JP2005071844A - Current collection material for electrochemical element and battery using this as well as electric double layer capacitor using this - Google Patents
Current collection material for electrochemical element and battery using this as well as electric double layer capacitor using this Download PDFInfo
- Publication number
- JP2005071844A JP2005071844A JP2003301216A JP2003301216A JP2005071844A JP 2005071844 A JP2005071844 A JP 2005071844A JP 2003301216 A JP2003301216 A JP 2003301216A JP 2003301216 A JP2003301216 A JP 2003301216A JP 2005071844 A JP2005071844 A JP 2005071844A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- modulus
- fiber
- fibers
- electrochemical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
本発明は電気化学素子用集電材及びこれを用いた電池並びにこれを用いた電気二重層キャパシタに関する。 The present invention relates to a current collector for an electrochemical element, a battery using the same, and an electric double layer capacitor using the same.
例えば、アルカリ二次電池は高信頼性かつ小型軽量化が可能であるため、ポータブル機器から産業用大型設備までの各種装置の電源として多用されている。このアルカリ二次電池には、ほとんどの場合、正極としてニッケル電極が使用されている。このニッケル電極としては、集電機能を分担する集電材に、電池反応を生起させるための正極活物質を担持させた構造となっている。その場合の集電材としては、ニッケル粉末を焼結した焼結ニッケル板やパンチングニッケル板などが広く用いられてきた。電池の容量はこのようなニッケル板等の空隙中に充填された活物質の量によって決定され、当該活物質の充填量はニッケル板等の空隙率によって決定されるため、ニッケル板等の空隙率はできるだけ大きいのが好ましい。 For example, alkaline secondary batteries are highly reliable and can be reduced in size and weight, and are therefore widely used as power sources for various devices ranging from portable devices to industrial large facilities. In most of the alkaline secondary batteries, a nickel electrode is used as a positive electrode. The nickel electrode has a structure in which a positive electrode active material for causing a battery reaction is supported on a current collector that shares a current collecting function. As a current collector in that case, a sintered nickel plate or a punched nickel plate obtained by sintering nickel powder has been widely used. The capacity of the battery is determined by the amount of the active material filled in the voids such as the nickel plate, and the filling amount of the active material is determined by the porosity of the nickel plate or the like. Is preferably as large as possible.
そのため、本願出願人は「スルホン化処理、フッ素ガス処理又はビニルモノマーのグラフト処理により親水化処理された不織布と、前記不織布の表面に形成されたニッケルメッキ膜とを備えることを特徴とするアルカリ2次電気化学素子用集電材」を提案した(特許文献1)。この集電材は従来のニッケル板等と比べると空隙率の高いものであったが、空隙率が十分には高くなく、また、この集電材は外力によって変形しやすく、活物質充填時に集電材が潰れやすいため、活物質の充填量が少なくなる傾向があった。このように活物質の充填量の少ない集電材を使用して電池を作製しても、容量の低い電池しか製造することができなかった。 For this reason, the applicant of the present application states that “an alkali 2 comprising a non-woven fabric hydrophilized by sulfonation, fluorine gas treatment, or vinyl monomer grafting, and a nickel plating film formed on the surface of the non-woven fabric”. Next, a current collector for electrochemical devices "was proposed (Patent Document 1). This current collector had a higher porosity than conventional nickel plates, etc., but the porosity was not sufficiently high, and this current collector was easily deformed by external force, and the current collector was not filled when filled with an active material. Since it is easy to be crushed, the filling amount of the active material tends to decrease. Thus, even when a battery is manufactured using a current collector with a small amount of active material, only a battery having a low capacity can be manufactured.
また、集電材を構成する繊維として細い繊維を使用すれば、集電材の表面積を広くできるため高率充放電に優れる電池を製造することができるが、このような細い繊維を使用すると更に空隙率が低くなり、結果として容量の低い電池しか製造することができなかった。 In addition, if thin fibers are used as the fibers constituting the current collector, the surface area of the current collector can be increased, so that a battery excellent in high rate charge / discharge can be manufactured. However, if such thin fibers are used, the porosity is further increased. As a result, only a battery having a low capacity could be manufactured.
上述のような集電材を他の電気化学素子(例えば、電気二重層キャパシタ)の集電材として使用した場合も同様に、空隙率が十分には高くないこと(特に細い繊維を使用した場合)、及び活物質(電気二重層キャパシタの場合には活性炭)充填時に集電材が潰れやすいことによって、活物質充填量が少なくなり、結果として容量の低い電気化学素子(例えば、電気二重層キャパシタ)しか製造することができなかった。 Similarly, when the current collector as described above is used as a current collector for other electrochemical elements (for example, an electric double layer capacitor), the porosity is not sufficiently high (especially when thin fibers are used), And the active material (activated carbon in the case of an electric double layer capacitor) is easily crushed, the active material filling amount is reduced, and as a result, only a low-capacity electrochemical device (for example, an electric double layer capacitor) is produced. I couldn't.
本発明は上述のような問題点を解決するためになされたもので、空隙率が高く、活物質充填時に潰れにくいことによって活物質を多く充填することができ、結果として容量の大きい電気化学素子を製造できる集電材を提供することを第1の目的とする。また、高容量であることに加えて、高率充放電特性に優れた電気化学素子を製造できる集電材を提供することを第2の目的とする。 The present invention has been made in order to solve the above-described problems, and has a high porosity and can be filled with a large amount of an active material by being hard to be crushed when filled with an active material. It is a first object to provide a current collector that can manufacture the above. A second object is to provide a current collector that can produce an electrochemical element that is excellent in high rate charge / discharge characteristics in addition to high capacity.
本発明の請求項1にかかる発明は、「ヤング率が20cN/dtex以上の高ヤング率繊維を含む不織布にメッキが施されていることを特徴とする電気化学素子用集電材」である。高ヤング率繊維は曲げに対する剛性が高いため、不織布作製時の外力によっても潰れ難く、所望の厚さを確保することができるため、空隙率の高い集電材であることができる。また、不織布にメッキを施す際に、ロール状に巻き上げる巻き圧や、メッキ液の流れなどの外力が加わる場合があるが、外力によっても潰れにくいため、集電材は空隙率の高い状態にあることができる。更に、活物質充填時の圧力によっても潰れにくいため活物質を多く充填することができ、結果として容量の大きい電気化学素子を製造することができる。 The invention according to claim 1 of the present invention is “a current collector for an electrochemical element, characterized in that a non-woven fabric containing a high Young's modulus fiber having a Young's modulus of 20 cN / dtex or more is plated”. Since the high Young's modulus fiber has high rigidity to bending, it is difficult to be crushed by an external force during the production of the nonwoven fabric, and a desired thickness can be secured, so that it can be a current collector with a high porosity. Also, when plating on the nonwoven fabric, external force such as winding pressure that rolls up and the flow of plating solution may be applied, but the current collector has a high porosity because it is not easily crushed by external force. Can do. Furthermore, since it is difficult to be crushed by the pressure at the time of filling the active material, it can be filled with a large amount of active material, and as a result, an electrochemical device having a large capacity can be manufactured.
本発明の請求項2にかかる発明は、「高ヤング率繊維が融着していることを特徴とする、請求項1記載の電気化学素子用集電材」である。高ヤング率繊維自体が接着繊維の働きをして高ヤング率繊維が融着していると、ヤング率の低い接着繊維を使用する必要がないか、使用しても少ない量で済むため、高ヤング率繊維の含有量を多くすることができる。その結果、空隙率がより高く、より潰れにくい集電材であることができるため、活物質を多く充填することができ、容量の大きい電気化学素子を製造することができる。 The invention according to claim 2 of the present invention is "the current collector for an electrochemical element according to claim 1, characterized in that high Young's modulus fibers are fused." If the high Young's modulus fiber itself acts as an adhesive fiber and the high Young's modulus fiber is fused, there is no need to use an adhesive fiber with a low Young's modulus, or a small amount can be used. The content of Young's modulus fiber can be increased. As a result, since it can be a current collector with a higher porosity and less crushing, it can be filled with a large amount of active material, and an electrochemical element with a large capacity can be manufactured.
本発明の請求項3にかかる発明は、「不織布構成繊維として、繊度0.8dtex以下の細繊維を含んでいることを特徴とする、請求項1又は請求項2記載の電気化学素子用集電材」である。細繊維を含んでいることによって集電材の表面積が広く、活物質との接触面積が広い。そのため、集電効率が高く、より高電流での充放電が可能な高率充放電特性に優れる電気化学素子を製造することができる。 The invention according to claim 3 of the present invention is as follows: "The current collector for electrochemical device according to claim 1 or 2, characterized in that the nonwoven fabric comprises fine fibers having a fineness of 0.8 dtex or less. Is. By containing fine fibers, the current collector has a large surface area and a large contact area with the active material. Therefore, it is possible to manufacture an electrochemical device that has high current collection efficiency and is excellent in high rate charge / discharge characteristics that can be charged / discharged at a higher current.
本発明の請求項4にかかる発明は、「細繊維が高ヤング率繊維であることを特徴とする、請求項3記載の電気化学素子用集電材」である。通常の細繊維は曲げに対する剛性が低く、厚さの薄い不織布となりやすいが、細繊維が高ヤング率繊維であることによって、厚さを確保でき、空隙率の高い不織布であることができるとともに、活物質との接触面積が広いため、高容量かつ高率充放電特性に優れた電気化学素子を製造することが容易である。 The invention according to claim 4 of the present invention is "the current collector for an electrochemical element according to claim 3, wherein the fine fibers are high Young's modulus fibers". Normal fine fibers have low bending stiffness and are likely to be thin nonwoven fabrics, but because the fine fibers are high Young's modulus fibers, the thickness can be secured, and the nonwoven fabric can have a high porosity, Since the contact area with the active material is wide, it is easy to produce an electrochemical device having a high capacity and a high rate charge / discharge characteristic.
本発明の請求項5にかかる発明は、「高ヤング率繊維として繊度3.3dtex以上の高ヤング率太繊維を含んでいることを特徴とする、請求項1〜請求項4のいずれかに記載の電気化学素子用集電材」である。高ヤング率太繊維を含んでいることによって、嵩高で空隙率の高い集電材であることができ、また活物質を充填する際の圧力によっても潰れにくく、活物質をより多く充填することができるため、高容量の電気化学素子を製造することが容易である。また、集電材の孔径が大きくなるため、活物質の充填性に優れ、活物質を集電材の内部にまで充填しやすい集電材である。 The invention according to claim 5 of the present invention is as described in any one of claims 1 to 4, characterized in that it includes high Young modulus thick fibers having a fineness of 3.3 dtex or more as high Young modulus fibers. Current collector for electrochemical device ". By including a high Young's modulus thick fiber, it can be a bulky and high porosity current collector, and it is less likely to be crushed by the pressure when filling the active material, and more active material can be filled. Therefore, it is easy to manufacture a high-capacity electrochemical element. In addition, since the pore diameter of the current collector becomes large, the current collector is excellent in fillability of the active material and is easy to fill the active material into the current collector.
本発明の請求項6にかかる発明は、「集電材の空隙率が85〜95%であることを特徴とする、請求項1〜請求項5のいずれかに記載の電気化学素子用集電材」である。このように空隙率が高いと活物質の充填量を多くできるため、容量の高い電気化学素子を製造することができる。 The invention according to claim 6 of the present invention is “the current collector for an electrochemical element according to any one of claims 1 to 5, wherein the porosity of the current collector is 85 to 95%”. It is. Thus, when the porosity is high, the amount of the active material filled can be increased, so that an electrochemical element having a high capacity can be manufactured.
本発明の請求項7にかかる発明は、「集電材の圧縮弾性率が85%以上であることを特徴とする、請求項1〜請求項6のいずれかに記載の電気化学素子用集電材」である。このような圧縮弾性率であると、活物質を充填する際の圧力によっても潰れにくいため、活物質の充填量を多くすることができる。 The invention according to claim 7 of the present invention is “the current collector for an electrochemical element according to any one of claims 1 to 6, wherein the compressive elastic modulus of the current collector is 85% or more”. It is. With such a compression elastic modulus, it is difficult to be crushed even by the pressure at the time of filling the active material, so that the filling amount of the active material can be increased.
本発明の請求項8にかかる発明は、「請求項1〜請求項7のいずれかに記載の電気化学素子用集電材を備えた電池」である。そのため、容量の大きい電池である。特に細繊維として高ヤング率繊維を含む集電材を用いた電池は高容量かつ高率充放電特性に優れた電池であり、パワー用途に適した電池である。 The invention according to an eighth aspect of the present invention is a “battery provided with the current collector for an electrochemical element according to any one of the first to seventh aspects”. Therefore, the battery has a large capacity. In particular, a battery using a current collector containing a high Young's modulus fiber as a fine fiber is a battery having a high capacity and excellent high rate charge / discharge characteristics, and is a battery suitable for power applications.
本発明の請求項9にかかる発明は、「請求項1〜請求項7のいずれかに記載の電気化学素子用集電材を備えた電気二重層キャパシタ」である。そのため、容量の大きい電気二重層キャパシタである。特に細繊維として高ヤング率繊維を含む集電材を用いた電気二重層キャパシタは高容量かつ高率充放電特性に優れた電気二重層キャパシタであり、パワー用途に適した電気二重層キャパシタである。 The invention according to claim 9 of the present invention is “an electric double layer capacitor including the current collector for an electrochemical element according to any one of claims 1 to 7”. Therefore, the electric double layer capacitor has a large capacity. In particular, an electric double layer capacitor using a current collector containing a high Young's modulus fiber as a fine fiber is an electric double layer capacitor having high capacity and excellent high rate charge / discharge characteristics, and is an electric double layer capacitor suitable for power applications.
本発明の集電材は空隙率が高く、また圧力が加わっても潰れにくく、活物質の充填量を多くすることができるため、高容量の電気化学素子を製造することができる。また、細繊維を使用しても空隙率が高く、また圧力が加わっても潰れにくいため、高容量かつ高率充放電特性に優れた電気化学素子を製造することができる。 The current collector of the present invention has a high porosity, is not easily crushed even when pressure is applied, and can increase the filling amount of the active material, so that a high-capacity electrochemical device can be manufactured. In addition, even if fine fibers are used, the porosity is high, and even if pressure is applied, they are not easily crushed. Therefore, an electrochemical element having a high capacity and excellent high rate charge / discharge characteristics can be produced.
本発明の電池又は電気二重層キャパシタは前記集電材を使用したものであるため、高容量の電池又は電気二重層キャパシタであることができる。特に、細繊維として高ヤング率繊維を含む集電材を用いた電池又は電気二重層キャパシタは、高容量かつ高率充放電特性に優れている。 Since the battery or electric double layer capacitor of the present invention uses the current collector, it can be a high capacity battery or electric double layer capacitor. In particular, a battery or an electric double layer capacitor using a current collector containing a high Young's modulus fiber as a fine fiber is excellent in high capacity and high rate charge / discharge characteristics.
本発明の集電材は、不織布製造時、メッキを施すためにロール状に巻き上げた時、或いはメッキ液が流れる時などに加わる圧力によっても潰れにくく、所望の厚さを確保して空隙率が高く、しかも活物質充填時の圧力によっても潰れにくく、活物質を多く充填することができるように、ヤング率が20cN/dtex以上の高ヤング率繊維を含んでいる。この高ヤング率繊維のヤング率が高ければ高い程、前記性能に優れているため、30cN/dtex以上であるのが好ましい。なお、高ヤング率繊維のヤング率の上限は特に限定するものではないが、100cN/dtexを超えると、曲げに対する剛性が高すぎて、繊維同士が絡みずらくなり、繊維ウエブの形成が困難になる傾向があるため、100cN/dtex以下であるのが好ましい。なお、本明細書における「ヤング率」は、JIS L 1015:1999、8.11項に規定されている方法により測定した初期引張抵抗度から算出した見掛ヤング率の値をいう。 The current collector of the present invention is not easily crushed by the pressure applied when the nonwoven fabric is manufactured, rolled up for plating, or when the plating solution flows, ensuring a desired thickness and high porosity. In addition, high Young's modulus fibers having a Young's modulus of 20 cN / dtex or more are included so that they are not easily crushed by the pressure at the time of filling the active material and can be filled with a large amount of the active material. The higher the Young's modulus of this high Young's modulus fiber, the better the performance, so it is preferably 30 cN / dtex or more. The upper limit of the Young's modulus of the high Young's modulus fiber is not particularly limited, but if it exceeds 100 cN / dtex, the bending stiffness is too high, and the fibers are difficult to get entangled, making it difficult to form a fiber web. Therefore, it is preferably 100 cN / dtex or less. The “Young's modulus” in this specification refers to the value of the apparent Young's modulus calculated from the initial tensile resistance measured by the method defined in JIS L 1015: 1999, paragraph 8.11.
本発明の高ヤング率繊維を構成する樹脂は電池、電気二重層キャパシタ等の電気化学素子で使用されている電解液によって劣化せず、しかも電気化学素子内部における電気化学反応によって劣化しない樹脂であれば良く、特に限定するものではないが、ポリオレフィン系樹脂から構成されているのが好ましい。より具体的には、例えば、プロピレン単独重合体、プロピレンとα−オレフィン(例えばエチレン、ブテン−1など)との共重合体、高密度、中密度、低密度ポリエチレンや直鎖状低密度ポリエチレンなどのエチレン系重合体、ポリ4−メチルペンテン−1などを挙げることができる。 The resin constituting the high Young's modulus fiber of the present invention is a resin that does not deteriorate due to an electrolyte used in an electrochemical element such as a battery or an electric double layer capacitor, and that does not deteriorate due to an electrochemical reaction inside the electrochemical element. Although it does not specifically limit and it is preferable to comprise from polyolefin resin. More specifically, for example, propylene homopolymer, copolymer of propylene and α-olefin (for example, ethylene, butene-1, etc.), high density, medium density, low density polyethylene, linear low density polyethylene, etc. And ethylene-based polymer, poly-4-methylpentene-1, and the like.
本発明の高ヤング率繊維は樹脂1種類、又は2種類以上から構成することができる。特に高ヤング率繊維が融点の点で異なる2種類以上の樹脂からなり、繊維表面に最も融点の高い樹脂以外の樹脂が存在していると、その樹脂によって融着できるとともに高ヤング率繊維の曲げ剛性の低下を抑制することができるため好適である。なお、最も融点の高い樹脂と繊維表面に存在している樹脂との融点差は10℃以上あるのが好ましく、20℃以上あるのがより好ましい。また、2種類以上の樹脂からなる高ヤング率繊維の横断面における樹脂の配置状態は、例えば、芯鞘状、サイドバイサイド型、オレンジ状、海島型、多層積層型などを挙げることができ、特に融着に関与できる樹脂の多い芯鞘状又は海島型であるのが好ましい。特に、ニッケル水素電池用の集電材を構成する高ヤング率繊維としては、芯がポリプロピレンからなり、鞘がポリエチレンからなる芯鞘状の高ヤング率繊維を含んでいるのが好ましい。 The high Young's modulus fiber of the present invention can be composed of one type of resin or two or more types. In particular, if the high Young's modulus fiber consists of two or more types of resins that differ in melting point, and there is a resin other than the resin having the highest melting point on the fiber surface, it can be fused with the resin and bend the high Young's modulus fiber. This is preferable because a reduction in rigidity can be suppressed. The difference in melting point between the resin having the highest melting point and the resin existing on the fiber surface is preferably 10 ° C. or more, and more preferably 20 ° C. or more. Examples of the arrangement state of the resin in the cross section of the high Young's modulus fiber composed of two or more kinds of resins include a core-sheath type, a side-by-side type, an orange type, a sea-island type, and a multilayer laminated type. It is preferably a core-sheath or sea-island type with a large amount of resin that can be involved in wearing. In particular, the high Young's modulus fibers constituting the current collector for nickel metal hydride batteries preferably include core-sheathed high Young's modulus fibers whose core is made of polypropylene and whose sheath is made of polyethylene.
本発明の高ヤング率繊維の繊度は特に限定するものではないが、繊度0.8dtex以下の高ヤング率細繊維を含んでいるのが好ましい。高ヤング率細繊維を含んでいると、集電材の厚さを確保でき、空隙率の高い集電材であることができるとともに、活物質との接触面積が広いため集電性能に優れ、高容量かつ高率充放電特性に優れた電気化学素子を製造することが容易であるためである。この高ヤング率細繊維は前記性能に優れるように、不織布中、5mass%以上含まれているのが好ましい。 The fineness of the high Young's modulus fiber of the present invention is not particularly limited, but it is preferable to include a high Young's modulus fine fiber having a fineness of 0.8 dtex or less. The inclusion of high Young's modulus fine fibers ensures the thickness of the current collector, allows it to be a current collector with a high porosity, and has a wide contact area with the active material, resulting in excellent current collection performance and high capacity. This is because it is easy to produce an electrochemical element excellent in high rate charge / discharge characteristics. The high Young's modulus fine fibers are preferably contained in the nonwoven fabric in an amount of 5 mass% or more so as to be excellent in the performance.
また、本発明の高ヤング率繊維として、繊度3.3dtex以上の高ヤング率太繊維を含んでいるのが好ましい。高ヤング率太繊維を含んでいると、嵩高で空隙率の高い集電材であることができ、また活物質を充填する際の圧力によっても潰れにくく、活物質をより多く充填することができるため、高容量の電気化学素子を製造することが容易であるためである。また、集電材の孔径が大きくなるため、活物質の充填性に優れ、活物質を集電材の内部にまで充填しやすい集電材であるためである。この高ヤング率太繊維の繊度が大きければ大きい程、前記性能に優れているため、高ヤング率太繊維の繊度は4.4dtex以上であるのが好ましく、5.5dtex以上であるのがより好ましく、6.6dtex以上であるのが更に好ましい。なお、このような高ヤング率太繊維は前記性能に優れているように、不織布中、5mass%以上含まれているのが好ましい。 Moreover, it is preferable that the high Young's modulus fiber of the present invention includes a high Young's modulus thick fiber having a fineness of 3.3 dtex or more. When containing high Young's modulus thick fibers, it can be a bulky and high porosity current collector, and it is less likely to be crushed by the pressure when filling the active material, and more active material can be filled. This is because it is easy to produce a high-capacity electrochemical device. In addition, since the pore diameter of the current collector becomes large, the current collector is excellent in filling of the active material and is easy to fill the active material into the current collector. The higher the fineness of the high Young's modulus thick fiber, the better the performance. Therefore, the fineness of the high Young's modulus thick fiber is preferably 4.4 dtex or more, more preferably 5.5 dtex or more. More preferably, it is 6.6 dtex or more. In addition, it is preferable that 5 mass% or more of such a high Young's modulus thick fiber is contained in a nonwoven fabric so that the said performance is excellent.
なお、高ヤング率繊維として高ヤング率太繊維と高ヤング率細繊維の両方を含んでいても良いし、繊度が0.8dtexを超え、3.3dtex未満の高ヤング率繊維を含んでいても良い。 The high Young's modulus fiber may include both a high Young's modulus thick fiber and a high Young's modulus fine fiber, or may include a high Young's modulus fiber having a fineness of more than 0.8 dtex and less than 3.3 dtex. good.
本発明における繊度は繊維の直径をもとに次の式によって算出した値を意味する。
繊度(dtex)=1.1×SGf×(R÷11.89)2
ここで、SGf(g/cm3)は繊維比重を意味し、繊維が2種類以上の樹脂からなる場合には各樹脂の質量平均値を意味する。また、R(μm)は繊維直径を意味する。なお、繊維の横断面形状が非円形である場合には、同じ断面積を有する円の直径を繊維直径とみなす。
The fineness in the present invention means a value calculated by the following formula based on the diameter of the fiber.
Fineness (dtex) = 1.1 × SGf × (R ÷ 11.89) 2
Here, SGf (g / cm 3 ) means the specific gravity of the fiber, and when the fiber is made of two or more kinds of resins, it means the mass average value of each resin. R (μm) means the fiber diameter. When the cross-sectional shape of the fiber is non-circular, the diameter of a circle having the same cross-sectional area is regarded as the fiber diameter.
本発明の高ヤング率繊維の繊維長は不織布の製造方法によって異なり、特に限定するものではない。例えば、乾式法により不織布を製造する場合には、繊維同士が十分に絡むように、40mm以上であるのが好ましく、湿式法により不織布を製造する場合には、スラリー中で繊維が分散しやすいように、10mm以下であるのが好ましい。なお、本明細書における繊維長は、JIS L 1015(化学繊維ステープル試験法)B法(補正ステープルダイヤグラム法)により得られる長さをいう。 The fiber length of the high Young's modulus fiber of the present invention varies depending on the method for producing the nonwoven fabric and is not particularly limited. For example, when manufacturing a nonwoven fabric by a dry method, it is preferable that it is 40 mm or more so that fibers may be sufficiently entangled. When a nonwoven fabric is manufactured by a wet method, the fibers are likely to be dispersed in the slurry. Further, it is preferably 10 mm or less. In addition, the fiber length in this specification means the length obtained by JISL1015 (chemical fiber staple test method) B method (correction staple diagram method).
このような高ヤング率繊維は空隙率の高い集電材とすることができ、外力によっても潰れにくいように、不織布中、5mass%以上含まれているのが好ましく、10mass%以上含まれているのがより好ましく、20mass%以上含まれているのが更に好ましく、30mass%以上含まれているのが更に好ましく、40mass%以上含まれているのが更に好ましく、50mass%以上含まれているのが更に好ましい。 Such high Young's modulus fibers can be used as a current collector with a high porosity, and are preferably contained in an amount of 5 mass% or more in the nonwoven fabric so that they are not easily crushed by an external force. More preferably, 20% by mass or more is further included, 30% by mass or more is further preferable, 40% by mass or more is further preferable, and 50% by mass or more is further included. preferable.
なお、本発明の高ヤング率繊維は、例えば、特開2002−180330号公報や特開平11−350283号公報に記載の方法によって製造することができる。 In addition, the high Young's modulus fiber of this invention can be manufactured by the method as described in Unexamined-Japanese-Patent No. 2002-180330 or Unexamined-Japanese-Patent No. 11-350283, for example.
本発明の集電材のもととなる不織布は上述のような高ヤング率繊維以外に、繊度0.8dtex以下の細繊維を含んでいることができる。このような細繊維を含んでいることによって集電材の表面積が広く、活物質との接触面積が広くなる結果、集電効率が高く、高率充放電特性に優れる電気化学素子を製造しやすくなるためである。この細繊維を構成する樹脂も電池、電気二重層キャパシタ等の電気化学素子で使用されている電解液によって劣化せず、しかも電気化学素子内部における電気化学反応によって劣化しない樹脂であれば良く、特に限定するものではないが、高ヤング率繊維を構成する樹脂と同様のポリオレフィン系樹脂から構成されているのが好ましい。なお、上述のような高ヤング率繊維が単一の樹脂からなる場合には、不織布形態を保つことができるとともに高ヤング率繊維の曲げ剛性の低下を抑制できるように、細繊維は高ヤング率繊維を構成する樹脂よりも融点の低い(好ましくは10℃以上低い)樹脂を繊維表面に含み、接着繊維として作用できるのが好ましい。細繊維も樹脂1種類、又は2種類以上から構成することができるが、接着繊維として作用する場合には、繊維形態を維持できるように、融点差(好ましくは10℃以上)のある2種類以上の樹脂から構成されているのが好ましい。接着繊維として作用する場合には、接着面積が広い、横断面における樹脂の配置状態が芯鞘状又は海島型であるのが好ましい。更に細繊維の繊維長は不織布の製造方法によって異なり、乾式法により不織布を製造する場合には、40mm以上であるのが好ましく、湿式法により不織布を製造する場合には、10mm以下であるのが好ましい。このような細繊維は溶融紡糸法によって製造することができるし、また、海島型複合繊維の海成分を抽出除去することによって、島成分からなる細繊維を製造することができるし、外力によって分割可能な複合繊維に対して外力を作用させることによって分割して細繊維を製造することもできる。このような細繊維の含有量は特に限定されるものではないが、細繊維が接着繊維として作用する場合には、不織布中、5mass%以上含有しているのが好ましい。 The non-woven fabric that is the basis of the current collector of the present invention can contain fine fibers having a fineness of 0.8 dtex or less in addition to the above-described high Young's modulus fibers. By including such fine fibers, the surface area of the current collector is large and the contact area with the active material is widened. As a result, it is easy to manufacture an electrochemical device having high current collection efficiency and excellent high-rate charge / discharge characteristics. Because. The resin constituting this fine fiber may be a resin that is not deteriorated by an electrolytic solution used in an electrochemical element such as a battery or an electric double layer capacitor, and that is not deteriorated by an electrochemical reaction inside the electrochemical element. Although it does not limit, it is preferable to be comprised from the polyolefin resin similar to resin which comprises a high Young's modulus fiber. When the high Young's modulus fiber as described above is made of a single resin, the fine fiber has a high Young's modulus so that the nonwoven fabric can be maintained and the decrease in bending rigidity of the high Young's modulus fiber can be suppressed. It is preferable that a resin having a lower melting point (preferably lower by 10 ° C. or more) than the resin constituting the fiber is included on the fiber surface and can act as an adhesive fiber. The fine fibers can also be composed of one kind of resin, or two or more kinds, but when acting as an adhesive fiber, two or more kinds having a melting point difference (preferably 10 ° C. or more) so that the fiber form can be maintained. It is preferable that it is comprised from this resin. In the case of acting as an adhesive fiber, it is preferable that the resin is arranged in a cross-section in a core-sheath or sea-island type with a wide adhesive area. Furthermore, the fiber length of the fine fibers varies depending on the production method of the nonwoven fabric. When the nonwoven fabric is produced by a dry method, it is preferably 40 mm or more, and when the nonwoven fabric is produced by a wet method, it is 10 mm or less. preferable. Such fine fibers can be produced by melt spinning, and by extracting and removing the sea component of the sea-island type composite fiber, fine fibers comprising the island component can be produced and divided by external force. Fine fibers can also be produced by splitting by applying an external force to possible composite fibers. The content of such fine fibers is not particularly limited, but when the fine fibers act as adhesive fibers, it is preferable that the content is 5 mass% or more in the nonwoven fabric.
本発明の集電材のもととなる不織布は上述のような高ヤング率繊維、細繊維以外に、繊度3.3dtex以上の太繊維を含んでいることができる。このような太繊維を含んでいることによって、ある程度嵩高で空隙率の高い集電材とし、また活物質を充填する際の圧力によっても潰れにくく、活物質をより多く充填することができるためである。また、集電材の孔径を大きくでき、活物質の充填性に優れ、活物質を集電材の内部にまで充填しやすくできるためである。この太繊維を構成する樹脂も電池、電気二重層キャパシタ等の電気化学素子で使用されている電解液によって劣化せず、しかも電気化学素子内部における電気化学反応によって劣化しない樹脂であれば良く、特に限定するものではないが、高ヤング率繊維を構成する樹脂と同様のポリオレフィン系樹脂から構成されているのが好ましい。なお、上述のような高ヤング率繊維が単一の樹脂からなる場合には、不織布形態を保つことができるとともに高ヤング率繊維の曲げ剛性の低下を抑制できるように、太繊維は高ヤング率繊維を構成する樹脂よりも融点の低い(好ましくは10℃以上低い)樹脂を繊維表面に含み、接着繊維として作用できるのが好ましい。太繊維も樹脂1種類、又は2種類以上から構成することができるが、接着繊維として作用する場合には、繊維形態を維持できるように、融点差(好ましくは10℃以上)のある2種類以上の樹脂から構成されているのが好ましい。接着繊維として作用する場合には、接着面積が広い、横断面における樹脂の配置状態が芯鞘状又は海島型であるのが好ましい。更に太繊維の繊維長は不織布の製造方法によって異なり、乾式法により不織布を製造する場合には、40mm以上であるのが好ましく、湿式法により不織布を製造する場合には、10mm以下であるのが好ましい。このような太繊維の含有量は特に限定されるものではないが、太繊維が接着繊維として作用する場合には、不織布中、5mass%以上含有しているのが好ましい。 The non-woven fabric that is the basis of the current collector of the present invention can contain thick fibers having a fineness of 3.3 dtex or more in addition to the high Young's modulus fibers and fine fibers as described above. By including such a thick fiber, the current collector is bulky to a certain extent and has a high porosity, and is less likely to be crushed by the pressure when filling the active material, and more active material can be filled. . Moreover, the pore diameter of the current collector can be increased, the active material can be easily filled, and the active material can be easily filled into the current collector. The resin constituting this thick fiber may be a resin that is not deteriorated by an electrolyte used in an electrochemical element such as a battery or an electric double layer capacitor, and that is not deteriorated by an electrochemical reaction inside the electrochemical element. Although it does not limit, it is preferable to be comprised from the polyolefin resin similar to resin which comprises a high Young's modulus fiber. When the high Young's modulus fiber as described above is made of a single resin, the thick fiber has a high Young's modulus so that the nonwoven fabric can be maintained and the decrease in bending rigidity of the high Young's modulus fiber can be suppressed. It is preferable that a resin having a lower melting point (preferably lower by 10 ° C. or more) than the resin constituting the fiber is included on the fiber surface and can act as an adhesive fiber. Thick fibers can also be composed of one type of resin, or two or more types, but when acting as an adhesive fiber, two or more types having a melting point difference (preferably 10 ° C. or higher) so that the fiber form can be maintained. It is preferable that it is comprised from this resin. In the case of acting as an adhesive fiber, it is preferable that the resin is arranged in a cross-section in a core-sheath or sea-island type with a wide adhesive area. Furthermore, the fiber length of the thick fiber varies depending on the method for producing the nonwoven fabric, and when the nonwoven fabric is produced by a dry method, it is preferably 40 mm or more, and when the nonwoven fabric is produced by a wet method, it is 10 mm or less. preferable. The content of such a thick fiber is not particularly limited, but when the thick fiber acts as an adhesive fiber, it is preferably contained in 5 mass% or more in the nonwoven fabric.
本発明の集電材のもととなる不織布の目付や厚さは、電気化学素子の種類、例えば形態が円筒状であるか平板状であるかなどによって変るため、特に限定するものではない。例えば、円筒型電池の場合、極板群作製時の巻取り性に優れるように、目付は200g/m2以下で、厚さは2mm以下であるのが好ましい。 The basis weight and thickness of the nonwoven fabric that is the basis of the current collector of the present invention are not particularly limited because it varies depending on the type of electrochemical element, for example, whether the form is cylindrical or flat. For example, in the case of a cylindrical battery, it is preferable that the basis weight is 200 g / m 2 or less and the thickness is 2 mm or less so that the winding property at the time of preparing the electrode plate group is excellent.
本発明の集電材のもととなる不織布は上述のような高ヤング率繊維を含むものであるが、この不織布は常法により製造することができる。つまり、乾式法又は湿式法により繊維ウエブを形成した後、繊維同士を絡合、融着、或いは接着剤により接着して製造することができる。一般的に、空隙率のより高い不織布を製造するには太繊維(高ヤング率太繊維を含む)を使用するのが好ましいため、太繊維を使用した繊維ウエブの形成に適している乾式法により繊維ウエブを形成するのが好ましい。また、表面積がより広く、目付の均一な不織布を製造するには細繊維(高ヤング率細繊維を含む)を使用するのが好ましいため、細繊維を使用した繊維ウエブの形成に適している湿式法により繊維ウエブを形成するのが好ましい。 Although the nonwoven fabric used as the base of the current collection material of this invention contains the above high Young's modulus fibers, this nonwoven fabric can be manufactured by a conventional method. That is, after a fiber web is formed by a dry method or a wet method, the fibers can be manufactured by being entangled, fused, or bonded by an adhesive. In general, it is preferable to use thick fibers (including high Young's modulus thick fibers) to produce a nonwoven fabric with a higher porosity, and therefore, by a dry method suitable for forming a fiber web using thick fibers. It is preferred to form a fiber web. Moreover, since it is preferable to use fine fibers (including high Young's modulus fine fibers) to produce a nonwoven fabric with a larger surface area and uniform basis weight, it is suitable for forming a fiber web using fine fibers. The fiber web is preferably formed by the method.
なお、繊維ウエブの結合方法として、高ヤング率繊維が融着していると、ヤング率の低い接着繊維を使用する必要がないか、使用しても少ない量で済むため、高ヤング率繊維の含有量を多くすることができ、高ヤング率繊維同士の交点が固定され、高ヤング率繊維の自由度が低く、圧縮弾性率のより高い集電材を製造できる。そのため、空隙率がより高く、活物質を充填する際の圧力によっても潰れにくい集電材を製造でき、活物質を多く充填することができて、容量の大きい電気化学素子を製造できるため好適である。 As a method of bonding the fiber web, if the high Young's modulus fiber is fused, it is not necessary to use an adhesive fiber having a low Young's modulus, or a small amount can be used. It is possible to increase the content, to fix the intersection of the high Young's modulus fibers, to produce a current collector with a high degree of compression modulus and a low degree of freedom of the high Young's modulus fibers. Therefore, it is preferable because it is possible to manufacture a current collector that has a higher porosity and is less likely to be crushed by pressure when filling the active material, can be filled with a large amount of active material, and can produce an electrochemical element with a large capacity. .
本発明の集電材は上述のような不織布にメッキが施されたものである。メッキ金属の種類は電気化学素子の種類によって異なり、電解液及び電気化学反応への耐性がある金属を選択すれば良く、特に限定するものではないが、例えば、ニッケル水素電池用集電材又はニッケルカドミウム電池用集電材の場合にはニッケルメッキ、リチウムイオン二次電池用集電材の場合には銅またはアルミニウムメッキ、電気二重層キャパシタ用集電材であればニッケルメッキまたはアルミニウムメッキが適している。 The current collector of the present invention is obtained by plating the above-described nonwoven fabric. The type of plating metal differs depending on the type of electrochemical element, and it is sufficient to select a metal that is resistant to the electrolytic solution and electrochemical reaction, and is not particularly limited. For example, a current collector for nickel-metal hydride batteries or nickel cadmium Nickel plating is suitable for battery current collectors, copper or aluminum plating for lithium ion secondary battery current collectors, and nickel plating or aluminum plating is suitable for current collectors for electric double layer capacitors.
また、メッキ量も特に限定するものではないが、メッキ質量が集電材質量の30%以上であると、電気抵抗が低く好ましく、また、70%を超えると、メッキ金属により繊維が太くなり、集電材の孔径が小さくなり、活物質の充填性が悪くなるため、70%以下であるのが好ましい。 Also, the amount of plating is not particularly limited, but if the plating mass is 30% or more of the current collector mass, the electrical resistance is preferably low. Since the pore diameter of the electric material is reduced and the filling property of the active material is deteriorated, it is preferably 70% or less.
なお、不織布へのメッキ方法は特に限定されるものではないが、例えば、無電解メッキ法、必要により電解メッキ法を併用して実施することができる。例えば、ニッケルメッキは次のようにして実施できる。 In addition, the plating method to a nonwoven fabric is not specifically limited, For example, it can carry out by using together the electroless plating method and the electroplating method as needed. For example, nickel plating can be performed as follows.
まず、触媒付与化工程を実施する。この触媒付与化工程は、塩化第一錫の塩酸水溶液で処理した後に塩化パラジウムの塩酸水溶液で触媒化する方法と、硬化剤のアミノ基を含む塩化パラジウムの塩酸溶液のみで固定化する方法などがあるが、前者による方法の方が、メッキ膜厚の均一性に優れているため好ましい。 First, a catalyst provision process is implemented. This catalyst imparting step includes a method of treating with a hydrochloric acid aqueous solution of stannous chloride and then catalyzing with an aqueous hydrochloric acid solution of palladium chloride, a method of fixing only with a hydrochloric acid solution of palladium chloride containing an amino group of a curing agent, and the like. However, the former method is preferable because of excellent uniformity of the plating film thickness.
次いで、無電解メッキ工程を実施する。この工程は、一般的に硝酸ニッケル、塩化ニッケル、硫酸ニッケル等のニッケル塩を含有する水溶液中でニッケルを還元剤にて還元する工程で、必要に応じて錯化剤、pH調整剤、緩衝剤、安定化剤等を投入する。特に純度の高いニッケル皮膜を得るため、還元剤として水和ヒドラジン、硫酸ヒドラジン、酸化ヒドラジン等のヒドラジン誘導体を使用するのが好ましい。この無電解メッキ工程として、長尺状の不織布を触媒付与槽からメッキ槽へと連続的に供給してメッキする方法、不織布をロール状に巻き取った状態のままチーズ染色機に投入し、強制的にめっき液を循環させてメッキする方法、などを挙げることができる。不織布をロール状に巻き取った状態のまま無電解メッキを実施する場合には、触媒付与工程のみ、又は無電解メッキ工程のみをロール状に巻き取った状態のまま実施しても良いし、両工程をロール状に巻き取った状態のまま実施しても良い。このようにロール状に巻き取る圧力や、強制的にめっき液を循環させた時の液圧によっても不織布は潰れにくいため、空隙率の高い集電材を製造することができる。 Next, an electroless plating process is performed. This step is generally a step of reducing nickel with a reducing agent in an aqueous solution containing nickel salts such as nickel nitrate, nickel chloride, nickel sulfate and the like, complexing agent, pH adjusting agent, buffering agent as required Add stabilizers. In order to obtain a nickel film having particularly high purity, it is preferable to use a hydrazine derivative such as hydrated hydrazine, hydrazine sulfate, or hydrazine oxide as a reducing agent. As this electroless plating step, a method of continuously feeding a long nonwoven fabric from a catalyst application tank to a plating tank and plating it, putting the nonwoven fabric in a roll shape into a cheese dyeing machine, forcing For example, a method of plating by circulating a plating solution may be used. When electroless plating is carried out with the nonwoven fabric wound up in a roll shape, only the catalyst application step or only the electroless plating step may be carried out in a roll shape, or both You may implement a process with the state wound up in roll shape. Thus, since the nonwoven fabric is not easily crushed by the pressure taken up in a roll shape or the liquid pressure when the plating solution is forcedly circulated, a current collector with a high porosity can be produced.
なお、必要に応じて電解メッキ膜を更に形成することができる。電解メッキ法は、メッキ浴を用いて行うことができる。メッキ浴としては、ワット浴、塩化浴、スルファミン酸浴を使用できる。これに、pH緩衝剤、界面緩衝剤等の添加剤を添加することができる。このめっき浴に前記無電解メッキした不織布を陰極に接続し、ニッケル対極板を陽極に接続して、直流或いはパルス断続電流を通電させることにより、無電解メッキ膜上に更に電解メッキ膜を形成することができる。 An electrolytic plating film can be further formed as necessary. The electrolytic plating method can be performed using a plating bath. As the plating bath, a watt bath, a chloride bath, or a sulfamic acid bath can be used. To this, additives such as a pH buffer and an interface buffer can be added. An electroless plating film is further formed on the electroless plating film by connecting the non-electrolytically plated non-woven fabric to the cathode, connecting a nickel counter electrode to the anode, and applying a direct current or pulse intermittent current. be able to.
なお、めっき液の浸透性を高め、繊維とメッキ金属との密着性を高め、メッキ金属の脱落を防止でき、また表面抵抗の上昇が生じにくいように、メッキを施す前に、例えば、スルホン化処理、フッ素ガス処理、ビニルモノマーのグラフト重合処理、界面活性剤処理、放電処理、或は親水性樹脂付与処理などの親水化処理を不織布に実施するのが好ましい。 Before plating, for example, sulphonation can be performed to increase the permeability of the plating solution, increase the adhesion between the fiber and the plating metal, prevent the plating metal from falling off, and prevent the surface resistance from increasing. The nonwoven fabric is preferably subjected to hydrophilic treatment such as treatment, fluorine gas treatment, vinyl monomer graft polymerization treatment, surfactant treatment, discharge treatment, or hydrophilic resin application treatment.
本発明の集電材は上述のような不織布にメッキが施されたものであるが、空隙率は85〜95%(より好ましくは85〜90%)であるのが好ましい。空隙率は充填できる活物質量を多くでき、電気化学素子の容量を大きくできるように、85%以上であるのが好ましい。一方、空隙率が大きくなり過ぎると、集電材と活物質との接触面積が狭くなって集電性能が低下したり、繊維同士の交点が少なくなり、集電材の強度が低下して、活物質充填時や電気化学素子製造時に破断しやすくなるため、95%以下であるのが好ましい。このように空隙率の高い集電材は、不織布製造時における繊維の結合を、圧力がかからないか、かかったとしても厚さを調節する程度の弱い圧力のもとで行うことによって可能である。より具体的には、繊維を熱風によって融着させることによって、前記空隙率の集電材を製造しやすい。なお、融着後においてもニップロールやカレンダー等によって圧力を作用させないのが好ましい。 The current collector of the present invention is obtained by plating the nonwoven fabric as described above, and the porosity is preferably 85 to 95% (more preferably 85 to 90%). The porosity is preferably 85% or more so that the amount of the active material that can be filled can be increased and the capacity of the electrochemical device can be increased. On the other hand, when the porosity is too large, the contact area between the current collector and the active material is narrowed and the current collection performance is reduced, or the number of intersections between fibers is reduced, the strength of the current collector is lowered, and the active material is reduced. Since it becomes easy to fracture | rupture at the time of filling or an electrochemical element manufacture, it is preferable that it is 95% or less. Thus, a current collector with a high porosity can be obtained by performing fiber bonding at the time of manufacturing a nonwoven fabric under a pressure that is weak enough to adjust the thickness even if no pressure is applied. More specifically, the porosity current collector can be easily manufactured by fusing the fibers with hot air. In addition, it is preferable not to make a pressure act by a nip roll, a calendar | calender, etc. after a melt | fusion.
なお、空隙率は次の式から算出される値をいう。
空隙率(%)={1−W/(t×SGm)}×100
ここで、Wは集電材の目付(g/m2)、tは集電材の厚さ(μm)、SGmはメッキが施された繊維の密度(g/cm3)をそれぞれ意味する。なお、目付は20cm角の集電材の質量を測定し、その質量を25倍した値をいい、厚さは圧縮弾性試験機(中山電気産業(株)製)を用い、500g/5cm2荷重時の厚さをいい、SGmは次の式より算出される値をいう。
SGm=(AW+BW)/(AV+BV)
ここで、AWはメッキを施す前の繊維の目付(g/m2)、つまり不織布の目付、AVはメッキを施す前の繊維が占める一平方メートル当たりの体積(cm3/m2)で、AW/ASG(メッキを施す前の繊維の密度(g/cm3))の式から算出される値、BWはメッキした金属の目付(g/m2)、BVはメッキした金属が占める一平方メートル当たりの体積(cm3/m2)で、BW/BSG(メッキ金属の密度(g/cm3))の式から算出される値、をそれぞれ意味する。
The porosity is a value calculated from the following equation.
Porosity (%) = {1-W / (t × SGm)} × 100
Here, W means the weight of the current collector (g / m 2 ), t means the thickness of the current collector (μm), and SGm means the density of the plated fibers (g / cm 3 ). Note that the basis weight is a value obtained by measuring the mass of a 20 cm square current collector and multiplying the mass by 25 times. The thickness is a compression elasticity tester (manufactured by Nakayama Electric Industry Co., Ltd.) and is loaded at 500 g / 5 cm 2. SGm is a value calculated from the following equation.
SGm = (AW + BW) / (AV + BV)
Here, AW is the basis weight of the fiber before plating (g / m 2 ), that is, the basis weight of the nonwoven fabric, and AV is the volume per square meter (cm 3 / m 2 ) occupied by the fiber before plating. / ASG (Fiber density before plating (g / cm 3 )), BW is the weight of the plated metal (g / m 2 ), BV is per square meter occupied by the plated metal in a volume (cm 3 / m 2), it means the value calculated from the equation of BW / BSG (density of plated metal (g / cm 3)), respectively.
本発明の集電材は活物質を充填する際の圧力によっても潰れにくく、活物質の充填量を多くすることができ、電気化学素子の容量を大きくできるように、圧縮弾性率は85%以上であるのが好ましく、90%以上であるのがより好ましい。このような圧縮弾性率をもつ集電材は、繊度の大きい高ヤング率繊維を使用したり、高ヤング率繊維量を多くすることによって、製造しやすい。 The current collector of the present invention is not easily crushed by the pressure during filling with the active material, the amount of filling of the active material can be increased, and the capacity of the electrochemical device can be increased so that the compression elastic modulus is 85% or more. It is preferable that it is 90% or more. A current collector having such a compressive elastic modulus is easy to manufacture by using high Young's modulus fibers having a large fineness or increasing the amount of high Young's modulus fibers.
本発明における圧縮弾性率は圧縮弾性試験機(中山電気産業(株)製)を用い、100g/5cm2荷重時の厚さT100(mm)と、500g/5cm2荷重時の厚さT500(mm)を測定し、次の式から算出される値をいう。
圧縮弾性率(%)=(T500/T100)×100
Compressive modulus in the present invention using a compressive elasticity tester (manufactured by Nakayama electrical industry (Ltd.)), 100g / 5cm and a thickness T 100 (mm) at 2 load, 500 g / 5 cm thickness during 2 Load T 500 (Mm) is measured and the value calculated from the following equation.
Compression elastic modulus (%) = (T 500 / T 100 ) × 100
本発明の集電材は空隙率が高く、活物質充填時に潰れにくいことによって活物質を多く充填することができ、結果として容量の大きい電気化学素子を製造でき、また、高率充放電特性に優れた電気化学素子を製造できるため、ニッケル水素電池、ニッケルカドミウム電池などのアルカリ二次電池、リチウムイオン二次電池などの非水系電池、電気二重層キャパシタなどの蓄電デバイス、或いは燃料電池の集電材として好適に使用でき、特にアルカリ二次電池又はリチウム二次電池などの電池、電気二重層キャパシタ用の集電体として好適に使用できる。なお、これらの電気化学素子は電気(ハイブリッドも含む)自動車、電気アシスト自転車、電動工具、リモコン玩具等の大電流放電用途、パソコンなどのバックアップ電源、非常灯用電源等の低電流放電用途、或いはデジタルカメラ用電池、デジタルビデオ用電源等の長時間放電用途に好適に使用できる。 The current collector of the present invention has a high porosity and can be filled with a large amount of active material by being hard to be crushed when filled with the active material. As a result, a large-capacity electrochemical device can be produced, and it has excellent high rate charge / discharge characteristics As a current collector for nickel-metal hydride batteries, nickel-cadmium batteries and other alkaline secondary batteries, lithium-ion secondary batteries and other non-aqueous batteries, electric double-layer capacitors and other power storage devices, and fuel cell current collectors It can be preferably used, and in particular, can be suitably used as a current collector for batteries such as alkaline secondary batteries or lithium secondary batteries, and electric double layer capacitors. These electrochemical elements are used in large current discharge applications such as electric (including hybrid) automobiles, electric assist bicycles, power tools, remote control toys, etc., low current discharge applications such as backup power supplies for PCs, emergency light power supplies, etc. It can be suitably used for long-time discharge applications such as batteries for digital cameras and digital video power supplies.
本発明の電気化学素子は、集電材が本発明の集電材であること以外は従来と全く同様の材料から構成することができる。例えば、円筒型ニッケル−水素電池は、本発明の集電材に水酸化ニッケルを充填した正極と水素吸蔵合金負極板とを、セパレータを介して渦巻き状に巻回した極板群を、金属のケースに挿入するとともに、水酸化カリウム/水酸化リチウム或いは水酸化カリウム/水酸化ナトリウム/水酸化リチウムの電解液を金属ケースに注液した構造を有している。また、電気二重層キャパシタは、活性炭、導電性を有する充填材(カーボンブラックやアセチレンブラックなど)及び結着剤を混練した後に、本発明の集電材に充填した一対の電極材の間を、セパレータによって絶縁しており、これら全体がケース又はアルミニウムラミネートパック内に収納されるとともに、有機溶媒又は硫酸溶液の電解液が注液された構造を有している。 The electrochemical element of the present invention can be composed of the same material as the conventional one except that the current collector is the current collector of the present invention. For example, a cylindrical nickel-hydrogen battery includes an electrode plate group obtained by winding a positive electrode in which the current collector of the present invention is filled with nickel hydroxide and a hydrogen storage alloy negative electrode plate in a spiral shape with a separator interposed therebetween. And an electrolytic solution of potassium hydroxide / lithium hydroxide or potassium hydroxide / sodium hydroxide / lithium hydroxide is poured into a metal case. In addition, the electric double layer capacitor has a separator between a pair of electrode materials filled in the current collector of the present invention after kneading activated carbon, a conductive filler (carbon black, acetylene black, etc.) and a binder. These are all housed in a case or an aluminum laminate pack, and have an organic solvent or an electrolyte solution of a sulfuric acid solution.
以下に本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(実施例1〜5、比較例1〜2)
表1に示すような繊維を分散させたスラリーを、湿式抄造法により繊維ウエブを形成した後、繊維ウエブを温度135℃に設定された熱風ドライヤーにより熱処理をして、芯鞘型高ヤング率複合繊維の鞘成分及び芯鞘型レギュラー複合繊維の鞘成分を融着させて、それぞれ目付100g/m2の不織布を製造した。
(Examples 1-5, Comparative Examples 1-2)
After forming a fiber web from the slurry in which fibers shown in Table 1 are dispersed by a wet papermaking method, the fiber web is heat-treated with a hot air drier set at a temperature of 135 ° C. to obtain a core-sheath type high Young's modulus composite The sheath component of the fiber and the sheath component of the core-sheath type regular composite fiber were fused to produce nonwoven fabrics each having a basis weight of 100 g / m 2 .
次いで、これら不織布を温度80℃の発煙硫酸浴に浸漬することによりスルホン化処理を実施した。その後、スルホン化した不織布を染色機のキャリヤーに巻きつけ、精錬剤を循環、水洗いし、次に、塩化第1スズ10g/リットル、塩酸20ml/リットルを含んだ水溶液を循環させ、水洗した後、塩化パラジウム1g/リットル、塩酸20ml/リットルを含む水溶液を循環させて触媒化を行った。その後、更に水洗を行い、硫酸ニッケル18g/リットル、クエン酸ナトリウム10g/リットル、水和ヒドラジン50ml/リットル、25%アンモニア水100ml/リットルの無電解ニッケルメッキ液を温度80℃で循環させ、水洗し、乾燥して、ニッケルメッキした集電材(ニッケルメッキが集電体全体の50mass%を占める)を製造した。これら集電材の厚さ、空隙率、比表面積及び圧縮弾性率は表1に示す通りであった。なお、比表面積はBET法により測定した。 Subsequently, the non-woven fabric was immersed in a fuming sulfuric acid bath at a temperature of 80 ° C. to perform sulfonation treatment. Thereafter, the sulfonated non-woven fabric is wound around the carrier of the dyeing machine, the refining agent is circulated and washed with water, and then an aqueous solution containing 10 g / liter of stannous chloride and 20 ml / liter of hydrochloric acid is circulated and washed with water. Catalysis was carried out by circulating an aqueous solution containing 1 g / liter of palladium chloride and 20 ml / liter of hydrochloric acid. Thereafter, further washing with water is performed, and an electroless nickel plating solution of nickel sulfate 18 g / liter, sodium citrate 10 g / liter, hydrated hydrazine 50 ml / liter, 25% aqueous ammonia 100 ml / liter is circulated at a temperature of 80 ° C. and washed with water. And dried to produce a nickel-plated current collector (nickel plating accounts for 50 mass% of the total current collector). Table 1 shows the thickness, porosity, specific surface area, and compressive modulus of these current collectors. The specific surface area was measured by the BET method.
R1:芯成分がポリプロピレン(融点:160℃)からなり、鞘成分が高密度ポリエチレン(融点:130℃)からなる、繊度6.6dtex、繊維長5mm、ヤング率11.1cN/dtexの芯鞘型レギュラー複合太繊維
R2:芯成分がポリプロピレン(融点:160℃)からなり、鞘成分が高密度ポリエチレン(融点:130℃)からなる、繊度0.8dtex、繊維長5mm、ヤング率19.2cN/dtexの芯鞘型レギュラー複合細繊維
Y1:芯成分がポリプロピレン(融点:160℃)からなり、鞘成分が高密度ポリエチレン(融点:130℃)からなる、繊度6.6dtex、繊維長5mm、ヤング率36.9cN/dtexの芯鞘型高ヤング率複合太繊維
Y2:芯成分がポリプロピレン(融点:160℃)からなり、鞘成分が高密度ポリエチレン(融点:130℃)からなる、繊度0.8dtex、繊維長5mm、ヤング率32.0cN/dtexの芯鞘型高ヤング率複合細繊維
Y3:芯成分がポリプロピレン(融点:160℃)からなり、鞘成分が高密度ポリエチレン(融点:130℃)からなる、繊度0.8dtex、繊維長5mm、ヤング率23.7cN/dtexの芯鞘型高ヤング率複合細繊維
R1: A core-sheath type with a core component made of polypropylene (melting point: 160 ° C) and a sheath component made of high-density polyethylene (melting point: 130 ° C), a fineness of 6.6 dtex, a fiber length of 5 mm, and a Young's modulus of 11.1 cN / dtex Regular composite thick fiber R2: core component is made of polypropylene (melting point: 160 ° C.), sheath component is made of high-density polyethylene (melting point: 130 ° C.), fineness 0.8 dtex, fiber length 5 mm, Young's modulus 19.2 cN / dtex Core-sheath type regular composite fine fiber Y1: core component is made of polypropylene (melting point: 160 ° C.), sheath component is made of high-density polyethylene (melting point: 130 ° C.), fineness 6.6 dtex, fiber length 5 mm, Young's modulus 36 .9 cN / dtex core-sheath type high Young's modulus composite thick fiber Y2: core component is made of polypropylene (melting point: 160 ° C.) Is made of high-density polyethylene (melting point: 130 ° C.), core-sheath type high Young's modulus composite fine fiber Y3 having a fineness of 0.8 dtex, a fiber length of 5 mm, and a Young's modulus of 32.0 cN / dtex: the core component is polypropylene (melting point: 160 ° C. And a sheath component of high density polyethylene (melting point: 130 ° C.), a core-sheath type high Young's modulus composite fine fiber having a fineness of 0.8 dtex, a fiber length of 5 mm and a Young's modulus of 23.7 cN / dtex.
(電池によるハイレート試験)
水酸化ニッケル80%、カルボキシルメチルセルロース(CMC)1%水溶液16%、水4%を混合し活物質ペーストを作製し、所定の大きさにカットした各集電材をこのペーストに浸漬した後、集電材と同じ厚さのスリット間を通して、表面の過剰なペーストを除去し、活物質を充填した。次いで、乾燥し、ロールプレス機で厚さ調整をして、正極極板を製造した。
(High-rate test using batteries)
An active material paste is prepared by mixing nickel hydroxide 80%, carboxymethyl cellulose (CMC) 1% aqueous solution 16%, and water 4%, and each current collector cut into a predetermined size is immersed in this paste. The excess paste on the surface was removed between the slits having the same thickness as the active material and filled with the active material. Subsequently, it dried and adjusted the thickness with the roll press machine, and manufactured the positive electrode plate.
水素吸蔵合金90%、1%CMC水溶液10%を混合した合金ペーストを作製し、発泡ニッケルからなる集電材に、正極極板と同じ方法により合金を充填して、負極極板を製造した。 An alloy paste was prepared by mixing 90% of a hydrogen storage alloy and 10% of a 1% CMC aqueous solution, and a current collector made of foamed nickel was filled with the alloy by the same method as that of the positive electrode plate to produce a negative electrode plate.
この正極極板と負極極板との間にセパレータを挟み込み、渦巻き状に巻回して、AAサイズ対応の電極群を作製した。この電極群を外装缶に収納し、電解液として5N水酸化カリウム及び1N水酸化リチウムを外装缶に注液し、封緘して円筒型AAサイズニッケル水素電池を作製した。なお、活物質の充填量(g)をもとに、次の式により理論容量(mAh)をそれぞれ算出した。この理論容量は表2に示す通りであった。
理論容量=活物質充填量×289
A separator was sandwiched between the positive electrode plate and the negative electrode plate and wound in a spiral shape to produce an electrode group corresponding to AA size. This electrode group was housed in an outer can, and 5N potassium hydroxide and 1N lithium hydroxide were poured into the outer can as electrolytes and sealed to produce a cylindrical AA size nickel metal hydride battery. The theoretical capacity (mAh) was calculated by the following formula based on the active material filling amount (g). This theoretical capacity was as shown in Table 2.
Theoretical capacity = active material filling amount × 289
次いで、各ニッケル水素電池を0.1Cで5サイクル充放電を行い、電池を活性化させた。その後、0.3Cの定電流で4時間充電し、充電を15分間休止した後、6C(理論容量の6倍の電流値)の定電流で0.8Vまで放電し、放電を15分間休止する工程を1サイクルとし、このサイクルを3回繰り返し、3回の放電電流の平均値を、6C放電容量(mAh)とした。この6C放電容量をもとに、次の式により6C利用率(%)をそれぞれ算出した。この6C利用率は表2に示す通りであった。
6C利用率=(6C放電容量/理論容量)×100
Then, each nickel metal hydride battery was charged and discharged for 5 cycles at 0.1 C to activate the battery. After that, the battery is charged with a constant current of 0.3 C for 4 hours, and charging is paused for 15 minutes. Then, the battery is discharged to 0.8 V with a constant current of 6 C (current value 6 times the theoretical capacity), and the discharge is paused for 15 minutes. The process was defined as one cycle, and this cycle was repeated three times, and the average value of the three discharge currents was 6 C discharge capacity (mAh). Based on the 6C discharge capacity, the 6C utilization rate (%) was calculated by the following formula. This 6C utilization rate was as shown in Table 2.
6C utilization rate = (6C discharge capacity / theoretical capacity) × 100
表1、2の実施例と比較例との比較から、ヤング率が20cN/dtex以上の高ヤング率繊維を含んでいることによって圧縮弾性率が高くなり、活物質充填時に潰れにくいため活物質の充填量が多くなり、理論容量の高い電池を製造できることがわかった。また、実施例1〜2と実施例3〜5との比較から、繊度が0.8dtexの芯鞘型高ヤング率複合細繊維を使用することによって比表面積が広くなり、6C利用率が高く、高率充放電できる電池を製造できることもわかった。
From the comparison between the examples of Tables 1 and 2 and the comparative example, the inclusion of a high Young's modulus fiber having a Young's modulus of 20 cN / dtex or higher increases the compression modulus, and is less likely to be crushed when filled with the active material. It was found that the amount of filling was increased and a battery with a high theoretical capacity could be manufactured. Further, from comparison between Examples 1-2 and Examples 3-5, the specific surface area is increased by using the core-sheath type high Young's modulus composite fine fiber having a fineness of 0.8 dtex, and the 6C utilization rate is high. It was also found that a battery capable of high rate charge / discharge can be manufactured.
Claims (9)
The electrical double layer capacitor provided with the electrical power collector for electrochemical elements in any one of Claims 1-7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003301216A JP4699686B2 (en) | 2003-08-26 | 2003-08-26 | Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003301216A JP4699686B2 (en) | 2003-08-26 | 2003-08-26 | Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005071844A true JP2005071844A (en) | 2005-03-17 |
JP4699686B2 JP4699686B2 (en) | 2011-06-15 |
Family
ID=34405905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003301216A Expired - Fee Related JP4699686B2 (en) | 2003-08-26 | 2003-08-26 | Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4699686B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008226680A (en) * | 2007-03-14 | 2008-09-25 | Sumitomo Electric Ind Ltd | Electrode substrate for battery, electrode for battery using it, and battery |
JP2010010364A (en) * | 2008-06-26 | 2010-01-14 | Sumitomo Electric Ind Ltd | Polarizable electrode for electric double-layer capacitor and its production process |
JP2010009905A (en) * | 2008-06-26 | 2010-01-14 | Sumitomo Electric Ind Ltd | Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it |
JP2016519841A (en) * | 2013-06-07 | 2016-07-07 | ジェナックス インコーポレイテッド | Electrode, manufacturing method thereof, and battery using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0317957A (en) * | 1989-06-15 | 1991-01-25 | Kanai Jiyuuyou Kogyo Kk | Nickel plated unwoven electrode and manufacture thereof |
JPH08329956A (en) * | 1995-05-31 | 1996-12-13 | Furukawa Battery Co Ltd:The | Current collector for battery electrode and nickel electrode using it |
JP2001313038A (en) * | 2000-02-21 | 2001-11-09 | Mitsubishi Materials Corp | Current collector material for alkali secondary cell and manufacturing method of the same, and alkali secondary cell using the same |
JP2002043179A (en) * | 2000-07-19 | 2002-02-08 | Kuraray Co Ltd | Electric double-layer capacitor |
JP2003105660A (en) * | 2001-09-27 | 2003-04-09 | Japan Vilene Co Ltd | Nonwoven fabric, battery using the nonwoven fabric and capacitor using the nonwoven fabric |
-
2003
- 2003-08-26 JP JP2003301216A patent/JP4699686B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0317957A (en) * | 1989-06-15 | 1991-01-25 | Kanai Jiyuuyou Kogyo Kk | Nickel plated unwoven electrode and manufacture thereof |
JPH08329956A (en) * | 1995-05-31 | 1996-12-13 | Furukawa Battery Co Ltd:The | Current collector for battery electrode and nickel electrode using it |
JP2001313038A (en) * | 2000-02-21 | 2001-11-09 | Mitsubishi Materials Corp | Current collector material for alkali secondary cell and manufacturing method of the same, and alkali secondary cell using the same |
JP2002043179A (en) * | 2000-07-19 | 2002-02-08 | Kuraray Co Ltd | Electric double-layer capacitor |
JP2003105660A (en) * | 2001-09-27 | 2003-04-09 | Japan Vilene Co Ltd | Nonwoven fabric, battery using the nonwoven fabric and capacitor using the nonwoven fabric |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008226680A (en) * | 2007-03-14 | 2008-09-25 | Sumitomo Electric Ind Ltd | Electrode substrate for battery, electrode for battery using it, and battery |
JP2010010364A (en) * | 2008-06-26 | 2010-01-14 | Sumitomo Electric Ind Ltd | Polarizable electrode for electric double-layer capacitor and its production process |
JP2010009905A (en) * | 2008-06-26 | 2010-01-14 | Sumitomo Electric Ind Ltd | Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it |
JP2016519841A (en) * | 2013-06-07 | 2016-07-07 | ジェナックス インコーポレイテッド | Electrode, manufacturing method thereof, and battery using the same |
Also Published As
Publication number | Publication date |
---|---|
JP4699686B2 (en) | 2011-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW508860B (en) | Paste-like thin electrode for battery, its manufacturing method, and battery | |
KR101938103B1 (en) | Carbon Fiber Zinc Negative Electrode | |
JP5408804B2 (en) | Nickel positive electrode for fiber battery | |
JP5062724B2 (en) | Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery | |
JP2010073533A (en) | Chargeable and dischargeable battery | |
JP3221337B2 (en) | Alkaline storage battery separator | |
US6994935B2 (en) | Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same | |
JP5137117B2 (en) | Nonwoven fabric substrate for battery, battery electrode using the same, and battery | |
JP3527586B2 (en) | Manufacturing method of nickel electrode for alkaline storage battery | |
JP4429569B2 (en) | Nickel metal hydride storage battery | |
US7879496B2 (en) | Battery electrode substrate, battery electrode, and alkaline secondary battery including the same | |
JP4699686B2 (en) | Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same | |
US5492543A (en) | Preparation of electrodes and Ni/MHx electrochemical storage cell | |
JP5285014B2 (en) | Current collector, battery electrode substrate, and manufacturing method thereof | |
CN101150193A (en) | Battery electrode substrate and electrode using the same | |
JP2000340202A (en) | Alkaline storage battery | |
JP4747536B2 (en) | Alkaline storage battery | |
JP2000215873A (en) | Alkaline storage battery and its manufacture | |
JP2009026562A (en) | Electrode substrate for battery, electrode for battery, and battery | |
JP2008181825A (en) | Nickel electrode for alkaline cell | |
JP4997529B2 (en) | Nickel electrode for alkaline battery and method for producing the same | |
JP5116076B2 (en) | Battery electrode substrate, battery electrode using the same, and battery | |
JP5557227B2 (en) | Nickel positive electrode for fiber batteries | |
JP2008117579A (en) | Hydrogen absorbing alloy negative electrode for alkaline battery | |
JP5013361B2 (en) | Method for producing nickel electrode for alkaline secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4699686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |