JP2005069916A - Laser doppler vibration meter - Google Patents

Laser doppler vibration meter Download PDF

Info

Publication number
JP2005069916A
JP2005069916A JP2003300967A JP2003300967A JP2005069916A JP 2005069916 A JP2005069916 A JP 2005069916A JP 2003300967 A JP2003300967 A JP 2003300967A JP 2003300967 A JP2003300967 A JP 2003300967A JP 2005069916 A JP2005069916 A JP 2005069916A
Authority
JP
Japan
Prior art keywords
displacement
rotating body
apparent
signal
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300967A
Other languages
Japanese (ja)
Other versions
JP3996561B2 (en
Inventor
Masahiko Sakai
正彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP2003300967A priority Critical patent/JP3996561B2/en
Publication of JP2005069916A publication Critical patent/JP2005069916A/en
Application granted granted Critical
Publication of JP3996561B2 publication Critical patent/JP3996561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser doppler vibration meter capable of precisely measuring the vibration and displacement of a body of revolution. <P>SOLUTION: The difference D of the displacement P obtained by integrating the velocity signal a1+a2 and the displacement P at one revolution cycle before time is obtained as an apparent displacement b2 generated during one revolution cycle by the velocity component a2 generated by the positional deviation between the optical axis of the laser beam and the revolving axis of the body of revolution or dispersion light. The estimation value E of the apparent displacement b2 generated at each time point by the positional displacement between the optical axis of the laser beam and revolving axis of the body of the rotation and the dispersion light is calculated from the difference D, and the value subtracted with the estimation value E from the displacement P is calculated as a value R representing the true displacement b1 of the object 100 to be measured which gives the velocity component a1 to the speed signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は回転体の振動や変位を、回転体で反射させたレーザ光にドップラ効果によって生じるドップラシフトを利用して測定するレーザドップラ振動計に関するものである。   The present invention relates to a laser Doppler vibrometer that measures the vibration and displacement of a rotating body using a Doppler shift caused by the Doppler effect on laser light reflected by the rotating body.

測定物の振動や変位を、ドップラ効果によって、回転体で反射させたレーザ光に生じるドップラシフトを利用して測定するレーザドップラ振動計としては、たとえば、図7に構成を示す、ヘテロダイン干渉法を用いたレーザドップラ振動計が知られている(たとえば、特開平7−120304号公報)。   As a laser Doppler vibrometer that measures the vibration and displacement of a measurement object by using the Doppler shift generated in the laser beam reflected by the rotating body due to the Doppler effect, for example, a heterodyne interferometry shown in FIG. 7 is used. The laser Doppler vibrometer used is known (for example, JP-A-7-120304).

図中において、レーザ光源1から出射された周波数f0のレーザービームは、第1ビームスプリッタ2で二分され、二分された一方のビームは、音響光学素子3で周波数fM分、周波数がシフトされ周波数f0+fMの参照ビームとして、第2ビームスプリッタ4を介して受光ユニット5に入射する。一方、二分された他方のビームは、第3ビームスプリッタ6と送受光ヘッド7を介して測定物100に照射され、測定物100で反射された反射ビームは送受光ヘッド7で受光され、第3ビームスプリッタ6、ミラー8、第2ビームスプリッタ4を介して受光ユニット5に入射する。   In the figure, the laser beam having the frequency f0 emitted from the laser light source 1 is bisected by the first beam splitter 2, and one of the bisected beams is frequency-shifted by the frequency fM by the acoustooptic device 3, and the frequency f0 + fM. Is incident on the light receiving unit 5 through the second beam splitter 4. On the other hand, the other divided beam is irradiated onto the measurement object 100 via the third beam splitter 6 and the light transmission / reception head 7, and the reflected beam reflected by the measurement object 100 is received by the transmission / reception head 7. The light enters the light receiving unit 5 through the beam splitter 6, the mirror 8, and the second beam splitter 4.

ここで、反射ビームの周波数には、測定物100の速度に応じたドップラシフトfDが生じており、反射ビームの周波数はf0+fDとなる。したがって、参照ビームと反射ビームとの干渉によりfM±fDのビート周波数が受光ユニット5において観測される。そこで、fDの周波数成分を抽出し、FM復調することにより、測定物100の振動速度に応じた速度信号が得られ、この速度信号を解析装置9において積分することにより測定物100の変位が求められる。   Here, a Doppler shift fD corresponding to the speed of the measurement object 100 occurs in the frequency of the reflected beam, and the frequency of the reflected beam is f0 + fD. Therefore, a beat frequency of fM ± fD is observed in the light receiving unit 5 due to interference between the reference beam and the reflected beam. Therefore, by extracting the frequency component of fD and performing FM demodulation, a speed signal corresponding to the vibration speed of the measurement object 100 is obtained, and by integrating this speed signal in the analyzer 9, the displacement of the measurement object 100 is obtained. It is done.

また、このようなレーザドップラ振動計における測定精度向上の技術としては、測定物100の表面状態の不均一によって反射光に生じる振幅変調による誤差を補正するために、受光ユニット5において反射光を光電変換する光検出器の出力電圧の直流成分が一定に保たれるように、当該出力電圧の増幅率を制御する技術が知られている(たとえば、特開平4−54192号公報)。   Further, as a technique for improving the measurement accuracy in such a laser Doppler vibrometer, in order to correct an error due to amplitude modulation caused in the reflected light due to non-uniform surface condition of the measurement object 100, the light receiving unit 5 photoelectrically reflects the reflected light. A technique for controlling the amplification factor of the output voltage so as to keep the DC component of the output voltage of the photodetector to be converted constant is known (for example, Japanese Patent Laid-Open No. 4-54192).

この出願の発明に関連する先行技術文献情報としては以下のものがある。
特開平7−120304号公報 特開平4−54192号公報
Prior art document information relating to the invention of this application includes the following.
JP 7-120304 A JP-A-4-54192

前記従来のレーザドップラ振動計によれば、回転体の回転軸と垂直な方向の振動や変位を測定する場合に以下の問題が生じる。
すなわち、レーザビームの光軸上に、回転体の回転軸が正確に位置していないと、回転体の周速の影響が測定結果に混入し、測定精度が劣化する。また、回転体の反射面で生じた正反射光以外の散乱光成分の受光ユニット5への入射による精度劣化の程度が比較的大きい。
According to the conventional laser Doppler vibrometer, the following problems occur when measuring vibration and displacement in a direction perpendicular to the rotation axis of the rotating body.
That is, if the rotation axis of the rotating body is not accurately positioned on the optical axis of the laser beam, the influence of the peripheral speed of the rotating body is mixed into the measurement result, and the measurement accuracy is deteriorated. In addition, the degree of accuracy deterioration due to incidence of scattered light components other than specularly reflected light generated on the reflecting surface of the rotating body on the light receiving unit 5 is relatively large.

そこで、本発明は、回転体の回転軸と垂直な方向の振動や変位を精度良く測定することのできるレーザドップラ振動計を提供することを課題とする。   Therefore, an object of the present invention is to provide a laser Doppler vibrometer that can accurately measure vibration and displacement in a direction perpendicular to the rotation axis of a rotating body.

前記課題達成のために、本発明は、回転体に当該回転体の回転軸と垂直な方向よりレーザビームを照射し、入射される反射ビームに生じたドップラシフト量より求まる速度信号を積分して求まる変位信号に基づいて、当該回転体の回転軸と垂直な方向の振動を測定するレーザドップラ振動計に、前記回転体の回転周期を検出する回転周期検出手段と、前記回転体の1回転周期期間分の前記変位信号の変化量を見かけ変位量単位として算出する見かけ変位量単位算出手段と、前記変位信号が表す変位量のうちの、前記速度信号に含まれる前記回転体表面の回転軸と垂直な測定対象方向の変位によらない速度成分に起因する成分である見かけ変位量を、前記見かけ変位量単位が1回転周期分の前記見かけ変位量の総和であるとして推定する見かけ変位量推定手段と、前記変位信号が表す変位量から、前記見かけ変位量を減算して、前記回転体の変位量とする変位算出手段とを備えたものである。   In order to achieve the above object, the present invention irradiates a rotating body with a laser beam from a direction perpendicular to the rotational axis of the rotating body, and integrates a velocity signal obtained from a Doppler shift amount generated in an incident reflected beam. A laser Doppler vibrometer that measures vibration in a direction perpendicular to the rotation axis of the rotating body based on the obtained displacement signal, a rotation period detecting means for detecting the rotation period of the rotating body, and one rotation period of the rotating body An apparent displacement unit calculating means for calculating an amount of change of the displacement signal for a period as an apparent displacement unit, and a rotation axis of the surface of the rotating body included in the speed signal among the displacements represented by the displacement signal; An apparent amount of displacement that is a component caused by a velocity component that does not depend on a displacement in the direction of a vertical measurement object, assuming that the apparent displacement unit is the sum of the apparent displacements for one rotation period. A position estimation unit, from the displacement amount of the displacement signal indicates, the apparent by subtracting the displacement amount, in which a displacement calculating means for the displacement of the rotating body.

このようなレーザドップラ振動計によれば、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって速度信号に混入する速度成分によって変位信号中に現れる見かけの変位の1回転周期の総和を、前記回転体の1回転周期期間分の前記変位信号の変化量より求める。ここで、速度信号に含まれる回転体表面の回転軸と垂直な方向の真の変位による速度成分を積分して得られる変位量の1回転周期の総和は0であるので、このようにすることにより、見かけの変位の1回転周期の総和を正確に算定することができる。したがって、このようにして求めた見かけの変位の1回転周期の総和に基づいて、各時点における見かけ変位の量を推定して、これを変位信号が表す変位量から減算することにより、回転体の回転軸と垂直な方向の振動や変位を精度良く測定することができるようになる。   According to such a laser Doppler vibrometer, one rotation period of an apparent displacement that appears in the displacement signal due to a positional deviation between the optical axis of the laser beam and the rotational axis of the rotating body or a velocity component mixed in the velocity signal due to scattered light. Is obtained from the amount of change in the displacement signal for one rotation period of the rotating body. Here, since the sum of one rotation period of the amount of displacement obtained by integrating the speed component due to the true displacement in the direction perpendicular to the rotation axis of the surface of the rotating body included in the speed signal is 0, this is done. Thus, the sum total of one rotation period of the apparent displacement can be accurately calculated. Accordingly, the amount of apparent displacement at each time point is estimated based on the total sum of the apparent displacements obtained in this way and subtracted from the amount of displacement represented by the displacement signal. Vibration and displacement in the direction perpendicular to the rotation axis can be measured with high accuracy.

以上のように本発明によれば、回転体の回転軸と垂直な方向の振動や変位を精度良く測定することのできるレーザドップラ振動計を提供することができる。   As described above, according to the present invention, it is possible to provide a laser Doppler vibrometer that can accurately measure vibration and displacement in a direction perpendicular to the rotation axis of the rotating body.

以下、本発明の実施の形態について説明する。
図1に、本実施形態に係るレーザドップラ振動計の構成を示す。
図示するように、レーザドップラ振動計は、レーザ光源1、第1ビームスプリッタ2、音響光学素子3、第2ビームスプリッタ4、受光ユニット5、第3ビームスプリッタ6、送受光ヘッド7、ミラー8、解析装置9、回転センサ10とを備えている。すなわち、本レーザドップラ振動計は、図7に示したレーザドップラ振動計に回転センサ10を追加した構成を有している。
Embodiments of the present invention will be described below.
FIG. 1 shows a configuration of a laser Doppler vibrometer according to the present embodiment.
As shown in the figure, the laser Doppler vibrometer includes a laser light source 1, a first beam splitter 2, an acoustooptic device 3, a second beam splitter 4, a light receiving unit 5, a third beam splitter 6, a light transmitting / receiving head 7, a mirror 8, An analysis device 9 and a rotation sensor 10 are provided. That is, the laser Doppler vibrometer has a configuration in which the rotation sensor 10 is added to the laser Doppler vibrometer shown in FIG.

さて、このような構成において、レーザ光源1から出射された周波数f0のレーザービームは、第1ビームスプリッタ2で二分され、二分された一方のビームは、音響光学素子3で周波数fM分、周波数がシフトされ周波数f0+fMの参照ビームとして、第2ビームスプリッタ4を介して受光ユニット5に入射する。一方、二分された他方のビームは、第3ビームスプリッタ6と送受光ヘッド7を介して測定物100に照射され、測定物100で反射された反射ビームは送受光ヘッド7で受光され、第3ビームスプリッタ6、ミラー8、第2ビームスプリッタ4を介して受光ユニット5に入射する。   In such a configuration, the laser beam having the frequency f0 emitted from the laser light source 1 is bisected by the first beam splitter 2, and one of the bisected beams has a frequency of fM by the acoustooptic device 3 and has a frequency. It is shifted and enters the light receiving unit 5 through the second beam splitter 4 as a reference beam having a frequency f0 + fM. On the other hand, the other divided beam is irradiated onto the measurement object 100 via the third beam splitter 6 and the light transmission / reception head 7, and the reflected beam reflected by the measurement object 100 is received by the transmission / reception head 7. The light enters the light receiving unit 5 through the beam splitter 6, the mirror 8, and the second beam splitter 4.

ここで、反射ビームの周波数には、測定物100の速度に応じたドップラシフトfDが生じており、反射ビームの周波数はf0+fDとなる。したがって、参照ビームと反射ビームとの干渉によりfM±fDのビート周波数が受光ユニット5において観測される。そこで、受光ユニット5において、入力するfDの周波数成分を抽出し、FM復調することにより、測定物100の振動に応じた速度信号Vが得られ、解析装置9において、この速度信号Vを解析することにより測定物100の変位が求められる。   Here, a Doppler shift fD corresponding to the speed of the measurement object 100 occurs in the frequency of the reflected beam, and the frequency of the reflected beam is f0 + fD. Therefore, a beat frequency of fM ± fD is observed in the light receiving unit 5 due to interference between the reference beam and the reflected beam. Therefore, the light receiving unit 5 extracts the frequency component of the input fD and performs FM demodulation to obtain a velocity signal V corresponding to the vibration of the measurement object 100, and the analyzer 9 analyzes the velocity signal V. Thus, the displacement of the measuring object 100 is obtained.

一方、回転センサ10は、測定物100の回転周期を検出し、測定物10の回転に同期した同期信号を解析装置9に出力するセンサである。ここで、たとえば、回転センサ10としては、測定物100に貼付した反射マーカ101をレーザ光によって検出するレーザセンサなどを用いることができる。    On the other hand, the rotation sensor 10 is a sensor that detects the rotation period of the measurement object 100 and outputs a synchronization signal synchronized with the rotation of the measurement object 10 to the analysis device 9. Here, for example, as the rotation sensor 10, a laser sensor or the like that detects the reflection marker 101 attached to the measurement object 100 with a laser beam can be used.

以下、このようなレーザドップラ振動計における測定物の変位を算出する変位算出処理について説明する。
まず、本実施形態における変位算出の原理の概要について図2を用いて示す。
いま、速度信号Vに含まれる測定物100の真の変位によって生じる速度成分がa1に示すものであり、速度信号Vに含まれるレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分がa2に示すように一様な速度を持つものであるとする。
この場合、速度信号Vを積分して得られる変位は、測定物100の真の変位によるa1の速度成分を積分して得られるb1の変位と、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じるa2の速度成分を積分して得られる見かけの変位b2を加算した変位Pとなる。
Hereinafter, a displacement calculation process for calculating the displacement of the measurement object in such a laser Doppler vibrometer will be described.
First, an outline of the principle of displacement calculation in this embodiment will be described with reference to FIG.
Now, the velocity component generated by the true displacement of the measurement object 100 included in the velocity signal V is indicated by a1, and the positional deviation or scattering between the optical axis of the laser beam included in the velocity signal V and the rotation axis of the rotating body. It is assumed that the speed component generated by light has a uniform speed as indicated by a2.
In this case, the displacement obtained by integrating the velocity signal V includes the displacement of b1 obtained by integrating the velocity component of a1 due to the true displacement of the measurement object 100, the optical axis of the laser beam, and the rotation axis of the rotating body. The displacement P is obtained by adding the apparent displacement b2 obtained by integrating the velocity component of a2 caused by the positional deviation and scattered light.

ここで、図よりも理解されるように、測定物100の真の変位によるa1の速度成分を積分して得られる変位b1は、測定物100の回転周期と同じ周期を持つ周期信号となり、1周期の変位の積分値は0であり、測定物100の同じ回転角度に対しては必ず同じ値の変位が得られる。   Here, as understood from the figure, the displacement b1 obtained by integrating the velocity component of a1 due to the true displacement of the measuring object 100 becomes a periodic signal having the same period as the rotation period of the measuring object 100. The integral value of the period displacement is 0, and the same value of displacement is always obtained for the same rotation angle of the measurement object 100.

一方、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる見かけの変位b2の1周期の変位の積分値は通常0とはならず、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分a2が一様である場合には、b2に示すように単調に増加していくことになる。一方で、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分a2は、測定物100の回転周期と同じ周期を持つ周期信号となり、測定物100の同じ回転角度に対しては必ず同じ値の速度が得られるので、測定物100の1回転周期中に生じる、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる見かけの変位b2の変位の変化量は常に一定である。   On the other hand, the integrated value of the displacement of one period of the apparent displacement b2 caused by the positional deviation between the optical axis of the laser beam and the rotating shaft of the rotating body or the scattered light is not usually 0, and the optical axis of the laser beam and the rotating body. When the velocity component a2 generated by the positional deviation from the rotation axis or scattered light is uniform, it increases monotonously as shown by b2. On the other hand, the velocity component a2 generated by the positional deviation between the optical axis of the laser beam and the rotation axis of the rotating body or the scattered light becomes a periodic signal having the same period as the rotation period of the measurement object 100, and the same rotation angle of the measurement object 100. Since the same speed is always obtained, the apparent displacement b2 caused by the positional deviation between the optical axis of the laser beam and the rotational axis of the rotating body or the scattered light, which occurs during one rotation period of the measurement object 100, is obtained. The amount of change in displacement is always constant.

したがって、ある時点の変位Pから、その1回転周期前の時点の変位Pを減じた値Dは、1回転周期期間中に生じたレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる見かけの変位b2の変化量を表すことになる。
そして、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じるa2が一様である場合には、差分Dからレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって各時点における生じる見かけの変位Eを推定することができ、変位Pを推定値Eの推定に要する時間遅延させた変位P’から、この推定値Eを減算した値Rとして、測定物100の真の変位b1が得られることになる。
Therefore, the value D obtained by subtracting the displacement P at the time before one rotation period from the displacement P at a certain time is a positional deviation between the optical axis of the laser beam generated during one rotation period and the rotation axis of the rotating body. This represents the amount of change in the apparent displacement b2 caused by the scattered light.
If the a2 caused by the positional deviation between the optical axis of the laser beam and the rotational axis of the rotating body or the scattered light is uniform, the positional deviation between the optical axis of the laser beam and the rotational axis of the rotating body from the difference D. It is possible to estimate the apparent displacement E that occurs at each time point by using scattered light, and measure the displacement P as a value R obtained by subtracting the estimated value E from the displacement P ′ obtained by delaying the displacement P by the time required to estimate the estimated value E. The true displacement b1 of the object 100 is obtained.

以下、このような変位算出処理を行う構成について説明する。
図3aは、解析装置9において変位算出処理を行う変位算出ブロックの構成例を示したものである。
図示した構成では、受光ユニット5から入力する速度信号VをA/D変換器301でデジタル変換して速度データVとする、そして積分ブロック302において速度データVを積分し、変位データPを得る。差分ブロック304は、この変位データPと、遅延ブロック303によって変位データPを測定物の1回転周期遅延した遅延変位データP'の差分を求め差分データDとする。そして、積分ブロック306において、差分データを乗算器305で1/mした値の積分値を求めて見かけ変位推定データEとし、遅延ブロック303において一回転周期遅延した変位データP'からみかけ変位推定データEを、減算ブロック307において減算し、算出変位データRとする。ここで、乗算器で乗算に用いるmは、測定物100の1回転周期期間中に生成する、A/D変換器301の速度データVのサンプリング数である。
Hereinafter, a configuration for performing such displacement calculation processing will be described.
FIG. 3A shows an example of the configuration of a displacement calculation block that performs displacement calculation processing in the analysis device 9.
In the illustrated configuration, the speed signal V input from the light receiving unit 5 is digitally converted by the A / D converter 301 into the speed data V, and the speed data V is integrated in the integration block 302 to obtain the displacement data P. The difference block 304 obtains the difference between the displacement data P and the delay displacement data P ′ obtained by delaying the displacement data P by the delay block 303 by one rotation cycle of the measurement object, and the difference data D is obtained. Then, in the integration block 306, the integral value of the value obtained by multiplying the difference data by 1 / m by the multiplier 305 is obtained and used as the apparent displacement estimation data E. E is subtracted in the subtraction block 307 to obtain calculated displacement data R. Here, m used for multiplication by the multiplier is a sampling number of the speed data V of the A / D converter 301 generated during one rotation period of the measurement object 100.

そして、シーケンス制御部308は、回転センサから入力する回転同期信号に同期して、以上各部の動作を制御する。具体的には、回転センサ10から入力する回転同期信号に同期したA/D変換器301のサンプリングクロックの生成を行う。また、シーケンス制御部308は、積分ブロック306の積分動作の開始と減算ブロック307の算出変位データRの出力動作の開始を、積分ブロック302の積分動作の開始より1回転周期遅らせる。これにより、図2に示すように、変位データPの生成開始から1回転周期遅れて、見かけ変位推定データEのと算出変位データRの算出が開始される。   The sequence control unit 308 controls the operation of each unit in synchronization with the rotation synchronization signal input from the rotation sensor. Specifically, the sampling clock of the A / D converter 301 is generated in synchronization with the rotation synchronization signal input from the rotation sensor 10. Further, the sequence control unit 308 delays the start of the integration operation of the integration block 306 and the start of the output operation of the calculated displacement data R of the subtraction block 307 by one rotation cycle from the start of the integration operation of the integration block 302. As a result, as shown in FIG. 2, the calculation of the apparent displacement estimation data E and the calculated displacement data R is started with a delay of one rotation period from the start of generation of the displacement data P.

ところで、このような変位算出処理は、ソフトウエアの処理によって実現することもできる。
図3bに、解析装置9においてソフトウエアの処理によって変位算出処理を行う場合の変位算出ブロックの構成例を示す。
図示するように、この変位算出ブロックでは、A/D変換器351は、受光ユニット5から入力する速度信号Vをデジタル変換して速度データVとして入力バッファ353に格納する。一方、ロータリーエンコーダ352は、回転センサ10から入力する回転同期信号に同期したA/D変換器351のサンプリングクロックの生成と、測定開始後何回転周期目の速度データVであって回転周期中何番目の速度データVであるかを識別可能に速度データVが入力バッファ353に格納されるように、速度データVの入力バッファ353の書き込み位置の制御を行う。
By the way, such displacement calculation processing can also be realized by software processing.
FIG. 3b shows a configuration example of a displacement calculation block when the displacement calculation process is performed by software processing in the analysis device 9.
As shown in the figure, in this displacement calculation block, the A / D converter 351 digitally converts the speed signal V input from the light receiving unit 5 and stores it in the input buffer 353 as speed data V. On the other hand, the rotary encoder 352 generates the sampling clock of the A / D converter 351 in synchronization with the rotation synchronization signal input from the rotation sensor 10, and what speed cycle data V after the start of measurement The writing position of the speed data V in the input buffer 353 is controlled so that the speed data V is stored in the input buffer 353 so that the speed data V can be identified.

そして、CPU355は、メモリ354を利用しながら変位算出処理を行って、入力バッファ353に格納された速度データ速度データVに基づいた算出変位データRの算出を行って出力バッファ356に格納する。
次に、このCPUが行う変位算出処理の手順を図4に示す。
図示するようにこの処理では、速度データVを測定順に入力バッファ353より読み出し(ステップ402、414、418、416)、以下の処理を行う。
すなわち、n番目の回転周期のi番目の速度データをV(n、i)として、と速度データV(n、i)と速度データV(n、i)に先行して測定した各速度データVの総和を求め、n番目の回転周期のi番目の変位データP(n、i)とし、メモリ354に格納する(ステップ404)。
そして、得られた変位データPが、2番目以降の回転周期の変位データである場合には(ステップ406)、その変位データP(n、i)から、メモリ354に格納されている、その変位データPの1回転周期前の変位データP'=P(n−1、i)を減算し、n番目の回転周期のi番目の差分データD(n,i)とする(ステップ408)。そして、差分データD(n,i)と、その差分データD(n,i)に先行して求めた差分データDの総和のiMax分の1を求め(ステップ410)、nー1番目の回転周期のi番目の見かけ変位推定データE(nー1、i)とする。ただし、iMaxは1回転周期期間中の速度データVのサンプル数である。
Then, the CPU 355 performs a displacement calculation process using the memory 354, calculates the calculated displacement data R based on the speed data velocity data V stored in the input buffer 353, and stores it in the output buffer 356.
Next, the procedure of the displacement calculation process performed by this CPU is shown in FIG.
As shown in the figure, in this process, the speed data V is read from the input buffer 353 in the order of measurement (steps 402, 414, 418, 416), and the following process is performed.
That is, each speed data V measured prior to the speed data V (n, i) and the speed data V (n, i) where the i-th speed data of the n-th rotation period is V (n, i). And is stored in the memory 354 as i-th displacement data P (n, i) of the n-th rotation cycle (step 404).
If the obtained displacement data P is displacement data for the second and subsequent rotation cycles (step 406), the displacement data P (n, i) stored in the memory 354 is stored. The displacement data P ′ = P (n−1, i) one rotation period before the data P is subtracted to obtain i-th difference data D (n, i) of the n-th rotation period (step 408). Then, 1 / Max of the difference data D (n, i) and the sum of the difference data D obtained in advance of the difference data D (n, i) is obtained (step 410), and the n-1st rotation. The i-th apparent displacement estimation data E (n−1, i) of the cycle is used. However, iMax is the number of samples of the speed data V during one rotation period.

そして、メモリ354から読み出した変位データP(n−1、i)から、見かけ変位推定データE(nー1、i)を減算し、nー1番目の回転周期のi番目の算出変位データR(nー1、i)として出力バッファに格納する(ステップ412)。
さて、解析装置9は、以上のような変位算出処理によって求めた算出変位データRに対して、測定物100の各回転周期で同回転角度(同じiの値)に対して得られた変位値の平均化やその他の後処理を施して最終的な測定物100の各回転角に対する変位を出力する。
Then, the apparent displacement estimation data E (n−1, i) is subtracted from the displacement data P (n−1, i) read from the memory 354, and the i th calculated displacement data R of the n−1 first rotation cycle is subtracted. (N-1, i) is stored in the output buffer (step 412).
Now, the analysis device 9 obtains the displacement value obtained for the same rotation angle (the same value of i) in each rotation cycle of the measured object 100 with respect to the calculated displacement data R obtained by the displacement calculation process as described above. And the final post-processing is performed to output the displacement of the final measurement object 100 with respect to each rotation angle.

以上、本発明の実施形態について説明した。
以上のように、本実施形態によれば、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分が一様である場合には、これによって生じる見かけの変位を排除して、測定物100の真の変位を算出することができる。
ところで、本実施形態は、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分が一様でない場合においても、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる見かけの変位による測定誤差をある程度抑制することができる。
The embodiment of the present invention has been described above.
As described above, according to the present embodiment, when the velocity component generated by the positional deviation or scattered light between the optical axis of the laser beam and the rotating shaft of the rotating body is uniform, the apparent displacement caused by this is reduced. The true displacement of the measurement object 100 can be calculated by eliminating it.
By the way, in the present embodiment, even when the positional deviation between the optical axis of the laser beam and the rotational axis of the rotating body and the velocity component caused by the scattered light are not uniform, the optical axis of the laser beam and the rotational axis of the rotating body A measurement error due to an apparent displacement caused by a positional shift or scattered light can be suppressed to some extent.

すなわち、たとえば、図5に示すように、速度信号Vに含まれる測定物100の真の変位によって生じる速度成分がa1に示すものであり、速度信号Vに含まれるレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分がa2に示すように1回転周期中で変動するものであるとする。   That is, for example, as shown in FIG. 5, the velocity component generated by the true displacement of the measurement object 100 included in the velocity signal V is indicated by a1, and the optical axis of the laser beam included in the velocity signal V and the rotating body It is assumed that the velocity component generated by the positional deviation with respect to the rotation axis and the scattered light fluctuates during one rotation cycle as indicated by a2.

そして、この例に対しては、測定物100の真の変位によるa1の速度成分を積分して得られる変位はb1となり、レーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じるa2の速度成分を積分して得られる見かけの変位はb2のようになる。したがって、変位P、差分信号D、見かけの変位の推定値Eは、各々図示するように求まり、変位P'から見かけの推定値Eを減算して求まる算出変位Rは、図示するように、変位Pに比べ、真の変位b1との誤差が抑制されたものとなる。   For this example, the displacement obtained by integrating the velocity component of a1 due to the true displacement of the measured object 100 is b1, and the positional deviation between the optical axis of the laser beam and the rotational axis of the rotating body or scattered light. The apparent displacement obtained by integrating the velocity component of a2 generated by is as shown in b2. Therefore, the displacement P, the difference signal D, and the apparent displacement estimated value E are obtained as shown in the figure, and the calculated displacement R obtained by subtracting the apparent estimated value E from the displacement P ′ is calculated as shown in the figure. Compared to P, the error from the true displacement b1 is suppressed.

ここで、この場合の誤差の抑制の程度は、速度信号Vに含まれるレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分a2の大きさや発生パターンに依存して異なるものととなるが、いずれにしても、本実施形態に係る変位算出処理によれば、1回転周期分を越える見かけの変位が、変位算出の誤差として累積されるされることはない。   Here, the degree of suppression of the error in this case depends on the positional deviation between the optical axis of the laser beam included in the velocity signal V and the rotational axis of the rotating body, the size of the velocity component a2 generated by the scattered light, and the generation pattern. In any case, according to the displacement calculation processing according to the present embodiment, an apparent displacement exceeding one rotation cycle is not accumulated as an error in displacement calculation.

ところで、以上の実施形態では、見かけの変位の推定値Eを、変位データPの一回転周期前の変位データPとの差分データD(n,i)の積分値の1回転周期分のサンプル数分の1として求めたが、この見かけの変位の推定値Eは、以下のようにして求めるようにしてもよい。   By the way, in the above embodiment, the estimated value E of the apparent displacement is the number of samples corresponding to one rotation period of the integral value of the difference data D (n, i) from the displacement data P one rotation period before the displacement data P. The estimated value E of the apparent displacement may be obtained as follows.

すなわち、2番目以降の回転周期の変位データP(n、i)について求めた差分データD(n,i)と、差分データD(n,i)に先行して同じiについて求めた全ての差分データD(j,i)の総和を見かけの変位の推定値E’(n、i)とし、P(n,i)−E’(n、i)を算出変位R(n−1、i)とするようにしてもよい。但し、jは、2以上n未満の整数である。このようにすることにより、図5に示した速度信号Vに含まれる測定物100の真の変位によって生じる速度成分がa1と、速度信号Vに含まれるレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分a2に対して、見かけの変位の推定値E’は図6aに示すように求まり、このE’を変位データPから減算することにより、変位データPから前回転周期までに生じた見かけの変位を算出変位から除去した算出変位データRが得られる。図より理解されるように、このようにしても、1回転周期分以上の見かけの変位が、算出変位の誤差として累積されるされることを排除することができる。   That is, the difference data D (n, i) obtained for the displacement data P (n, i) of the second and subsequent rotation cycles and all the differences obtained for the same i preceding the difference data D (n, i) The sum of the data D (j, i) is assumed to be an apparent displacement estimated value E ′ (n, i), and P (n, i) −E ′ (n, i) is calculated as the calculated displacement R (n−1, i). You may make it. However, j is an integer of 2 or more and less than n. By doing so, the velocity component generated by the true displacement of the measurement object 100 included in the velocity signal V shown in FIG. 5 is a1, the optical axis of the laser beam included in the velocity signal V, and the rotation axis of the rotating body. The estimated displacement E ′ of the apparent displacement is obtained as shown in FIG. 6A with respect to the velocity component a2 caused by the positional deviation and scattered light, and the displacement data P is subtracted from the displacement data P by subtracting this E ′ from the displacement data P. Calculated displacement data R obtained by removing the apparent displacement that has occurred up to the previous rotation period from the calculated displacement is obtained. As can be understood from the figure, even in this case, it is possible to eliminate that the apparent displacement of one rotation period or more is accumulated as an error of the calculated displacement.

または、このようにして求めたE’(n、i)に、{i×D(2, i)}/iMaxを減算した値をE”(n、i)とし、P(n,i)−E”(n、i)を算出変位R(n−1、i)とするようにしてもよい。この場合には、速度信号Vに含まれるレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分a2の大きさが一定の場合には、得られる算出変位Rは、前記実施形態の見かけ変位推定データEを用いて求めた算出変位Rと等しいものとなる。すなわち、たとえば、図2に示した速度信号Vに含まれる測定物100の真の変位によって生じる速度成分がa1と、速度信号Vに含まれるレーザビームの光軸と回転体の回転軸との位置ずれや散乱光によって生じる速度成分a2に対して、見かけの変位の推定値E”は図6aに示すように求まり、このE”を変位データPから減算することにより、変位データPから前回転周期までに生じた見かけの変位を算出変位から除去した算出変位データRが得られる。   Alternatively, the value obtained by subtracting {i × D (2, i)} / iMax from E ′ (n, i) thus obtained is set to E ″ (n, i), and P (n, i) − E ″ (n, i) may be the calculated displacement R (n−1, i). In this case, when the magnitude of the velocity component a2 caused by the positional deviation between the optical axis of the laser beam included in the velocity signal V and the rotational axis of the rotating body or the scattered light is constant, the calculated displacement R obtained is This is the same as the calculated displacement R obtained using the apparent displacement estimation data E of the above embodiment. That is, for example, the velocity component generated by the true displacement of the measurement object 100 included in the velocity signal V shown in FIG. 2 is a1 and the positions of the optical axis of the laser beam included in the velocity signal V and the rotation axis of the rotating body. An estimated value E ″ of the apparent displacement is obtained as shown in FIG. 6A with respect to the velocity component a2 caused by the deviation or scattered light, and by subtracting this E ″ from the displacement data P, the previous rotation period is derived from the displacement data P. The calculated displacement data R obtained by removing the apparent displacement generated up to this point from the calculated displacement is obtained.

本発明の実施形態に係るレーザドップラ振動計の構成を示す図である。It is a figure which shows the structure of the laser Doppler vibrometer which concerns on embodiment of this invention. 本発明の実施形態に係る変位算出の原理を示す図である。It is a figure which shows the principle of the displacement calculation which concerns on embodiment of this invention. 本発明の実施形態に係る変位算出ブロックの構成を示すブロック図である。It is a block diagram which shows the structure of the displacement calculation block which concerns on embodiment of this invention. 本発明の実施形態に係る変位算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the displacement calculation process which concerns on embodiment of this invention. 本発明の実施形態に係る変位算出例を示す図である。It is a figure which shows the example of a displacement calculation which concerns on embodiment of this invention. 本発明の実施形態に係る変位算出例を示す図である。It is a figure which shows the example of a displacement calculation which concerns on embodiment of this invention. 従来のレーザドップラ振動計の構成を示す図である。It is a figure which shows the structure of the conventional laser Doppler vibrometer.

符号の説明Explanation of symbols

1:レーザ光源、2:第1ビームスプリッタ、3:音響光学素子、4:第2ビームスプリッタ、5:受光ユニット、6:第3ビームスプリッタ、7:送受光ヘッド、8:ミラー、9:解析装置、10:回転センサ、100:測定物、101:反射マーカ、301:A/D変換器、302:積分ブロック、303:遅延ブロック、304:差分ブロック、305:乗算器、306:遅延ブロック、307:減算ブロック、308:シーケンス制御部、351:A/D変換器、352:ロータリーエンコーダ、353:入力バッファ、354:メモリ、355:CPU、356:出力バッファ。   1: laser light source, 2: first beam splitter, 3: acousto-optic element, 4: second beam splitter, 5: light receiving unit, 6: third beam splitter, 7: light transmitting / receiving head, 8: mirror, 9: analysis Apparatus: 10: rotation sensor, 100: measurement object, 101: reflection marker, 301: A / D converter, 302: integration block, 303: delay block, 304: difference block, 305: multiplier, 306: delay block, 307: Subtraction block, 308: Sequence control unit, 351: A / D converter, 352: Rotary encoder, 353: Input buffer, 354: Memory, 355: CPU, 356: Output buffer

Claims (2)

回転体に当該回転体の回転軸と垂直な方向よりレーザビームを照射し、入射される反射ビームに生じたドップラシフト量より求まる速度信号を積分して求まる変位信号に基づいて、当該回転体の回転軸と垂直な方向の振動を測定するレーザドップラ振動計であって、
前記回転体の回転周期を検出する回転周期検出手段と、
前記回転体の1回転周期期間分の前記変位信号の変化量を見かけ変位量単位として算出する見かけ変位量単位算出手段と、
前記変位信号が表す変位量のうちの、前記速度信号に含まれる前記回転体表面の回転軸と垂直な測定対象方向の変位によらない速度成分に起因する成分である見かけ変位量を、前記見かけ変位量単位が1回転周期分の前記見かけ変位量の総和であるとして推定する見かけ変位量推定手段と、
前記変位信号が表す変位量から、前記見かけ変位量を減算して、前記回転体の変位量とする変位算出手段とを有することを特徴とするレーザドップラ振動計。
Based on a displacement signal obtained by irradiating the rotating body with a laser beam from a direction perpendicular to the rotational axis of the rotating body and integrating a speed signal obtained from the Doppler shift amount generated in the incident reflected beam, A laser Doppler vibrometer that measures vibration in a direction perpendicular to the rotation axis,
A rotation period detecting means for detecting a rotation period of the rotating body;
Apparent displacement unit calculation means for calculating the amount of change of the displacement signal for one rotation period of the rotating body as an apparent displacement unit;
Of the displacement amount represented by the displacement signal, the apparent displacement amount, which is a component caused by a velocity component that does not depend on the displacement in the measurement target direction perpendicular to the rotation axis of the surface of the rotating body included in the velocity signal, is the apparent displacement amount. An apparent displacement amount estimating means for estimating that a displacement amount unit is a sum of the apparent displacement amounts for one rotation period;
A laser Doppler vibrometer, comprising: a displacement calculating unit that subtracts the apparent displacement amount from a displacement amount represented by the displacement signal to obtain a displacement amount of the rotating body.
回転体に当該回転体の回転軸と垂直な方向よりレーザビームを照射し、入射される反射ビームに生じたドップラシフト量より求まる速度信号を積分して求まる変位信号に基づいて、当該回転体の回転軸と垂直な方向の振動を測定するレーザドップラ振動計において、回転体表面の回転軸と垂直な方向の変位を算出する変位算出方法であって、
前記回転体の1回転周期期間分の前記変位信号の変化量を見かけ変位量単位として算出するステップと、
前記変位信号が表す変位量のうちの、前記速度信号に含まれる前記回転体表面の回転軸と垂直な測定対象方向の変位によらない速度成分に起因する成分である見かけ変位量を、前記見かけ変位量単位が1回転周期分の前記見かけ変位量の総和であるとして推定するステップと、
前記変位信号が表す変位量から、前記見かけ変位量を減算して、前記回転体の変位量とするステップとを有することを特徴とする変位算出方法。
Based on a displacement signal obtained by irradiating the rotating body with a laser beam from a direction perpendicular to the rotational axis of the rotating body and integrating a speed signal obtained from the Doppler shift amount generated in the incident reflected beam, In a laser Doppler vibrometer that measures vibration in a direction perpendicular to the rotation axis, a displacement calculation method for calculating displacement in a direction perpendicular to the rotation axis of the surface of the rotating body,
Calculating the amount of change of the displacement signal for one rotation period of the rotating body as an apparent displacement unit;
Of the displacement amount represented by the displacement signal, the apparent displacement amount, which is a component caused by a velocity component that does not depend on the displacement in the measurement target direction perpendicular to the rotation axis of the surface of the rotating body included in the velocity signal, is the apparent displacement amount. Estimating a displacement unit as a sum of the apparent displacements for one rotation period;
Subtracting the apparent displacement amount from the displacement amount represented by the displacement signal to obtain a displacement amount of the rotating body.
JP2003300967A 2003-08-26 2003-08-26 Laser Doppler vibrometer Expired - Fee Related JP3996561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300967A JP3996561B2 (en) 2003-08-26 2003-08-26 Laser Doppler vibrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300967A JP3996561B2 (en) 2003-08-26 2003-08-26 Laser Doppler vibrometer

Publications (2)

Publication Number Publication Date
JP2005069916A true JP2005069916A (en) 2005-03-17
JP3996561B2 JP3996561B2 (en) 2007-10-24

Family

ID=34405725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300967A Expired - Fee Related JP3996561B2 (en) 2003-08-26 2003-08-26 Laser Doppler vibrometer

Country Status (1)

Country Link
JP (1) JP3996561B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096277A (en) * 2006-10-12 2008-04-24 Ono Sokki Co Ltd Laser measuring apparatus
JP2008101963A (en) * 2006-10-18 2008-05-01 Ono Sokki Co Ltd Laser doppler vibroscope
JP2010203860A (en) * 2009-03-02 2010-09-16 Optical Comb Inc Vibration measuring device and vibration measuring method
JP2010261911A (en) * 2009-05-11 2010-11-18 Optical Comb Inc Vibration measuring instrument and vibration measuring method
JP2011027648A (en) * 2009-07-28 2011-02-10 Optical Comb Inc Apparatus and method for measuring vibration
JP2011059011A (en) * 2009-09-11 2011-03-24 Fukuoka Univ Mems measuring device
WO2011068219A1 (en) 2009-12-04 2011-06-09 シャープ株式会社 Shape measurement device and shape measurement method
CN102538944A (en) * 2012-01-11 2012-07-04 浙江大学 Infrasound generating device based on displacement feedback type vibration table
CN114061735A (en) * 2021-11-16 2022-02-18 国能国华(北京)燃气热电有限公司 Laser vibration measuring probe and inspection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096277A (en) * 2006-10-12 2008-04-24 Ono Sokki Co Ltd Laser measuring apparatus
JP2008101963A (en) * 2006-10-18 2008-05-01 Ono Sokki Co Ltd Laser doppler vibroscope
JP2010203860A (en) * 2009-03-02 2010-09-16 Optical Comb Inc Vibration measuring device and vibration measuring method
JP2010261911A (en) * 2009-05-11 2010-11-18 Optical Comb Inc Vibration measuring instrument and vibration measuring method
JP2011027648A (en) * 2009-07-28 2011-02-10 Optical Comb Inc Apparatus and method for measuring vibration
JP2011059011A (en) * 2009-09-11 2011-03-24 Fukuoka Univ Mems measuring device
WO2011068219A1 (en) 2009-12-04 2011-06-09 シャープ株式会社 Shape measurement device and shape measurement method
CN102538944A (en) * 2012-01-11 2012-07-04 浙江大学 Infrasound generating device based on displacement feedback type vibration table
CN114061735A (en) * 2021-11-16 2022-02-18 国能国华(北京)燃气热电有限公司 Laser vibration measuring probe and inspection device

Also Published As

Publication number Publication date
JP3996561B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP5235412B2 (en) Laser tracking apparatus, laser device and method
TWI516746B (en) Method, apparatus, and computer-program product for performing non-harmonic cyclic error compensation in interferometric encoder systems and lithography systems
JP3955899B2 (en) Deformation measurement method and apparatus using electronic speckle interferometry
JP2020085723A (en) Optical measurement device and measurement device
JP3996561B2 (en) Laser Doppler vibrometer
US11860037B2 (en) Interferometer movable mirror position measurement apparatus and fourier transform infrared spectroscopy
EP2738514A1 (en) Error reducing method in heterodyne interferometry
CN106124032B (en) Digital measurement method and device for modulation delay of optical frequency modulator
JP4769668B2 (en) Optical reflectometry measuring method and apparatus
CN113287038B (en) Measuring device and measuring method
JP6337543B2 (en) Shape measuring apparatus and shape measuring method
JP2000206244A (en) Distance-measuring apparatus
JP7419634B2 (en) Multi-beam processing of LIDAR vibration signals
JP3108866B2 (en) Laser vibration displacement measuring device
JPH06186337A (en) Laser distance measuring equipment
JP2013217670A (en) Measuring device and measuring method
JP2012132791A (en) Defect inspection method and defect inspection device
JP3766319B2 (en) Planar shape measurement method for simultaneous imaging of phase shift interference fringes
JP6554755B2 (en) Vibration measuring apparatus and vibration measuring method
JP2006162523A (en) Speed-measuring apparatus and displacement measurement apparatus for periodically movable object
JP2001330409A (en) Interference measuring method and apparatus
JP2006119099A (en) Device for measuring displacement of periodically movable object
JP2004347520A (en) Shape measuring system
JPH03282289A (en) Method and apparatus for measuring distance
JP2007155569A (en) Laser radar device having sighting/disturbance detecting function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees