることを特徴とする樹脂被覆アルミニウム材。
A resin-coated aluminum material comprising an aluminum or aluminum alloy base material, a chemical conversion film formed on both surfaces of the base material, and a thermosetting resin film formed on at least one of the chemical conversion film,
The thermosetting resin film is a thermosetting resin in which 10 to 50 parts by mass of a melamine resin component is blended with 100 parts by mass of a polyester resin component, and a graphite powder having an average particle size of 0.1 to 30 μm; , Carbon black, nickel powder having an average value of a maximum major axis of 0.5 to 100 μm, and calcium ion exchange silica, and 3 to 50 parts by weight of graphite powder is contained with respect to 100 parts by weight of thermosetting resin. Carbon black is contained in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the thermosetting resin, nickel powder is contained in an amount of 10 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin, and the calcium ion exchange silica is heated. 3 to 60 parts by weight with respect to 100 parts by weight of the curable resin, and the film thickness of the thermosetting resin film is 5 μm or less Aluminum material covering.
前記熱硬化性樹脂被膜が、分散剤としてアニオン性化合物、カチオン性化合物、非イオン性化合物及び高分子型化合物から選択される少なくとも一種を含有する、請求項1に記載の樹脂被覆アルミニウム材。   The resin-coated aluminum material according to claim 1, wherein the thermosetting resin film contains at least one selected from an anionic compound, a cationic compound, a nonionic compound, and a polymer compound as a dispersant. 一方の化成皮膜上に熱硬化性樹脂被膜が形成され、他方の化成皮膜上に白色顔料を含有する白色樹脂被膜が形成された、請求項1又は2のいずれか一項に記載の樹脂被覆アルミニウム材。   The resin-coated aluminum according to claim 1, wherein a thermosetting resin film is formed on one chemical conversion film, and a white resin film containing a white pigment is formed on the other chemical conversion film. Wood. 請求項1〜3のいずれか一項に記載の樹脂被覆アルミニウム材を用いた電子機器用又は家電製品用の筐体。   The housing | casing for electronic devices or household appliances using the resin-coated aluminum material as described in any one of Claims 1-3. 請求項4に記載の筐体を用いた電子機器又は家電製品。   The electronic device or household appliances using the housing | casing of Claim 4.
JP2006344110A 2006-12-21 2006-12-21 Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case Pending JP2008155392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344110A JP2008155392A (en) 2006-12-21 2006-12-21 Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344110A JP2008155392A (en) 2006-12-21 2006-12-21 Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case

Publications (1)

Publication Number Publication Date
JP2008155392A true JP2008155392A (en) 2008-07-10

Family

ID=39656860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344110A Pending JP2008155392A (en) 2006-12-21 2006-12-21 Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case

Country Status (1)

Country Link
JP (1) JP2008155392A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212692A (en) * 2013-05-22 2013-10-17 Furukawa-Sky Aluminum Corp Heat dissipating resin coated aluminum material, and production process therefor
CN113217603A (en) * 2021-04-30 2021-08-06 四川固锐德科技有限公司 Cylindrical wheel for heavy-load vehicle main reducing system and preparation method thereof
KR20210110845A (en) * 2019-02-05 2021-09-09 재팬 콤퍼짓 가부시키가이샤 Unsaturated polyester resin composition, molding material, molded article, and battery pack housing of electric vehicle
WO2023090184A1 (en) * 2021-11-17 2023-05-25 株式会社Uacj Resin-coated aluminum alloy sheet and resin composition for resin-coated aluminum alloy sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212692A (en) * 2013-05-22 2013-10-17 Furukawa-Sky Aluminum Corp Heat dissipating resin coated aluminum material, and production process therefor
KR20210110845A (en) * 2019-02-05 2021-09-09 재팬 콤퍼짓 가부시키가이샤 Unsaturated polyester resin composition, molding material, molded article, and battery pack housing of electric vehicle
KR102551415B1 (en) * 2019-02-05 2023-07-06 재팬 콤퍼짓 가부시키가이샤 Unsaturated polyester resin composition, molding material, molded article, and battery pack housing of electric vehicle
CN113217603A (en) * 2021-04-30 2021-08-06 四川固锐德科技有限公司 Cylindrical wheel for heavy-load vehicle main reducing system and preparation method thereof
CN113217603B (en) * 2021-04-30 2023-02-24 四川固锐德科技有限公司 Cylindrical wheel for heavy-load vehicle main reducing system and preparation method thereof
WO2023090184A1 (en) * 2021-11-17 2023-05-25 株式会社Uacj Resin-coated aluminum alloy sheet and resin composition for resin-coated aluminum alloy sheet

Similar Documents

Publication Publication Date Title
JP4634747B2 (en) High-performance resin-coated aluminum material with excellent heat dissipation
MX2008011452A (en) Coated steel sheet, works, panels for thin televisions and process for production of coated steel sheet.
JP2006192356A (en) Primer layer and paint composition
JP2008155392A (en) Resin-coated aluminum material, case for electronic instrument or household electric appliance using the material, and electronic instrument or household electric appliance using the case
EP1885812A1 (en) Coatings
TW200946567A (en) Powder coating material and fluorine-containing laminate
JP4922746B2 (en) Resin-coated aluminum material, casing for electronic device or household appliance using the same, and electronic device or household appliance using the casing
KR101232569B1 (en) Heterogeneous resin coated steel sheet improved thermal conductivity and heat-releaseproperty
JP4787372B1 (en) Resin-coated aluminum alloy plate
JP3563731B2 (en) Painted body for electronic equipment with excellent heat dissipation and conductivity
JP4767822B2 (en) Surface-treated metal plate
JPS6160766A (en) Lubricating film-forming aqueous composition
JP2007181984A (en) Resin-coated aluminum sheet material which is excellent in heat dissipating property, conductivity and processability
JP2009196126A (en) Resin-coated aluminum material excellent in machinability, electric conductivity, and radiation property
JP2004282055A (en) Coated structure for electronic apparatus member excellent in heat dissipation, and electronic apparatus component
KR101233507B1 (en) Cr-Free surface treatment compositions, and method for producing galvanized steel sheet using thereof, and galvanized steel sheet
JP2006258849A (en) Resin coated metallic plate superior in light reflectivity
CN1158360C (en) Materials coated with antifouling paint
JP2011177610A (en) Conductive precoated aluminum alloy plate
JP2005262841A (en) Resin coated aluminum material excellent in processability and heat radiation
JP2006240243A (en) Precoated aluminium alloy plate excellent in heat release nature
JP2010179541A (en) Resin-coated aluminum sheet excellent in design property, solvent resistance, heat radiability and electric conductivity
JP2008201053A (en) Surface-treated metal plate
KR101345067B1 (en) Heat emitting steel sheet for led and method of manufacturing the same
JP2007217584A (en) Method for producing coating composition and resin-coated metal plate with resin coating film formed therefrom