JP2005070749A - Electrophotographic photoreceptor, and process cartridge and image forming apparatus using same - Google Patents

Electrophotographic photoreceptor, and process cartridge and image forming apparatus using same Download PDF

Info

Publication number
JP2005070749A
JP2005070749A JP2004198223A JP2004198223A JP2005070749A JP 2005070749 A JP2005070749 A JP 2005070749A JP 2004198223 A JP2004198223 A JP 2004198223A JP 2004198223 A JP2004198223 A JP 2004198223A JP 2005070749 A JP2005070749 A JP 2005070749A
Authority
JP
Japan
Prior art keywords
charging
charge
layer
photosensitive member
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004198223A
Other languages
Japanese (ja)
Other versions
JP4711647B2 (en
Inventor
Tatsuya Niimi
達也 新美
Katsuichi Ota
勝一 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004198223A priority Critical patent/JP4711647B2/en
Publication of JP2005070749A publication Critical patent/JP2005070749A/en
Application granted granted Critical
Publication of JP4711647B2 publication Critical patent/JP4711647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy-saving charging method and an image forming apparatus having high durability and high reliability and causing no abnormal image even for repeated use. <P>SOLUTION: The electrophotographic photoreceptor is to be used for an image forming method, and includes: the steps of: exposing a photoreceptor for charging; applying voltage to the photoreceptor via a conductive voltage application member being in contact with the photoreceptor during or after exposure for charging so as to charge the surface of the photoreceptor by the voltage application member into the same polarity as the applied voltage; forming an electrostatic latent image on the photoreceptor by carrying out imagewise exposure after charging; developing the electrostatic latent image with toner; and transferring the developed image onto a transfer body. The electrophotographic photoreceptor has, on a light transmitting conductive supporting body, a photosensitive layer having sensitivity at least to imagewise exposure and a photo-charge charging layer containing a charge generating substance which generates charges at least by exposure for charging. The photo-charge charging layer is present on the surface of the photoreceptor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子写真感光体および、複写機、プリンター、ファクシミリ等の電子写真方式の画像形成装置ならびに画像形成装置用のプロセスカートリッジに関するものである。   The present invention relates to an electrophotographic photosensitive member, an electrophotographic image forming apparatus such as a copying machine, a printer, and a facsimile machine, and a process cartridge for the image forming apparatus.

電子写真方式の画像形成装置は、感光体の表面を所定の電位に帯電し、その帯電電位を露光手段や除電手段によって選択的に除電して静電荷潜像を形成し、この静電荷潜像を現像手段によってトナー像とし、これを転写材に転写することにより可視化する画像形成装置である。   An electrophotographic image forming apparatus charges a surface of a photoconductor to a predetermined potential, and selectively removes the charged potential by an exposure unit or a neutralization unit to form an electrostatic latent image. Is formed into a toner image by a developing means and visualized by transferring it to a transfer material.

近年、感光体の表面を帯電する手段として接触帯電方式が用いられるようになっている。接触帯電方式とは、ローラー、磁気ブラシ、ファーブラシ等の帯電部材を感光体に直接接触させて帯電を行なう帯電方式である。このような接触帯電方式はコロトロンやスコロトロンに代表されるコロナ帯電方式に比べ低オゾン、低電力という利点を有し注目されている。接触帯電方式における感光体の帯電メカニズムには放電帯電と注入帯電とがあり、どちらが支配的かによって帯電特性が決定される。   In recent years, a contact charging method has been used as a means for charging the surface of a photoreceptor. The contact charging method is a charging method in which charging is performed by bringing a charging member such as a roller, a magnetic brush, or a fur brush into direct contact with the photosensitive member. Such a contact charging method is attracting attention because it has advantages of low ozone and low power compared to a corona charging method represented by corotron and scorotron. The charging mechanism of the photoreceptor in the contact charging method includes discharge charging and injection charging, and the charging characteristics are determined depending on which is dominant.

「放電帯電」とは、接触帯電部材と感光体との間に形成される微小ギャップで生じる放電現象により感光体が帯電されるメカニズムである。放電帯電では必然的に放電生成物であるオゾンなどが発生するので、画像流れ等の副作用が発生する可能性がある。   “Discharge electrification” is a mechanism in which a photoconductor is charged by a discharge phenomenon generated in a minute gap formed between a contact charging member and the photoconductor. In discharge charging, ozone, which is a discharge product, is inevitably generated. Therefore, side effects such as image flow may occur.

一方「注入帯電」とは、接触帯電部材と感光体との接触部から電荷が直接注入されて感光体が帯電されるメカニズムである。このような注入帯電を達成する代表的な構成は、表面層に導電性微粒子を分散させて抵抗値を調整した感光体に対して、帯電部材を接触させて電荷を注入させる構成である(以下、感光体において電荷を注入可能であるように抵抗値が調整された層を『電荷注入層』と表現する)。このような方式は、例えば特許文献1に開示されている。注入帯電は原理的にオゾンを発生させないため感光体へのハザードが少なく、また放電帯電と異なり放電しきい値電圧(帯電部材に電圧を印加した際、感光体に放電を開始する電圧、以下『放電開始電圧』と記す。)が存在しないために省エネルギーの帯電方式として知られている。   On the other hand, “injection charging” is a mechanism in which a charge is directly injected from a contact portion between a contact charging member and the photoreceptor to charge the photoreceptor. A typical configuration for achieving such injection charging is a configuration in which charge is injected by bringing a charging member into contact with a photosensitive member whose resistance value is adjusted by dispersing conductive fine particles in the surface layer (hereinafter referred to as “charging”). A layer whose resistance value is adjusted so that charges can be injected into the photoreceptor is expressed as a “charge injection layer”). Such a system is disclosed in Patent Document 1, for example. Injecting charging does not generate ozone in principle, so there is little hazard to the photoconductor, and unlike discharge charging, the discharge threshold voltage (the voltage at which the photoconductor starts to discharge when voltage is applied to the charging member, This is known as an energy-saving charging method because there is no “discharge start voltage”.

接触帯電を行なった際に放電帯電/注入帯電のいずれの帯電メカニズムが支配的であるかは、帯電部材への印加電圧と感光体表面の帯電電位との関係を調べれば分かる。図1には注入帯電と放電帯電の違いを帯電部材への印加電圧と感光体帯電電位の関係から示す。
純粋な放電帯電(図中の破線)では、帯電部材への印加電圧が所定の放電開始電圧(Vth)に達するまでは帯電電位は変化せず、放電開始電圧を超えたのちに帯電電位が変化し始める。このため感光体表面に帯電を行うためには、放電開始電圧(Vth)以上の電圧を帯電部材に印加する必要がある。
Whether charging or injection charging is dominant when performing contact charging can be determined by examining the relationship between the voltage applied to the charging member and the charging potential on the surface of the photoreceptor. FIG. 1 shows the difference between injection charging and discharge charging from the relationship between the voltage applied to the charging member and the photosensitive member charging potential.
In pure discharge charging (broken line in the figure), the charging potential does not change until the voltage applied to the charging member reaches the predetermined discharge start voltage (V th ), and after the discharge start voltage is exceeded, the charge potential is Start to change. For this reason, in order to charge the surface of the photoreceptor, it is necessary to apply a voltage equal to or higher than the discharge start voltage (V th ) to the charging member.

一方、純粋な注入帯電(図中の直線)では、帯電部材への印加電圧に比例して感光体の帯電電位が変化する。この際、直線が原点を通過し、放電開始電圧が存在しないことがこの注入帯電の特徴である。このような注入帯電を実現するために、従来の電荷注入層は絶縁性バインダー中に酸化錫や酸化インジウムのような導電性微粒子を分散させて、注入層の抵抗をコントロールしている。   On the other hand, in pure injection charging (straight line in the figure), the charging potential of the photoreceptor changes in proportion to the voltage applied to the charging member. At this time, a characteristic of this injection charging is that a straight line passes through the origin and no discharge start voltage exists. In order to realize such injection charging, the conventional charge injection layer controls the resistance of the injection layer by dispersing conductive fine particles such as tin oxide and indium oxide in an insulating binder.

例えば特許文献1には、導電性粒子としてアンチモンまたはインジウム等をドーピングして導電化処理した酸化錫([0024]に記載)、酸化チタン([0027]に記載)が開示されている。また、特許文献2には、「導電性粒子としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ、酸化ジルコニウム等の超微粒子を用いることができる。これら金属酸化物は1種類もしくは2種類以上を混合して用いる」ことが記載されている([0043]に記載)。   For example, Patent Document 1 discloses tin oxide (described in [0024]) and titanium oxide (described in [0027]) that have been made conductive by doping antimony or indium as conductive particles. Patent Document 2 states that “conducting particles include zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, indium oxide doped with tin, tin oxide doped with antimony and tantalum, oxide. Ultrafine particles such as zirconium can be used.These metal oxides are used alone or in combination of two or more ”(described in [0043]).

これ等の感光体表面に存在する導電性微粒子は、帯電部材と接触し、電圧を印加されたとき、帯電部材から感光体への電荷を注入するための微小電極(以下、『注入サイト』と記す。)の役目をすると考えられている。感光体表面を均一に注入帯電するためには、電荷の注入を可能にする注入サイトをできる限り多く形成する必要がある。そのためには、電荷注入層には注入サイトである導電性微粒子を多量に含有させる必要がある。一方、電荷注入層に導電性微粒子を多量に含有させると、微粒子間距離が近接して感光体表面の抵抗が低くなって、感光体表面に形成された潜像電荷が感光体表面方向に漏洩し易くなり、その結果、静電潜像が崩れ易くなる。そのため、トナー画像がボケたり、流れてしまったりするため、シャープな画像が形成されにくくなる欠点を有する。   These conductive fine particles existing on the surface of the photosensitive member come into contact with the charging member, and when a voltage is applied, a microelectrode (hereinafter referred to as “injection site”) for injecting charge from the charging member to the photosensitive member. It is thought to serve the role of In order to uniformly inject and charge the surface of the photoconductor, it is necessary to form as many injection sites as possible to inject charges. For this purpose, the charge injection layer needs to contain a large amount of conductive fine particles which are injection sites. On the other hand, when a large amount of conductive fine particles are contained in the charge injection layer, the distance between the fine particles is close and the resistance of the surface of the photoconductor is lowered, and the latent image charge formed on the surface of the photoconductor leaks toward the surface of the photoconductor. As a result, the electrostatic latent image tends to collapse. Therefore, since the toner image is blurred or flows, there is a drawback that it is difficult to form a sharp image.

従って、導電性微粒子は電荷注入層内で、適度な距離を保った状態で存在するように設計する必要がある。これらの制約条件のため、従来の電荷注入層に注入サイトとして導電性粒子を用いた注入帯電用感光体では、均一で、且つ緻密な帯電が困難であり、特に中間調画像を形成すると、緻密さに欠けた、ざらついた画質になってしまう欠点を有している。更に、金属酸化物のような硬い粒子が多く表面に存在すると、クリーニングブレードや、帯電部材などの柔らかい作像部材を傷つけ、それに基づくスジ上の帯電ムラやクリーニング不良を引き起こしてしまう欠点を有している。   Therefore, it is necessary to design the conductive fine particles so that they are present in an appropriate distance in the charge injection layer. Due to these constraints, it is difficult to charge uniformly and densely in an injection charging photoreceptor using conductive particles as injection sites in a conventional charge injection layer. There is a drawback that the image quality becomes rough and rough. Furthermore, if there are many hard particles such as metal oxides on the surface, the cleaning blade and the soft image forming member such as the charging member are damaged, resulting in charging irregularities on the streaks and poor cleaning. ing.

特許文献3には、感光層の上にある電荷注入層に光、又は熱によって抵抗値が可逆に変化する導電物質を含有させ、帯電の前又は帯電の後に露光を行い、注入帯電における帯電ムラを解消する手段が開示されており、光、又は熱によって抵抗値が可逆的に変化する導電物質としては、酸化亜鉛やポリビニルカルバゾールが開示されている。しかし、これらの光応答性の導電物質は、紫外光領域に吸収を示す物質であり、帯電効果が少なく、感光体表面に照射する光は400nmよりも短い波長の紫外線を用いる必要がある。一般的な感光体の構成成分(材料)、特に有機材料が主成分のOPC感光体組成分は紫外線で劣化が起こりやすい。このため例えば、材料の劣化(構造変化)により感光体表面の電気的抵抗を低下させて画像ボケを発生したり、分子量の低下等により感光体表面が摩耗し易くなり、感光体の寿命を低下させたりする。又、高エネルギーの紫外線露光によって、メモリー現象が発生し、画像上に残像が発生する欠点を有している。   In Patent Document 3, a charge injection layer on a photosensitive layer contains a conductive material whose resistance value reversibly changes by light or heat, and exposure is performed before or after charging, and charging unevenness in injection charging is disclosed. As a conductive material whose resistance value reversibly changes by light or heat, zinc oxide and polyvinyl carbazole are disclosed. However, these photoresponsive conductive substances are substances that absorb in the ultraviolet light region, have a small charging effect, and it is necessary to use ultraviolet light having a wavelength shorter than 400 nm as the light applied to the surface of the photoreceptor. A component (material) of a general photoconductor, particularly an OPC photoconductor composition mainly composed of an organic material, is easily deteriorated by ultraviolet rays. For this reason, for example, image deterioration may occur due to deterioration of the material (structural change) to reduce the electrical resistance of the surface of the photoconductor, or the surface of the photoconductor is likely to be worn due to a decrease in molecular weight, thereby reducing the life of the photoconductor. I will let you. In addition, there is a disadvantage that a memory phenomenon occurs due to high-energy ultraviolet exposure, and an afterimage is generated on the image.

また、特許文献4には光導電性を有する静電荷潜像担持体の光導電性部分を可視光露光によって低抵抗化し、電圧を印加して感光体に帯電を行う方法が開示されているが、本発明の感光体の構成及び、材料を示唆する記述がない。   Patent Document 4 discloses a method in which the photoconductive portion of a latent electrostatic image bearing member having photoconductivity is reduced in resistance by visible light exposure and a voltage is applied to charge the photoconductor. There is no description suggesting the constitution and materials of the photoreceptor of the present invention.

特開平6−3921号公報Japanese Patent Laid-Open No. 6-3921 特開平11−265086号公報Japanese Patent Laid-Open No. 11-265086 特開平10―31321号公報JP 10-31321 A 特開2001−147576号公報(出願人リコー)JP 2001-147576 A (Applicant Ricoh)

本発明の目的は、従来の帯電方法の上記欠点(放電型帯電方式における酸化性ガスの発生による感光体構成材料の劣化、電荷注入帯電方式における画像ボケなどの異常画像の発生や感光体周りの作像部材の劣化等)を解決することにある。具体的には、帯電時におけるオゾン、窒素酸化物などの発生を押さえることにより異常画像の発生を抑制し、また感光体周りの作像部材の劣化を抑制することで、繰り返し使用を行っても良好な画像を作像することができると共にコンパクトな帯電装置を可能にする電子写真感光体を提供することにある。
本発明の別の目的は、前記感光体を用いた画像形成装置の提供にあり、繰り返し使用においても異常画像の発生しない高耐久性及び高信頼性を有する省エネルギー型の帯電方式並びに画像形成装置を提供すること、装置全体をコンパクトに出来る画像形成装置を提供すること、略単色光による書き込みにおいて発生するモアレ画像を防止できる画像形成装置を提供することにある。更に、感光体表面の光学特性に依存しない書き込み可能な画像形成装置を提供することにある。
更に、前記感光体を用いた取り扱い性が良好でコンパクトな設計が可能であるプロセスカートリッジを提供することをその課題とする。
The object of the present invention is to overcome the above-mentioned drawbacks of conventional charging methods (deterioration of the photoconductor constituent material due to generation of oxidizing gas in the discharge type charging method, generation of abnormal images such as image blur in the charge injection charging method, and It is to solve the deterioration of the imaging member). Specifically, the occurrence of abnormal images can be suppressed by suppressing the generation of ozone, nitrogen oxides, etc. during charging, and the deterioration of image forming members around the photoreceptor can be suppressed, so that repeated use can be performed. An object of the present invention is to provide an electrophotographic photosensitive member capable of forming a good image and enabling a compact charging device.
Another object of the present invention is to provide an image forming apparatus using the photoconductor, and to provide an energy-saving charging system and an image forming apparatus having high durability and high reliability that do not generate an abnormal image even in repeated use. An object of the present invention is to provide an image forming apparatus capable of making the entire apparatus compact, and to provide an image forming apparatus capable of preventing a moire image generated in writing with substantially monochromatic light. It is another object of the present invention to provide a writable image forming apparatus that does not depend on the optical characteristics of the surface of the photoreceptor.
It is another object of the present invention to provide a process cartridge that is easy to handle and can be compactly designed using the photoconductor.

本発明者らは、従来の欠点を解消する電子写真感光体への帯電方法を鋭意検討した結果、導電性支持体上に少なくとも画像露光に光感度を有する感光層と、少なくとも帯電用露光で電荷発生可能な物質を含有させた層(以下、『光電荷充電層』という)を表面に設けた感光体に、導電性部材を接触させ電圧を印加する事で帯電ができること、更に感光体に帯電用露光と同時又は露光後に電圧を印加することで、感光体表面に電荷が充電され感光体をより高く帯電させる(以下、『光電荷充電』という)ことが可能であることを見いだした。又、この光電荷充電による帯電方式はオゾンやNOxガスの発生が殆どないため、従来の放電型帯電に伴う感光体の劣化が押さえられ、コンパクトで環境汚染の少ない画像形成装置の提供が可能であることを見出した。そして、本発明者らは上記の知見に基づいて本発明を完成したものである。   As a result of intensive investigations on charging methods for electrophotographic photosensitive members that eliminate the conventional drawbacks, the present inventors have found that a photosensitive layer having a photosensitivity for at least image exposure on a conductive support, and at least charging by exposure for charging. It can be charged by applying a voltage by bringing a conductive member into contact with a photoconductor provided with a layer containing a substance that can be generated (hereinafter referred to as “photocharged charge layer”), and further charging the photoconductor It has been found that by applying a voltage simultaneously with or after the exposure, the surface of the photoreceptor is charged and the photoreceptor can be charged to a higher level (hereinafter referred to as “photocharge charging”). In addition, since the charging method using photocharge charging generates almost no ozone or NOx gas, it is possible to provide a compact image forming apparatus with less environmental pollution because the deterioration of the photoreceptor due to the conventional discharge type charging is suppressed. I found out. And the present inventors completed this invention based on said knowledge.

即ち、本発明の前記課題は、以下の構成を有する本発明の電子写真感光体によって解決することができる。
(1)感光体に帯電用の露光を行う工程、帯電用露光と同時又は露光後に、該感光体と接触している導電性電圧印加部材を介して該感光体に電圧を印加して該電圧印加部材より感光体表面に印加電圧と同極性の帯電を行う工程、を有する画像形成方法に用いる電子写真感光体において、該電子写真感光体が透光性導電性支持体上に少なくとも像露光に対して感度を有する感光層と、少なくとも帯電用露光で電荷を発生する電荷発生物質を含有する光電荷充電層を有し、且つ該光電荷充電層が感光体の表面にあることを特徴とする電子写真感光体。
(2)前記光電荷充電層に含有される電荷発生物質が有機顔料であることを特徴とする上記(1)に記載の電子写真感光体。
(3)前記有機顔料がアゾ顔料であることを特徴とする上記(2)に記載の電子写真感光体。
(4)前記アゾ顔料が下記一般式(I)で表されるアゾ顔料であることを特徴とする上記(3)に記載の電子写真感光体。
That is, the said subject of this invention can be solved by the electrophotographic photoreceptor of this invention which has the following structures.
(1) Step of performing exposure for charging on the photoconductor, simultaneously with or after exposure for charging, a voltage is applied to the photoconductor through a conductive voltage applying member in contact with the photoconductor, and the voltage An electrophotographic photosensitive member for use in an image forming method comprising a step of charging a photosensitive member surface with the same polarity as an applied voltage from an applying member, wherein the electrophotographic photosensitive member is at least subjected to image exposure on a translucent conductive support. A photosensitive layer having a sensitivity to the photosensitive layer; and a photocharged charge layer containing at least a charge generating substance that generates a charge upon exposure for charging; and the photocharged charge layer is on the surface of the photoreceptor. Electrophotographic photoreceptor.
(2) The electrophotographic photoreceptor as described in (1) above, wherein the charge generating material contained in the photocharged charge layer is an organic pigment.
(3) The electrophotographic photosensitive member as described in (2) above, wherein the organic pigment is an azo pigment.
(4) The electrophotographic photoreceptor as described in (3) above, wherein the azo pigment is an azo pigment represented by the following general formula (I).

Figure 2005070749
Figure 2005070749

式中、Cp,Cpはカップラー残基を表す。R201,R202はそれぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、シアノ基のいずれかを表し、同一でも異なっていても良い。またCp,Cpは下記(II)式で表され、 In the formula, Cp 1 and Cp 2 represent coupler residues. R 201 and R 202 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a cyano group, and may be the same or different. Cp 1 and Cp 2 are represented by the following formula (II):

Figure 2005070749
Figure 2005070749

式中、R203は、水素原子、メチル基、エチル基などのアルキル基、フェニル基などのアリール基を表す。R204,R205,R206,R207,R208はそれぞれ、水素原子、ニトロ基、シアノ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、トリフルオロメチル基、メチル基、エチル基などのアルキル基、メトキシ基、エトキシ基などのアルコキシ基、ジアルキルアミノ基、水酸基を表し、Zは置換もしくは無置換の芳香族炭素環または置換もしくは無置換の芳香族複素環を構成するのに必要な原子群を表す。 In the formula, R 203 represents a hydrogen atom, an alkyl group such as a methyl group or an ethyl group, or an aryl group such as a phenyl group. R 204 , R 205 , R 206 , R 207 and R 208 are each a hydrogen atom, a nitro group, a cyano group, a halogen atom such as fluorine, chlorine, bromine or iodine, a trifluoromethyl group, a methyl group or an ethyl group. Represents an alkoxy group such as an alkyl group, a methoxy group or an ethoxy group, a dialkylamino group, or a hydroxyl group, and Z is an atom necessary for constituting a substituted or unsubstituted aromatic carbocyclic ring or a substituted or unsubstituted aromatic heterocyclic ring Represents a group.

(5)前記アゾ顔料のCpとCpとが互いに異なるものであることを特徴とする上記(4)に記載の電子写真感光体。
(6)前記有機顔料がチタニルフタロシアニンであることを特徴とする上記(2)に記載の電子写真感光体。
(7)前記チタニルフタロシアニンが、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニンであることを特徴とする上記(6)に記載の電子写真感光体。
(8)前記チタニルフタロシアニンが、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ前記7.3゜のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないことを特徴とする上記(7)に記載の電子写真感光体。
(9)前記光電荷充電層に電荷輸送物質を含有することを特徴とする上記(1)〜(8)の何れかに記載の電子写真感光体。
(10)前記電荷輸送物質が正孔輸送物質であることを特徴とする上記(9)に記載の電子写真感光体。
(11)前記正孔輸送物質が、少なくともトリアリールアミン構造を有する化合物であることを特徴とする上記(10)に記載の電子写真感光体。
(12)前記光電荷充電層に高分子電荷輸送性物質を含有することを特徴とする上記(9)に記載の電子写真感光体。
(13)前記高分子電荷輸送性物質が正孔輸送物質であることを特徴とする上記(12)に記載の電子写真感光体。
(14)前記高分子電荷輸送性物質が架橋構造を有することを特徴とする上記(12)に記載の電子写真感光体。
(15)前記光電荷充電層に用いられる有機顔料の最大吸収波長と感光層に用いられる有機顔料の最大吸収波長との差が、±10nmの範囲であることを特徴とする上記(1)〜(14)の何れかに記載の電子写真感光体。
(16)前記光電荷充電層に用いられる有機顔料と感光層に用いられる有機顔料とが同一のものであることを特徴とする上記(15)に記載の電子写真感光体。
(17)前記光電荷充電層に用いられる有機顔料と感光層に用いられる有機顔料とが異なるものであり、該光電荷充電層に用いられる有機顔料の最大吸収波長と該感光層に用いられる有機顔料の最大吸収波長とが、200nm以上離れていることを特徴とする上記(1)〜(16)の何れかに記載の電子写真感光体。
(18)前記光電荷充電層中にフィラーが含有されることを特徴とする上記(1)〜(17)の何れかに記載の電子写真感光体。
(19)前記感光層が少なくとも電荷発生層と電荷輸送層からなることを特徴とする上記(1)〜(18)の何れかに記載の電子写真感光体。
(20)前記導電性支持体がエンドレスベルト形状である事を特徴とする上記(1)〜(19)の何れかに記載の電子写真感光体。
(5) The electrophotographic photosensitive member as described in (4) above, wherein Cp 1 and Cp 2 of the azo pigment are different from each other.
(6) The electrophotographic photosensitive member as described in (2) above, wherein the organic pigment is titanyl phthalocyanine.
(7) The titanyl phthalocyanine is a titanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 波長) of CuKα. The electrophotographic photosensitive member as described in (6) above, wherein
(8) The titanyl phthalocyanine has a diffraction peak (± 0.2 °) with a Bragg angle of 2θ with respect to CuKα characteristic X-rays (wavelength of 1.542 mm), and further 9.4 °, 9.6 °, and 24.0 °. And has a peak at 7.3 ° as the lowest angled diffraction peak, and has a peak between the 7.3 ° peak and the 9.4 ° peak. The electrophotographic photosensitive member according to (7) above, which has no peak at 26.3 °.
(9) The electrophotographic photosensitive member according to any one of (1) to (8) above, wherein the photocharged charge layer contains a charge transport material.
(10) The electrophotographic photoreceptor as described in (9) above, wherein the charge transport material is a hole transport material.
(11) The electrophotographic photoreceptor as described in (10) above, wherein the hole transport material is a compound having at least a triarylamine structure.
(12) The electrophotographic photosensitive member as described in (9) above, wherein the photocharge charging layer contains a polymer charge transporting substance.
(13) The electrophotographic photosensitive member as described in (12) above, wherein the polymer charge transporting substance is a hole transporting substance.
(14) The electrophotographic photosensitive member as described in (12) above, wherein the polymer charge transporting substance has a crosslinked structure.
(15) The difference between the maximum absorption wavelength of the organic pigment used in the photocharge charging layer and the maximum absorption wavelength of the organic pigment used in the photosensitive layer is in the range of ± 10 nm. The electrophotographic photosensitive member according to any one of (14).
(16) The electrophotographic photosensitive member as described in (15) above, wherein the organic pigment used in the photocharge charging layer and the organic pigment used in the photosensitive layer are the same.
(17) The organic pigment used in the photocharge charging layer is different from the organic pigment used in the photosensitive layer, and the maximum absorption wavelength of the organic pigment used in the photocharge charging layer and the organic used in the photosensitive layer are different. The electrophotographic photosensitive member according to any one of (1) to (16) above, wherein the maximum absorption wavelength of the pigment is 200 nm or more.
(18) The electrophotographic photosensitive member according to any one of (1) to (17) above, wherein a filler is contained in the photocharged charge layer.
(19) The electrophotographic photosensitive member according to any one of (1) to (18) above, wherein the photosensitive layer comprises at least a charge generation layer and a charge transport layer.
(20) The electrophotographic photosensitive member according to any one of (1) to (19), wherein the conductive support has an endless belt shape.

また、本発明の課題は、下記の構成を有する本発明の画像形成装置によって解決することができる。
(21)少なくとも、感光体と該感光体に帯電用の露光を行う手段、該帯電用の露光と同時又は露光後に該感光体と接触している導電性電圧印加部材を介して該感光体に電圧を印加して該電圧印加部材より該感光体表面に印加電圧と同極性の帯電を行うための電圧印加手段、帯電後該感光体の内面より像露光を行って該感光体に静電荷潜像を形成する像露光手段、該静電荷潜像をトナーで現像するための現像手段、および現像された画像を転写体に転写する手段を有する画像形成装置に於いて、該感光体が上記(1)〜(20)の何れかに記載の電子写真感光体であることを特徴とする画像形成装置。
(22)前記帯電用の露光手段として400nm以長の光源を用いることを特徴とする上記(21)に記載の画像形成装置。
(23)帯電用露光手段に用いられる光を光電荷充電層が80%以上吸収することを特徴とする上記(22)に記載の画像形成装置。
(24)帯電用露光手段に用いられる光の波長が、感光層に用いられる電荷発生物質の吸収の無い領域の光であることを特徴とする上記(21)〜(23)のいずれかに記載の画像形成装置。
(25)前記感光体の光電荷充電層が正極性電荷の輸送機能を有しており、電圧印加手段に負極性電圧が印加されることを特徴とする上記(21)〜(24)の何れかに記載の画像形成装置。
The problems of the present invention can be solved by the image forming apparatus of the present invention having the following configuration.
(21) At least the photosensitive member and a means for exposing the photosensitive member for exposure, and a conductive voltage applying member in contact with the photosensitive member at the same time as or after the exposure for charging. A voltage applying means for applying a voltage to the surface of the photoconductor from the voltage applying member to charge the same polarity as the applied voltage. After charging, image exposure is performed from the inner surface of the photoconductor to charge the electrostatic latent image on the photoconductor. In an image forming apparatus having an image exposure means for forming an image, a developing means for developing the electrostatic latent image with toner, and a means for transferring the developed image to a transfer body, the photoreceptor is the above ( An image forming apparatus comprising the electrophotographic photosensitive member according to any one of 1) to (20).
(22) The image forming apparatus as described in (21) above, wherein a light source having a length of 400 nm or longer is used as the charging exposure means.
(23) The image forming apparatus as described in (22) above, wherein the photocharged layer absorbs 80% or more of the light used for the charging exposure means.
(24) The wavelength of the light used for the exposure means for charging is light in a region where there is no absorption of the charge generating material used for the photosensitive layer, as described in any one of (21) to (23) above Image forming apparatus.
(25) Any of the above (21) to (24), wherein the photocharged charge layer of the photoreceptor has a positive charge transport function, and a negative voltage is applied to the voltage application means. An image forming apparatus according to claim 1.

更に、本発明の課題は、下記の構成を有する本発明のプロセスカートリッジによって解決することができる。
(26)感光体と、帯電用の露光手段、電圧印加手段、現像手段、クリーニング手段、除電手段及び転写手段から選ばれる少なくとも1つとを一体化し、着脱自在に設けたプロセスカートリッジであって、該感光体が上記(1)〜(20)の何れかに記載の感光体であることを特徴とするプロセスカートリッジ。
以下では、上記(1)〜(26)の発明を本発明(1)〜(26)という。
Furthermore, the problems of the present invention can be solved by the process cartridge of the present invention having the following configuration.
(26) A process cartridge in which a photosensitive member and at least one selected from an exposing unit for charging, a voltage applying unit, a developing unit, a cleaning unit, a neutralizing unit, and a transfer unit are integrated and detachably provided. A process cartridge, wherein the photoconductor is the photoconductor according to any one of (1) to (20).
Hereinafter, the inventions (1) to (26) are referred to as the present inventions (1) to (26).

本発明の効果は以下のとおりである。
本発明(1):導電性支持体上に少なくとも像露光に対して感光する感光層と帯電用露光で電荷を発生する電荷発生物質又は電荷発生物質と電荷輸送物質を含有する光電荷充電層を有し且つ光電荷充電層が感光体の表面にあることにより、感光体に帯電用露光と同時又は露光後に、該感光体と接触している導電性電圧印加部材を介して該感光体に電圧を印加して、光電荷充電層に印加電圧と同極性の電荷を充電し、感光体の劣化要因であるコロナ放電を伴わない帯電を行うことを可能にする感光体を提供する。また透光性支持体を用いているため、光学系を感光体内に収納することで、コンパクトな書き込みが実施できる。
更に環境に優しい帯電方法、画像形成装置を提供する。
本発明(2):光電荷充電層に含有される電荷発生物質が有機顔料であることで、帯電用の露光光源として、可視光を使用することが出来るため、紫外光による感光体の劣化が防止でき、長寿命な感光体の提供が可能になる。また、無機顔料と比較して吸収スペクトルのバラエティーに富み、感光体の設計が容易になる。
本発明(3):光電荷充電層に含有される有機顔料がアゾ顔料であることで光電荷充電の効率の高い感光体が提供可能となる。
本発明(4):特に(I)式で表されるアゾ顔料は電荷発生能力が高く、繰り返し使用における光疲労にも強く、光電荷充電効率が高い感光体が提供可能になる。
本発明(5):(I)式の中でも、2つのカップラー成分の異なる非対称顔料は、極めて高い光キャリア発生能力を有し、光電荷充電効率が高い感光体が提供可能になる。
本発明(6):光電荷充電層に含有される有機顔料がチタニルフタロシアニンであることで光電荷充電効率が高い感光体が提供可能となる。
本発明(7):特定結晶のチタニルフタロシアニン(最大回折ピークを27.2度に有する)であることで、より光電荷充電効率が高い感光体が提供可能になる。
本発明(8):特に特定結晶の特定結晶のチタニルフタロシアニンであることで、より光電荷充電効率が高い感光体が提供可能になる。
本発明(9):光電荷充電層に電荷輸送物質を含有することで、より光電荷充電効率が高い感光体が提供可能になる。
本発明(10):光電荷充電層に含有される電荷輸送物質が正孔輸送物質であることで負極性電荷の光電荷充電効率が高い感光体が提供可能となる。
本発明(11):光電荷充電層に含有される正孔輸送物質が少なくともトリアリールアミン構造を有する化合物の1種以上であることで、高速な帯電が可能になる。
本発明(12):光電荷充電層に電荷輸送物質として高分子電荷輸送性物質を用いることで、感光体表面の摩耗やキズが少なくなり、均一な光電荷充電が安定して得られる耐久性の高い感光体が提供可能となる。
本発明(13):光電荷充電層に含有される高分子電荷輸送性物質が正孔輸送物質であることで負極性電荷の光電荷充電効率が高く、且つ、感光体表面の摩耗やキズが少なくなり、均一な光電荷充電が安定して得られる耐久性の高い感光体が提供可能となる。
本発明(14):光電荷充電層に架橋構造を有する高分子電荷輸送性物質が含有されることで、光電荷充電層の硬度が高くなり、感光体表面の摩耗やキズがより少なく、均一な光電荷充電が安定して得られる耐久性の高い感光体が提供可能となる。
本発明(15):光電荷充電層と感光層に含まれる電荷発生物質の吸収スペクトルがほぼ一致することで、帯電用露光を感光層にほとんど吸収させないことが可能になり、効率の良い帯電が可能になる。これは、画像用の書き込みを感光体内側から実施することによりなし得るものである。
本発明(16):本発明(15)と同様の効果であるが、両者の電荷発生物質が同一であることにより、その効果を確実なものにする。また、電荷注入性をスムースにする。更には、コストメリットが生じる。
本発明(17):光電荷充電層と感光層(電荷発生層)に含有される電荷発生物質の最大吸収ピークが200nm以上はなれることで、互いの吸収領域が重ならず、効率の良い光電荷充電が可能になる。
本発明(18):光電荷充電層中にフィラーが含有されることで感光体表面の摩耗が少なくなり、長寿命な感光体の提供が可能となる。
本発明(19): 感光層が少なくとも電荷発生層と電荷輸送層からなることで高感度な光電荷充電用の感光体が提供可能となる。
本発明(20):感光体がフレキシブルなエンドレスベルト形状であることで、電圧印加手段と感光体間の幅広い接触を可能にし、均一で、安定な光電荷充電による帯電が可能となり、感光体表面と現像部材間の現像ニップ、感光体と転写部材間の転写ニップ等を安定確保して、画像流れ、画像ボケ、ざらつき、スジ状地汚れなどの異常画像の発生しない信頼性の高い画像形成装置を設計できる感光体の提供を可能にする。
The effects of the present invention are as follows.
The present invention (1): a photosensitive layer that is at least sensitive to image exposure on a conductive support, and a charge generation material that generates a charge in exposure for charging or a charge generation layer that includes a charge generation material and a charge transport material. And having a photocharged charge layer on the surface of the photoconductor, the voltage is applied to the photoconductor via a conductive voltage applying member that is in contact with the photoconductor at the same time as or after the exposure for charging. Is applied to charge the photocharge charging layer with the same polarity as the applied voltage, and charging without corona discharge, which is a cause of deterioration of the photoconductor, can be provided. In addition, since a translucent support is used, compact writing can be performed by housing the optical system in the photosensitive body.
Furthermore, an environmentally friendly charging method and an image forming apparatus are provided.
Invention (2): Since the charge generating material contained in the photocharge charging layer is an organic pigment, visible light can be used as an exposure light source for charging, and therefore the photoreceptor is deteriorated by ultraviolet light. Therefore, it is possible to provide a long-life photoconductor. In addition, the absorption spectrum has a wide variety compared to inorganic pigments, and the design of the photoreceptor becomes easy.
Invention (3): Since the organic pigment contained in the photocharge charging layer is an azo pigment, it is possible to provide a photoconductor with high photocharge charge efficiency.
Present invention (4): In particular, the azo pigment represented by the formula (I) has a high charge generation ability, is resistant to light fatigue in repeated use, and can provide a photoreceptor having high photocharge charging efficiency.
The present invention (5): Among the formulas (I), the two asymmetric pigments having different coupler components have a very high photocarrier generation ability, and can provide a photoconductor having high photocharge charging efficiency.
Invention (6): Since the organic pigment contained in the photocharge charging layer is titanyl phthalocyanine, a photoconductor with high photocharge charge efficiency can be provided.
Present invention (7): By using titanyl phthalocyanine having a specific crystal (having a maximum diffraction peak at 27.2 degrees), a photoconductor with higher photocharge charging efficiency can be provided.
Invention (8): In particular, a specific crystal titanyl phthalocyanine of a specific crystal makes it possible to provide a photoconductor with higher photocharge charging efficiency.
Invention (9): By containing a charge transport material in the photocharge charging layer, it is possible to provide a photoconductor with higher photocharge charge efficiency.
Present invention (10): Since the charge transport material contained in the photocharge charging layer is a hole transport material, it is possible to provide a photoreceptor having high negative charge charge efficiency.
Present invention (11): The hole transport material contained in the photocharge charging layer is at least one compound having a triarylamine structure, whereby high-speed charging becomes possible.
Invention (12): Use of a polymer charge transporting material as a charge transporting material in the photocharge charging layer reduces wear and scratches on the surface of the photoconductor, and durability capable of stably obtaining uniform photocharge charging. High photoconductor can be provided.
Invention (13): Since the polymer charge transporting material contained in the photocharge charging layer is a hole transporting material, the photocharge charging efficiency of the negative charge is high, and the surface of the photoreceptor is worn and scratched. Thus, it is possible to provide a highly durable photoconductor that can stably obtain uniform photocharge charging.
Present invention (14): The photocharge charging layer contains a polymer charge transporting substance having a crosslinked structure, so that the hardness of the photocharge charge layer is increased, the wear and scratches on the surface of the photoreceptor are less, and uniform. Therefore, it is possible to provide a highly durable photoconductor that can stably obtain a stable photocharge charge.
Present invention (15): Since the absorption spectra of the charge generating material contained in the photocharged charge layer and the photosensitive layer substantially coincide with each other, it becomes possible to make the photosensitive layer hardly absorb the exposure for charging, and efficient charging is achieved. It becomes possible. This can be done by performing image writing from the inside of the photoreceptor.
Present invention (16): This is the same effect as the present invention (15), but the effect is ensured by the fact that both charge generating substances are the same. In addition, the charge injection property is made smooth. Furthermore, cost merit arises.
Invention (17): The maximum absorption peak of the charge generation material contained in the photocharge charge layer and the photosensitive layer (charge generation layer) is 200 nm or more, so that the absorption regions do not overlap with each other and the light is efficient. Charge charging becomes possible.
Present invention (18): Since the photocharged charge layer contains a filler, wear on the surface of the photoreceptor is reduced, and a photoreceptor having a long life can be provided.
Invention (19): The photosensitive layer comprises at least a charge generation layer and a charge transport layer, whereby it is possible to provide a highly sensitive photoconductor for photocharge charging.
Present invention (20): Since the photosensitive member has a flexible endless belt shape, it enables wide contact between the voltage applying means and the photosensitive member, and enables uniform and stable charging by photocharge charging. Highly reliable image forming apparatus that ensures stable development nip between toner and developing member, transfer nip between photoconductor and transfer member, etc., and does not cause abnormal images such as image flow, image blurring, roughness, streaks It is possible to provide a photoconductor that can be designed.

本発明(21):画像流れ、画像ボケ、ざらつき、スジ状地汚れなどの異常画像の発生しない、信頼性の高い画像が形成でき、且つ放電生成物の発生が無く、省エネルギーな画像形成装置が提供できる。
本発明(22):帯電用の露光手段として紫外線を用いずに、400nm以長の光源を用いることで感光体の劣化が少なく、信頼性の高い画像形成装置の提供が可能となる。
本発明(23)、(24):帯電用露光を電荷発生層に吸収させないことで、効率の良い光電荷充電が可能な装置が提供できる。
本発明(25):感光体の光電荷充電層が正極性電荷の輸送機能を有し、電圧印加手段に負極性電圧が印加されることによって、光電荷充電効率が高く、信頼性の高い高速な画像形成装置の提供ができる。
本発明(26):画像流れ、画像ボケ、ざらつき、スジ状地汚れなどの異常画像の発生しない、信頼性の高いプロセスカートリッジが提供出来る。
Present invention (21): An energy-saving image forming apparatus capable of forming a highly reliable image without generating an abnormal image such as image flow, image blurring, roughness, and streak-like soil and generating no discharge products. Can be provided.
Invention (22): By using a light source having a length of 400 nm or longer without using ultraviolet rays as the exposure means for charging, it is possible to provide a highly reliable image forming apparatus with little deterioration of the photoreceptor.
Inventions (23) and (24): By preventing charging exposure from being absorbed by the charge generation layer, an apparatus capable of efficient photocharge charging can be provided.
Invention (25): The photocharge charging layer of the photoconductor has a positive charge transport function, and a negative voltage is applied to the voltage applying means, whereby the photocharge charging efficiency is high and the reliability is high speed. An image forming apparatus can be provided.
Invention (26): It is possible to provide a highly reliable process cartridge that does not generate abnormal images such as image flow, image blur, roughness, and streak-like background stains.

本発明の感光体の基本的な構成は図2に示すごとく、導電性支持体11上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層12とその上に積層された少なくとも電荷発生物質を含有する光電荷充電層13とからなる。   As shown in FIG. 2, the basic structure of the photoconductor of the present invention comprises a photosensitive layer 12 containing at least a charge generating material and a charge transport material on a conductive support 11, and at least a charge generating material laminated thereon. It consists of the photocharge charge layer 13 contained.

本発明の光電荷充電層を設けた感光体への帯電機構の詳細メカニズムは現時点では明確になっていないが、本発明者らは帯電と潜像形成のメカニズムは下記に示されるようなものであると考えられ、これを図3に基づいて説明する。   Although the detailed mechanism of the charging mechanism for the photoconductor provided with the photocharged charge layer of the present invention is not clear at present, the present inventors have shown the mechanism of charging and latent image formation as shown below. This will be described with reference to FIG.

(1)感光体表面に少なくとも露光で電荷を発生する電荷発生物質を含有する光電荷充電層を設けた感光体に、光電荷充電層が吸収する光を照射すると感光層表面には正負両極性の電荷が発生する(図3(a))。
(2)この電荷が再結合して消失する前に感光体表面に接触した電圧印加部材(以下、「帯電部材」と表記することがある)に電圧を印加すると、印加電圧と逆極性の電荷が電圧印加部材に移動し、光電荷充電層には電圧印加部材と同極性の電荷が充電される(図3(b))。
(3)感光体の導電性支持体側には印加電圧と逆極性の電荷が誘起され、感光層には電圧が均一にかかる(図3(c))。
(4)以上のように、本発明における帯電は、光電荷充電層に形成された内部電荷のみによって形成されるものであり、そのためには光電荷充電層に光を吸収して電荷を発生する電荷発生物質が含有されている必要がある。
(5)また、光電荷充電層に電荷発生物質と同時に電荷輸送物質を含有させることで、光電荷充電層中における正負電荷対の分離効率、電荷の移動速度が高められ、しかも光電荷充電層と電圧印加部材との間の電荷授受がスムースになり、電荷充電効率を高くする(結果として、高い感光体表面電位を得る)ことが可能となる。
(6)その後、原稿(入力信号)に従った静電潜像形成のための画像露光(以下、単に画像露光と表記する場合がある)を行うと、感光層の露光部は画像光の照射により発生した光電荷によって光電荷充電層内の電荷が中和され、感光体には静電潜像が形成される(図3(d))。
(1) When the photoconductor is provided with a photocharged charge layer containing a charge generating material that generates charge upon exposure to the surface of the photoconductor, the surface of the photoconductor layer is both positive and negative when irradiated with light absorbed by the photocharge charge layer. Is generated (FIG. 3A).
(2) When a voltage is applied to a voltage application member (hereinafter sometimes referred to as “charging member”) that contacts the surface of the photoconductor before the charge recombines and disappears, a charge having a polarity opposite to the applied voltage is applied. Moves to the voltage application member, and the photocharge charge layer is charged with the same polarity as the voltage application member (FIG. 3B).
(3) Charges having the opposite polarity to the applied voltage are induced on the conductive support side of the photoreceptor, and the voltage is uniformly applied to the photosensitive layer (FIG. 3 (c)).
(4) As described above, the charge in the present invention is formed only by the internal charges formed in the photocharge charge layer, and for that purpose, the photocharge charge layer absorbs light and generates a charge. It must contain a charge generating material.
(5) In addition, by incorporating a charge transport material simultaneously with the charge generation material in the photocharge charge layer, the separation efficiency of positive and negative charge pairs in the photocharge charge layer, the charge transfer speed can be increased, and the photocharge charge layer Charge transfer between the voltage application member and the voltage application member becomes smooth, and charge charge efficiency can be increased (as a result, a high photoreceptor surface potential can be obtained).
(6) Thereafter, when image exposure for forming an electrostatic latent image according to the original (input signal) (hereinafter, simply referred to as image exposure) is performed, the exposed portion of the photosensitive layer is irradiated with image light. The charge in the photocharge charging layer is neutralized by the photocharge generated by the above, and an electrostatic latent image is formed on the photoconductor (FIG. 3D).

次に本発明に用いられる感光体の層構成について述べる。
<光電荷充電層>
本発明の光電荷充電層13に用いられる電荷発生物質としては、従来、電子写真用の電荷発生物質として公知の材料を用いることができる。中でも、有機材料は有効に使用できる。これは、有機材料は化学構造によりその吸収波長を任意にコントロールすることが可能で、後述のように帯電用露光と画像形成用露光をいずれも感光体表面側から行う場合、光電荷充電層に用いられる電荷発生物質と、光電荷充電層の下層である感光層(電荷発生層)の電荷発生物質の吸収波長領域を異ならせることで、効率良く光キャリア発生を行わせることができるなどの利点を生み出すことができる。このため、無機材料に比較して有機材料は本発明に有効に使用できるものである。
Next, the layer structure of the photoreceptor used in the present invention will be described.
<Photocharge charge layer>
As the charge generation material used for the photocharge charging layer 13 of the present invention, conventionally known materials can be used as charge generation materials for electrophotography. Among these, organic materials can be used effectively. This is because the organic material can arbitrarily control the absorption wavelength depending on the chemical structure. When both the exposure for charging and the exposure for image formation are performed from the surface of the photoreceptor as described later, the photocharge charging layer is formed. Advantages such as efficient generation of photocarriers by differentiating the absorption wavelength region of the charge generation material used from the charge generation material of the photosensitive layer (charge generation layer) which is the lower layer of the photocharge charge layer Can be produced. For this reason, compared with an inorganic material, an organic material can be effectively used for this invention.

このような有機材料の例としては、各種金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾ−ル骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾ−ル骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾ−ル骨格を有するアゾ顔料、ジスチリルカルバゾ−ル骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾ−ル系顔料などが挙げられる。   Examples of such organic materials include phthalocyanine pigments such as various metal phthalocyanines and metal-free phthalocyanines, azulenium salt pigments, squaric acid methine pigments, azo pigments having a carbazole skeleton, and azo pigments having a triphenylamine skeleton. Azo pigments having a diphenylamine skeleton, azo pigments having a dibenzothiophene skeleton, azo pigments having a fluorenone skeleton, azo pigments having an oxadiazol skeleton, azo pigments having a bisstilbene skeleton, azo having a distyryl oxadiazol skeleton Pigments, azo pigments having a distyrylcarbazole skeleton, perylene pigments, anthraquinone or polycyclic quinone pigments, quinoneimine pigments, diphenylmethane and triphenylmethane pigments, benzoquinone and naphthoquinone pigments, shear Emissions and azomethine pigments, indigoid pigments, bisbenzimidazo - such as Le based pigments.

これらの電荷発生物質は、単独または2種以上の混合物として用いることができる。特に、前記(I)式で表わされるアゾ顔料や特定の結晶型を有する(CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する)チタニルフタロシアニンは高感度で耐久性が高く、特に光疲労に強いため、本発明の電荷発生物質として有効に用いることができる。中でも、前記(I)式において、CpとCpが異なるものは前記(I)式で表される材料の中でも特に高感度を示し、本発明の感光体の電荷発生物質として非常に良好に使用される。また、27.2゜に最大回折ピークを有するチタニルフタロシアニンの中でも、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3゜にピークを有さないチタニルフタロシアニン結晶は、特に高感度を示し、また感光体繰り返し使用における帯電性の低下も小さく、本発明の感光体の電荷発生物質として非常に良好に使用できる。 These charge generation materials can be used alone or as a mixture of two or more. In particular, the azo pigment represented by the formula (I) or a specific crystal form (as a diffraction peak (± 0.2 °) at a Bragg angle 2θ with respect to a characteristic X-ray of CuKα (wavelength 1.542 mm) is at least 27. Since titanyl phthalocyanine (having a maximum diffraction peak at 2 °) has high sensitivity and high durability and is particularly resistant to light fatigue, it can be used effectively as a charge generating material of the present invention. Among them, in the formula (I), those in which Cp 1 and Cp 2 are different show particularly high sensitivity among the materials represented by the formula (I), and are very good as the charge generating material of the photoreceptor of the present invention. used. Among the titanyl phthalocyanines having the maximum diffraction peak at 27.2 °, there are further main peaks at 9.4 °, 9.6 °, and 24.0 °, and the diffraction peak at the lowest angle is 7%. A titanyl phthalocyanine crystal having a peak at .3 °, no peak between the peak at 7.3 ° and the peak at 9.4 °, and no peak at 26.3 ° is particularly sensitive. Moreover, the decrease in chargeability in repeated use of the photoconductor is small, and it can be used very well as a charge generating material of the photoconductor of the present invention.

光電荷充電層に用いられる電荷発生物質は、後述する感光層(電荷発生層)で使用されるものと同一か、吸収スペクトルのプロフィールが限りなく同一であるもの(両者の最大吸収波長の差が±10nm以内であるもの)は良好に用いることが出来る。これは、光電荷充電における露光が、感光層に吸収されてしまうと先の図3(c)の状態において、感光層にも光キャリア生成が起こり、電界に沿って感光層から光電荷充電層に電荷が移動し、光電荷充電層に蓄えられた電荷を一部キャンセルしてしまうからである。
これを避ける方法としては、大きくは以下に記載する2つの方法がある。
The charge generation material used in the photocharge charge layer is the same as that used in the photosensitive layer (charge generation layer) described later, or has the same absorption spectrum profile (the difference in the maximum absorption wavelength between the two). Those within ± 10 nm can be used satisfactorily. This is because when the exposure in photocharge charging is absorbed by the photosensitive layer, photocarrier generation also occurs in the photosensitive layer in the state of FIG. This is because the charge moves to the position and the charge stored in the photocharge charge layer is partially canceled.
As a method for avoiding this, there are roughly two methods described below.

1つは、光電荷充電層に使用される電荷発生物質と、感光層に使用される電荷発生物質とに同一(もしくは吸収スペクトルプロフィールが略同一)のものを用い、光電荷充電層の吸収量を大きくすることである。これにより感光層に帯電用露光の光が到達することを避けるものである。この場合、帯電用露光の光を光電荷充電層が80%以上吸収することが望ましく、光電荷充電層の電荷発生物質濃度を十分に高くするか、膜厚を大きくする必要がある。   One is that the charge generation material used for the photocharge charge layer and the charge generation material used for the photosensitive layer are the same (or the absorption spectrum profile is substantially the same), and the absorption amount of the photocharge charge layer is Is to increase. This prevents the exposure light for charging from reaching the photosensitive layer. In this case, it is desirable that the photocharge charging layer absorb 80% or more of the light for charging exposure, and it is necessary to sufficiently increase the concentration of the charge generating substance in the photocharge charging layer or to increase the film thickness.

もうひとつの方法は、光電荷充電層に用いる電荷発生物質と後述する感光層(電荷発生層)に用いる電荷発生物質とが異なるものであり、その吸収波長領域が異なるようにする(両者の最大吸収波長の差が200nm以上離れているようにする)ことが好ましい。感光体の電荷発生物質として好適に使用される有機顔料は、一般的に高度な分子会合体であることが多い。従って、一般的にはその吸収スペクトルはブロードである。従って、上述のように光電荷充電層に用いる電荷発生物質と後述する感光層(電荷発生層)に用いる電荷発生物質の吸収波長領域を異ならせるようにするためには、その吸収ピーク位置を大きくずらす必要がある。具体的に述べれば、400nm〜1200nmの範囲において、最大吸収ピーク波長が200nm以上離れていれば、両者の吸収領域が重なることは少なく、重なってもその波長領域はわずかである。   In another method, the charge generation material used for the photocharge charge layer is different from the charge generation material used for the photosensitive layer (charge generation layer) described later, and the absorption wavelength region is made different (the maximum of both). It is preferable that the difference in absorption wavelength is 200 nm or more. In general, organic pigments preferably used as charge generating materials for photoreceptors are often highly molecular aggregates. Therefore, in general, the absorption spectrum is broad. Therefore, in order to make the absorption wavelength region of the charge generation material used in the photocharge charge layer different from the charge generation material used in the photosensitive layer (charge generation layer) described later, the absorption peak position is increased. Need to shift. Specifically, in the range of 400 nm to 1200 nm, if the maximum absorption peak wavelength is 200 nm or more, both absorption regions rarely overlap, and even if they overlap, the wavelength region is slight.

このような電荷発生物質(有機顔料)の吸収波長領域の評価方法は下記のようにして行うことができる。感光体に用いる光電荷充電層用の塗工液と感光層(電荷発生層)用の塗工液をそれぞれ、光学的に透明な支持体上に塗布・乾燥したサンプルを作製する。次いで、市販の分光光度計により各々の吸収スペクトルを測定することにより、電荷発生物質の吸収プロフィール及び最大吸収波長が求まる。このような測定結果の一例を図10に示す。   Such an evaluation method of the absorption wavelength region of the charge generation substance (organic pigment) can be performed as follows. A sample is prepared by coating and drying an optical charge charging layer coating solution and a photosensitive layer (charge generation layer) coating solution, which are used for the photoreceptor, on an optically transparent support. Subsequently, each absorption spectrum is measured with a commercially available spectrophotometer, whereby the absorption profile and the maximum absorption wavelength of the charge generating material are determined. An example of such a measurement result is shown in FIG.

電荷発生物質(図中では、CGM A,B,Cと記載)の吸収スペクトルをそれぞれ示すが、例えば電荷発生物質Cを感光層の電荷発生物質に用いたとする。ここで、電荷発生物質Aを光電荷充電層に用いる場合には、両者の吸収スペクトルの重なりが小さく、概ね700nm以上の画像露光を行えば、光電荷充電層に吸収されることはほとんどない。一方、電荷発生物質Bを光電荷充電層に用いた場合には、両者の吸収スペクトルの重なりが非常に大きく、画像露光波長が非常に限定されるばかりでなく、光電荷充電層での吸収が大きくなり、感光体の光感度が低下してしまう場合がある。このように、光電荷充電層と感光層に用いられる電荷発生物質の吸収スペクトルの分布は重要であり、図10に示すように両者の最大吸収ピーク波長が200nm以上離れている場合に良好な組み合わせとなる。   The absorption spectra of charge generation materials (denoted as CGM A, B, and C in the figure) are respectively shown. For example, it is assumed that charge generation material C is used as the charge generation material of the photosensitive layer. Here, when the charge generating substance A is used for the photocharged charge layer, the overlap of the absorption spectra of both is small, and if the image exposure of approximately 700 nm or more is performed, the photocharge charge layer is hardly absorbed. On the other hand, when the charge generating substance B is used in the photocharge charging layer, the overlap of the absorption spectra of both is very large, not only the image exposure wavelength is very limited, but also the absorption in the photocharge charging layer. In some cases, the photosensitivity of the photoconductor may be reduced. Thus, the distribution of the absorption spectrum of the charge generating material used in the photocharged charge layer and the photosensitive layer is important, and a good combination is obtained when the maximum absorption peak wavelengths of both are separated by 200 nm or more as shown in FIG. It becomes.

感光層上に光電荷充電層を設けるには、上述した電荷発生物質を必要ならばバインダ−樹脂と共にテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノン、メチルエチルケトン等の有機溶媒を用いてボ−ルミル、アトライタ−、サンドミル等により微粒子に分散し、分散液を適度に希釈して塗布することにより、形成できる。塗布は、浸漬塗工法やスプレ−コ−ト、ビ−ドコ−ト法などを用いて行なうことができる。   In order to provide a photocharged charge layer on the photosensitive layer, if necessary, the above-described charge generating material is used together with a binder resin and an organic solvent such as tetrahydrofuran, cyclohexanone, dioxane, dichloroethane, butanone, methylethylketone, ball mill, attritor. It can be formed by dispersing in fine particles with a sand mill or the like and applying the solution after diluting the dispersion appropriately. The coating can be performed using a dip coating method, a spray coat, a bead coat method or the like.

光電荷充電層に必要に応じて用いられるバインダ−樹脂としては、ポリアミド、ポリウレタン、ポリカ−ボネ−ト、シリコ−ン樹脂、アクリル樹脂、ポリビニルブチラ−ル、ポリビニルホルマ−ル、ポリスチレン、ポリ−N−ビニルカルバゾ−ル、ポリアクリルアミド、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニル−塩化ビニル共重合樹脂などが用いられる。これらのバインダ−樹脂は、単独または2種以上の混合物として用いることができる。   Binder resins used as necessary for the photocharged charge layer include polyamide, polyurethane, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polystyrene, poly- N-vinyl carbazole, polyacrylamide, vinyl chloride resin, vinyl acetate resin, vinyl acetate-vinyl chloride copolymer resin and the like are used. These binder resins can be used alone or as a mixture of two or more.

また、本発明者らは、光電荷充電層に上記電荷発生物質と共に電荷輸送物質を添加することで、光電荷充電の効率が高くなり、より高い帯電電位の発現が可能となる事を見出した。これは、電荷発生物質と同時に電荷輸送物質を含有させることで、電荷発生物質と電荷輸送物質の接触界面近傍で電界によって比較的容易に分離される正負両極性の電荷対が新たに生成し、印加電圧と逆極性の電荷が電荷輸送物質、又は電荷発生物質を経由して帯電部材まで輸送され、帯電部材に充電されて、印加電圧と同極性の帯電が起こるためと考えられる。   Further, the present inventors have found that by adding a charge transport material together with the charge generation material to the photocharge charge layer, the efficiency of photocharge charge is increased, and a higher charge potential can be expressed. . This is because a charge transport material is contained at the same time as the charge generation material, and a positive and negative charge pair that is relatively easily separated by an electric field in the vicinity of the contact interface between the charge generation material and the charge transport material is generated. It is considered that the charge having the opposite polarity to the applied voltage is transported to the charging member via the charge transport material or the charge generating material and charged to the charging member, and charging having the same polarity as the applied voltage occurs.

光電荷充電層13に添加することのできる電荷輸送物質としては正孔輸送物質と電子輸送物質とがある。先に示したように、本発明の光電荷充電層は帯電用露光により生じた電荷を感光体表面まで到達させる必要があるが(図3)、この際、帯電部材に印加された逆極性の電荷を運ぶ必要がある。このため、帯電部材に負極性を印加する場合には正孔輸送物質、正極性を印加する場合には電子輸送物質が有効に用いられる。 Examples of charge transport materials that can be added to the photocharge charge layer 13 include a hole transport material and an electron transport material. As described above, the photocharged charge layer of the present invention needs to cause the charge generated by the charging exposure to reach the surface of the photoreceptor (FIG. 3). At this time, the reverse polarity applied to the charging member Need to carry charge. For this reason, a hole transport material is effectively used when negative polarity is applied to the charging member, and an electron transport material is effectively used when positive polarity is applied.

電子輸送物質としては、たとえばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイドなどの電子受容性物質が挙げられる。これらの電子輸送物質は、単独または2種以上の混合物として用いることができる。   Examples of the electron transporting material include chloroanil, bromanyl, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 2,6,8-trinitro-4H-indeno [1,2-b] thiophen-4-one, 1,3,7-tri Examples thereof include electron accepting substances such as nitrodibenzothiophene-5,5-dioxide. These electron transport materials can be used alone or as a mixture of two or more.

正孔輸送物質としては、たとえば、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾ−ル誘導体、トリフェニルアミン誘導体、9−(p−ジエチルアミノスチリルアントラセン)、1,1−ビス−(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、α−フェニルスチルベン誘導体、チアゾール誘導体、トリアゾール誘導体、フェナジン誘導体、アクリジン誘導体、ベンゾフラン誘導体、ベンズイミダゾール誘導体、チオフェン誘導体などが挙げられる。中でも、トリアリールアミン構造を分子中に有する化合物は、電荷輸送能が高く、高速のプロセスにも対応することが可能で、本発明において極めて有効に用いることができる。これらの正孔輸送物質は、単独または2種以上の混合物として用いることができる。   Examples of the hole transport material include oxazole derivatives, oxadiazole derivatives, imidazole derivatives, triphenylamine derivatives, 9- (p-diethylaminostyrylanthracene), 1,1-bis- (4-dibenzylaminophenyl). ) Propane, styrylanthracene, styrylpyrazoline, phenylhydrazones, α-phenylstilbene derivatives, thiazole derivatives, triazole derivatives, phenazine derivatives, acridine derivatives, benzofuran derivatives, benzimidazole derivatives, thiophene derivatives, and the like. Among them, a compound having a triarylamine structure in a molecule has a high charge transporting ability and can cope with a high-speed process and can be used very effectively in the present invention. These hole transport materials can be used alone or as a mixture of two or more.

なお、これらの電子輸送物質と正孔輸送物質は同時に含有してもよい。光電荷充電層上(感光体表面)に帯電されるべき極性は、使用する画像形成装置のシステム設計思想により、負極性か正極性かが決定されるべきものである。しかしながら、ここまでの画像形成装置のほとんどが有機系感光体を用いており、そのほとんどが負帯電型の感光体を採用している。また、昨今の画像形成装置ではデジタル方式の書き込み・現像が主流であり、使用する現像方式もこれに併せたものが用いられている。更に、感光体に用いられる電荷輸送物質のうち電荷の高速移動を可能にできる材料としては、正孔輸送物質がその大半を占める。このような状況から、本発明においても、光電荷充電層の下層である感光層は公知の技術を最大限に生かすべきであり、また画像形成装置にも応用展開すべきである。従って、本発明における電子写真感光体も負帯電型が極めて有利であり、このことから光電荷充電層には正孔輸送物質が有効に使用されるものである。
また、光電荷充電層13には電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。
これら高分子電荷輸送物質から構成される光電荷充電層13は、耐キズ性、耐摩耗性に優れたものである。
高分子電荷輸送物質としては、基本的には正孔輸送性、電子輸送性いずれの高分子電荷輸送物質も使用可能であるが、前述の理由から、光電荷充電層には正孔輸送性の高分子電荷輸送物質がより有効に使用されるものである。
正孔輸送性の高分子電荷輸送物質としては公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、式(III)〜(XII)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
In addition, you may contain these electron transport materials and hole transport materials simultaneously. The polarity to be charged on the photocharged charge layer (photoreceptor surface) should be determined to be negative or positive depending on the system design concept of the image forming apparatus to be used. However, most of the image forming apparatuses so far use an organic photoreceptor, and most of them employ a negatively charged photoreceptor. Also, in recent image forming apparatuses, digital writing / development is the mainstream, and the developing system used is combined with this. Further, hole transport materials occupy most of the charge transport materials used for the photoreceptor as materials capable of high-speed charge transfer. Under such circumstances, also in the present invention, the photosensitive layer, which is the lower layer of the photocharge charging layer, should make the best use of the known technology and should be applied to the image forming apparatus. Accordingly, the electrophotographic photosensitive member of the present invention is extremely advantageous in the negatively charged type, and therefore, a hole transport material is effectively used in the photocharged charge layer.
In addition, a polymer charge transport material having a function as a charge transport material and a function of a binder resin is also preferably used for the photocharge charge layer 13.
The photocharged charge layer 13 composed of these polymer charge transport materials is excellent in scratch resistance and wear resistance.
As the polymer charge transport material, basically, any polymer charge transport material of either hole transport property or electron transport property can be used. However, for the reason described above, the charge transport layer has a hole transport property. Polymer charge transport materials are more effectively used.
A known material can be used as the hole-transporting polymer charge transporting material, and in particular, a polycarbonate containing a triarylamine structure in the main chain and / or side chain is preferably used. Among these, polymer charge transport materials represented by the formulas (III) to (XII) are preferably used, and these are exemplified below and specific examples are shown.

(III)式

Figure 2005070749
(III) Formula
Figure 2005070749

式中、R、R、Rはそれぞれ独立して置換もしくは無置換のアルキル基又はハロゲン原子、Rは水素原子又は置換もしくは無置換のアルキル基、R、Rは置換もしくは無置換のアリール基、o、p、qはそれぞれ独立して0〜4の整数、k、jは組成を表し、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表し5〜5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表される2価基を表す。尚、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 1 , R 2 and R 3 are each independently a substituted or unsubstituted alkyl group or a halogen atom, R 4 is a hydrogen atom or a substituted or unsubstituted alkyl group, and R 5 and R 6 are substituted or unsubstituted. Substituted aryl group, o, p and q are each independently an integer of 0 to 4, k and j are compositions, 0.1 ≦ k ≦ 1, 0 ≦ j ≦ 0.9, and n is the number of repeating units Represents an integer of 5 to 5000. X represents an aliphatic divalent group, a cycloaliphatic divalent group, or a divalent group represented by the following general formula. In the formula (III), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

Figure 2005070749
Figure 2005070749

101、R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表す。l、mは0〜4の整数、Yは単結合、炭素原子数1〜12の直鎖状、分岐状もしくは環状のアルキレン基、−O−、−S−、−SO−、−SO−、−CO−、−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表す。)または、 R 101 and R 102 each independently represents a substituted or unsubstituted alkyl group, aryl group or halogen atom. l and m are integers of 0 to 4, Y is a single bond, a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms, —O—, —S—, —SO—, —SO 2 —. , -CO-, -CO-O-Z-O-CO- (wherein Z represents an aliphatic divalent group) or

Figure 2005070749
Figure 2005070749

(aは1〜20の整数、bは1〜2000の整数、R103、R104は置換または無置換のアルキル基又はアリール基を表す)を表す。ここで、R101とR102、R103とR104は、それぞれ同一でも異なってもよい。) (A represents an integer of 1 to 20, b represents an integer of 1 to 2000, and R 103 and R 104 represent a substituted or unsubstituted alkyl group or aryl group). Here, R 101 and R 102 , and R 103 and R 104 may be the same or different. )

(IV)式

Figure 2005070749
(IV) Formula
Figure 2005070749

式中、R, Rは置換もしくは無置換のアリール基、Ar, Ar, Arは同一又は異なるアリレン基を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 7 and R 8 represent a substituted or unsubstituted aryl group, and Ar 1 , Ar 2 , and Ar 3 represent the same or different arylene groups. X, k, j and n are the same as in the case of the formula (III). In the formula (IV), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(V)式

Figure 2005070749
(V) Formula
Figure 2005070749

式中、R, R10は置換もしくは無置換のアリール基、Ar,Ar,Arは同一又は異なるアリレン基を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 9 and R 10 represent a substituted or unsubstituted aryl group, and Ar 4 , Ar 5 , and Ar 6 represent the same or different arylene groups. X, k, j and n are the same as in the case of the formula (III). In the formula (V), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(VI)式

Figure 2005070749
(VI) formula
Figure 2005070749

式中、R11, R12 は置換もしくは無置換のアリール基、Ar, Ar8, Ar9は同一又は異なるアリレン基、pは1〜5の整数を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(VI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 11 and R 12 are substituted or unsubstituted aryl groups, Ar 7 , Ar 8 and Ar 9 are the same or different arylene groups, and p represents an integer of 1 to 5. X, k, j and n are the same as in the case of the formula (III). In the formula (VI), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(VII)式

Figure 2005070749
(VII) Formula
Figure 2005070749

式中、R13,R14は置換もしくは無置換のアリール基、Ar10,Ar11,Ar12は同一又は異なるアリレン基、 X,Xは置換もしくは無置換のエチレン基、又は置換もしくは無置換のビニレン基を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 13 and R 14 are substituted or unsubstituted aryl groups, Ar 10 , Ar 11 and Ar 12 are the same or different arylene groups, X 1 and X 2 are substituted or unsubstituted ethylene groups, or substituted or unsubstituted Represents a substituted vinylene group. X, k, j and n are the same as in the case of the formula (III). In the formula (VII), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(VIII)式

Figure 2005070749
(VIII) Formula
Figure 2005070749

式中、R15,R16,R17,R18は置換もしくは無置換のアリール基、Ar13,Ar14,Ar15,Ar16は同一又は異なるアリレン基、Y,Y,Yは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表し同一であっても異なってもよい。 X,k,jおよびnは、(III)式の場合と同じである。尚、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 15 , R 16 , R 17 and R 18 are substituted or unsubstituted aryl groups, Ar 13 , Ar 14 , Ar 15 and Ar 16 are the same or different arylene groups, and Y 1 , Y 2 and Y 3 are A single bond, a substituted or unsubstituted alkylene group, a substituted or unsubstituted cycloalkylene group, a substituted or unsubstituted alkylene ether group, an oxygen atom, a sulfur atom, or a vinylene group may be the same or different. X, k, j and n are the same as in the case of the formula (III). In the formula (VIII), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(IX)式

Figure 2005070749
(IX) Formula
Figure 2005070749

式中、R19,R20 は水素原子、置換もしくは無置換のアリール基を表し,R19とR20は環を形成していてもよい。Ar17,Ar18,Ar19 は同一又は異なるアリレン基を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 19 and R 20 each represent a hydrogen atom or a substituted or unsubstituted aryl group, and R 19 and R 20 may form a ring. Ar 17 , Ar 18 and Ar 19 represent the same or different arylene groups. X, k, j and n are the same as in the case of the formula (III). In the formula (IX), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(X)式

Figure 2005070749
(X) Formula
Figure 2005070749

式中、R21は置換もしくは無置換のアリール基、Ar20,Ar21,Ar22,Ar23 は同一又は異なるアリレン基を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 21 represents a substituted or unsubstituted aryl group, and Ar 20 , Ar 21 , Ar 22 , and Ar 23 represent the same or different arylene groups. X, k, j and n are the same as in the case of the formula (III). In the formula (X), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(XI)式

Figure 2005070749
(XI) Formula
Figure 2005070749

式中、R22,R23,R24,R25は置換もしくは無置換のアリール基、Ar24,Ar25,Ar26,Ar27,Ar28は同一又は異なるアリレン基を表す。 X,k,jおよびnは、(III)式の場合と同じである。尚、(XI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。 In the formula, R 22 , R 23 , R 24 and R 25 represent a substituted or unsubstituted aryl group, and Ar 24 , Ar 25 , Ar 26 , Ar 27 and Ar 28 represent the same or different arylene groups. X, k, j and n are the same as in the case of the formula (III). In the formula (XI), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.

(XII)式

Figure 2005070749
(XII) formula
Figure 2005070749

式中、R26,R27は置換もしくは無置換のアリール基、Ar29,Ar30,Ar31は同一又は異なるアリレン基を表す。 X,k,jおよびnは、(I)式の場合と同じである。尚、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
また、光電荷充電層に用いられる他の正孔輸送性の高分子電荷輸送物質としては、公知単量体の共重合物や、ブロック重合体、グラフト重合体、スターポリマーも使用可能である。更に、例えば、特開平3−109406号公報、特開平5−216249号公報、特開2000−206723号公報、特開2001−34001号公報などに開示されているような、製膜時に電子供与性基を有するモノマーあるいはオリゴマーの状態で、製膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元、あるいは3次元の架橋構造を有する重合体も使用可能である。
In the formula, R 26 and R 27 represent a substituted or unsubstituted aryl group, and Ar 29 , Ar 30 and Ar 31 represent the same or different arylene groups. X, k, j and n are the same as in the case of formula (I). In the formula (X), two copolymer species are described in the form of an alternating copolymer, but a random copolymer may be used.
As other hole transporting polymer charge transport materials used in the photocharge charge layer, copolymers of known monomers, block polymers, graft polymers, and star polymers can also be used. Further, for example, as disclosed in JP-A-3-109406, JP-A-5-216249, JP-A-2000-206723, JP-A-2001-34001, etc. A polymer having a two-dimensional or three-dimensional crosslinked structure can be finally used by performing a curing reaction or a crosslinking reaction after film formation in the state of a monomer or oligomer having a group.

一般に、電子写真感光体は画像形成工程において、現像剤、転写紙、クリーニング部材等と擦れあい、感光体表面にある光電荷充電層13が摩耗する。 又、画像形成装置への装着時、画像形成装置からの取り外し時などに種々の部材と接触することによって、感光体表面にある光電荷充電層13には局部的に傷がつく。 光電荷充電層13の局所的傷部や摩耗部は電荷発生物質が少なくなるか、傷や摩耗がひどい場合は電荷発生材料がなくなり、本発明の特徴である光電荷充電機能が低下してしまう。 そのため、光電荷充電層の傷部や摩耗部は傷や摩耗のない部分より帯電電位が低くなり、帯電の均一性が損なわれ、画像形成を行った場合、キズ状、摩耗形状の異常画像が発生し易くなる。
一般に有機光導電性膜の機械強度はバインダー樹脂によって補強することが可能であるが、絶縁性の高分子樹脂を多くすると電荷輸送性が低下し、光キャリアーの発生効率が低下する。. 本発の如く電荷輸送機能とバインダー樹脂機能を合わせ持った高分子電荷輸送物質を用いることで、光充電効率を低下させることなく、耐キズ性、耐摩耗性のより高い光電荷充電層の形成を可能にする。更に架橋型の高分子電荷輸送物質を用いることで、光電荷充電層の膜硬度がより高くなり、感光体の耐キズ性、耐摩耗性を更に高めることができる。このように、光電荷充電層に高分子電荷輸送物質を用いることは、より高耐久な光充電帯電用感光体を提供するに非常に有効である。
In general, the electrophotographic photoreceptor is rubbed with a developer, transfer paper, a cleaning member, and the like in an image forming process, and the photocharged charge layer 13 on the surface of the photoreceptor is worn. Further, the photocharged charge layer 13 on the surface of the photosensitive member is locally damaged by contact with various members when mounted on the image forming apparatus, when detached from the image forming apparatus, or the like. The local flaws and wear parts of the photocharge charge layer 13 have less charge generation material, or if the flaws and wear are severe, the charge generation material disappears and the photocharge charge function, which is a feature of the present invention, is reduced. . For this reason, the scratch potential and the wear portion of the photocharged charge layer have a lower charging potential than the portion where there is no scratch or wear, and the uniformity of charging is lost. It tends to occur.
In general, the mechanical strength of the organic photoconductive film can be reinforced by a binder resin. However, if the amount of the insulating polymer resin is increased, the charge transport property is lowered and the generation efficiency of the photocarrier is lowered. By using a polymer charge transport material that combines the charge transport function and the binder resin function as in the present invention, the photo charge charge layer with higher scratch resistance and wear resistance can be obtained without reducing the photo charge efficiency. Allows formation. Further, by using a cross-linked polymeric charge transport material, the film charge layer has a higher film hardness, and the scratch resistance and abrasion resistance of the photoreceptor can be further enhanced. As described above, the use of the polymer charge transport material for the photocharge charging layer is very effective in providing a photoconductor for charging and charging with higher durability.

又、光電荷充電層13には、層の膜強度を強化するために、フィラーを含有しても良い。使用できるフィラーには、有機フィラーと無機フィラーがある。
有機フィラ−材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコ−ン樹脂粉末、a−カ−ボン粉末等が挙げられ、無機フィラ−材料としては、シリカ、酸化錫、酸化亜鉛、酸化チタン、アルミナ、酸化ジルコニウム、酸化インジウム、酸化アンチモン、酸化ビスマス、酸化カルシウム、アンチモンをド−プした酸化錫、錫をド−プした酸化インジウム等の金属酸化物、フッ化錫、フッ化カルシウム、フッ化アルミニウム等の金属フッ化物、チタン酸カリウム、窒化硼素などの無機材料が挙げられる。これらのフィラーの中で、フィラーの硬度の点から無機フィラーを用いることが耐摩耗性の向上に対し有利である。更に高画質化に有効なフィラーとしては、電気絶縁性が高いフィラーが好ましく、シリカ、酸化チタン、アルミナ、酸化亜鉛、酸化ジルコニウム等が特に有効に使用できる。これら電気絶縁性が高いフィラーは、電気絶縁性が高いフィラー同士あるいは他のフィラーとを2種類以上を混合することも可能である。
Further, the photocharged charge layer 13 may contain a filler in order to enhance the film strength of the layer. Fillers that can be used include organic fillers and inorganic fillers.
Examples of the organic filler material include fluororesin powder such as polytetrafluoroethylene, silicone resin powder, a-carbon powder, and the like, and inorganic filler materials include silica, tin oxide, zinc oxide, Metal oxides such as titanium oxide, alumina, zirconium oxide, indium oxide, antimony oxide, bismuth oxide, calcium oxide, tin oxide doped with antimony, indium oxide doped with tin, tin fluoride, calcium fluoride Inorganic materials such as metal fluorides such as aluminum fluoride, potassium titanate, and boron nitride. Among these fillers, the use of inorganic fillers is advantageous for improving the wear resistance from the viewpoint of the hardness of the fillers. Further, as a filler effective for improving the image quality, a filler having high electrical insulation is preferable, and silica, titanium oxide, alumina, zinc oxide, zirconium oxide, and the like can be used particularly effectively. These fillers having high electrical insulation can be mixed with two or more fillers having high electrical insulation or other fillers.

本発明の電子写真感光体においては、帯電に引き続き画像露光が行われるが、画像露光は感光体の内側から照射されるものである。このため、後述の導電性支持体の光透過性は重要な項目になるが、逆に感光体表面層の光学特性はそれに関与しない。従って、感光体表面を構成する材料を自由に用いることが出来る。極端な例としては、帯電用の露光のみ光電荷充電層が吸収できればいいのであって、感光体表面を構成する層が黒色のような光をまったく遮断する層であっても構わない。   In the electrophotographic photosensitive member of the present invention, image exposure is performed subsequent to charging. Image exposure is performed from the inside of the photosensitive member. For this reason, the light transmittance of the conductive support described later is an important item, but conversely, the optical characteristics of the surface layer of the photoreceptor are not involved. Therefore, the material constituting the photoreceptor surface can be used freely. As an extreme example, it is sufficient that the photocharged charge layer can absorb only the exposure for charging, and the layer constituting the surface of the photoreceptor may be a layer that completely blocks light such as black.

<導電性支持体> <Conductive support>

導電性支持体11としては、体積抵抗1010 Ω・cm以下の導電性を示すものであり、画像光に対して透明であれば特に制限はないが、例えば、ガラス(パイレックス(登録商標)ガラス、ホウ珪酸ガラス、ソーダガラス等)、石英、サファイア等の透明な無機材料やフッ素樹脂、ポリエステル、ポリカーボネート、ポリエチレン、ポリエチレンテレフタレート、ビニロン、エポキシ等の透明な樹脂で形成される。また、特開2000−29234号公報、特開2000−39732号公報、特開2000−75532号公報等に記載された支持体を用いることもできる。 The conductive support 11 has a volume resistance of 10 10 Ω · cm or less and is not particularly limited as long as it is transparent to image light. For example, glass (Pyrex (registered trademark) glass) , Borosilicate glass, soda glass, etc.), transparent inorganic materials such as quartz and sapphire, and transparent resins such as fluororesin, polyester, polycarbonate, polyethylene, polyethylene terephthalate, vinylon, and epoxy. Moreover, the support body described in Unexamined-Japanese-Patent No. 2000-29234, Unexamined-Japanese-Patent No. 2000-39732, Unexamined-Japanese-Patent No. 2000-75532, etc. can also be used.

このような支持体においては導電性が必須であるから、支持体そのものが絶縁体の場合は、支持体表面に導電層を設けたり、導電処理を行う必要がある。導電層としてはITO(インジウム・スズ酸化物)、酸化鉛、酸化インジウム、ヨウ化銅などの透明導電材料を直接もしくは樹脂等に分散し表面に形成したり、あるいはアルミニウム、ニッケル、金、ハステロイなどの金属を半透明になる程度薄く形成しても良い。導電層を設ける場合には、スパッタリングや湿式法などの方法により設けることが出来、金属を表面に設ける場合には、蒸着法やスパッタリングが用いられる。
透光性支持体の形状としては特に制限はなく、円筒状のものやフィルム上のものが用いられる。但し、内面側から画像書き込みを行うため、支持体の内側は平滑性があることが好ましい。
In such a support, conductivity is essential. Therefore, when the support itself is an insulator, it is necessary to provide a conductive layer on the surface of the support or to conduct a conductive treatment. As the conductive layer, a transparent conductive material such as ITO (indium / tin oxide), lead oxide, indium oxide, copper iodide or the like is formed on the surface directly or dispersed in resin, or aluminum, nickel, gold, hastelloy, etc. The metal may be formed thin enough to be translucent. When the conductive layer is provided, it can be provided by a method such as sputtering or a wet method. When a metal is provided on the surface, a vapor deposition method or sputtering is used.
There is no restriction | limiting in particular as a shape of a translucent support body, A cylindrical thing and the thing on a film are used. However, in order to perform image writing from the inner surface side, the inner side of the support is preferably smooth.

<感光層>
本発明における感光層12は、単層型でも積層型でもよいが、ここでは説明の都合上、まず積層型について述べる。図4に積層型感光層を用いた本発明の感光体の一例を示す。この場合、感光体構成は導電性支持体11上に感光層として電荷発生層12aと電荷輸送層12b, が設けられ、表面に光電荷充電層13が積層されている。更に導電性支持体と感光層との間に下引き層14が設けられている。
<Photosensitive layer>
The photosensitive layer 12 in the present invention may be a single layer type or a laminated type, but here, for convenience of explanation, a laminated type will be described first. FIG. 4 shows an example of the photoreceptor of the present invention using a laminated photosensitive layer. In this case, the photoconductor structure is provided with a charge generation layer 12a and a charge transport layer 12b as a photosensitive layer on a conductive support 11, and a photocharge charge layer 13 is laminated on the surface. Further, an undercoat layer 14 is provided between the conductive support and the photosensitive layer.

初めに、電荷発生層12aについて説明する。電荷発生層は画像露光を吸収して正負両極性の光電荷を生成する機能を有する。そのため電荷発生層は電荷発生物質を主成分とする層で、必要に応じてバインダ−樹脂を用いることもある。電荷発生物質としては、無機系材料と有機系材料を用いることができる。   First, the charge generation layer 12a will be described. The charge generation layer has a function of absorbing image exposure and generating positive and negative photocharges. Therefore, the charge generation layer is a layer mainly composed of a charge generation material, and a binder-resin may be used as necessary. As the charge generation material, inorganic materials and organic materials can be used.

無機系材料には、結晶セレン、アモルファス・セレン、セレン−テルル、セレン−テルル−ハロゲン、セレン−ヒ素化合物や、アモルファス・シリコン等が挙げられる。アモルファス・シリコンにおいては、ダングリングボンドを水素原子、ハロゲン原子でタ−ミネ−トしたものや、ホウ素原子、リン原子等をド−プしたものが良好に用いられる。   Inorganic materials include crystalline selenium, amorphous selenium, selenium-tellurium, selenium-tellurium-halogen, selenium-arsenic compounds, and amorphous silicon. In amorphous silicon, dangling bonds terminated with hydrogen atoms and halogen atoms, and those doped with boron atoms, phosphorus atoms and the like are preferably used.

一方、有機系材料としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾ−ル骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾ−ル系顔料などが挙げられる。これらの電荷発生物質は、単独または2種以上の混合物として用いることができる。   On the other hand, a known material can be used as the organic material. For example, phthalocyanine pigments such as metal phthalocyanine and metal-free phthalocyanine, azulenium salt pigments, squaric acid methine pigments, azo pigments having a carbazole skeleton, azo pigments having a triphenylamine skeleton, azo pigments having a diphenylamine skeleton, dibenzothiophene skeleton Azo pigments having a fluorenone skeleton, azo pigments having an oxadiazole skeleton, azo pigments having a bis-stilbene skeleton, azo pigments having a distyryl oxadiazole skeleton, azo having a distyrylcarbazole skeleton Pigments, perylene pigments, anthraquinone or polycyclic quinone pigments, quinoneimine pigments, diphenylmethane and triphenylmethane pigments, benzoquinone and naphthoquinone pigments, cyanine and azomethine pigments, a Jigoido pigments, bisbenzimidazo - such as Le based pigments. These charge generation materials can be used alone or as a mixture of two or more.

電荷発生層に必要に応じて用いられるバインダ−樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ−N−ビニルカルバゾール、ポリアクリルアミドなどが用いられる。これらのバインダ−樹脂は、単独または2種以上の混合物として用いることができる。更に、必要に応じて電荷輸送物質を添加してもよい。   Binder resins used as necessary for the charge generation layer include polyamide, polyurethane, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone, polystyrene, and poly-N-vinylcarbazole. Polyacrylamide is used. These binder resins can be used alone or as a mixture of two or more. Furthermore, you may add a charge transport material as needed.

正孔輸送物質としては、以下に表わされる電子供与性物質が挙げられ、良好に用いられる。例えば、オキサゾ−ル誘導体、オキサジアゾール誘導体、イミダゾール誘導体、トリフェニルアミン誘導体、9−(p−ジエチルアミノスチリルアントラセン)、1,1−ビス−(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、α−フェニルスチルベン誘導体、チアゾール誘導体、トリアゾール誘導体、フェナジン誘導体、アクリジン誘導体、ベンゾフラン誘導体、ベンズイミダゾール誘導体、チオフェン誘導体などが挙げられる。これらの正孔輸送物質は、単独または2種以上の混合物として用いることができる。   Examples of the hole transporting material include the electron donating materials shown below and are used favorably. For example, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, triphenylamine derivatives, 9- (p-diethylaminostyrylanthracene), 1,1-bis- (4-dibenzylaminophenyl) propane, styrylanthracene, styryl Examples include pyrazoline, phenylhydrazones, α-phenylstilbene derivatives, thiazole derivatives, triazole derivatives, phenazine derivatives, acridine derivatives, benzofuran derivatives, benzimidazole derivatives, and thiophene derivatives. These hole transport materials can be used alone or as a mixture of two or more.

電荷発生層を形成する方法は、大きく分けて真空薄膜作製法と溶液分散系からのキャスティング法とがある。前者の方法には、真空蒸着法、グロー放電分解法、イオンプレーティング法、スパッタリング法、反応性スパッタリング法、CVD法等が用いられ、上述した無機系材料、有機系材料が良好に形成できる。また、後述のキャスティング法によって電荷発生層を設けるには、上述した無機系もしくは有機系電荷発生物質を必要ならばバインダ−樹脂と共にテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノン等の溶媒を用いてボールミル、アトライター、サンドミル等により分散し、分散液を適度に希釈して塗布することにより、形成できる。塗布は、浸漬塗工法やスプレーコート、ビードコート法などを用いて行なうことができる。
以上のようにして設けられる電荷発生層の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.05〜2μmである。
Methods for forming the charge generation layer are roughly classified into a vacuum thin film preparation method and a casting method from a solution dispersion system. As the former method, a vacuum deposition method, a glow discharge decomposition method, an ion plating method, a sputtering method, a reactive sputtering method, a CVD method, or the like is used, and the above-described inorganic materials and organic materials can be satisfactorily formed. Further, in order to provide a charge generation layer by the casting method described later, a ball mill using a solvent such as tetrahydrofuran, cyclohexanone, dioxane, dichloroethane, butanone together with a binder resin if necessary, the inorganic or organic charge generation material described above, It can be formed by dispersing with an attritor, sand mill or the like, and applying the solution after diluting the dispersion appropriately. The coating can be performed using a dip coating method, a spray coating method, a bead coating method, or the like.
The thickness of the charge generation layer provided as described above is suitably about 0.01 to 5 μm, preferably 0.05 to 2 μm.

次に、電荷輸送層12bについて説明する。
電荷輸送層は、電荷発生層で生成した電荷を受け取り、その電荷を光電荷充電層との界面(ひいては感光体表面)まで輸送し、表面の帯電電荷と中和して、画像露光に対応した静電荷潜像を形成する機能を有する。そのために電荷輸送層は電荷輸送物質を主成分とした層であり、必要に応じて電荷輸送物質をバインダ−樹脂とともに溶解、塗工して形成される。必要に応じて使用できるバインダー樹脂としてはフィルム性の良いポリカーボネート(ビスフェノールAタイプ、ビスフェノールZタイプ、ビスフェノールCタイプ等、あるいはこれら共重合体)、ポリアリレート、ポリスルフォン、ポリエステル、メタクリル樹脂、ポリスチレン、酢酸ビニル、エポキシ樹脂、フェノキシ樹脂などが用いられる。これらのバインダーは、単独または2種以上の混合物として用いることができる。
Next, the charge transport layer 12b will be described.
The charge transport layer receives the charge generated in the charge generation layer, transports the charge to the interface with the photocharge charge layer (and thus the surface of the photoreceptor), and neutralizes the charged charge on the surface, thereby supporting image exposure. It has a function of forming an electrostatic charge latent image. For this purpose, the charge transport layer is a layer mainly composed of a charge transport material, and is formed by dissolving and coating the charge transport material together with a binder resin as necessary. Binder resins that can be used as needed include polycarbonate with good film properties (bisphenol A type, bisphenol Z type, bisphenol C type, etc., or copolymers thereof), polyarylate, polysulfone, polyester, methacrylic resin, polystyrene, acetic acid Vinyl, epoxy resin, phenoxy resin, etc. are used. These binders can be used alone or as a mixture of two or more.

電荷輸送層に使用される電荷輸送物質は、オキサゾール誘導体、オキサジアゾール誘導体(特開昭52−139065号公報、52−139066号公報に記載)イミダゾール誘導体、トリフェニルアミン誘導体、ベンジジン誘導体(特公昭58−32372号公報に記載)、α−フェニルスチルベン誘導体(特開昭58−190953号公報に記載)、ヒドラゾン誘導体(特開昭55−154955号公報、55−156954号公報、55−52063号公報、56−81850号公報などの公報に記載)、トリフェニルメタン誘導体(特公昭51−10983号公報に記載)、アントラセン誘導体(特開昭51−94829号公報に記載)、スチリル誘導体(特開昭56−29245号公報、58−198043号公報に記載)、カルバゾール誘導体(特開昭58−58552号公報に記載)、ピレン誘導体などを使用することができる。   The charge transport materials used in the charge transport layer include oxazole derivatives, oxadiazole derivatives (described in JP-A Nos. 52-139065 and 52-139066), imidazole derivatives, triphenylamine derivatives, and benzidine derivatives (Japanese Patent Publication No. Sho). 58-32372), α-phenylstilbene derivatives (described in JP-A-58-190953), hydrazone derivatives (JP-A 55-154955, 55-156594, 55-52063) 56-81850), triphenylmethane derivatives (described in Japanese Patent Publication No. 51-10983), anthracene derivatives (described in Japanese Patent Application Laid-Open No. 51-94829), styryl derivatives (Japanese Patent Application Laid-Open No. 56-29245 and 58-198043), cal Tetrazole derivative (described in JP-A-58-58552), or the like can be used pyrene derivatives.

次に感光層が単層構成の場合について述べる。上述した電荷発生物質をバインダー樹脂中に分散した感光体が使用できる。単層感光層は、電荷発生物質および電荷輸送物質およびバインダー樹脂を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することによって形成できる。さらに、この感光層には上述した電荷輸送材料を添加した機能分離タイプとしても良く、良好に使用できる。また、必要により、可塑剤やレベリング剤、酸化防止剤等を添加することもできる。   Next, the case where the photosensitive layer has a single layer structure will be described. A photoreceptor in which the above-described charge generating material is dispersed in a binder resin can be used. The single-layer photosensitive layer can be formed by dissolving or dispersing a charge generating substance, a charge transporting substance, and a binder resin in an appropriate solvent, and applying and drying them. Further, the photosensitive layer may be a function separation type to which the above-described charge transport material is added, and can be used satisfactorily. Moreover, a plasticizer, a leveling agent, antioxidant, etc. can also be added as needed.

バインダー樹脂としては、先に電荷輸送層12bの項で挙げたバインダー樹脂をそのまま用いるほかに、電荷発生層12aの項で挙げたバインダー樹脂を混合して用いてもよい。バインダー樹脂100重量部に対する電荷発生物質の量は5〜40重量部が好ましい。電荷輸送物質の量は0〜190重量部が好ましく、さらに好ましくは50〜150重量部である。単層感光層は、電荷発生物質、バインダー樹脂を必要ならば電荷輸送物質とともにテトラヒドロフラン、ジオキサン、ジクロロエタン、シクロヘキサン等の溶媒を用いて分散機等で分散した塗工液を、浸漬塗工法やスプレーコート、ビードコートなどで塗工して形成できる。単層感光層の膜厚は、5〜50μm程度が適当である。より好ましくは10〜25μmである。   As the binder resin, in addition to the binder resin previously mentioned in the section of the charge transport layer 12b, the binder resin mentioned in the section of the charge generation layer 12a may be mixed and used. The amount of the charge generating material with respect to 100 parts by weight of the binder resin is preferably 5 to 40 parts by weight. The amount of the charge transport material is preferably 0 to 190 parts by weight, and more preferably 50 to 150 parts by weight. The single-layer photosensitive layer is formed by dip coating or spray coating with a coating solution dispersed with a disperser or the like using a solvent such as tetrahydrofuran, dioxane, dichloroethane, or cyclohexane together with a charge transport material and a charge transport material if necessary. It can be formed by coating with a bead coat or the like. The thickness of the single photosensitive layer is suitably about 5 to 50 μm. More preferably, it is 10-25 micrometers.

<下引き層>
次に下引き層14について説明する。
本発明の電子写真感光体には、必要に応じて導電性支持体と感光層との間に(感光層が積層タイプの場合は、導電性支持体と電荷発生層との間に)下引き層を設けることができる。下引き層は、接着性を向上する、電荷ブロッキング、上層の塗工性を改良する、残留電位を低減するなどの目的で設けられる。下引き層は一般に樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤でもって塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。
<Underlayer>
Next, the undercoat layer 14 will be described.
In the electrophotographic photosensitive member of the present invention, an undercoat is optionally provided between the conductive support and the photosensitive layer (between the conductive support and the charge generation layer when the photosensitive layer is a laminated type). A layer can be provided. The undercoat layer is provided for the purpose of improving adhesiveness, charge blocking, improving the coatability of the upper layer, and reducing the residual potential. The undercoat layer generally contains a resin as a main component. However, considering that the photosensitive layer is applied with a solvent on these resins, the resin may be a resin having a high solvent resistance with respect to a general organic solvent. desirable.

このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸等の水溶性樹脂、共重合性ナイロン、メトキシメチル化ナイロン、等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂など挙げられる。また、酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物、あるいは金属硫化物、金属窒化物などの微粉末を加えてもよい。   Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and polyacrylic acid, alcohol-soluble resins such as copolymerizable nylon and methoxymethylated nylon, polyurethane, melamine resins, alkyd-melamine resins, and epoxy resins. And a curable resin that forms a three-dimensional network structure. Further, fine powders such as metal oxides exemplified by titanium oxide, silica, alumina, zirconium oxide, tin oxide, indium oxide and the like, or metal sulfides and metal nitrides may be added.

更に、本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用して、例えばゾル−ゲル法等により形成した金属酸化物層も有用である。この他に、本発明の下引き層には酸化アルミを陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物や、SiO、SnO、TiO、ITO、CeO等の無機物を真空薄膜作製法にて設けたものも良好に使用できる。 Furthermore, a metal oxide layer formed by using, for example, a sol-gel method using a silane coupling agent, a titanium coupling agent, a chromium coupling agent, or the like as the undercoat layer of the present invention is also useful. In addition to this, the undercoat layer of the present invention is formed by anodizing aluminum oxide, organic matter such as polyparaxylylene (parylene), SiO, SnO 2 , TiO 2 , ITO, CeO 2, etc. What provided the inorganic substance with the vacuum thin film preparation method can also be used favorably.

これら下引き層は、画像形成のための書き込み光を十分に透過する必要がある。下引き層が画像形成用露光を吸収してしまうと、それだけ感光層(電荷発生層)に到達する光量が低下する。これにより感光体の光感度が低下することになり、明部電位と暗部電位の電位差が小さくなり、画像のコントラストが取れにくくなってしまう。このため、下引き層に用いられる材料、構成は画像形成用露光の波長領域に吸収を有さないものが好ましい。   These undercoat layers need to sufficiently transmit writing light for image formation. When the undercoat layer absorbs the exposure for image formation, the amount of light reaching the photosensitive layer (charge generation layer) decreases accordingly. As a result, the photosensitivity of the photoconductor is lowered, the potential difference between the bright part potential and the dark part potential is reduced, and it becomes difficult to obtain the contrast of the image. For this reason, the material and structure used for the undercoat layer are preferably those that do not absorb in the wavelength region of image forming exposure.

また、本発明の感光体においては、環境性の改善のため、とりわけ、感度低下、残留電位の上昇を防止する目的で、酸化防止剤を添加することができる。酸化防止剤は、有機物を含む層ならばいずれに添加してもよいが、電荷輸送物質を含む層に添加すると良好な結果が得られる。   Further, in the photoreceptor of the present invention, an antioxidant can be added for the purpose of preventing the decrease in sensitivity and the increase in residual potential, in order to improve the environmental properties. The antioxidant may be added to any layer containing an organic substance, but good results are obtained when it is added to a layer containing a charge transport material.

本発明に用いることができる酸化防止剤としては下記のものが挙げられる。
(モノフェノ−ル系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートなど。
Examples of the antioxidant that can be used in the present invention include the following.
(Monophenol compound)
2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, stearyl-β- (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate and the like.

(ビスフェノ−ル系化合物)
2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)など。
(Bisphenol compound)
2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4′-thiobis- ( 3-methyl-6-t-butylphenol), 4,4′-butylidenebis- (3-methyl-6-t-butylphenol) and the like.

(高分子フェノ−ル系化合物)
1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン、ビス[3,3’−ビス(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアッシド]クリコ−ルエステル、トコフェロール類など。
(High molecular phenolic compounds)
1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis ( 4'-hydroxy-3'-t-butylphenyl) butyric acid] cricol ester, tocopherols and the like.

(パラフェニレンジアミン類)
N−フェニル−N’−イソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N’−ジ−イソプロピル−p−フェニレンジアミン、N,N’−ジメチル−N,N’−ジ−t−ブチル−p−フェニレンジアミンなど。
(Paraphenylenediamines)
N-phenyl-N'-isopropyl-p-phenylenediamine, N, N'-di-sec-butyl-p-phenylenediamine, N-phenyl-N-sec-butyl-p-phenylenediamine, N, N'- Di-isopropyl-p-phenylenediamine, N, N′-dimethyl-N, N′-di-t-butyl-p-phenylenediamine and the like.

(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
(Hydroquinones)
2,5-di-t-octylhydroquinone, 2,6-didodecylhydroquinone, 2-dodecylhydroquinone, 2-dodecyl-5-chlorohydroquinone, 2-t-octyl-5-methylhydroquinone, 2- (2-octadecenyl) ) -5-methylhydroquinone and the like.

(有機硫黄化合物類)
ジラウリル−3,3’−チオジプロピオネ−ト、ジステアリル−3,3’−チオジプロピオネ−ト、ジテトラデシル−3,3’−チオジプロピオネ−トなど。
(Organic sulfur compounds)
Dilauryl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, ditetradecyl-3,3′-thiodipropionate and the like.

(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
(Organic phosphorus compounds)
Triphenylphosphine, tri (nonylphenyl) phosphine, tri (dinonylphenyl) phosphine, tricresylphosphine, tri (2,4-dibutylphenoxy) phosphine, and the like.

これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。本発明における酸化防止剤の添加量は、電荷輸送物質100重量部に対して0.1〜100重量部、好ましくは2〜30重量部である。   These compounds are known as antioxidants such as rubbers, plastics and fats and oils, and commercially available products can be easily obtained. The addition amount of the antioxidant in the present invention is 0.1 to 100 parts by weight, preferably 2 to 30 parts by weight with respect to 100 parts by weight of the charge transport material.

次に図面に基づいて本発明の電子写真画像形成方法ならびに画像形成装置を詳しく説明する。
図5は、本発明の実施例で画像形成に用いたもので、電子写真装置を説明するための概略図である。図5において、感光体1は、透光性の導電性支持体上に、少なくとも画像形成のための像露光に光感度を有する感光層と、少なくとも帯電用露光で電荷を発生する電荷発生物質を含有する光電荷充電層を有する感光体である。
Next, an electrophotographic image forming method and an image forming apparatus according to the present invention will be described in detail with reference to the drawings.
FIG. 5 is a schematic diagram for explaining an electrophotographic apparatus, which is used for image formation in an embodiment of the present invention. In FIG. 5, a photosensitive member 1 includes a light-transmitting conductive support, a photosensitive layer having photosensitivity at least for image exposure for image formation, and a charge generating material that generates charges by at least charging exposure. It is a photoreceptor having a photocharged charging layer.

帯電用露光手段2は感光体の光電荷充電層が吸収する波長の光が含まれる光源であれば、使用可能である。例えば、ハロゲンランプ、蛍光灯、水銀灯、キセノンランプ,レーザー光源、LEDが使用可能である。又感光体は一般に紫外線によって光劣化し易く、そのため帯電用の光としては400nm以上の光を使うのが好ましい。そのために、帯電用露光手段としてはフィルターや光回折格子や装置などの紫外光をカットする手段を組み込んだものを用いる事ができる。又、帯電用露光手段は電圧印加部材や感光体など、他の部材と一体化する事も可能である。例えば、電圧印加手段としてガラスやプラスチック製の円筒状中空体の表面が透光性で且つ導電性に加工された透明電圧印加部材の内側に帯電用の露光手段を組み入れる事も可能である。帯電用露光手段をこのように設置する事で、画像形成装置をコンパクトに設計する事が可能となるのみならず、帯電用露光と電圧印加を同時に行うことができるため、光充電効果を高める事ができる。   The charging exposure means 2 can be used as long as it is a light source containing light having a wavelength that is absorbed by the photocharged charging layer of the photoreceptor. For example, a halogen lamp, a fluorescent lamp, a mercury lamp, a xenon lamp, a laser light source, and an LED can be used. In general, a photoconductor is easily deteriorated by ultraviolet rays. Therefore, it is preferable to use light of 400 nm or more as charging light. Therefore, as the exposure means for charging, those incorporating a means for cutting off ultraviolet light such as a filter, an optical diffraction grating, or an apparatus can be used. The charging exposure means can be integrated with other members such as a voltage applying member and a photosensitive member. For example, it is possible to incorporate an exposure means for charging inside the transparent voltage application member in which the surface of a cylindrical hollow body made of glass or plastic is processed to be translucent and conductive as the voltage application means. By installing the charging exposure means in this way, not only can the image forming apparatus be designed in a compact manner, but also the charging exposure and voltage application can be performed at the same time, thereby enhancing the light charging effect. Can do.

帯電露光に際しては、光電荷充電層に十分光を吸収させることは重要であるが、感光層(電荷発生層)に光を到達させないことも重要なことである。図3(c)の状態において、感光層(電荷発生層)に帯電用露光が十分に到達してしまうと、感光体の画像光書き込み時と同様に光キャリアが発生してしまう。このため、光電荷充電層内に蓄えられた正負電荷の片方(どちらかは帯電極性によって決定される)をキャンセルしてしまい、感光体の帯電が不十分になってしまう場合がある。   In charging exposure, it is important that the photocharge charging layer sufficiently absorbs light, but it is also important not to allow light to reach the photosensitive layer (charge generation layer). In the state of FIG. 3C, when the exposure for charging reaches the photosensitive layer (charge generation layer) sufficiently, photocarriers are generated in the same manner as when image light is written on the photoreceptor. For this reason, one of the positive and negative charges stored in the photocharge charge layer (which is determined by the charge polarity) may be canceled, and the photoreceptor may be insufficiently charged.

このため、本発明の画像形成装置においては、帯電露光に用いられる光を光電荷充電層が80%以上吸収することが重要であり、好ましくは100%吸収することが望ましい。また帯電用露光として、感光層(電荷発生層)の吸収の無い波長領域の光を用いることは、本発明において有効に利用される。即ち、上述のように光電荷充電層において帯電用露光を十分に吸収できればよいが、そうでない場合でも感光層(電荷発生層)に用いられる電荷発生物質が帯電用露光を吸収しなければ、光キャリアが発生しないものであって、上述のような不具合を生じないものである。   For this reason, in the image forming apparatus of the present invention, it is important that the photocharged charge layer absorbs 80% or more of the light used for charging exposure, and preferably 100% is absorbed. In addition, the use of light in a wavelength region in which the photosensitive layer (charge generation layer) does not absorb as the charging exposure is effectively used in the present invention. That is, it is sufficient that the exposure for charging is sufficiently absorbed in the photocharge charging layer as described above. However, if the charge generating material used in the photosensitive layer (charge generation layer) does not absorb the exposure for charging even in such a case, Carriers are not generated, and the above-described problems do not occur.

このような一例を図面を用いて説明する。図10に示す電荷発生物質(CGM A)を感光層の電荷発生物質、電荷発生物質(CGM C)を光電荷充電層の電荷発生物質として用いるとする。この際、帯電用露光波長を800nm近傍の光とすることで、CGM Cの吸収は非常に大きく(吸収効率が高く)、光電荷充電層中の電荷発生物質濃度を高めにするか、光電荷充電層の膜厚を厚めにすることで、帯電用露光を80%以上(好ましくは100%)吸収させることができる。感光体のその他の特性への影響等を考慮して、電荷発生物質濃度や膜厚を上記の水準にできない場合でも、感光層(電荷発生層)に用いられる電荷発生物質(CGM A)には800nm近傍に吸収がなく、仮に帯電用露光が光電荷充電層を一部通過したとしても、感光層(電荷発生層)で光キャリア発生が起きず、感光体へは十分な帯電が行われるものである。   Such an example will be described with reference to the drawings. Assume that the charge generation material (CGM A) shown in FIG. 10 is used as the charge generation material of the photosensitive layer and the charge generation material (CGM C) is used as the charge generation material of the photocharge charge layer. At this time, by setting the exposure wavelength for charging to light near 800 nm, the absorption of CGM C is very large (absorption efficiency is high), and the charge generation substance concentration in the photocharge charge layer is increased, or the photocharge By increasing the thickness of the charge layer, the exposure for charging can be absorbed by 80% or more (preferably 100%). In consideration of the influence on the other characteristics of the photoreceptor, etc., even if the charge generation material concentration and film thickness cannot be set to the above levels, the charge generation material (CGM A) used for the photosensitive layer (charge generation layer) There is no absorption in the vicinity of 800 nm, and even if the exposure for charging partially passes through the photocharged charge layer, photocarrier generation does not occur in the photosensitive layer (charge generation layer), and the photosensitive member is sufficiently charged. It is.

電圧印加手段3は、感光体1と接触し、図示しない電源によって感光体1に電圧を印加して光電荷充電層に電荷を充電し、感光体1を所望の電位にまで帯電させる手段である。そのため、感光体表面と接触する電圧印加部材は十分な導電性を有している必要がある。導電性は電圧印加部材の抵抗値で記述することができ、1011Ω・cm以下、好ましくは10Ω・cm以下、更には10Ω・cm以下がより好ましい。 The voltage applying unit 3 is a unit that comes into contact with the photoconductor 1 and charges the photocharge charging layer by applying a voltage to the photoconductor 1 by a power source (not shown) to charge the photoconductor 1 to a desired potential. . For this reason, the voltage application member that comes into contact with the surface of the photoreceptor needs to have sufficient conductivity. The conductivity can be described by the resistance value of the voltage application member, and is 10 11 Ω · cm or less, preferably 10 9 Ω · cm or less, more preferably 10 7 Ω · cm or less.

電圧印加部材としては、金属や導電性ゴム、導電性プラスチック等の導電性材料をローラー状、板状、ブラシ状に加工したものが使用可能である。金属等の導電性芯ロール上にシリコーンゴムやウレタンゴム中にカーボン等の導電性微粒子を分散させた導電性ゴムをコートした弾性のある導電性ローラーが使用可能である。この導電性ローラ−の抵抗は1010Ω・cm以下が好ましい。本発明の実施例では直径8mmのステンレス製軸上に体積抵抗率約10Ω・cmの導電性ウレタン弾性層を設けた導電性ローラーを用いた。 As the voltage application member, a material obtained by processing a conductive material such as metal, conductive rubber, or conductive plastic into a roller shape, a plate shape, or a brush shape can be used. An elastic conductive roller in which conductive rubber in which conductive fine particles such as carbon are dispersed in silicone rubber or urethane rubber is coated on a conductive core roll such as metal can be used. The resistance of the conductive roller is preferably 10 10 Ω · cm or less. In the embodiment of the present invention, a conductive roller was used in which a conductive urethane elastic layer having a volume resistivity of about 10 4 Ω · cm was provided on a stainless steel shaft having a diameter of 8 mm.

また、固定支持されたマグネットロールと、このマグネットロール外側に回転自在に設けられた非磁性スリーブと、マグネットロールの磁力によって非磁性スリーブ上に吸着させられた磁性粒子とを有し、マグネットロールの磁力により穂立ちさせられて磁気ブラシを形成し、この磁気ブラシと感光体とが接触するように設計された所謂磁気ブラシ電圧印加部材を用いる事も可能である。   A magnet roll fixedly supported; a non-magnetic sleeve rotatably provided on the outside of the magnet roll; and magnetic particles adsorbed on the non-magnetic sleeve by the magnetic force of the magnet roll. It is also possible to use a so-called magnetic brush voltage application member which is designed so that a magnetic brush is formed by raising a magnetic force and this magnetic brush and the photosensitive member come into contact with each other.

更には、導電性のプラスチックを加工した導電性繊維を使用する事もできる。更に、それらを導電性の金属ロールや板状の支持体に緻密に植毛した所謂導電性ブラシを使用することも可能である。又、導電性炭素繊維布をロールや板状の支持体に張り付けた導電性織布を用いる事も可能である。これらの電圧印加部材には、所望の極性の直流電圧が印加されるが、帯電の均一性を向上させるために、直流電圧に交流電圧を重畳させてもよい。   Furthermore, a conductive fiber obtained by processing a conductive plastic can also be used. Furthermore, it is also possible to use a so-called conductive brush in which they are densely planted on a conductive metal roll or a plate-like support. It is also possible to use a conductive woven fabric in which a conductive carbon fiber cloth is attached to a roll or a plate-like support. A DC voltage having a desired polarity is applied to these voltage application members, but an AC voltage may be superimposed on the DC voltage in order to improve charging uniformity.

画像露光手段4は、電子写真で一般に用いられる像露光手段であり、使用する感光体の内側に配置可能なものであれば、すべて使用可能である。例えば、デジタル用の光源としてはLD、LED、蛍光体ドットアレイ等が用いられる。   The image exposure means 4 is an image exposure means generally used in electrophotography, and can be used as long as it can be disposed inside the photoconductor used. For example, an LD, LED, phosphor dot array, or the like is used as a digital light source.

このように画像露光手段を感光体の内側に配置することは次のような効果を生み出すものである。
1つは、装置がコンパクトになることである。これは、感光体表面側から画像露光を行う場合、光学系の配置によって装置が大きくなってしまう。本発明の場合には、帯電用の露光手段が必要であり、このことは装置を必要以上に大きくしない効果を十分に持つものである。
Arranging the image exposure means inside the photoreceptor in this way produces the following effects.
One is that the device is compact. This is because when the image exposure is performed from the photosensitive member surface side, the apparatus becomes large due to the arrangement of the optical system. In the case of the present invention, an exposure means for charging is necessary, which has the effect of not making the apparatus unnecessarily large.

2つめは、書き込み光の露光に対して感光体表面層の光学特性に依存しないことである。一般に感光体表面を構成する材料は画像露光に対して透明である必要があり、これが感光体設計の自由度を小さくしている。例えば、機械的耐久性を向上させるために表面層にフィラーなどを添加するような場合、その分散性、添加量、屈折率などが非常に制限され、設計を困難にしている。また、表面の摩擦係数を小さくするため滑剤やワックス類などを添加する試みがなされるが、感光体表面が白濁するような場合は使用に制限がかかってしまう。更には、感光体の繰り返し使用により感光体表面に傷等が発生した場合にも、書き込み光が散乱したりして画像品質を低下させる。このような点に対して、画像光を感光体内側から照射することでこのような問題は全て解決される。   Second, it does not depend on the optical characteristics of the surface layer of the photoconductor for the exposure of the writing light. In general, the material constituting the surface of the photoreceptor needs to be transparent to image exposure, and this reduces the degree of freedom in designing the photoreceptor. For example, when a filler or the like is added to the surface layer in order to improve mechanical durability, its dispersibility, addition amount, refractive index, etc. are very limited, making design difficult. In addition, attempts are made to add a lubricant or wax to reduce the friction coefficient of the surface. However, if the surface of the photoreceptor becomes cloudy, use is limited. Further, even when scratches or the like occur on the surface of the photoconductor due to repeated use of the photoconductor, the writing light is scattered and the image quality is deteriorated. All of these problems can be solved by irradiating image light from the inside of the photoconductor.

3つめは、モアレの発生が無いことである。昨今の精密書き込みのため、レーザー等のコヒーレントな光の使用が増えているが、感光体構成中に反射面があると、書き込み光と反射光とが干渉して、所謂モアレが発生する。しかしながら透光性支持体を使用し、感光体内側から書き込みを行う場合には反射面が存在せず、モアレの発生が無い。   Third, there is no moiré. Recently, the use of coherent light such as a laser is increasing for precision writing. However, if there is a reflecting surface in the structure of the photoreceptor, the writing light and the reflected light interfere with each other, so-called moire occurs. However, when a translucent support is used and writing is performed from the inside of the photoconductor, there is no reflective surface and no moiré occurs.

感光体表面に静電荷潜像を形成した後、現像手段5で、トナー像を形成する。感光体表面に形成されたトナー像は、転写紙9などの転写体へ転写手段6によって転写される。転写体へのトナー像の転写は図5に示すような転写体への直接転写以外に、中間転写体へ転写した後、最終的転写体へ転写する、所謂中間転写方式を用いてもよい。その後、転写紙は図示されない定着手段によってトナー像が定着される。感光体1上の残留トナーはクリーニングファーブラシやクリーニングブレードなどのクリーニング手段7により除去され、次の電子写真サイクルに移る。又必要によっては、除電ランプなどの除電手段8を用いて、帯電前に感光体表面の電荷を除電してもよい。   After an electrostatic charge latent image is formed on the surface of the photoreceptor, a toner image is formed by the developing means 5. The toner image formed on the surface of the photoreceptor is transferred to a transfer body such as transfer paper 9 by the transfer unit 6. In addition to the direct transfer to the transfer member as shown in FIG. 5, the toner image may be transferred to the transfer member by using a so-called intermediate transfer method in which the toner image is transferred to the intermediate transfer member and then transferred to the final transfer member. Thereafter, the toner image is fixed on the transfer paper by fixing means (not shown). Residual toner on the photoreceptor 1 is removed by a cleaning means 7 such as a cleaning fur brush or a cleaning blade, and the next electrophotographic cycle is started. If necessary, the charge on the surface of the photosensitive member may be discharged before charging by using a discharging means 8 such as a discharging lamp.

図6には、本発明による電子写真プロセス、装置の別の例を示す。感光体1は導電性支持体上に少なくとも、感光層と電荷発生物質を含有した光電荷充電層を有するエンドレスベルト状感光体である。このエンドレスベルト状感光体は駆動ローラ−9a、9bにより駆動、支持され、矢印方向に移動する。感光体1は電圧印加手段3によって充電帯電され、画像露光手段4による像露光によって静電荷潜像を形成する。   FIG. 6 shows another example of the electrophotographic process and apparatus according to the present invention. The photoreceptor 1 is an endless belt-like photoreceptor having at least a photosensitive layer and a photocharged charging layer containing a charge generating substance on a conductive support. This endless belt-like photoreceptor is driven and supported by drive rollers 9a and 9b and moves in the direction of the arrow. The photoreceptor 1 is charged and charged by the voltage application unit 3 and forms an electrostatic latent image by image exposure by the image exposure unit 4.

この静電荷潜像は現像手段5でトナー現像され、転写手段6によって紙等の転写体上に転写される。転写体は図示していない定着手段によって画像が定着される。
感光体1上の残留トナーはクリーニングファーブラシやクリーニングブレードなどのクリーニング手段7により除去され、次の電子写真サイクルに移る。又必要によっては、除電ランプなどの除電手段8を用いて、帯電前に感光体表面の電荷を除電してもよい。
The electrostatic latent image is developed with toner by the developing unit 5 and transferred onto a transfer member such as paper by the transfer unit 6. The image on the transfer body is fixed by fixing means (not shown).
Residual toner on the photoreceptor 1 is removed by a cleaning means 7 such as a cleaning fur brush or a cleaning blade, and the next electrophotographic cycle is started. If necessary, the charge on the surface of the photosensitive member may be discharged before charging by using a discharging means 8 such as a discharging lamp.

感光体1の支持体が光透過性であるので、画像露光手段や除電光源などをベルトの内側に設置して、支持体側より光照射が行なうことができ、装置がコンパクトになる利点がある。
尚、ベルト状感光体と駆動、支持ローラ−とが一体で、装置への脱着が自在にできるようにユニット化することも可能である。
Since the support of the photosensitive member 1 is light transmissive, an image exposure means, a static elimination light source, and the like can be installed inside the belt, and light irradiation can be performed from the support side, which has an advantage that the apparatus is compact.
The belt-shaped photosensitive member and the driving / supporting roller can be integrated into a unit so that it can be freely attached to and detached from the apparatus.

本発明の画像形成方法及び画像形成装置は、上記例に限定されるものではなく、少なくとも、電荷発生物質を含有した光電荷充電層を有する感光体に充電帯電を行い、露光により、静電潜像を形成する工程を含む画像形成装置であれば、どのようなものであってもかまわない。   The image forming method and the image forming apparatus of the present invention are not limited to the above examples. At least, the photosensitive member having a photocharged charge layer containing a charge generating substance is charged and charged, and an electrostatic latent image is obtained by exposure. Any image forming apparatus including a step of forming an image may be used.

以上に示すような画像形成方法、装置は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、露光手段を内側に設置された感光体を内蔵し、他に帯電用の露光手段、電圧印加手段、現像手段、クリーニング手段、除電手段、転写手段等を含んだ1つの装置(部品)である。   The image forming method and apparatus as described above may be fixedly incorporated in a copying apparatus, a facsimile machine, or a printer, but may be incorporated in these apparatuses in the form of a process cartridge. A process cartridge is a single device (incorporating a photosensitive member having exposure means on the inside, and including charging exposure means, voltage application means, development means, cleaning means, static elimination means, transfer means, etc.) Parts).

図7には本発明のプロセスカートリッジの一例を示す。感光体1の周辺には帯電部材である電圧印加ローラ2、感光体1表面に現像剤を適量供給する現像手段5、画像転写後に感光体表面をクリーニングするブレードを備えたたクリーニング手段7が一体に組み込まれている。このカートリッジは画像露光手段、転写手段、除電手段、定着手段、記録紙の搬送手段などの画像形成に必要な手段を具備した画像形成装置に着脱自在に取り扱い可能なように形成されている。
尚、該カートリッジに搭載される感光体1は、透光性導電性支持体上に少なくとも、感光層と電荷発生物質を含有した光電荷充電層を有する感光体である。
FIG. 7 shows an example of the process cartridge of the present invention. Around the periphery of the photoreceptor 1 are a voltage application roller 2 as a charging member, a developing means 5 for supplying an appropriate amount of developer to the surface of the photoreceptor 1 and a cleaning means 7 having a blade for cleaning the surface of the photoreceptor after image transfer. Built in. This cartridge is formed so that it can be detachably handled by an image forming apparatus having means necessary for image formation, such as image exposure means, transfer means, static elimination means, fixing means, and recording paper transport means.
The photoreceptor 1 mounted on the cartridge is a photoreceptor having at least a photosensitive layer and a photocharged charge layer containing a charge generating substance on a translucent conductive support.

<円筒状支持体の作製>
透光性支持体として、特開平11−288115号公報の実施例1に記載の方法に準じて、外径100mmの円筒状支持体を下記のようにして作製した。
メタクリル酸ベンジル(BzMA)モノマ−とメタクリル酸メチル(MMA)モノマ−の配合比を20/80とした混合物に、重合開始剤としてアゾビスイソブチロニトリル(AIBN)を添加し、50℃・3hr加熱して予備重合を行い、粘度約100cpのシロップ状重合性液状材料を得た。この重合性液状材料を内径100mm、長さ600mmの円筒状の型に注入し、型を回転させて遠心力により型の内壁に沿って密着させながら型全体を60℃・9hrの加熱処理を行い重合させた。得られた基体を0.2℃/分の速度で室温までアニーリング処理を行った後、型から取り出した。得られた基体に端部切断加工を行い、外径100mm、長さ360mmの円筒状支持体を得た。
<Production of cylindrical support>
As a translucent support, a cylindrical support having an outer diameter of 100 mm was produced as follows in accordance with the method described in Example 1 of JP-A-11-288115.
Azobisisobutyronitrile (AIBN) is added as a polymerization initiator to a mixture in which the blending ratio of benzyl methacrylate (BzMA) monomer and methyl methacrylate (MMA) monomer is 20/80, and 50 ° C., 3 hr. Preliminary polymerization was carried out by heating to obtain a syrupy polymerizable liquid material having a viscosity of about 100 cp. This polymerizable liquid material is poured into a cylindrical mold having an inner diameter of 100 mm and a length of 600 mm, and the mold is rotated and adhered along the inner wall of the mold by centrifugal force, and the entire mold is heated at 60 ° C. for 9 hours. Polymerized. The obtained substrate was annealed to room temperature at a rate of 0.2 ° C./min and then removed from the mold. The obtained substrate was subjected to an end cutting process to obtain a cylindrical support having an outer diameter of 100 mm and a length of 360 mm.

<導電層の塗工>
上記のようにして得た円筒状支持体上に、下記導電層塗布液組成物を乾燥膜厚0.5μmになるよう塗布し、80℃・30分の熱処理を行い、導電層を形成し、電子写真感光体用の透明支持体とした。
<Coating of conductive layer>
On the cylindrical support obtained as described above, the following conductive layer coating solution composition was applied to a dry film thickness of 0.5 μm, heat-treated at 80 ° C. for 30 minutes to form a conductive layer, A transparent support for an electrophotographic photosensitive member was obtained.

(導電層塗布液組成物)
住友金属鉱山社製の導電性塗料X−101H 1000g
トルエン 1000g
(Conductive layer coating solution composition)
1000 g of conductive paint X-101H manufactured by Sumitomo Metal Mining Co., Ltd.
1000g of toluene

<下引き層の形成>
外径100mmの円筒支持体上に、下記組成の下引き層塗工液を乾燥後の膜厚が0.2μmになるように浸漬法で塗工し、下引き層を形成した。
<Formation of undercoat layer>
An undercoat layer coating solution having the following composition was applied on a cylindrical support having an outer diameter of 100 mm by a dipping method so that the film thickness after drying was 0.2 μm to form an undercoat layer.

(下引き層用塗工液)
ジルコニウムテトラアセチルアセトネート(ZC150:松本交商製) 3部
γ-メタクリロキシプロピルトリメトキシシラン(KBM-503 信越化学工業製) 5部
イソプロピルアルコール 400部
(Coating liquid for undercoat layer)
Zirconium tetraacetylacetonate (ZC150: manufactured by Matsumoto Kosho) 3 parts γ-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts Isopropyl alcohol 400 parts

<電荷発生層の形成>
上記の下引き層上に下記電荷発生層用塗工液を浸漬塗工して、加熱乾燥させ、電荷発生層を形成した。
<Formation of charge generation layer>
On the undercoat layer, the following charge generation layer coating solution was dip coated and dried by heating to form a charge generation layer.

(電荷発生層用塗工液)
下記構造式(1)のビスアゾ顔料 5重量部
ブチラール樹脂(エスレックBMS:積水化学) 2重量部
シクロヘキサノン 60重量部
メチルエチルケトン 20重量部
(Coating solution for charge generation layer)
Bisazo pigment of the following structural formula (1) 5 parts by weight Butyral resin (ESREC BMS: Sekisui Chemical) 2 parts by weight Cyclohexanone 60 parts by weight
20 parts by weight of methyl ethyl ketone

Figure 2005070749
Figure 2005070749

<電荷輸送層の形成>
次に、この電荷発生層上に下記構造式(2)電荷輸送物質を含む電荷輸送層用塗工液を用いて浸積塗工し、130℃、20分加熱乾燥させ、膜厚20μmの電荷輸送層を形成した。
<Formation of charge transport layer>
Next, the charge generation layer is dip-coated using a charge transport layer coating solution containing the following structural formula (2) charge transport material, heated and dried at 130 ° C. for 20 minutes, and a charge having a thickness of 20 μm. A transport layer was formed.

(電荷輸送層用塗工液)
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
下記構造式(2)の電荷輸送物質 1重量部
テトラヒドロフラン 10重量部
(Coating liquid for charge transport layer)
Bisphenol Z-type polycarbonate (viscosity average molecular weight 50,000) 1 part by weight Charge transport material of the following structural formula (2) 1 part by weight Tetrahydrofuran 10 parts by weight

Figure 2005070749
Figure 2005070749

<光電荷充電層の形成>
このように作製した電荷輸送層の上に、下記光電荷充電層塗工液をスプレー塗工法で塗布、室温乾燥後、160℃、20分加熱乾燥して、膜厚1μmの光電荷充電層を形成し、電荷充電帯電用の感光体を作製した。
<Formation of photocharged charge layer>
On the charge transport layer thus prepared, the following photocharge charge layer coating solution was applied by spray coating, dried at room temperature, and then heat dried at 160 ° C. for 20 minutes to form a 1 μm thick photocharge charge layer. Then, a photoconductor for charge charging was prepared.

(光電荷充電層塗工液)
前記構造式(1)のビスアゾ顔料 3重量部
下記構造式(3)の電荷輸送物質 3重量部
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
THF 100重量部
シクロヘキサノン 40重量部
(Photocharged charge layer coating solution)
3 parts by weight of the bisazo pigment of the structural formula (1) 3 parts by weight of a charge transporting material of the following structural formula (3) 1 part by weight of THF 100 parts by weight of cyclohexanone 40 parts by weight of bisphenol Z type polycarbonate (viscosity average molecular weight 50,000)

Figure 2005070749
Figure 2005070749

<評価>
上述のようにして作製した電荷発生層用塗工液と光電荷充電層用塗工液をそれぞれ、石英ガラス基板上に感光体と同じ条件で塗布・乾燥して、各々の吸収スペクトルを市販の分光光度計(日立:UV−3100)にて吸収スペクトルを測定した。その結果、電荷発生層および光電荷充電層の吸収スペクトルは、図11に示すCGM Aの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は583nmであった。また、光電荷充電層の645nmの透過率は10%であった。
<Evaluation>
The charge generation layer coating solution and the photocharge charge layer coating solution prepared as described above were each applied and dried on a quartz glass substrate under the same conditions as the photoconductor, and the respective absorption spectra were then commercially available. The absorption spectrum was measured with a spectrophotometer (Hitachi: UV-3100). As a result, the absorption spectra of the charge generation layer and the photocharge charging layer almost coincided with the absorption spectrum of CGM A shown in FIG. 11, and the maximum absorption peak wavelength was 583 nm. Further, the transmittance at 645 nm of the photocharged charge layer was 10%.

このように作製した感光体の光電荷充電特性を図8に示す帯電特性測定装置を用いて、下記のごとく測定を行った。
200mm/sの速度で回転する感光体に、φ16mm、電気抵抗10Ω・cmのシリコンゴムローラを接触させ、連れ周り状態で−400Vの電圧を印加した時の帯電電位を測定した。帯電用露光光として645nmの波長領域のLEDを用いた。露光しない場合の帯電電位(VOFF)は−150V、LEDを点灯した場合の帯電電位(VON)は−270Vであった。
LEDを点灯して帯電させた感光体に655±10nmの光を感光体内側にセットされた光学系を用いて、0.5μJ/cm2露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−20Vとなった。
The photocharge charging characteristics of the photoconductor thus prepared were measured as follows using a charging characteristic measuring apparatus shown in FIG.
A photosensitive member rotating at a speed of 200 mm / s was brought into contact with a silicon rubber roller having a diameter of 16 mm and an electric resistance of 10 4 Ω · cm, and the charged potential was measured when a voltage of −400 V was applied in the accompanying state. An LED having a wavelength region of 645 nm was used as exposure light for charging. The charging potential (V OFF ) when not exposed was −150 V, and the charging potential (V ON ) when the LED was turned on was −270 V.
When 655 ± 10 nm light was exposed to the photosensitive member charged by turning on the LED using an optical system set inside the photosensitive member and exposed to 0.5 μJ / cm 2 , the charged potential was attenuated, and The potential (VL) was -20V.

印加電圧を−400Vから+400V変化させた時のLED露光時と未露光時の帯電特性を図9に示す。LEDを露光しない場合に比べて、LED露光によって感光体の帯電が高くなっている。又、帯電電位は印加電圧に比例して増加しており、放電帯電特有の放電開始電圧Vthが観測されず、本発明の感光体は光電荷充電によって帯電していることを示唆している。 FIG. 9 shows the charging characteristics when the applied voltage is changed from −400 V to +400 V when the LED is exposed and when it is not exposed. Compared with the case where the LED is not exposed, the charging of the photosensitive member is increased by the LED exposure. In addition, the charging potential increases in proportion to the applied voltage, and the discharge start voltage Vth peculiar to the discharge charging is not observed, suggesting that the photoreceptor of the present invention is charged by photocharge charging. .

次にこの感光体を用いて、図5に示す画像形成装置で画像形成を行った。以下に画像形成方法を説明する。
感光体1に、帯電用露光手段2によって645nmの波長領域のLED光(1μJ/cm2)を照射した直後に、電圧印加手段3の電圧印加部材として、直径8mmのステンレス製軸上に体積抵抗率約10Ω・cmの導電性ウレタン弾性層を設けた導電性ローラーを用い、これを感光体表面に接触し、−500Vの電圧を印加した。感光体1の初期帯電電位は−320Vであった。画像露光手段4は、画像情報に従って帯電後の感光体1に潜像を書き込むための装置であり、発振波長655nmのレーザー光とポリゴンミラーミラーを用いた光走査装置で、600dpiのドット画像を露光した。感光体への全面露光時の露光部の電位は−20Vであった。現像手段としては負極性に帯電したトナーと磁性キャリアーからなる2成分現像剤を用いて反転現像を行った。転写は、導電性の帯電ローラーに正極性の電圧を印加し、紙上に転写した。クリーニングは、ファーブラシクリーニングを用いた。上記条件で画像を形成したところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。
Next, using this photoreceptor, an image was formed by the image forming apparatus shown in FIG. The image forming method will be described below.
Immediately after irradiating the photosensitive member 1 with LED light (1 μJ / cm 2 ) in the wavelength region of 645 nm by the charging exposure means 2, volume resistance is formed on a stainless steel shaft having a diameter of 8 mm as a voltage application member of the voltage application means 3. Using a conductive roller provided with a conductive urethane elastic layer having a rate of about 10 4 Ω · cm, this was brought into contact with the surface of the photoreceptor, and a voltage of −500 V was applied. The initial charging potential of the photoreceptor 1 was −320V. The image exposure means 4 is a device for writing a latent image on the charged photoreceptor 1 in accordance with image information, and it exposes a 600 dpi dot image with an optical scanning device using a laser beam having an oscillation wavelength of 655 nm and a polygon mirror mirror. did. The potential of the exposed portion at the time of exposing the entire surface of the photoreceptor was -20V. As developing means, reversal development was performed using a two-component developer composed of a negatively charged toner and a magnetic carrier. In the transfer, a positive voltage was applied to a conductive charging roller and transferred onto paper. For cleaning, fur brush cleaning was used. When an image was formed under the above conditions, a clear image with no image blur, a uniform halftone portion, and no roughness was obtained.

次に本発明の帯電方法を繰り返した場合の感光体の劣化を調べるために下記の強制疲労テストを行った。
感光体に645nmのLED光照射と−500Vの電圧印加および655nmのレーザーの全面露光の10000回繰り返しテストを行った後、25℃、50%RH、と30℃、85%RHの温湿度環境下で、初期の画像形成と同様の方法で画像を作成したところ、いずれも画像ボケ、画像流れのない初期と同様の鮮明なドット画像が得られた。
Next, the following forced fatigue test was conducted in order to investigate the deterioration of the photoreceptor when the charging method of the present invention was repeated.
10000 nm LED light irradiation, −500 V voltage application, and 655 nm laser entire surface exposure test were repeated 10,000 times on the photoreceptor, then in a temperature and humidity environment of 25 ° C., 50% RH, 30 ° C., 85% RH. Thus, when an image was created by the same method as the initial image formation, a clear dot image similar to the initial one with no image blur and image flow was obtained.

実施例1における光電荷充電層の膜厚を変更し、645nmにおける透過率を20%になるように変更した以外は実施例1と同様に感光体を作製し、同様な評価を行った。
実施例1の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−150V、LEDを点灯した場合の帯電電位(VON)は−240Vであった。更にLEDを点灯して帯電させた感光体に655±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−20Vとなった。
更に、図5に示す画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−300Vであった。実施例1と同様に画像形成を行ったところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。
A photoconductor was prepared and evaluated in the same manner as in Example 1 except that the film thickness of the photocharged charge layer in Example 1 was changed and the transmittance at 645 nm was changed to 20%.
As in the case of Example 1, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −150 V, and the charging potential (V ON ) when the LED was turned on was −240 V. Further, when 655 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −20V.
Further, when image formation was performed with the image forming apparatus shown in FIG. 5, the initial charging potential of the photosensitive member was −300 V with an applied voltage of −500 V. When image formation was performed in the same manner as in Example 1, a clear image with no image blur, a uniform halftone portion, and no roughness was obtained.

実施例1における光電荷充電層の膜厚を変更し、645nmにおける透過率を30%になるように変更した以外は実施例1と同様に感光体を作製し、同様な評価を行った。
実施例1の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−150V、LEDを点灯した場合の帯電電位(VON)は−170Vであった。更にLEDを点灯して帯電させた感光体に780±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−30Vとなった。
更に、図5に示す画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−210Vであった。実施例1と同様に画像形成を行ったところ、画像ボケは発生しなかったが、実施例1と比較してやや画像濃度の低い画像が得られた。
A photoconductor was prepared and evaluated in the same manner as in Example 1 except that the film thickness of the photocharged charge layer in Example 1 was changed and the transmittance at 645 nm was changed to 30%.
As in the case of Example 1, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −150 V, and the charging potential (V ON ) when the LED was turned on was −170 V. Further, when 780 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −30V.
Further, when image formation was performed with the image forming apparatus shown in FIG. 5, the initial charging potential of the photosensitive member was −210 V with an applied voltage of −500 V. When image formation was performed in the same manner as in Example 1, no image blur occurred, but an image having a slightly lower image density than that in Example 1 was obtained.

実施例1における光電荷充電層を下記組成の光電荷充電層塗工液に変更し、感光体を作製し、実施例1と同様に評価を行った。   The photocharged charge layer in Example 1 was changed to a photocharged charge layer coating solution having the following composition to prepare a photoreceptor, and evaluation was performed in the same manner as in Example 1.

(光電荷充電層塗工液)
下記構造式(4)のビスアゾ顔料 3重量部
前記構造式(3)の電荷輸送物質 3重量部
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
THF 100重量部
シクロヘキサノン 40重量部
(Photocharged charge layer coating solution)
3 parts by weight of a bisazo pigment of the following structural formula (4) 3 parts by weight of a charge transporting substance of the structural formula (3) 1 part by weight of THF 100 parts by weight of cyclohexanone 40 parts by weight of bisphenol Z type polycarbonate (viscosity average molecular weight 50,000)

Figure 2005070749
Figure 2005070749

実施例1と同様の方法で、光電荷充電層の吸収スペクトルを測定した。その結果、光電荷充電層の吸収スペクトルは、図11に示すCGM Aの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は583nmであった。
実施例1の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−140V、LEDを点灯した場合の帯電電位(VON)は−320Vであった。更にLEDを点灯して帯電させた感光体に655±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−20Vとなった。
In the same manner as in Example 1, the absorption spectrum of the photocharged charge layer was measured. As a result, the absorption spectrum of the photocharged charge layer almost coincided with the absorption spectrum of CGM A shown in FIG. 11, and the maximum absorption peak wavelength was 583 nm.
As in the case of Example 1, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −140 V, and the charging potential (V ON ) when the LED was turned on was −320 V. Further, when 655 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −20V.

更に、図5に示す画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−360Vであった。実施例1と同様に画像形成を行ったところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。この画像のコントラストは、実施例1の画像よりも高いものであった。   Further, when image formation was performed with the image forming apparatus shown in FIG. 5, the initial charging potential of the photosensitive member was −360 V with an applied voltage of −500 V. When image formation was performed in the same manner as in Example 1, a clear image with no image blur, a uniform halftone portion, and no roughness was obtained. The contrast of this image was higher than that of the image of Example 1.

実施例1の光電荷充電層の電荷発生物質を下記構造のビスアゾ顔料を用いた以外は実施例1と同様に感光体を作製した。
この感光体を用いて、実施例1と同様に帯電特性測定装置用いてを測定したところ、帯電電位は印加電圧に比例して増加する電荷充電帯電特性を示し、−400Vの印加電圧でVOFF=−140V、VON=−190V、及びVL=−10Vであった。
A photoconductor was prepared in the same manner as in Example 1 except that a bisazo pigment having the following structure was used as the charge generating material of the photocharge charging layer of Example 1.
Using this photoconductor, the charge characteristic was measured using the charge characteristic measuring apparatus in the same manner as in Example 1. As a result, the charge potential showed charge charge charge characteristics that increased in proportion to the applied voltage, and V OFF was applied at the applied voltage of −400V. = −140V, V ON = −190V, and VL = −10V.

Figure 2005070749
Figure 2005070749

この感光体を用いて、実施例1と同様の画像形成装置を用いて同じ条件で画像を形成したところ、画像ボケがなく、実施例1と比較してやや濃度の低い画像が得られた。   Using this photoreceptor, an image was formed under the same conditions using the same image forming apparatus as in Example 1. As a result, there was no image blur and an image having a slightly lower density than that in Example 1 was obtained.

実施例1における光電荷充電層を下記組成の光電荷充電層塗工液に変更し、感光体を作製し、実施例1と同様に評価を行った。   The photocharged charge layer in Example 1 was changed to a photocharged charge layer coating solution having the following composition to prepare a photoreceptor, and evaluation was performed in the same manner as in Example 1.

(光電荷充電層塗工液)
チタニルフタロシアニン顔料 3重量部
(図12にXDスペクトルを示す)
前記構造式(3)の電荷輸送物質 3重量部
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
THF 100重量部
シクロヘキサノン 40重量部
(Photocharged charge layer coating solution)
3 parts by weight of titanyl phthalocyanine pigment (XD spectrum is shown in FIG. 12)
Charge transport material of the above structural formula (3) 3 parts by weight Bisphenol N type polycarbonate (viscosity average molecular weight 50,000) 1 part by weight THF 100 parts by weight cyclohexanone 40 parts by weight

上記塗工液で用いたチタニルフタロシアン顔料は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ前記7.3゜のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニンである。
なお、上記チタニルフタロシアン顔料は、特開2001−19871号公報の段落番号[0140]に記載の合成例1に準じて合成した。
The titanyl phthalocyanine pigment used in the coating solution further has a Bragg angle 2θ diffraction peak (± 0.2 °) with respect to CuKα characteristic X-rays (wavelength 1.542 mm), and further 9.4 ° and 9.6 °. The main peak at 24.0 ° and the lowest diffraction peak at 7.3 ° and between the 7.3 ° peak and the 9.4 ° peak. Is a titanyl phthalocyanine having no peak and no peak at 26.3 °.
The titanyl phthalocyanine pigment was synthesized according to Synthesis Example 1 described in paragraph No. [0140] of JP-A No. 2001-19871.

実施例1と同様の方法で、光電荷充電層の吸収スペクトルを測定した。その結果、光電荷充電層の吸収スペクトルは、図11に示すCGM Cの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は800nmであった。   In the same manner as in Example 1, the absorption spectrum of the photocharged charge layer was measured. As a result, the absorption spectrum of the photocharged charge layer almost coincided with the absorption spectrum of CGM C shown in FIG. 11, and the maximum absorption peak wavelength was 800 nm.

実施例1の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。但し、帯電用露光部材を740nmのLEDに変更した。露光しない場合の帯電電位(VOFF)は−150V、LEDを点灯した場合の帯電電位(VON)は−310Vであった。更にLEDを点灯して帯電させた感光体に655±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−20Vとなった。 As in the case of Example 1, the charging potential when a voltage of −400 V was applied was measured. However, the charging exposure member was changed to a 740 nm LED. The charging potential (V OFF ) when not exposed was −150 V, and the charging potential (V ON ) when the LED was turned on was −310 V. Further, when 655 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −20V.

更に、図5に示す画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−350Vであった。実施例1と同様に画像形成を行ったところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。この画像のコントラストは、実施例1の画像よりも高いものであった。   Further, when an image was formed with the image forming apparatus shown in FIG. 5, the initial charging potential of the photosensitive member was −350 V with an applied voltage of −500 V. When image formation was performed in the same manner as in Example 1, a clear image with no image blur, a uniform halftone portion, and no roughness was obtained. The contrast of this image was higher than that of the image of Example 1.

実施例1の光電荷充電層の電荷輸送物質の構造式(3)の化合物に代えて下記構造式(6)の化合物を含有させた以外は、実施例1と同様に感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that the compound of the following structural formula (6) was contained instead of the compound of the structural formula (3) of the charge transport material of the photocharged charge layer of Example 1.

Figure 2005070749
Figure 2005070749

実施例1と同様に帯電特性、光減衰特性を測定した結果、帯電電位は印加電圧に比例した電荷充電帯電特性を示し、−400Vの電圧印加でVOFF=−100V、VON=−290Vの帯電電位を示し、VL=−10Vであった。 As a result of measuring the charging characteristics and the light attenuation characteristics in the same manner as in Example 1, the charging potential shows charge charging characteristics proportional to the applied voltage. When a voltage of −400 V is applied, V OFF = −100 V and V ON = −290 V. A charging potential was indicated, and VL = −10V.

この感光体を用いて、実施例1と同様の画像形成装置を用いて同じ条件で画像を形成したところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。更に実施例1と同様に、感光体に740nmのLED光照射と−500Vの電圧印加および655nmのレーザーの全面露光のみを10000回繰り返して、強制疲労テストを行った後、25℃、50%RH、と30℃、85%RHの温湿度環境下で、初期の画像形成と同様の方法で画像を形成したところ、いずれも画像ボケ、画像流れのない初期と同様の鮮明なドット画像が得られた。   Using this photoreceptor, an image was formed under the same conditions using the same image forming apparatus as in Example 1. As a result, there was no image blur, and the halftone portion was uniform and a clear image without a feeling of roughness was obtained. . Further, in the same manner as in Example 1, only 740 nm LED light irradiation, −500 V voltage application, and 655 nm laser entire surface exposure were repeated 10,000 times to perform a forced fatigue test, followed by 25 ° C., 50% RH. When an image was formed by the same method as the initial image formation in a temperature and humidity environment of 30 ° C. and 85% RH, a clear dot image similar to the initial image without image blur and image flow was obtained. It was.

実施例1における光電荷充電層の電荷輸送物質を下記構造式(7)の電荷輸送物質に変更した以外は、実施例1と同様に感光体を作製し、評価を行った。   A photoconductor was prepared and evaluated in the same manner as in Example 1 except that the charge transport material of the photocharge charging layer in Example 1 was changed to the charge transport material of the following structural formula (7).

Figure 2005070749
Figure 2005070749

実施例1と同様に帯電特性、光減衰特性を測定した結果、帯電電位は印加電圧に比例した電荷充電帯電特性を示し、−400Vの電圧印加でVOFF=−100V、VON=−190Vの帯電電位を示し、VL=−10Vであった。この感光体を用いて、実施例1と同様の画像形成装置を用いて同じ条件で画像を形成したところ、画像ボケがなく、実施例1の画像と比較すると画像濃度がやや低めの画像が得られた。 As a result of measuring the charging characteristics and the light attenuation characteristics in the same manner as in Example 1, the charging potential shows charge charging characteristics proportional to the applied voltage. When a voltage of −400 V is applied, V OFF = −100 V and V ON = −190 V. A charging potential was indicated, and VL = −10V. Using this photoconductor, an image was formed under the same conditions using the same image forming apparatus as in Example 1. As a result, there was no image blur and an image having a slightly lower image density than that of Example 1 was obtained. It was.

[比較例1]
実施例1で光電荷充電層を設けなかった以外は実施例1と同様に感光体を作製した。
実施例1と同様に−400Vの電圧印加で帯電特性を測定したが、VOFF=0V、VON=+5Vであった。
次に実施例1で用いた画像形成装置の電圧印加ローラ−の代わりに、放電帯電用の非接触帯電ローラーを搭載し、放電により感光体表面に−350Vの帯電を行った以外は実施例1と同様に画像形成をしたところ、実施例1と同様に鮮明な初期画像が得られた。
[Comparative Example 1]
A photoconductor was prepared in the same manner as in Example 1 except that the photocharged charge layer was not provided in Example 1.
The charging characteristics were measured by applying a voltage of −400 V in the same manner as in Example 1, but V OFF = 0V and V ON = + 5V.
Next, in place of the voltage application roller of the image forming apparatus used in Example 1, a non-contact charging roller for discharge charging is mounted, and the surface of the photoreceptor is charged by −350 V by discharging, and Example 1 is performed. When an image was formed in the same manner as in Example 1, a clear initial image was obtained as in Example 1.

その後、コロナ放電による−340Vの帯電と露光のみを10000回繰り返した後、25℃、50%RHと30℃、85%RHの環境下で画像を形成したところ、25℃、50%RH環境下で画像が太くぼけていた。又30℃、85%RH環境下では、画像流れが発生した。
以上のように、本発明の導電性支持体上に少なくとも感光層と光電荷充電層で構成される感光体を用いて、光電荷充電による帯電を行えば、従来の放電帯電を用いた場合より、感光体の劣化が無く、画像ボケや画像流れが発生しにくい画像形成装置が提供出来る
Then, after repeating only −340V charging and exposure by corona discharge 10,000 times, an image was formed in an environment of 25 ° C., 50% RH, 30 ° C., and 85% RH. The image was blurred. In addition, image flow occurred in an environment of 30 ° C. and 85% RH.
As described above, if charging is performed by photocharge charging using a photoconductor composed of at least a photoconductive layer and a photocharged charge layer on the conductive support of the present invention, the conventional discharge charge can be used. In addition, it is possible to provide an image forming apparatus in which the photoreceptor is not deteriorated and image blur and image flow are less likely to occur.

表面にハステロイ導電層を有するポリエチレンテレフタレートフィルム(厚さ30μm、周長180mm、ベルト幅340mm)からなるエンドレスベルト形状の透光性支持体を用いて、その上に実施例1と同じ組成、膜厚の電荷発生層、電荷輸送層、光電荷充電層を設けてエンドレスベルト状感光体を作製した(下引き層は形成しない)。   Using an endless belt-shaped translucent support composed of a polyethylene terephthalate film (thickness 30 μm, circumference length 180 mm, belt width 340 mm) having a Hastelloy conductive layer on the surface, the same composition and film thickness as in Example 1 are formed thereon. The endless belt-shaped photoconductor was prepared by providing a charge generation layer, a charge transport layer, and a photocharge charge layer (no undercoat layer was formed).

この感光体を図6記載の画像形成装置で画像形成を行った。その際、エンドレスベルト感光体は直径25mmの2本のローラーで、支持駆動され100mm/sの速度で回転させた。
帯電用露光光源は645nmのLED光(1μJ/cm2)、電圧印加部材としてφ16mm、電気抵抗10Ω・cmのシリコンゴムローラを接触させ、連れ周り状態で−500Vの電圧を印加した時の帯電電位を測定したところ、−400V帯電した。
This photoreceptor was subjected to image formation with the image forming apparatus shown in FIG. At that time, the endless belt photoreceptor was driven by two rollers having a diameter of 25 mm and rotated at a speed of 100 mm / s.
The exposure light source for charging is 645 nm LED light (1 μJ / cm2), a silicon rubber roller with a diameter of 16 mm and an electric resistance of 10 4 Ω · cm is brought into contact as a voltage application member, and a charging potential when a voltage of −500 V is applied in the accompanying state. As a result, -400 V was charged.

画像露光手段4は、発振波長655nmのレーザー光とポリゴンミラーミラーを用いた光走査装置で、600dpiのドット画像を露光した。現像は、負帯電トナーとキャリアーからなる2成分現像剤を用いて反転現像を行った。転写手段は、導電性ローラーに正極性の電圧を印加し、トナー画像を紙に転写した。クリーニング手段は感光体表面の摩耗を少なくするために、ファーブラシを用いた。又、感光体と2本の駆動ローラーと電圧印加ローラーは一体化し、電子写真装置から着脱できるようユニット化された。
このような装置を用いて画像を形成したところ、画像ボケのない、中間調画像部に於いてもざらつき感の無い均一で鮮明な画像が得られた。
The image exposing means 4 exposed a 600 dpi dot image with an optical scanning device using a laser beam having an oscillation wavelength of 655 nm and a polygon mirror mirror. For development, reversal development was performed using a two-component developer composed of a negatively charged toner and a carrier. The transfer means applied a positive voltage to the conductive roller to transfer the toner image onto paper. As the cleaning means, a fur brush was used to reduce wear on the surface of the photoreceptor. In addition, the photoconductor, the two driving rollers, and the voltage application roller were integrated and unitized so as to be detachable from the electrophotographic apparatus.
When an image was formed using such an apparatus, a uniform and clear image having no image blur and a feeling of roughness was obtained even in the halftone image portion.

下記光電荷充電層塗工液を用いて乾燥膜厚1μmの光電荷充電層を感光層の表面に設けた以外は、実施例1と同様に充電帯電用の感光体を作製した。   A photoconductor for charging and charging was prepared in the same manner as in Example 1 except that a photocharged charge layer having a dry film thickness of 1 μm was provided on the surface of the photosensitive layer using the following photocharged charge layer coating solution.

(光電荷充電層塗工液)
前記構造式(1)のビスアゾ顔料 3重量部
前記構造式(3)の電荷輸送物質 3重量部
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
アルミナ 2重量部
(平均一次粒径:0.3μm、「AA03」住友化学工業製)
テトラヒドロフラン 100重量部
シクロヘキサノン 40重量部
(Photocharged charge layer coating solution)
3 parts by weight of the bisazo pigment of the structural formula (1) 3 parts by weight of the charge transporting material of the structural formula (3) 1 part by weight of bisphenol Z type polycarbonate (viscosity average molecular weight 50,000) 1 part by weight of alumina (average primary particle size: 0) .3 μm, “AA03” manufactured by Sumitomo Chemical)
Tetrahydrofuran 100 parts by weight Cyclohexanone 40 parts by weight

この感光体を実施例1と同様に帯電特性、感光特性を測定ところ−400Vの印加電圧でVOFF=−150V、VON=−250v帯電した。
この感光体を用いて実施例1と同様に画像形成を行ったところ、鮮明な画像が得られた。 又この感光体に実施例1と同様に帯電と露光のみの繰り返し強制疲労テストを行った後に25℃、50%RHと30℃、85%RHの温湿度環境下で初期の画像形成と同様の方法で画像を形成したところ、いずれの環境下においても、画像ボケ、画像流れのない初期と同様の鮮明なドット画像が得られた。
The photoconductor was measured for charging characteristics and photosensitivity in the same manner as in Example 1, and was charged with V OFF = −150 V and V ON = −250 v with an applied voltage of −400V.
When this photoreceptor was used to form an image in the same manner as in Example 1, a clear image was obtained. The photoreceptor was subjected to repeated forced fatigue tests only for charging and exposure in the same manner as in Example 1, and then the same as in the initial image formation in a temperature and humidity environment of 25 ° C., 50% RH, 30 ° C., and 85% RH. When an image was formed by this method, a clear dot image similar to that in the initial stage without image blur and image flow was obtained in any environment.

更に、実施例1の感光体と実施例10の感光体を図5に示す画像形成装置にて、1万枚の連続画像形成を行った。実施例1の感光体は、1万枚の画像形成後に感光体表面にわずかにスジ状の傷が発生し、出力画像にはわずかなスジ状の画像欠陥が発生した。一方、実施例10の感光体においては、感光体表面に傷等が認められず、1万枚後の画像にも欠陥は認められなかった。   Further, 10,000 continuous images were formed on the photoconductor of Example 1 and the photoconductor of Example 10 using the image forming apparatus shown in FIG. In the photoconductor of Example 1, slight streak-like scratches occurred on the surface of the photoconductor after forming 10,000 images, and slight streak-like image defects occurred in the output image. On the other hand, in the photoreceptor of Example 10, no scratches or the like were observed on the surface of the photoreceptor, and no defect was observed in the image after 10,000 sheets.

<下引き層の形成>
実施例1と同じ透光性円筒型支持体上に、下記組成の下引き層塗工液を乾燥後の膜厚が0.3μmになるように浸漬法で塗工し、下引き層を形成した。
<Formation of undercoat layer>
On the same light-transmitting cylindrical support as in Example 1, an undercoat layer coating solution having the following composition was applied by an immersion method so that the film thickness after drying was 0.3 μm to form an undercoat layer. did.

(下引き層用塗工液)
アルコール可溶性ナイロン 3部
メタノール 70部
ブタノール 30部
(Coating liquid for undercoat layer)
Alcohol-soluble nylon 3 parts Methanol 70 parts Butanol 30 parts

<電荷発生層の形成>
この下引き層上に下記電荷発生層塗工液を浸漬塗工し、110℃、20分、加熱乾燥させ、膜厚0.3μmの電荷発生層を形成した。
<Formation of charge generation layer>
On this undercoat layer, the following charge generation layer coating solution was dip-coated and dried by heating at 110 ° C. for 20 minutes to form a charge generation layer having a thickness of 0.3 μm.

(電荷発生層用塗工液)
チタニルフタロシアニン顔料 5重量部
(XDスペクトルを図12に示す)
ブチラール樹脂(エスレックBX−1:積水化学) 2重量部
メチルエチルケトン 80重量部
(Coating solution for charge generation layer)
5 parts by weight of titanyl phthalocyanine pigment (XD spectrum is shown in FIG. 12)
Butyral resin (ESREC BX-1: Sekisui Chemical) 2 parts by weight Methyl ethyl ketone 80 parts by weight

<電荷輸送層の形成>
次に、この電荷発生層上に下記組成のの電荷輸送層用塗工液を用いて浸積塗工し、130℃、20分加熱乾燥させ、膜厚20μmの電荷輸送層を形成した。
<Formation of charge transport layer>
Next, dip coating was performed on the charge generation layer using a charge transport layer coating liquid having the following composition, followed by heating and drying at 130 ° C. for 20 minutes to form a charge transport layer having a thickness of 20 μm.

(電荷輸送層用塗工液)
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
前記構造式(2)の電荷輸送物質 1重量部
テトラヒドロフラン 10重量部
(Coating liquid for charge transport layer)
1 part by weight of bisphenol Z-type polycarbonate (viscosity average molecular weight 50,000) 1 part by weight of charge transport material of structural formula (2) 10 parts by weight of tetrahydrofuran

<光電荷充電層の形成>
このように作製した電荷輸送層の上に、下記組成の光電荷充電層塗工液をスプレー塗工法で塗布、室温乾燥後、160℃、20分加熱乾燥して、膜厚1μmの光電荷充電層を形成し、電荷充電帯電用の感光体を作製した。
<Formation of photocharged charge layer>
On the charge transport layer thus prepared, a photocharged charge layer coating solution having the following composition was applied by spray coating, dried at room temperature, and then heated and dried at 160 ° C. for 20 minutes to charge the photocharge with a film thickness of 1 μm. A layer was formed to prepare a photoreceptor for charge charging.

(光電荷充電層塗工液)
チタニルフタロシアニン顔料 3重量部
(XDスペクトルを図12に示す)
前記構造式(3)の電荷輸送物質 3重量部
ビスフェーノルZ型ポリカーボネート 1重量部
THF 100重量部
シクロヘキサノン 40重量部
(Photocharged charge layer coating solution)
3 parts by weight of titanyl phthalocyanine pigment (XD spectrum is shown in FIG. 12)
Charge transport material of the above structural formula (3) 3 parts by weight Bisphenol Z type polycarbonate 1 part by weight THF 100 parts by weight Cyclohexanone 40 parts by weight

<評価>
上述のように作製した電荷発生層用途工液、光電荷充電層用塗工液を、それぞれ石英ガラス基板上に感光体と同じ条件で塗布・乾燥して、各々の吸収スペクトルを市販の分光光度計(日立:UV−3100)にて吸収スペクトルを測定した。その結果、電荷発生層、光電荷充電層の吸収スペクトルは、図11に示すCGM Cの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は800nmであった。また、光電荷充電層の780nmの透過率は10%であった。
<Evaluation>
The charge generation layer application solution and the photocharge charge layer coating solution prepared as described above were each applied and dried on a quartz glass substrate under the same conditions as the photoconductor, and the respective absorption spectra were then commercially available. The absorption spectrum was measured with a meter (Hitachi: UV-3100). As a result, the absorption spectra of the charge generation layer and the photocharge charge layer almost coincided with the absorption spectrum of CGMC shown in FIG. 11, and the maximum absorption peak wavelength was 800 nm. Further, the transmittance at 780 nm of the photocharged charge layer was 10%.

このように作製した感光体の光充電帯電特性を図8に示す帯電特性測定装置を用いて、下記のごとく測定を行った。
200mm/sの速度で回転する感光体に、740nmの波長領域のLED光(1μJ/ cm)を照射した直後に、φ16mm、電気抵抗10Ω・cmのシリコンゴムローラを接触させ、連れ周り状態で−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−150V、LEDを点灯した場合の帯電電位(VON)は−280Vであった。LDを点灯して帯電させた感光体に780±10nmのLED光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−20Vとなった。
The photocharging and charging characteristics of the photoreceptor thus prepared were measured as follows using a charging characteristics measuring apparatus shown in FIG.
Immediately after irradiating a photoconductor rotating at a speed of 200 mm / s with LED light (1 μJ / cm 2 ) in a wavelength region of 740 nm, a silicon rubber roller having a diameter of 16 mm and an electric resistance of 10 4 Ω · cm is brought into contact with the photoconductor. The charging potential when a voltage of -400 V was applied was measured. The charging potential (V OFF ) when not exposed was −150 V, and the charging potential (V ON ) when the LED was turned on was −280 V. When the 780 ± 10 nm LED light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LD, the charged potential was attenuated and the potential (VL) of the exposed portion became −20V.

次にこの感光体を用いて、図7に示すプロセスカートリッジを用いた画像形成装置で画像形成を行った。以下に画像形成方法を説明する。
帯電部材として、直径8mmのステンレス製軸上に体積抵抗率約10Ω・cmの導電性ウレタン弾性層を設けた導電性の電圧印加ローラー3を用い、感光体表面に接触し、−500Vの電圧を印加した。感光体の初期帯電電位は−380Vであった。帯電用露光光として740nmの波長領域のLEDを用いた。露光装置(図示せず)は、画像情報に従って帯電後の感光体に潜像を書き込むための装置であり、発振波長780nmのレーザー光とポリゴンミラーミラーを用いた光走査装置で、600dpiのドット画像を露光した。感光体への全面露光時の露光部の電位は−30Vであった。現像手段としては負極性に帯電したトナーと磁性キャリアーからなる2成分現像剤を用いて反転現像を行った。転写は、導電性の帯電ローラーに正極性の電圧を印加し、紙上に転写した。クリーニングは、ファーブラシクリーニングを用いた。上記条件で画像を形成したところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。
Next, using this photoreceptor, an image was formed by an image forming apparatus using the process cartridge shown in FIG. The image forming method will be described below.
As a charging member, a conductive voltage application roller 3 in which a conductive urethane elastic layer having a volume resistivity of about 10 4 Ω · cm is provided on a stainless steel shaft having a diameter of 8 mm is used. A voltage was applied. The initial charging potential of the photoreceptor was -380V. An LED having a wavelength region of 740 nm was used as the charging exposure light. An exposure device (not shown) is a device for writing a latent image on a charged photoreceptor in accordance with image information, and is an optical scanning device using a laser beam having an oscillation wavelength of 780 nm and a polygon mirror mirror, and a dot image of 600 dpi. Was exposed. The potential of the exposed portion at the time of exposing the entire surface of the photoreceptor was -30V. As developing means, reversal development was performed using a two-component developer composed of a negatively charged toner and a magnetic carrier. In the transfer, a positive voltage was applied to a conductive charging roller and transferred onto paper. For cleaning, fur brush cleaning was used. When an image was formed under the above conditions, a clear image with no image blur, a uniform halftone portion, and no roughness was obtained.

次に本発明の帯電方法を繰り返した場合の感光体の劣化を調べるために下記の強制疲労テストを行った。感光体に740nmのLED光照射と−500Vの電圧印加および780nmのレーザーの全面露光の10000回繰り返しテストを行った後、25℃、50%RH、と30℃、85%RHの温湿度環境下で初期の画像形成と同様の方法で画像を作成したところ、いずれも画像ボケ、画像流れのない初期と同様の鮮明なドット画像が得られた。   Next, the following forced fatigue test was conducted in order to investigate the deterioration of the photoreceptor when the charging method of the present invention was repeated. After 10000-times repeated tests of 740 nm LED light irradiation, -500 V voltage application, and 780 nm laser overall exposure to the photoreceptor, under a temperature and humidity environment of 25 ° C., 50% RH, 30 ° C., 85% RH Then, when an image was created by the same method as the initial image formation, a clear dot image similar to the initial one with no image blur and image flow was obtained.

実施例11の光電荷充電層に使用したチタニルフタロシアニンを図13にXDスペクトルを示すチタニルフタロシアニン(最低角が7.5度にピークを有し、最大ピークが27.2度に有するチタニルフタロシアニン)に変更した以外は、実施例11と同様に感光体を作製し、評価を行った。   The titanyl phthalocyanine used in the photocharged charge layer of Example 11 was changed to titanyl phthalocyanine (a titanyl phthalocyanine having a peak at a minimum angle of 7.5 degrees and a maximum peak at 27.2 degrees) having an XD spectrum in FIG. A photoconductor was prepared and evaluated in the same manner as in Example 11 except for the change.

上述のように作製した光電荷充電層用塗工液を、石英ガラス基板上に感光体と同じ条件で塗布・乾燥して、吸収スペクトルを市販の分光光度計(日立:UV−3100)にて吸収スペクトルを測定した。その結果、光電荷充電層の吸収スペクトルは、図11に示すCGM Cの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は793nmであった。また、光電荷充電層の780nmの透過率は10%であった。   The photocharged charge layer coating solution prepared as described above was applied and dried on a quartz glass substrate under the same conditions as the photoreceptor, and the absorption spectrum was measured with a commercially available spectrophotometer (Hitachi: UV-3100). Absorption spectrum was measured. As a result, the absorption spectrum of the photocharged charge layer almost coincided with the absorption spectrum of CGM C shown in FIG. 11, and the maximum absorption peak wavelength was 793 nm. Further, the transmittance at 780 nm of the photocharged charge layer was 10%.

実施例11の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−160V、LEDを点灯した場合の帯電電位(VON)は−240Vであった。更にLEDを点灯して帯電させた感光体に780±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−10Vとなった。 As in the case of Example 11, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −160 V, and the charging potential (V ON ) when the LED was turned on was −240 V. Further, when 780 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −10V.

更に、図7に示すプロセスカートリッジを用いた画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−340Vであった。実施例11と同様に画像形成を行ったところ、画像ボケがなく、中間調部も均一でざらつき感のない鮮明な画像が得られた。画像コントラストは、実施例11の画像にやや劣る。   Further, when an image was formed by the image forming apparatus using the process cartridge shown in FIG. 7, the initial charging potential of the photosensitive member was −340V with an applied voltage of −500V. When image formation was performed in the same manner as in Example 11, a clear image with no image blur and a uniform halftone portion and no rough feeling was obtained. The image contrast is slightly inferior to the image of Example 11.

実施例11に使用したチタニルフタロシアニンを図14にXDスペクトルを示すチタニルフタロシアニン(26.3度に最大ピークを有するチタニルフタロシアニン)に変更した以外は、実施例11と同様に感光体を作製し、評価を行った。   A photoconductor was prepared and evaluated in the same manner as in Example 11 except that the titanyl phthalocyanine used in Example 11 was changed to titanyl phthalocyanine having an XD spectrum in FIG. 14 (titanyl phthalocyanine having a maximum peak at 26.3 degrees). Went.

上述のように作製した光電荷充電層用塗工液を、石英ガラス基板上に感光体と同じ条件で塗布・乾燥して、吸収スペクトルを市販の分光光度計(日立:UV−3100)にて吸収スペクトルを測定した。その結果、光電荷充電層の吸収スペクトルは、図11に示すCGM Cの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は785nmであった。また、光電荷充電層の780nmの透過率は10%であった。   The photocharged charge layer coating solution prepared as described above was applied and dried on a quartz glass substrate under the same conditions as the photoreceptor, and the absorption spectrum was measured with a commercially available spectrophotometer (Hitachi: UV-3100). Absorption spectrum was measured. As a result, the absorption spectrum of the photocharged charge layer almost coincided with the absorption spectrum of CGM C shown in FIG. 11, and the maximum absorption peak wavelength was 785 nm. Further, the transmittance at 780 nm of the photocharged charge layer was 10%.

実施例11の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−150V、LEDを点灯した場合の帯電電位(VON)は−180Vであった。更にLEDを点灯して帯電させた感光体に780±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−10Vとなった。 As in the case of Example 11, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −150 V, and the charging potential (V ON ) when the LED was turned on was −180 V. Further, when 780 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −10V.

更に、図7に示すプロセスカートリッジを用いた画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−230Vであった。実施例1と同様に画像形成を行ったところ、画像ボケがなく、実施例11の画像と比較してやや画像濃度の低い画像が得られた。   Further, when an image was formed by the image forming apparatus using the process cartridge shown in FIG. 7, the initial charging potential of the photosensitive member was −230 V with an applied voltage of −500 V. When image formation was performed in the same manner as in Example 1, there was no image blur and an image having a slightly lower image density than that of the image of Example 11 was obtained.

実施例11において、光電荷充電層塗工液を以下のものに変更して感光体を作製し、同様に評価を行った。   In Example 11, the photocharged charge layer coating solution was changed to the following to produce a photoconductor and evaluated in the same manner.

(光電荷充電層塗工液)
下記構造式(8)のトリスアゾ顔料 3重量部
前記構造式(3)の電荷輸送物質 3重量部
ビスフェーノルZ型ポリカーボネート(粘度平均分子量5万) 1重量部
THF 100重量部
シクロヘキサノン 40重量部
(Photocharged charge layer coating solution)
3 parts by weight of a trisazo pigment of the following structural formula (8) 3 parts by weight of a charge transport material of the structural formula (3) 1 part by weight of THF 100 parts by weight of cyclohexanone 40 parts by weight of bisphenol Z type polycarbonate (viscosity average molecular weight 50,000)

Figure 2005070749
Figure 2005070749

上述のように作製した光電荷充電層用塗工液を、石英ガラス基板上に感光体と同じ条件で塗布・乾燥して、吸収スペクトルを市販の分光光度計(日立:UV−3100)にて吸収スペクトルを測定した。その結果、光電荷充電層の吸収スペクトルは、図11に示すCGM Bの吸収スペクトルにほぼ一致し、最大吸収ピーク波長は780nmであった。また、光電荷充電層の780nmの透過率は10%であった。   The photocharged charge layer coating solution prepared as described above was applied and dried on a quartz glass substrate under the same conditions as the photoreceptor, and the absorption spectrum was measured with a commercially available spectrophotometer (Hitachi: UV-3100). Absorption spectrum was measured. As a result, the absorption spectrum of the photocharged charge layer almost coincided with the absorption spectrum of CGM B shown in FIG. 11, and the maximum absorption peak wavelength was 780 nm. Further, the transmittance at 780 nm of the photocharged charge layer was 10%.

実施例11の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−120V、LEDを点灯した場合の帯電電位(VON)は−140Vであった。更にLEDを点灯して帯電させた感光体に780±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−10Vとなった。 As in the case of Example 11, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −120 V, and the charging potential (V ON ) when the LED was turned on was −140 V. Further, when 780 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −10V.

更に、図7に示すプロセスカートリッジを用いた画像形成装置で画像形成を行ったところ、−500Vの印加電圧で感光体の初期帯電電位は−200Vであった。実施例1と同様に画像形成を行ったところ、画像ボケがなく、実施例11の画像と比較してやや画像濃度の低い画像が得られた。   Further, when an image was formed by the image forming apparatus using the process cartridge shown in FIG. 7, the initial charging potential of the photosensitive member was −200 V with an applied voltage of −500 V. When image formation was performed in the same manner as in Example 1, there was no image blur and an image having a slightly lower image density than that of the image of Example 11 was obtained.

実施例11において、帯電用露光をキセノンランプに変更し、350nm短波長カットフィルターと400nm長波長カットフィルターを用いて、370±15nmの露光光源を用いた。
実施例11の場合と同様に、−400Vの電圧を印加した時の帯電電位を測定した。露光しない場合の帯電電位(VOFF)は−140V、LEDを点灯した場合の帯電電位(VON)は−270Vであった。更にLEDを点灯して帯電させた感光体に780±10nmの光を0.5μJ/cm露光したところ、帯電電位は光減衰し、露光部の電位(VL)は−10Vとなった。
In Example 11, the exposure for charging was changed to a xenon lamp, and an exposure light source of 370 ± 15 nm was used using a 350 nm short wavelength cut filter and a 400 nm long wavelength cut filter.
As in the case of Example 11, the charging potential when a voltage of −400 V was applied was measured. The charging potential (V OFF ) when not exposed was −140 V, and the charging potential (V ON ) when the LED was turned on was −270 V. Further, when 780 ± 10 nm light was exposed to 0.5 μJ / cm 2 on the photosensitive member charged by turning on the LED, the charged potential was attenuated and the potential (VL) of the exposed portion became −10V.

実施例11の場合と同様に強制疲労試験を実施したところ、感光体表面の色がわずかに変色し、表面が劣化している様子が観察された。またこれに伴い、強制劣化試験後は、わずかに画像ボケが観察された。   When the forced fatigue test was carried out in the same manner as in Example 11, it was observed that the color of the surface of the photoreceptor was slightly changed and the surface was deteriorated. Along with this, a slight image blur was observed after the forced deterioration test.

外径100mmΦのアルミ製円筒管上に、実施例1と同じ下引き層、電荷発生層、電荷輸送層を作製した。 次に電荷輸送層上に下記組成液を用いた以外は実施例1と同様に、乾燥膜厚1μmの光電荷充電層を形成し、感光体を作製した。
(光電荷充電層塗工液)
構造式(2)のビスアゾ顔料 3重量部
下記構造式(9)の高分子電荷輸送物質 3重量部
(GPCによる測定の結果、nはおよそ240と求められた。)
THF 100重量部
シクロヘキサノン 40重量部
The same undercoat layer, charge generation layer, and charge transport layer as in Example 1 were produced on an aluminum cylindrical tube having an outer diameter of 100 mmΦ. Next, a photocharged charge layer having a dry film thickness of 1 μm was formed in the same manner as in Example 1 except that the following composition liquid was used on the charge transport layer to prepare a photoreceptor.
(Photocharged charge layer coating solution)
3 parts by weight of a bisazo pigment of the structural formula (2) 3 parts by weight of a polymeric charge transport material of the following structural formula (9) (n was determined to be about 240 as a result of measurement by GPC)
THF 100 parts by weight Cyclohexanone 40 parts by weight

Figure 2005070749
Figure 2005070749

この感光体を用いて、実施例1と同様の画像形成装置を用いて同じ条件で画像を形成したところ、画像ボケがなく鮮明な画像画得られた。
更に、実施例10と同様の方法で、1万枚の連続画像形成を行ったところ感光体表面に傷等が認められず、1万枚後の画像にも欠陥は認められなかった。
When this photoreceptor was used to form an image under the same conditions using the same image forming apparatus as in Example 1, a clear image was obtained with no image blur.
Further, when 10,000 continuous images were formed in the same manner as in Example 10, no scratches or the like were observed on the surface of the photoreceptor, and no defects were observed in the image after 10,000 images.

実施例16の高分子電荷輸送物質の代わりに下記構造式(10)の高分子電荷輸送物質(GPCによる測定の結果、nはおよそ230と求められた。)を使用した以外は実施例18と同様に感光体を作製した。
この感光体を用いて、実施例1と同様の画像形成装置を用いて同じ条件で画像を形成したところ、画像ボケがなく鮮明な画像画得られた。
更に、実施例10と同様の方法で、1万枚の連続画像形成を行ったところ感光体表面に傷等が認められず、1万枚後の画像にも欠陥は認められなかった。
Example 18 is the same as Example 18 except that the polymer charge transport material of the following structural formula (10) (n was determined to be about 230 as a result of measurement by GPC) was used instead of the polymer charge transport material of Example 16. Similarly, a photoreceptor was produced.
When this photoreceptor was used to form an image under the same conditions using the same image forming apparatus as in Example 1, a clear image was obtained with no image blur.
Further, when 10,000 continuous images were formed in the same manner as in Example 10, no scratches or the like were observed on the surface of the photoreceptor, and no defects were observed in the image after 10,000 images.

Figure 2005070749
Figure 2005070749

実施例17の光電荷充電層を下記の如く形成した以外は実施例19と同様に感光体を作製、評価した。
光電荷充電層は下記組成の光電荷充電層塗工液を電荷輸送層表面にスプレーで塗工し、150℃で30分加熱乾燥を行って、乾燥膜厚が約1μmの硬化膜として形成した。
(光電荷充電層塗工液)
構造式(2)のビスアゾ顔料 1.5重量部
メチルメタアクリレート-スチレン−n-ブチルメタアクリレート共重合樹脂
(平均分子量:15000,組成比:20/30/30(重量比 )) 0.06重量部
1,4−ブタンジオールジメタクリレート 0.5重量部
下記構造式(11)の電荷輸送性化合物 1重量部
ベンゾイルパーオキサイド 0.01重量部
THF 50重量部
シクロヘキサノン 15重量部
A photoconductor was prepared and evaluated in the same manner as in Example 19 except that the photocharge charging layer of Example 17 was formed as follows.
The photocharged charge layer was formed as a cured film having a dry film thickness of about 1 μm by applying a photocharge charge layer coating solution having the following composition onto the surface of the charge transport layer by spraying and heating and drying at 150 ° C. for 30 minutes. .
(Photocharged charge layer coating solution)
Bisazo pigment of structural formula (2) 1.5 parts by weight Methyl methacrylate-styrene-n-butyl methacrylate copolymer resin
(Average molecular weight: 15000, composition ratio: 20/30/30 (weight ratio)) 0.06 part by weight 1,4-butanediol dimethacrylate 0.5 part by weight Charge transporting compound of the following structural formula (11) 1 part by weight Parts benzoyl peroxide 0.01 parts by weight THF 50 parts by weight cyclohexanone 15 parts by weight

Figure 2005070749
Figure 2005070749

この感光体を用いて、実施例1と同様の画像形成装置を用いて同じ条件で画像を形成したところ、画像ボケがなく鮮明な画像画得られた。
更に、実施例10と同様の方法で、1万枚の連続画像形成を行ったところ感光体表面に傷等が認められず、1万枚後の画像にも欠陥は認められなかった。
When this photoreceptor was used to form an image under the same conditions using the same image forming apparatus as in Example 1, a clear image was obtained with no image blur.
Further, when 10,000 continuous images were formed in the same manner as in Example 10, no scratches or the like were observed on the surface of the photoreceptor, and no defects were observed in the image after 10,000 images.

本発明の電子写真感光体は、繰り返し使用においても異常画像が発生せず、高耐久性及び高信頼性を有するので、複写機、プリンター、ファクシミリ等の電子写真方式の画像形成装置としての利用性が高い。   Since the electrophotographic photosensitive member of the present invention does not generate abnormal images even after repeated use and has high durability and high reliability, it can be used as an electrophotographic image forming apparatus such as a copying machine, a printer, and a facsimile machine. Is expensive.

注入帯電と放電帯電との違いを帯電部材への印加電圧と感光体帯電電位との関係から示した図である。FIG. 5 is a diagram showing the difference between injection charging and discharge charging from the relationship between the voltage applied to the charging member and the photosensitive member charging potential. 本発明の電子写真感光体の基本構造を示す図である。FIG. 2 is a view showing a basic structure of an electrophotographic photosensitive member of the present invention. 本発明の電子写真感光体における帯電及び潜像形成の原理を示す図である。It is a figure which shows the principle of charging and latent image formation in the electrophotographic photosensitive member of the present invention. 積層型感光層を用いた本発明の電子写真感光体の例である。It is an example of the electrophotographic photosensitive member of the present invention using a laminated photosensitive layer. 本発明の画像形成装置の構成の例を示す図である。1 is a diagram illustrating an example of a configuration of an image forming apparatus of the present invention. エンドレスベルト状感光体を用いた場合の本発明の画像形成装置の例を示す図である。1 is a diagram illustrating an example of an image forming apparatus of the present invention when an endless belt-like photoconductor is used. 本発明のプロセスカートリッジの例を示す図である。It is a figure which shows the example of the process cartridge of this invention. 感光体の帯電特性を測定するための測定装置を示す図である。It is a figure which shows the measuring apparatus for measuring the charging characteristic of a photoconductor. 実施例1の感光体の帯電特性を示す図である。FIG. 3 is a diagram illustrating charging characteristics of the photoconductor of Example 1. 三種類の電化発生物質の吸収スペクトルを対比した図である。It is the figure which contrasted the absorption spectrum of three types of electrification substances. 画像露光用の光源波長と電荷発生物質の吸収スペクトルとの関係を示した図である。It is the figure which showed the relationship between the light source wavelength for image exposure, and the absorption spectrum of a charge generation material. 実施例6で用いたチタニルフタロシアンのXDスペクトルを示した図である。6 is a diagram showing an XD spectrum of titanyl phthalocyanine used in Example 6. FIG. 実施例12で用いたチタニルフタロシアンのXDスペクトルを示した図である。6 is a diagram showing an XD spectrum of titanyl phthalocyanine used in Example 12. FIG. 実施例13で用いたチタニルフタロシアンのXDスペクトルを示した図である。14 is a diagram showing an XD spectrum of titanyl phthalocyanine used in Example 13. FIG.

符号の説明Explanation of symbols

1 感光体
2 帯電用露光手段
3 電圧印加手段、電圧印加ローラ
4 画像露光手段
5 現像手段
6 転写手段
7 クリーニング手段
8 除電手段、除電ローラ
9 転写紙
11 導電性支持体
12 感光層
12a 電荷発生層
12b 電荷輸送層
13 光電荷充電層
14 クリーニングブレード
15 トナー搬送コイル
16 現像剤セットケース
17 ドクターブレード
18 搬送スクリュー
19 現像スリーブ
20 LED光源
21 除電ローラ
22 表面電位計
23 画像露光用光源
DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Charging exposure means 3 Voltage application means, voltage application roller 4 Image exposure means 5 Development means 6 Transfer means 7 Cleaning means 8 Static elimination means, static elimination roller 9 Transfer paper 11 Conductive support 12 Photosensitive layer 12a Charge generation layer 12b Charge transport layer 13 Photo charge charge layer 14 Cleaning blade 15 Toner transport coil 16 Developer set case 17 Doctor blade 18 Transport screw 19 Development sleeve 20 LED light source 21 Static elimination roller 22 Surface potential meter 23 Light source for image exposure

Claims (26)

感光体に帯電用の露光を行う工程、帯電用露光と同時又は露光後に、該感光体と接触している導電性電圧印加部材を介して該感光体に電圧を印加して該電圧印加部材より感光体表面に印加電圧と同極性の帯電を行う工程、を有する画像形成方法に用いる電子写真感光体において、該電子写真感光体が透光性導電性支持体上に少なくとも像露光に対して感度を有する感光層と、少なくとも帯電用露光で電荷を発生する電荷発生物質を含有する光電荷充電層を有し、且つ該光電荷充電層が感光体の表面にあることを特徴とする電子写真感光体。   Step of performing exposure for charging on the photoconductor, simultaneously with or after exposure for charging, a voltage is applied to the photoconductor through a conductive voltage application member in contact with the photoconductor, and the voltage application member An electrophotographic photosensitive member for use in an image forming method having a step of charging the surface of the photosensitive member with the same polarity as an applied voltage, wherein the electrophotographic photosensitive member is at least sensitive to image exposure on a translucent conductive support. And a photocharged charge layer containing at least a charge generating substance that generates a charge upon charging exposure, and the photocharged charge layer is on the surface of the photoreceptor. body. 前記光電荷充電層に含有される電荷発生物質が有機顔料であることを特徴とする請求項1に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the charge generating material contained in the photocharged charge layer is an organic pigment. 前記有機顔料がアゾ顔料であることを特徴とする請求項2に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 2, wherein the organic pigment is an azo pigment. 前記アゾ顔料が下記一般式(I)で表されるアゾ顔料であることを特徴とする請求項3に記載の電子写真感光体。
Figure 2005070749
式中、Cp,Cpはカップラー残基を表す。R201,R202はそれぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、シアノ基のいずれかを表し、同一でも異なっていても良い。またCp,Cpは下記(II)式で表され、
Figure 2005070749
式中、R203は、水素原子、アルキル基、アリール基を表す。R204,R205,R206,R207,R208はそれぞれ、水素原子、ニトロ基、シアノ基、ハロゲン原子、トリフルオロメチル基、アルキル基、アルコキシ基、ジアルキルアミノ基、水酸基を表し、Zは置換もしくは無置換の芳香族炭素環または置換もしくは無置換の芳香族複素環を構成するのに必要な原子群を表す。
4. The electrophotographic photosensitive member according to claim 3, wherein the azo pigment is an azo pigment represented by the following general formula (I).
Figure 2005070749
In the formula, Cp 1 and Cp 2 represent coupler residues. R 201 and R 202 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a cyano group, and may be the same or different. Cp 1 and Cp 2 are represented by the following formula (II):
Figure 2005070749
In the formula, R 203 represents a hydrogen atom, an alkyl group, or an aryl group. R 204 , R 205 , R 206 , R 207 and R 208 each represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, a trifluoromethyl group, an alkyl group, an alkoxy group, a dialkylamino group or a hydroxyl group, and Z is A group of atoms necessary for constituting a substituted or unsubstituted aromatic carbocyclic ring or a substituted or unsubstituted aromatic heterocyclic ring.
前記アゾ顔料のCpとCpとが互いに異なるものであることを特徴とする請求項4に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 4, wherein Cp 1 and Cp 2 of the azo pigment are different from each other. 前記有機顔料がチタニルフタロシアニンであることを特徴とする請求項2に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 2, wherein the organic pigment is titanyl phthalocyanine. 前記チタニルフタロシアニンが、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニンであることを特徴とする請求項6に記載の電子写真感光体。   The titanyl phthalocyanine is a titanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα. The electrophotographic photosensitive member according to claim 6. 前記チタニルフタロシアニンが、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ前記7.3゜のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないことを特徴とする請求項7に記載の電子写真感光体。   The titanyl phthalocyanine has a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to CuKα characteristic X-rays (wavelength 1.542 mm), and is further dominant at 9.4 °, 9.6 °, and 24.0 °. Has a peak at 7.3 ° as the lowest angle diffraction peak, and has no peak between the 7.3 ° peak and the 9.4 ° peak, and The electrophotographic photosensitive member according to claim 7, wherein the electrophotographic photosensitive member has no peak at 26.3 °. 前記光電荷充電層に電荷輸送物質を含有することを特徴とする請求項1〜8の何れかに記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the photocharged charge layer contains a charge transport material. 前記電荷輸送物質が正孔輸送物質であることを特徴とする請求項9に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 9, wherein the charge transport material is a hole transport material. 前記正孔輸送物質が、少なくともトリアリールアミン構造を有する化合物であることを特徴とする請求項10に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 10, wherein the hole transport material is a compound having at least a triarylamine structure. 前記電荷輸送性物質が高分子電荷輸送性物質であることを特徴とする請求項9に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 9, wherein the charge transporting substance is a polymer charge transporting substance. 前記高分子電荷輸送性物質が正孔輸送物質であることを特徴とする請求項12に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 12, wherein the polymer charge transporting material is a hole transporting material. 前記高分子電荷輸送性物質が架橋構造を有することを特徴とする請求項12に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 12, wherein the polymer charge transporting material has a crosslinked structure. 前記光電荷充電層に用いられる有機顔料の最大吸収波長と感光層に用いられる有機顔料
の最大吸収波長との差が、±10nmの範囲であることを特徴とする請求項1〜14の何
れかに記載の電子写真感光体。
The difference between the maximum absorption wavelength of the organic pigment used in the photocharge charging layer and the maximum absorption wavelength of the organic pigment used in the photosensitive layer is in the range of ± 10 nm. The electrophotographic photoreceptor described in 1.
前記光電荷充電層に用いられる有機顔料と感光層に用いられる有機顔料とが同一のもの
であることを特徴とする請求項15項に記載の電子写真感光体。
The electrophotographic photosensitive member according to claim 15, wherein the organic pigment used in the photocharge charging layer and the organic pigment used in the photosensitive layer are the same.
前記光電荷充電層に用いられる有機顔料と感光層に用いられる有機顔料とが異なるもの
であり、該光電荷充電層に用いられる有機顔料の最大吸収波長と該感光層に用いられる有
機顔料の最大吸収波長とが、200nm以上離れていることを特徴とする請求項1〜16
の何れかに記載の電子写真感光体。
The organic pigment used in the photocharge charging layer is different from the organic pigment used in the photosensitive layer, the maximum absorption wavelength of the organic pigment used in the photocharge charging layer and the maximum of the organic pigment used in the photosensitive layer The absorption wavelength is separated by 200 nm or more.
The electrophotographic photosensitive member according to any one of the above.
前記光電荷充電層中にフィラーが含有されることを特徴とする請求項1〜17の何れか
に記載の電子写真感光体。
The electrophotographic photosensitive member according to claim 1, wherein a filler is contained in the photocharged charge layer.
前記感光層が少なくとも電荷発生層と電荷輸送層からなることを特徴とする請求項1〜
18の何れかに記載の電子写真感光体。
The photosensitive layer comprises at least a charge generation layer and a charge transport layer.
The electrophotographic photosensitive member according to any one of 18.
前記導電性支持体がエンドレスベルト形状である事を特徴とする請求項1〜19の何れ
かに記載の電子写真感光体。
The electrophotographic photosensitive member according to claim 1, wherein the conductive support has an endless belt shape.
少なくとも、感光体と該感光体に帯電用の露光を行う手段、該帯電用の露光と同時又は
露光後に該感光体と接触している導電性電圧印加部材を介して該感光体に電圧を印加して該電圧印加部材より該感光体表面に印加電圧と同極性の帯電を行うための電圧印加手段、帯電後該感光体の内面より像露光を行って該感光体に静電荷潜像を形成する像露光手段、該静電荷潜像をトナーで現像するための現像手段、および現像された画像を転写体に転写する手段を有する画像形成装置に於いて、該感光体が請求項1〜20の何れかに記載の電子写真感光体であることを特徴とする画像形成装置。
At least a voltage is applied to the photosensitive member through a conductive voltage applying member that is in contact with the photosensitive member and a means for performing exposure for charging the photosensitive member at the same time as or after the exposure for charging. A voltage applying means for charging the surface of the photoreceptor with the same polarity as the applied voltage from the voltage application member, and after charging, image exposure is performed from the inner surface of the photoreceptor to form an electrostatic charge latent image on the photoreceptor. An image forming apparatus comprising: an image exposure unit that performs development, a development unit that develops the electrostatic latent image with toner, and a unit that transfers the developed image to a transfer body. An image forming apparatus comprising the electrophotographic photosensitive member according to any one of the above.
前記帯電用の露光手段として400nm以長の光源を用いることを特徴とする請求項2
1に記載の画像形成装置。
3. A light source having a length of 400 nm or longer is used as the charging exposure means.
The image forming apparatus according to 1.
帯電用露光手段に用いられる光を光電荷充電層が80%以上吸収することを特徴とする
請求項22に記載の画像形成装置。
The image forming apparatus according to claim 22, wherein the photocharged charge layer absorbs 80% or more of light used for the charging exposure means.
帯電用露光手段に用いられる光の波長が、感光層に用いられる電荷発生物質の吸収の無
い領域の光であることを特徴とする請求項21〜23のいずれかに記載の画像形成装置。
The image forming apparatus according to any one of claims 21 to 23, wherein the wavelength of light used for the charging exposure means is light in a region where the charge generating material used for the photosensitive layer is not absorbed.
前記感光体の光電荷充電層が正極性電荷の輸送機能を有しており、電圧印加手段に負極
性電圧が印加されることを特徴とする請求項21〜24の何れかに記載の画像形成装置。
25. The image formation according to claim 21, wherein the photocharge charging layer of the photoconductor has a positive charge transport function, and a negative voltage is applied to the voltage application unit. apparatus.
感光体と、帯電用の露光手段、電圧印加手段、現像手段、クリーニング手段、除電手段
及び転写手段から選ばれる少なくとも1つとを一体化し、着脱自在に設けたプロセスカー
トリッジであって、該感光体が請求項1〜20の何れかに記載の感光体であることを特徴
とするプロセスカートリッジ。
A process cartridge in which a photosensitive member is integrated with at least one selected from an exposing unit for charging, a voltage applying unit, a developing unit, a cleaning unit, a neutralizing unit and a transfer unit, and is detachably provided. 21. A process cartridge which is the photosensitive member according to claim 1.
JP2004198223A 2003-08-06 2004-07-05 Electrophotographic photoreceptor, process cartridge using the same, and image forming apparatus Expired - Fee Related JP4711647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198223A JP4711647B2 (en) 2003-08-06 2004-07-05 Electrophotographic photoreceptor, process cartridge using the same, and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003287341 2003-08-06
JP2003287341 2003-08-06
JP2004198223A JP4711647B2 (en) 2003-08-06 2004-07-05 Electrophotographic photoreceptor, process cartridge using the same, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2005070749A true JP2005070749A (en) 2005-03-17
JP4711647B2 JP4711647B2 (en) 2011-06-29

Family

ID=34425192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198223A Expired - Fee Related JP4711647B2 (en) 2003-08-06 2004-07-05 Electrophotographic photoreceptor, process cartridge using the same, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4711647B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033868A (en) * 2005-07-27 2007-02-08 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007133344A (en) * 2005-03-28 2007-05-31 Fuji Xerox Co Ltd Charge-transporting compound, electrophotographic photoreceptor, image-forming apparatus, and process cartridge
JP2007156122A (en) * 2005-12-06 2007-06-21 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007155874A (en) * 2005-12-01 2007-06-21 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007156123A (en) * 2005-12-06 2007-06-21 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007164008A (en) * 2005-12-16 2007-06-28 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007163905A (en) * 2005-12-15 2007-06-28 Ricoh Co Ltd Image forming apparatus and image forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632054A (en) * 1986-06-20 1988-01-07 Ricoh Co Ltd Electrophotographic sensitive body and electrophotography
JPH06202367A (en) * 1992-12-26 1994-07-22 Canon Inc Image forming device
JP2001166503A (en) * 1999-12-08 2001-06-22 Ricoh Co Ltd Laminated type photoreceptor, photoreceptor electrifying and exposing method and image forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632054A (en) * 1986-06-20 1988-01-07 Ricoh Co Ltd Electrophotographic sensitive body and electrophotography
JPH06202367A (en) * 1992-12-26 1994-07-22 Canon Inc Image forming device
JP2001166503A (en) * 1999-12-08 2001-06-22 Ricoh Co Ltd Laminated type photoreceptor, photoreceptor electrifying and exposing method and image forming device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133344A (en) * 2005-03-28 2007-05-31 Fuji Xerox Co Ltd Charge-transporting compound, electrophotographic photoreceptor, image-forming apparatus, and process cartridge
US8475982B2 (en) 2005-03-28 2013-07-02 Fuji Xerox Co., Ltd. Charge-transporting compound, electrophotographic photoreceptor, image-forming apparatus, and process cartridge
JP2007033868A (en) * 2005-07-27 2007-02-08 Ricoh Co Ltd Image forming apparatus and image forming method
JP4567545B2 (en) * 2005-07-27 2010-10-20 株式会社リコー Image forming apparatus and image forming method
JP4615426B2 (en) * 2005-12-01 2011-01-19 株式会社リコー Image forming apparatus and image forming method
JP2007155874A (en) * 2005-12-01 2007-06-21 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007156122A (en) * 2005-12-06 2007-06-21 Ricoh Co Ltd Image forming apparatus and image forming method
JP2007156123A (en) * 2005-12-06 2007-06-21 Ricoh Co Ltd Image forming apparatus and image forming method
JP4615429B2 (en) * 2005-12-06 2011-01-19 株式会社リコー Image forming apparatus and image forming method
JP2007163905A (en) * 2005-12-15 2007-06-28 Ricoh Co Ltd Image forming apparatus and image forming method
JP4615433B2 (en) * 2005-12-15 2011-01-19 株式会社リコー Image forming apparatus and image forming method
JP4615434B2 (en) * 2005-12-16 2011-01-19 株式会社リコー Image forming apparatus and image forming method
JP2007164008A (en) * 2005-12-16 2007-06-28 Ricoh Co Ltd Image forming apparatus and image forming method

Also Published As

Publication number Publication date
JP4711647B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
US6326112B1 (en) Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the photoreceptor
JP4093725B2 (en) Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
US7153621B2 (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
JP5614650B2 (en) Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
JP3942154B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process unit for image forming apparatus
JP4711647B2 (en) Electrophotographic photoreceptor, process cartridge using the same, and image forming apparatus
JP4079351B2 (en) Electrophotographic photosensitive member, apparatus using the same, and process cartridge
JP4223671B2 (en) Electrophotographic photosensitive member, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP4397328B2 (en) Electrophotographic photosensitive member, image forming apparatus using the same, and process cartridge
JP2005070748A (en) Electrophotographic photoreceptor, and process cartridge and image forming apparatus using same
JP3883097B2 (en) Electrophotographic photosensitive member, image forming apparatus using the same, and process cartridge for image forming apparatus
JP3465811B2 (en) Electrophotographic photoreceptor
JP5884438B2 (en) Electrophotographic photosensitive member, and image forming apparatus and process cartridge using the same
JP3936576B2 (en) Full-color image forming apparatus and process cartridge
JP2002278122A (en) Electrophotographic photoreceptor, method for producing the same and electrophotographic apparatus
JP2005227470A (en) Electrophotographic apparatus and process cartridge
JP4173023B2 (en) Electrophotographic photosensitive member, image forming apparatus using the same, and process cartridge
JP2001265025A (en) Electrophotographic photoreceptor, image forming method and device using the same
JP3942141B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, electrophotographic apparatus having the electrophotographic photosensitive member, and process cartridge for electrophotographic apparatus
JP2004012981A (en) Electrophotographic photoreceptor, image forming apparatus and image forming method using the photoreceptor
JP2002156773A (en) Electrophotographic photoreceptor, method for forming image by using the same, image forming device, process cartridge for the image forming device
JP3833954B2 (en) Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process unit for image forming apparatus
JPH11352707A (en) Electrophotographic photoreceptor, electrophotographic method, electrophotographic device, and process cartridge
JP2005215025A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2004177560A (en) Electrophotographic photoreceptor and image forming method and process cartridge using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100408

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

LAPS Cancellation because of no payment of annual fees