JP2005069887A - Defect inspection method and apparatus - Google Patents

Defect inspection method and apparatus Download PDF

Info

Publication number
JP2005069887A
JP2005069887A JP2003300258A JP2003300258A JP2005069887A JP 2005069887 A JP2005069887 A JP 2005069887A JP 2003300258 A JP2003300258 A JP 2003300258A JP 2003300258 A JP2003300258 A JP 2003300258A JP 2005069887 A JP2005069887 A JP 2005069887A
Authority
JP
Japan
Prior art keywords
image
region
pixels
defect inspection
binarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300258A
Other languages
Japanese (ja)
Other versions
JP4139291B2 (en
Inventor
Yusuke Konno
雄介 今野
Shuji Naito
修治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003300258A priority Critical patent/JP4139291B2/en
Priority to KR1020040065639A priority patent/KR20050022320A/en
Publication of JP2005069887A publication Critical patent/JP2005069887A/en
Application granted granted Critical
Publication of JP4139291B2 publication Critical patent/JP4139291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection method and an apparatus capable of high-speed and efficient processing. <P>SOLUTION: An input image is divided into overlapping rectangles (S60). The insides of the rectangles are binarized by a prescribed luminance threshold (S70). The number of prescribed ("0" or "1") pixels among binarized pixels is computed (S80). In the case that the number of pixels exceeds a prescribed pixel number threshold, it is determined that the rectangles are flawed rectangles (S90). It is possible to specify the locations of flaws on the basis of a flawed rectangle mask image (S110) constituted of the flawed rectangles. By further taking the AND of a normal binarized image (S130) and the flawed rectangle mask image (S110), it is possible to acquire a binarized image in which only flaws are detected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、欠陥検査方法及び装置に関し、例えば物体表面の疵等の欠陥を検査する方法及び装置に関する。   The present invention relates to a defect inspection method and apparatus, and more particularly to a method and apparatus for inspecting defects such as wrinkles on an object surface.

従来から、例えば鋼板やアルミ板等を検査対象として表面欠陥を検査することが行われている。その方法として、検査対象の表面の画像を得て、他より明るく光っている部分あるいは逆に暗くなっている部分を抽出して欠陥かどうかを判定するものがあり、この検査方法によれば、取得した表面画像を信号処理することによって疵を特定できる。   Conventionally, for example, a surface defect is inspected using a steel plate, an aluminum plate, or the like as an inspection target. As the method, there is one that obtains an image of the surface of the object to be inspected, extracts a part that is shining brighter than others or a part that is darker on the contrary, and determines whether it is a defect or not, according to this inspection method, A wrinkle can be specified by signal processing the acquired surface image.

このような表面疵検出方法においては、得られた表面画像の画素ごとに、所定の輝度閾値以上であるかどうかを判断して、閾値以上(あるいは以下)の画素を疵を構成する可能性のある画素として抽出する。その後抽出された画素を対象にラベリング処理(画素の連結処理)を行う。ラベリングの結果面積が所定の閾値を超えたものを疵と判断している。   In such a surface wrinkle detection method, for each pixel of the obtained surface image, it is determined whether or not it is greater than or equal to a predetermined luminance threshold value, and there is a possibility that pixels that are equal to or greater than (or less than) the threshold value constitute a wrinkle. Extract as a certain pixel. Thereafter, labeling processing (pixel connection processing) is performed on the extracted pixels. When the labeling result area exceeds a predetermined threshold, it is determined to be 疵.

例えば鏡面に仕上げられた表面に対してわずかの傷があるという場合には、このような方法でも有効であるが、検査対象に地模様又は汚れ等がある場合、これらを疵として検出してしまうことになる。また、結果的にノイズとなる画素であってもすべてラベリング処理の対象とすることで、処理速度を上げることが困難であり、また処理のために高性能な処理装置を必要とするという問題もあった。   For example, when there are slight scratches on the mirror-finished surface, this method is also effective, but if there is a ground pattern or dirt on the inspection object, these are detected as wrinkles. It will be. In addition, even if pixels result in noise, it is difficult to increase the processing speed by making them all subject to labeling processing, and there is a problem that a high-performance processing device is required for processing. there were.

なお、処理速度の向上を目指すものではないが、検出精度を上げるために、疵の種類に応じて複数の閾値を備えるようにした従来技術が知られている(特許文献1参照)。   Although not aimed at improving the processing speed, a conventional technique is known in which a plurality of thresholds are provided in accordance with the type of wrinkles in order to increase detection accuracy (see Patent Document 1).

特許第2890801号公報Japanese Patent No. 2890801

本発明は、上記問題に鑑み、高速で効率的な処理を可能とする表面検査方法及び装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a surface inspection method and apparatus capable of high-speed and efficient processing.

本発明は、上記目的を達成するために、まず入力画像を重なり合う領域に分割し、領域内を所定の輝度閾値で二値化し、二値化された画素のうち所定(”0”又は”1”)の画素の数を算出し、画素数が所定の画素数閾値を超えた場合に当該領域を欠陥領域とする。   In order to achieve the above object, the present invention first divides an input image into overlapping areas, binarizes the area with a predetermined luminance threshold value, and selects a predetermined (“0” or “1” among the binarized pixels. The number of pixels “)” is calculated, and when the number of pixels exceeds a predetermined pixel number threshold, the region is defined as a defective region.

この構成によると、領域に分割してその中の画素数に閾値を設けたので、従来であれば拾ってしまうノイズ(例えば輝度が低く大きさも小さい)を除去して、疵のみを拾うことができる。また、タイル配置のように領域を重ねずに配置した場合は、領域の境界で分断されて画素数のカウント値が半減して疵と判定されない場合でも、領域を重ねて配置することにより、カウント値の減少を防ぐことができるので、疵の検出漏れを防止できる。   According to this configuration, since the threshold is set for the number of pixels in the area divided, it is possible to remove noise (for example, the brightness is low and the size is small) that would otherwise be picked up and pick up only the bag. it can. In addition, when tiles are placed without overlapping areas, even if they are divided at the boundary of the area and the count value of the number of pixels is halved and it is not determined that there is a defect, counting is performed by overlapping the areas. Since it is possible to prevent a decrease in value, it is possible to prevent omission of detection of soot.

本発明は、前記欠陥領域を得て欠陥領域画像を得るとともに、入力画像を全体として二値化した二値化画像を得て、該二値化画像と欠陥領域画像との論理積をとって得られた検出欠陥二値化画像を基に欠陥検査を行う。   The present invention obtains the defect area image by obtaining the defect area, obtains a binarized image obtained by binarizing the input image as a whole, and obtains a logical product of the binarized image and the defect area image. A defect inspection is performed based on the obtained detected defect binarized image.

本発明はこのような構成を採用したことにより、ラベリング処理の前段でノイズを除去することができるので、以後のラベリングの負担を大幅に低減できる。   Since the present invention employs such a configuration, noise can be removed before the labeling process, so that the burden of subsequent labeling can be greatly reduced.

本発明においては、入力画像を分割する領域の形状は矩形とすることができ、領域の大きさ及び重なり量も複数セット備えて、複数のセットを用いて入力画像を重なり合う領域に分割することができる。   In the present invention, the shape of the area into which the input image is divided can be rectangular, the area size and the overlap amount are provided in multiple sets, and the input image can be divided into overlapping areas using the multiple sets. it can.

この構成によると、領域のサイズを検出したい疵に応じて変えることにより、例えば縦長疵だけを検出するようにもできる。従来の空間フィルタを用いた縦長疵の検出に比較して、はるかに低い負荷で処理できる。   According to this configuration, by changing the size of the area according to the wrinkle to be detected, it is possible to detect, for example, only a vertically long flaw. Compared with the detection of the vertical fold using a conventional spatial filter, processing can be performed with a much lower load.

さらに、輝度閾値及び画素数閾値も複数セットを備え、各セットによって欠陥領域を得ることができ、これらを組合わせて欠陥領域画像とすることができる。大きな輝度閾値と小さな画素数閾値とのセット、及び小さな輝度閾値と大きな画素数閾値とのセットを組合わせてもよい。   Furthermore, a plurality of sets of luminance threshold values and pixel number threshold values are provided, and a defective region can be obtained by each set, and these can be combined to form a defective region image. A set of a large luminance threshold and a small pixel number threshold, and a set of a small luminance threshold and a large pixel number threshold may be combined.

このように、複数の閾値を持つことで、疵に応じた閾値を適用できる。例えば、輝度変化の大きい疵は小さなものでも拾い、輝度変化の少ない疵は大きなものだけ拾うようにできる。   In this way, by having a plurality of threshold values, it is possible to apply a threshold value corresponding to wrinkles. For example, it is possible to pick up a small bag with a large change in luminance, and pick up a large bag with a small change in luminance.

さらに、入力画像は輝度が正規化された画像とすることができる。   Furthermore, the input image can be an image with normalized brightness.

この構成によれば、照明ムラによって画面を一様な閾値で二値化することが困難である場合でも、正規化画像を得てこれを基に処理することにより、全画面一様な輝度閾値で処理が行える。   According to this configuration, even when it is difficult to binarize the screen with a uniform threshold due to uneven illumination, a normalized brightness threshold is obtained by obtaining a normalized image and processing based on the normalized image. Can be processed.

まず、本発明の実施形態の概略を説明する。   First, an outline of an embodiment of the present invention will be described.

図1は、従来方法による二値化画像を示すもので、検査表面の画像を輝度閾値を用いて二値化したものである。二値化により疵Kとノイズ部Nが現れている。従来はこの画像を基にラベリング処理を行うのであるが、ノイズ部Nについてもラベリング処理が行われ、その負荷は大きいものであった。   FIG. 1 shows a binarized image obtained by a conventional method, in which an image of an inspection surface is binarized using a luminance threshold value.疵 K and noise part N appear by binarization. Conventionally, the labeling process is performed based on this image, but the labeling process is also performed on the noise portion N, and the load is large.

本実施形態では、原画像(二値化する前の画像)を重なり合う矩形に分割し、矩形単位で疵が有るか無いかを判断する。これを図2に示す。図2には、疵Kを覆った2枚の矩形を示したが、実際にはこのような矩形で全画面を覆う。矩形Bは横l、縦mであり、横xがm/2、縦yがl/2だけ重なっている。このように重なり合う矩形に分割し、矩形ごとに疵があるかないかを判断してゆくことになる。すなわち、まず輝度閾値を用いて二値化し、さらに輝度閾値を超えた画素の数を矩形ごとにカウントし、その結果が矩形に対して与えられる画素閾値を超えると、その矩形は疵あり矩形とする。なお、矩形を重ね合わせる理由は、矩形の境界での疵の取りこぼしを防ぐためである。   In the present embodiment, the original image (image before binarization) is divided into overlapping rectangles, and it is determined whether or not there are wrinkles in units of rectangles. This is shown in FIG. FIG. 2 shows two rectangles covering the ridge K, but actually the entire screen is covered with such rectangles. The rectangle B has a width of l and a length of m, and the width x overlaps by m / 2 and the length y by l / 2. In this way, it is divided into overlapping rectangles, and it is determined whether or not there are wrinkles for each rectangle. That is, first, binarization is performed using a luminance threshold, and the number of pixels exceeding the luminance threshold is counted for each rectangle. If the result exceeds the pixel threshold given to the rectangle, the rectangle is To do. The reason why the rectangles are overlapped is to prevent the wrinkles from being missed at the boundaries of the rectangles.

疵あり矩形を取り出したものを図3に示す。図3には、疵部分3を覆う矩形のみが疵あり矩形として残っている。図1のノイズ部Nについていえば、輝度閾値を満足しても、矩形に与えられた画素閾値を超えなかったので、図3では現れていない。結局ノイズ部分が除去されて疵Kの存在を示す疵あり矩形のみが得られたことになる。ここで、図1と図3のANDをとれば、図1からノイズ部分Nが除かれ疵Kのみが存在する二値化画像が得られる。本実施形態の概要は以上のとおりで、ラベリング処理の前段階でノイズが除去されているので、処理の効率が向上する。   FIG. 3 shows a rectangle with a ridge taken out. In FIG. 3, only the rectangle covering the ridge portion 3 remains as a ridged rectangle. Speaking of the noise part N in FIG. 1, even if the luminance threshold value is satisfied, the pixel threshold value given to the rectangle is not exceeded, so it does not appear in FIG. Eventually, the noise portion was removed, and only a creased rectangle indicating the presence of 疵 K was obtained. Here, if the AND of FIG. 1 and FIG. 3 is taken, a binarized image in which the noise portion N is removed from FIG. The outline of the present embodiment is as described above. Since noise is removed in the previous stage of the labeling process, the processing efficiency is improved.

以下、図面4〜12を参照して、本発明の実施の形態の概略を説明する。   Hereinafter, an outline of an embodiment of the present invention will be described with reference to FIGS.

図4〜6は、本発明の処理過程を示すフローであり、図7〜12は、処理過程で得られる画像を示す。   4 to 6 are flowcharts showing the processing steps of the present invention, and FIGS. 7 to 12 show images obtained in the processing steps.

図4に示したように、まず、ステップS10で、CCDカメラ等の検出器から検査対象の表面画像が入力される。通常8ビット256階調の画像が用いられる。   As shown in FIG. 4, first, in step S10, a surface image to be inspected is input from a detector such as a CCD camera. Normally, an 8-bit 256-gradation image is used.

次のステップS20〜S50で、画像の輝度を正規化し、ステップS50で、正規化画像を得る。そのために、ステップS20で、入力画像の各画素に輝度基準値(本例の場合128)を乗算するとともに、ステップS30で、入力画像に対してローパスフィルタによる平均化処理を行い、各画素の周囲の平均輝度を得る。例えば、各画素の周囲32×32の移動平均を取る。そして、ステップS40では、ステップS20の結果をステップS30の結果で除算する。このようにして、輝度の正規化を行い、ステップS50で、正規化画像を得る。なお、ステップS20の乗算処理の意味は、整数(0〜255)で表されている階調を保存するためである。   In the next steps S20 to S50, the luminance of the image is normalized, and a normalized image is obtained in step S50. For this purpose, in step S20, each pixel of the input image is multiplied by a luminance reference value (128 in this example), and in step S30, the input image is averaged by a low-pass filter, To obtain the average brightness. For example, a moving average of 32 × 32 around each pixel is taken. In step S40, the result of step S20 is divided by the result of step S30. In this way, the luminance is normalized, and a normalized image is obtained in step S50. In addition, the meaning of the multiplication process of step S20 is for preserving the gradation represented by the integer (0-255).

図7に、ステップS50における輝度の正規化処理を終えた画像を示す。左上に面積の広い薄い色の部分P1、右下に小さいが黒い部分P2、中央の縦方向に多数の薄く小さい部分の集合P3が見える。   FIG. 7 shows an image after the luminance normalization processing in step S50. A light-colored portion P1 having a large area at the upper left, a small but black portion P2 at the lower right, and a set P3 of a number of thin and small portions in the central vertical direction can be seen.

このように入力画像を正規化しておくと、照明ムラ等によって検出器からの入力画像のままでは画面を一様な閾値で二値化することができない場合であっても、全画面に対して一様な閾値を用いて処理することができる。   If the input image is normalized in this way, even if the screen cannot be binarized with a uniform threshold if the input image from the detector remains as it is due to uneven illumination, etc. Processing can be performed using a uniform threshold.

次のステップS60(図5)で、正規化された画像を重なりをもった矩形領域に分割する。本例では、先に示した図2と同様の矩形を用いる。前述のように、矩形Bは横l、縦mであり、横xがm/2、縦yがl/2だけ重なっている。   In the next step S60 (FIG. 5), the normalized image is divided into overlapping rectangular regions. In this example, the same rectangle as that shown in FIG. 2 is used. As described above, the rectangle B has the horizontal l and the vertical m, and the horizontal x overlaps with m / 2 and the vertical y with l / 2.

矩形領域は、疵の場所を特定するものであって、予想される疵に応じて、その形状及び大きさを決めることができる。一般的には、予想される疵より少し大きく、疵を覆うことができる程度の形状及び大きさとするのがよい。例えば、縦長の疵であって、その一部が点線状になっている場合、縦長の矩形領域を用いると全体として縦長の疵を正確に認識できるものであっても、縦方向に短い矩形領域で分割すると、点線状の部分がノイズとして判断されて捨てられ、正確な疵の形状を見誤るおそれがある。ただし、当然のことながら、矩形領域が疵より大きく設定されなければならないということはない。矩形領域は、通常16×32画素程度でよく、縦長の疵に対しては、例えば16×64画素をとればよい。   The rectangular area specifies the location of the wrinkles, and the shape and size can be determined according to the expected wrinkles. In general, the shape and size should be a little larger than the expected wrinkles and can cover the wrinkles. For example, in the case of a vertically long ridge and a part thereof is dotted, a rectangular region that is short in the vertical direction even if the vertically long rectangular region can accurately recognize the vertically long cocoon as a whole If it is divided by, the dotted line portion is judged as noise and discarded, and there is a risk of mistaking the exact shape of the eyelid. However, as a matter of course, the rectangular area does not have to be set larger than 疵. The rectangular area may normally be about 16 × 32 pixels, and for a vertically long wrinkle, for example, 16 × 64 pixels may be taken.

矩形領域の形状及び大きさは、検出したい疵に対応して変えることができるので、例えば縦長の矩形領域を用いて縦長疵のみを検出するようにもできる。従来では、縦長疵を拾う場合空間フィルタを用いて処理していたが、空間フィルタは演算量が大きく、処理に負荷がかかっていた。本発明の矩形領域を用いると、はるかに低い負荷で処理できることになる。   Since the shape and size of the rectangular area can be changed according to the wrinkle to be detected, for example, only a vertically long wrinkle can be detected using a vertically long rectangular area. In the past, when a vertically long basket was picked up, processing was performed using a spatial filter. However, the spatial filter has a large calculation amount, and processing is burdened. When the rectangular area of the present invention is used, processing can be performed with a much lower load.

重なり部分は、本例では横xがm/2、縦yがl/2としたが、この重なり部分の大きさは任意であり、適宜決定できる。矩形を重ね合わせる意味は、矩形を重ね合わせることなく配置した場合、矩形の境界部分に傷があった場合その傷を取り落とすことがあるからである。本発明では所定条件を満足する画素数をカウントし、所定の画素数以上となる矩形を疵あり矩形とする処理を行うもので、その際に、矩形境界で疵が分断され、たとえば両方の矩形で疵の画素数が半分になると、カウントもれが起こり、疵として認識されない場合があるからである。したがって、カウント漏れが無いようにするには、重なり部分x,yを大きく、1/2以上とするほうがよい。ただし、重なり部分を大きくするとそれだけ多くの矩形が必要となるので、処理時間はかかることになる。本例では、前述のように1/2に等しくしている。また、画像分割領域を矩形としたが、三角形、平行四辺形など他の多角形でもよい。いずれにせよ、検査画像を覆うように分割できる領域であればよい。   In this example, the overlap portion is m / 2 in the horizontal direction and 1/2 in the vertical direction, but the size of the overlap portion is arbitrary and can be determined as appropriate. The meaning of overlapping the rectangles is that if the rectangles are arranged without being overlapped, the scratches may be removed if there are scratches on the boundary of the rectangles. In the present invention, the number of pixels that satisfy a predetermined condition is counted, and a rectangle that is equal to or larger than the predetermined number of pixels is processed to be a rectangle with a wrinkle. At that time, the wrinkles are divided at a rectangular boundary. This is because if the number of pixels of the eyelid is halved, the count may be lost and may not be recognized as an eyelid. Therefore, in order to prevent counting omission, it is better to make the overlapping portions x and y large and ½ or more. However, if the overlapping portion is enlarged, so many rectangles are required, so that processing time is required. In this example, it is set equal to 1/2 as described above. Further, although the image segmentation area is a rectangle, it may be another polygon such as a triangle or a parallelogram. In any case, it may be an area that can be divided so as to cover the inspection image.

次のステップS70〜S90及びS71〜S91では、それぞれ、異なる輝度閾値と画素数閾値のセットを用いて、疵あり矩形を特定する。   In the next steps S70 to S90 and S71 to S91, a wrinkled rectangle is specified using a set of different luminance threshold values and pixel number threshold values, respectively.

ステップS70で、矩形領域を第1の輝度閾値を用いて二値化し、ステップS80で、矩形領域ごとに輝度閾値を超えている画素数をカウントし、ステップS90で、カウントした結果が第1の画素数閾値を超えている矩形を疵あり矩形とする。ここで、輝度閾値と画素数閾値とのセットは、例えば、第1の輝度閾値が、128(平均値)に近く、第1の画素数閾値は大きくすることが考えられる。第1のセットでは、薄く広がっている領域を疵と判定できる。   In step S70, the rectangular area is binarized using the first luminance threshold. In step S80, the number of pixels exceeding the luminance threshold is counted for each rectangular area. In step S90, the counted result is the first value. A rectangle that exceeds the threshold value for the number of pixels is defined as a rectangle with a wrinkle. Here, in the set of the luminance threshold value and the pixel number threshold value, for example, the first luminance threshold value may be close to 128 (average value), and the first pixel number threshold value may be increased. In the first set, an area that is thinly spread can be determined as a wrinkle.

このような閾値のセットで図7の画像を処理した例を図8に示す。輝度閾値が平均値に近く、画素数閾値が大きいため、色が薄くて広い領域P1が矩形B1に覆われて検出されている。他の面積が小さい部分P2,P3に対応する矩形は現れていない。   An example of processing the image of FIG. 7 with such a set of threshold values is shown in FIG. Since the brightness threshold value is close to the average value and the pixel number threshold value is large, the light and wide area P1 is detected by being covered with the rectangle B1. The rectangles corresponding to the other portions P2 and P3 having a smaller area do not appear.

同様に、ステップS71で、矩形領域を第2の輝度閾値を用いて二値化し、ステップS81で、矩形領域ごとに輝度閾値を超えている画素数をカウントし、ステップS91で、カウントした結果が第2の画素数閾値を超えている矩形を疵あり矩形とする。ここで、第2の輝度閾値は、128より遠く(すなわち0または255に近い)、第2の画素数閾値は小さくしている。第2のセットでは、黒く小さい領域を疵と判定できる。   Similarly, in step S71, the rectangular area is binarized using the second luminance threshold value, and in step S81, the number of pixels exceeding the luminance threshold value is counted for each rectangular area. In step S91, the counted result is A rectangle that exceeds the second pixel count threshold is defined as a rectangle with a wrinkle. Here, the second luminance threshold is far from 128 (that is, close to 0 or 255), and the second pixel number threshold is small. In the second set, a small black area can be determined as a wrinkle.

この結果を図9に示す。画素数値は小さいが、輝度閾値が平均値から遠いので、黒い点に見える部分P2を覆う矩形B2のみが現れている。その他の部分P1,P3は、輝度閾値を満足しないので除かれている。   The result is shown in FIG. Although the pixel value is small, since the luminance threshold is far from the average value, only the rectangle B2 covering the portion P2 that appears to be a black dot appears. The other portions P1 and P3 are excluded because they do not satisfy the luminance threshold.

本例では、二組のセットを用いたが、これに限定されず、三組以上とすることもできるし、輝度閾値と画素数閾値の組合わせも検出しようとする疵に応じて種々変更できる。また、複数組を用いることなく、単一のセットのみを用いることもできる。   In this example, two sets are used. However, the present invention is not limited to this. The number of sets may be three or more, and the combination of the luminance threshold value and the pixel number threshold value can be variously changed according to the trap to be detected. . Moreover, only a single set can be used without using a plurality of sets.

次のステップS100では、ステップS90又はステップS91で疵あり矩形と判断された矩形を組合わせる(通常は論理和演算による)ことによって、ステップ110で、疵あり矩形マスク画像を得る。   In the next step S100, a rectangle mask image having a wrinkle is obtained in step 110 by combining the rectangles determined to be wrinkled rectangles in step S90 or S91 (usually by a logical sum operation).

図10は、ステップS100に従って、第1及び第2閾値セットを用いて得られた疵あり矩形マスクB1及びB2(図7及び図8)の論理和をとって組合わせて得られた疵あり矩形マスクである。   FIG. 10 shows the wrinkled rectangle obtained by combining the logical sums of the wrinkled rectangular masks B1 and B2 (FIGS. 7 and 8) obtained using the first and second threshold sets according to step S100. It is a mask.

疵があるかないかを判定するだけが目的であれば、得られた疵あり矩形マスクによって、疵の場所が特定されているので、ここで終了してもよい。なお、ここでは論理和をとることによって組合わせたが、輝度閾値及び画素数閾値のセットによっては、その他の論理演算を行ってもよい。   If the purpose is only to determine whether or not there is a wrinkle, the location of the wrinkle is specified by the obtained rectangular mask with the wrinkle, and the processing may be ended here. Although the combination is performed by taking a logical sum here, other logical operations may be performed depending on the set of the luminance threshold value and the pixel number threshold value.

正確な疵の形状を求めるためには、次のステップに進む。   To determine the exact shape of the ridge, proceed to the next step.

そのために、ステップS120において、ステップS50の正規化画像を用いて、所定の輝度閾値(ステップS70で用いた閾値でもよいし、また他の値でもよい。)を用いた通常の二値化を行い、ステップS130で通常の二値化画像を得る。   Therefore, in step S120, normal binarization using a predetermined luminance threshold value (the threshold value used in step S70 or another value may be used) is performed using the normalized image in step S50. In step S130, a normal binarized image is obtained.

図11は、図7の正規化画像を通常の二値化処理して得られたもので、ある閾値より黒い画素P1,P2,P3はすべて検出されている。従来はこれをもとにラベリング処理などを行っていたが、これら多数の画素に対してラベリングを行うことは、処理装置に大きな負荷がかかっていた。   FIG. 11 is obtained by normal binarization processing of the normalized image of FIG. 7, and all pixels P1, P2, and P3 that are blacker than a certain threshold are detected. Conventionally, labeling processing or the like has been performed based on this, but performing a labeling on these many pixels puts a heavy load on the processing apparatus.

次に、ステップS140(図6)で、ステップS130で得られた通常の二値化画像とステップS110で得られた疵あり矩形画像との論理積(AND)をとる。   Next, in step S140 (FIG. 6), the logical product (AND) of the normal binarized image obtained in step S130 and the wrinkled rectangular image obtained in step S110 is calculated.

図12は、疵あり矩形マスク(図10)と通常の二値化画像(図11)とのANDをとったもので、ステップS150の疵検出二値化画像である。図12に示されているように、色が薄くても大きな疵P1、および、小さくても色が濃い疵P2が、大きさ及び形状を保存して検出することができ、ノイズとなる部分P3が除去されている。このように、通常の二値化画像で現れる地肌ノイズ等が消えて、求める疵だけが検出されることになる。   FIG. 12 is an AND of the rectangular mask with wrinkles (FIG. 10) and the normal binarized image (FIG. 11), and is the wrinkle detection binarized image in step S150. As shown in FIG. 12, even if the color is light, a large haze P1 and a small color P2 that is dark even if it is small can detect the size and shape, and can be detected as a noise P3. Has been removed. In this way, the background noise and the like appearing in the normal binarized image disappear, and only the desired wrinkles are detected.

その後、疵の形状及び大きさを確定するために、画像処理を行う。すなわち、ステップS160で、ラベリング処理を行い、ステップS170で、特徴抽出処理を行い、疵の形状並びに大きさを確定する。   Thereafter, image processing is performed to determine the shape and size of the ridge. That is, a labeling process is performed in step S160, and a feature extraction process is performed in step S170 to determine the shape and size of the heel.

一般に、疵の有無だけでなく、疵の形状及び大きさを知るためにはラベリング処理が必要である。正確な疵の外形を表す二値画像を得るためには、低い輝度閾値で二値化するのがよいが、閾値を下げておくと地肌ノイズも拾ってしまい、多数の画素を対象にラベリング処理を行わざるを得ず、ラベリング処理の負荷が増大する結果となっていた。本実施形態では、疵あり領域を特定し疵あり矩形マスクを用いて、ラベリング処理の前段でノイズを除去している。したがって、ラベリングの負担を大幅に低減できた。   In general, in order to know not only the presence or absence of wrinkles but also the shape and size of the wrinkles, a labeling process is required. In order to obtain a binary image that accurately represents the outline of the eyelid, it is better to binarize with a low luminance threshold, but if the threshold is lowered, background noise will also be picked up and labeling processing for a large number of pixels The result is that the load of the labeling process increases. In the present embodiment, a wrinkled region is identified, and noise is removed before the labeling process using a wrinkled rectangular mask. Therefore, the burden of labeling can be greatly reduced.

ステップS180では、疵の長さ、幅、周囲長に基づいて、疵の有害度を判定し、ステップS190で疵画像の表示がなされる。   In step S180, the harmfulness level of the heel is determined based on the length, width, and perimeter of the heel, and the heel image is displayed in step S190.

本発明によると、ラベリング処理など画素ごとに行わなければならない負荷の大きい画像処理の前に、疵あり矩形マスクを得て、これによって地肌ノイズ等の疵ではない部分を除去して、画像処理を行う対象を限定することができるから、疵の検出処理の効率を大幅に増すことができる。   According to the present invention, prior to image processing with a large load that must be performed for each pixel such as labeling processing, a rectangular mask with wrinkles is obtained, thereby removing non- wrinkle parts such as background noise and performing image processing. Since the target to be performed can be limited, the efficiency of wrinkle detection processing can be greatly increased.

次に、図13を参照して、本発明装置の一実施形態の概略を説明する。   Next, an outline of an embodiment of the device of the present invention will be described with reference to FIG.

例えば鋼板ST等の検査対象からCCDカメラC等の画像入力装置を介して、検査画像を画像入力部1に取り込む。検査画像は、画像入力部1から輝度正規化部2に送られて、正規化画像を得る。正規化画像は、矩形二値化部3と通常二値化部4に送られ、それぞれ疵あり矩形画像と通常二値化画像とを生成し、演算部5により両画像のANDがとられて、疵検出二値画像を得る。その後疵検出二値画像を基に、画像処理部で、ラベリング及び特徴抽出が行われ、疵の形状や大きさが求められ、疵の有害度が判定される。画像表示部では、画像処理の後の疵画像が表示される。   For example, an inspection image is taken into the image input unit 1 from an inspection target such as a steel plate ST via an image input device such as a CCD camera C. The inspection image is sent from the image input unit 1 to the luminance normalization unit 2 to obtain a normalized image. The normalized image is sent to the rectangular binarizing unit 3 and the normal binarizing unit 4 to generate a wrinkled rectangular image and a normal binarized image, respectively, and the arithmetic unit 5 ANDs both images. , A wrinkle detection binary image is obtained. Then, based on the wrinkle detection binary image, labeling and feature extraction are performed in the image processing unit, the shape and size of the wrinkle are obtained, and the harmfulness level of the wrinkle is determined. In the image display unit, the haze image after the image processing is displayed.

本例では、鋼板を例に説明したが、検査対象となるものは鋼板に限らず、例えば、スラブでもよいし、例えば磁粉探傷で得られる蛍光画像あるいは超音波探傷画像にも適用できる。その他、検査対象の画像が得られさえすれば、本発明を適用することができる。   In this example, a steel plate has been described as an example. However, what is to be inspected is not limited to a steel plate, and may be, for example, a slab, or may be applied to, for example, a fluorescent image or an ultrasonic flaw detection image obtained by magnetic particle flaw detection. In addition, the present invention can be applied as long as an image to be inspected can be obtained.

従来の二値化画像を示す概略図である。It is the schematic which shows the conventional binarized image. 本発明の1実施形態の矩形領域を示す説明図である。It is explanatory drawing which shows the rectangular area of one Embodiment of this invention. 本発明の1実施形態の疵あり矩形を示す説明図である。It is explanatory drawing which shows the rectangle with a crease of one Embodiment of this invention. 本発明の1実施形態のフロー(その1)を示す図である。It is a figure which shows the flow (the 1) of one Embodiment of this invention. 本発明の1実施形態のフロー(その2)を示す図である。It is a figure which shows the flow (the 2) of 1 embodiment of this invention. 本発明の1実施形態のフロー(その3)を示す図である。It is a figure which shows the flow (the 3) of one Embodiment of this invention. 本発明の1実施形態の正規化画像を示す図である。It is a figure which shows the normalized image of one Embodiment of this invention. 本発明の1実施形態の第1の閾値セットにより得られた疵あり矩形を示す図である。It is a figure which shows the wrinkled rectangle obtained by the 1st threshold value set of 1 embodiment of this invention. 本発明の1実施形態の第2の閾値セットにより得られた疵あり矩形を示す図である。It is a figure which shows the wrinkled rectangle obtained by the 2nd threshold value set of 1 embodiment of this invention. 図8及び図9に示す疵あり矩形の組合わせを示す図である。It is a figure which shows the combination of the rectangle with a hook shown in FIG.8 and FIG.9. 本発明の1実施形態における通常の二値化画像を示す図である。It is a figure which shows the normal binarized image in one Embodiment of this invention. 本発明の1実施形態における疵検出二値化画像を示す図である。It is a figure which shows the wrinkle detection binarized image in one Embodiment of this invention. 本発明の1実施形態の装置構成を示す図である。It is a figure which shows the apparatus structure of one Embodiment of this invention.

符号の説明Explanation of symbols

K…疵
B,B1,B2…矩形領域
N…ノイズ部
K ... 疵 B, B1, B2 ... Rectangular area N ... Noise part

Claims (14)

入力画像を重なり合う領域に分割するステップと、
領域内を所定の輝度閾値で二値化するステップと、
前記領域内において前記二値化された画素のうち所定の値の画素数を算出するステップと、
前記画素数が所定の画素数閾値を超えた場合前記領域を欠陥領域とするステップと、
を含む欠陥検査方法。
Dividing the input image into overlapping regions;
Binarizing an area with a predetermined luminance threshold;
Calculating the number of pixels of a predetermined value among the binarized pixels in the region;
When the number of pixels exceeds a predetermined pixel number threshold, the region as a defective region;
Including defect inspection method.
入力画像を重なり合う領域に分割するステップと、
領域内を所定の輝度閾値で二値化するステップと、
前記領域内において前記二値化された画素のうち所定の値の画素数を算出するステップと、
前記画素数が所定の画素数閾値を超えた場合前記領域を欠陥あり領域として欠陥領域画像を得るステップと、
所定の輝度閾値で前記入力画像を二値化して二値化画像を得るステップと、
該二値化画像と前記欠陥領域画像との論理積をとるステップと
を含む欠陥検査方法。
Dividing the input image into overlapping regions;
Binarizing an area with a predetermined luminance threshold;
Calculating the number of pixels of a predetermined value among the binarized pixels in the region;
When the number of pixels exceeds a predetermined pixel number threshold, obtaining a defective region image with the region as a defective region;
Binarizing the input image with a predetermined luminance threshold to obtain a binarized image;
A defect inspection method comprising: calculating a logical product of the binarized image and the defect area image.
前記領域の形状は矩形である請求項1又は2に記載の欠陥検査方法。   The defect inspection method according to claim 1, wherein the shape of the region is a rectangle. 前記入力画像を重なり合う領域に分割するステップは、前記領域の大きさ及び重なり量を複数セット有し、各セットで前記入力画像を重なり合う領域に分割する請求項1〜3のいずれか1項に記載の欠陥検査方法。   The step of dividing the input image into overlapping regions has a plurality of sets of sizes and overlapping amounts of the regions, and the input image is divided into overlapping regions in each set. Defect inspection method. 前記輝度閾値及び前記画素数閾値は、複数の閾値が組合わされた複数のセットからなり、各セットを用いて得られた欠陥あり領域の組合わせにより前記欠陥領域画像を得る請求項1〜4のいずれか1項に記載の欠陥検査方法。   The luminance threshold value and the pixel number threshold value are composed of a plurality of sets in which a plurality of threshold values are combined, and the defective region image is obtained by combining defective regions obtained by using each set. The defect inspection method according to any one of the above items. 前記複数の閾値の組合わせは、前記輝度閾値が大きい場合は前記画素数閾値を小さく、前記輝度閾値が小さい場合は前記画素数閾値を大きくする組合わせを有する請求項5に記載の欠陥検査方法。   The defect inspection method according to claim 5, wherein the combination of the plurality of threshold values includes a combination of decreasing the pixel number threshold value when the luminance threshold value is large and increasing the pixel number threshold value when the luminance threshold value is small. . 前記入力画像は輝度が正規化された画像である請求項1〜6のいずれか1項に記載の欠陥検査方法。   The defect inspection method according to claim 1, wherein the input image is an image whose luminance is normalized. 検査対象の画像を入力する画像入力部と、
入力画像を重なり合う領域に分割し、該領域内を所定の輝度閾値で二値化し、前記領域内において前記二値化された画素のうち所定の値の画素数を算出し、前記画素数が所定の画素数閾値を超えた場合前記領域を欠陥領域として、欠陥領域画像を生成する領域二値化部と、
欠陥領域画像を表示する画像表示部を備える欠陥検査装置。
An image input unit for inputting an image to be inspected;
The input image is divided into overlapping regions, the inside of the region is binarized with a predetermined luminance threshold, the number of pixels having a predetermined value among the binarized pixels in the region is calculated, and the number of pixels is predetermined A region binarization unit that generates a defect region image, using the region as a defect region when the pixel number threshold of is exceeded,
A defect inspection apparatus comprising an image display unit for displaying a defect area image.
検査対象の画像を入力する画像入力部と、
入力画像を重なり合う領域に分割し、領域内を所定の輝度閾値で二値化し、前記領域内において前記二値化された画素のうち所定の値の画素数を算出し、前記画素数が所定の画素数閾値を超えた場合前記領域を欠陥領域として、欠陥領域画像を生成する領域二値化部と、
所定の輝度閾値で前記入力画像を二値化して二値化画像を得る通常二値化部と、
前記欠陥領域画像と前記通常二値化部から欠陥検査二値化画像を得る演算部と、
前記欠陥検査二値化画像を表示する画像表示部と、
を備える欠陥検査装置。
An image input unit for inputting an image to be inspected;
The input image is divided into overlapping regions, the inside of the region is binarized with a predetermined luminance threshold, the number of pixels having a predetermined value among the binarized pixels in the region is calculated, and the number of pixels is predetermined When the pixel number threshold is exceeded, the region as a defect region, a region binarization unit that generates a defect region image,
A normal binarization unit that binarizes the input image with a predetermined luminance threshold to obtain a binarized image;
A calculation unit for obtaining a defect inspection binarized image from the defect region image and the normal binarization unit,
An image display unit for displaying the defect inspection binarized image;
A defect inspection apparatus comprising:
前記領域の形状は矩形である請求項8又は9に記載の欠陥検査装置。   The defect inspection apparatus according to claim 8 or 9, wherein the shape of the region is a rectangle. 前記領域二値化部において、前記領域の大きさ及び重なり量を複数セット有し、各セットで前記入力画像を重なり合う領域に分割する請求項8〜10のいずれか1項に記載の欠陥検査装置。   The defect inspection apparatus according to claim 8, wherein the region binarization unit has a plurality of sets of sizes and overlap amounts of the regions, and divides the input image into overlapping regions in each set. . 前記領域二値化部において、前記輝度閾値及び前記画素数閾値は、複数の閾値が組合わされた複数のセットからなり、各セットを用いて得られた欠陥あり領域の組合わせにより前記欠陥領域画像を生成する請求項8〜11のいずれか1項に記載の欠陥検査装置。   In the region binarization unit, the luminance threshold value and the pixel number threshold value include a plurality of sets in which a plurality of threshold values are combined, and the defect region image is obtained by combining defective regions obtained by using each set. The defect inspection apparatus of any one of Claims 8-11 which produces | generates. 前記複数の閾値の組合わせは、前記輝度閾値が大きい場合は前記画素数閾値を小さく、前記輝度閾値が小さい場合は前記画素数閾値を大きくする組合わせを有する請求12に記載の欠陥検査装置。   The defect inspection apparatus according to claim 12, wherein the combination of the plurality of threshold values includes a combination of decreasing the pixel number threshold value when the luminance threshold value is large and increasing the pixel number threshold value when the luminance threshold value is small. 前記入力画像は輝度が正規化された画像である請求項8〜13のいずれか1項に記載の欠陥検査装置。
The defect inspection apparatus according to claim 8, wherein the input image is an image whose luminance is normalized.
JP2003300258A 2003-08-25 2003-08-25 Defect inspection method and apparatus Expired - Fee Related JP4139291B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003300258A JP4139291B2 (en) 2003-08-25 2003-08-25 Defect inspection method and apparatus
KR1020040065639A KR20050022320A (en) 2003-08-25 2004-08-20 Defect inspecting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300258A JP4139291B2 (en) 2003-08-25 2003-08-25 Defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2005069887A true JP2005069887A (en) 2005-03-17
JP4139291B2 JP4139291B2 (en) 2008-08-27

Family

ID=34405242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300258A Expired - Fee Related JP4139291B2 (en) 2003-08-25 2003-08-25 Defect inspection method and apparatus

Country Status (2)

Country Link
JP (1) JP4139291B2 (en)
KR (1) KR20050022320A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047465A (en) * 2007-08-15 2009-03-05 Yokogawa Electric Corp Image quality inspection device
JP2012184942A (en) * 2011-03-03 2012-09-27 Central Glass Co Ltd Method for detecting surface defect of glass fiber product
WO2016006039A1 (en) * 2014-07-08 2016-01-14 日産自動車株式会社 Defect detection device and production system
JP2017173251A (en) * 2016-03-25 2017-09-28 マークテック株式会社 Flaw detector, and method for detecting defect by flaw detector
JP2019120578A (en) * 2018-01-04 2019-07-22 株式会社リコー Evaluation device, image measurement device, evaluation method and evaluation program
JP2019211415A (en) * 2018-06-08 2019-12-12 アズビル株式会社 Appearance inspection device and method
JP2020003452A (en) * 2018-07-02 2020-01-09 大日本印刷株式会社 Inspection device, method for inspection, and program for inspection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024598B1 (en) * 2009-04-07 2011-03-31 부산대학교 산학협력단 Surface inspection method using algorithm calculating variance of variance on surface brightness
KR101504554B1 (en) * 2014-04-01 2015-03-20 한국기술교육대학교 산학협력단 Apparatus of optical measurement and method using the same
KR101669075B1 (en) * 2014-10-27 2016-10-27 충북대학교 산학협력단 System and method for inspecting defects
CN112505049B (en) * 2020-10-14 2021-08-03 上海互觉科技有限公司 Mask inhibition-based method and system for detecting surface defects of precision components
CN112651961A (en) * 2021-01-06 2021-04-13 华虹半导体(无锡)有限公司 Wafer defect identification method and device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047465A (en) * 2007-08-15 2009-03-05 Yokogawa Electric Corp Image quality inspection device
JP2012184942A (en) * 2011-03-03 2012-09-27 Central Glass Co Ltd Method for detecting surface defect of glass fiber product
US9805457B2 (en) 2014-07-08 2017-10-31 Nissan Motor Co., Ltd. Defect detection device and production system
CN106471333B (en) * 2014-07-08 2018-01-23 日产自动车株式会社 Flaw detection apparatus and production system
KR101730787B1 (en) 2014-07-08 2017-04-27 닛산 지도우샤 가부시키가이샤 Defect detection device and production system
JPWO2016006039A1 (en) * 2014-07-08 2017-04-27 日産自動車株式会社 Defect inspection equipment and production system
CN106471333A (en) * 2014-07-08 2017-03-01 日产自动车株式会社 Flaw detection apparatus and production system
US10339645B2 (en) 2014-07-08 2019-07-02 Nissan Motor Co., Ltd. Defect detection device and production system
WO2016006039A1 (en) * 2014-07-08 2016-01-14 日産自動車株式会社 Defect detection device and production system
JP2017173251A (en) * 2016-03-25 2017-09-28 マークテック株式会社 Flaw detector, and method for detecting defect by flaw detector
CN108885193A (en) * 2016-03-25 2018-11-23 码科泰克株式会社 Failure detector and the defect inspection method for utilizing failure detector
WO2017164338A1 (en) * 2016-03-25 2017-09-28 マークテック株式会社 Flaw detection apparatus and flaw detection method using flaw detection apparatus
JP2019120578A (en) * 2018-01-04 2019-07-22 株式会社リコー Evaluation device, image measurement device, evaluation method and evaluation program
JP7069724B2 (en) 2018-01-04 2022-05-18 株式会社リコー Evaluation device, image measurement device, evaluation method and evaluation program
JP2019211415A (en) * 2018-06-08 2019-12-12 アズビル株式会社 Appearance inspection device and method
JP7034840B2 (en) 2018-06-08 2022-03-14 アズビル株式会社 Visual inspection equipment and methods
JP2020003452A (en) * 2018-07-02 2020-01-09 大日本印刷株式会社 Inspection device, method for inspection, and program for inspection device

Also Published As

Publication number Publication date
KR20050022320A (en) 2005-03-07
JP4139291B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
KR100819412B1 (en) Defect detecting method and defect detecting device
JP4139291B2 (en) Defect inspection method and apparatus
US8610770B2 (en) Image sensing apparatus and method for sensing target that has defective portion region
TWI512284B (en) Bubble inspection system for glass
JP2001184510A (en) Defect detecting method
JP2009036582A (en) Inspection method, inspection device and inspection program of plane display panel
JP4320990B2 (en) Screen defect detection method and apparatus, and screen defect detection program
JPH0961138A (en) Crack extraction apparatus
JP2005165387A (en) Method and device for detecting stripe defective of picture and display device
JP4318776B2 (en) Nonuniformity inspection method and apparatus
JP2006226837A (en) Method and apparatus for inspecting stain
JP2001028059A (en) Method and device for color unevenness inspection
JP4403036B2 (en) Soot detection method and apparatus
TWI510776B (en) Bubble inspection processing method for glass
JP2004219176A (en) Method and apparatus for detecting pixel irregulality failing
JP2711649B2 (en) Surface scratch detection method for inspection object
JP4036048B2 (en) Defect identification method
JP2004286708A (en) Defect detection apparatus, method, and program
JP2007198850A (en) Irregularity inspection method and apparatus
JP3753234B2 (en) Defect detection method
JP2009074828A (en) Flaw detection method and flaw detector
JP6043178B2 (en) Automatic unevenness detection apparatus and automatic unevenness detection method for flat panel display
JPH0735699A (en) Method and apparatus for detecting surface defect
JP5603964B2 (en) Flat panel display inspection method, inspection apparatus, and inspection program
JP3941403B2 (en) Image density unevenness detection method and inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080606

R151 Written notification of patent or utility model registration

Ref document number: 4139291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees