JP2005068261A - Propylene-based copolymer - Google Patents

Propylene-based copolymer Download PDF

Info

Publication number
JP2005068261A
JP2005068261A JP2003298336A JP2003298336A JP2005068261A JP 2005068261 A JP2005068261 A JP 2005068261A JP 2003298336 A JP2003298336 A JP 2003298336A JP 2003298336 A JP2003298336 A JP 2003298336A JP 2005068261 A JP2005068261 A JP 2005068261A
Authority
JP
Japan
Prior art keywords
propylene
copolymer
olefin
polymerization
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003298336A
Other languages
Japanese (ja)
Other versions
JP4097581B2 (en
Inventor
Hideji Matsumura
松村  秀司
Satoshi Hashizume
橋詰  聡
Yoshio Sasaki
芳雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003298336A priority Critical patent/JP4097581B2/en
Publication of JP2005068261A publication Critical patent/JP2005068261A/en
Application granted granted Critical
Publication of JP4097581B2 publication Critical patent/JP4097581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a propylene-α-olefin copolymer of high transparency, slight in solvent-solubles and being such as to be usable as a material for bottles. <P>SOLUTION: This polypropylene-based copolymer is such one that at least one copolymer selected from (X) a propylene homopolymer, (Y) a copolymer of propylene and ethylene, (Z) a copolymer of propylene and a ≥4C α-olefin and (W) a copolymer of propylene, ethylene and the ≥4C α-olefin is homogeneously dispersed. The copolymer has the following properties: 1≤MFR≤100 g/10min(230°C, 2,160 g), Tm≤120°C, and Mw/Mn≤3 determined by gel permeation chromatography. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロピレン共重合体に関するものであり、射出ブロー用途に好適に用いられるプロピレン系共重合体に関する。   The present invention relates to a propylene copolymer, and relates to a propylene-based copolymer suitably used for injection blow applications.

ポリプロピレンは機械的強度、電気絶縁性が高く、食品衛生性、耐化学薬品性、および光学特性に優れていることから、食品包装、または産業用のシート、フィルム、もしくはボトルなどに使用されている。   Polypropylene is used in food packaging or industrial sheets, films, or bottles because of its high mechanical strength, electrical insulation, and excellent food hygiene, chemical resistance, and optical properties. .

ポリプロピレンは、結晶性のポリマーであるため、ボトル用等の厚肉成形品としては、適度な透明性が必要な分野、またはあまり透明性が必要とされない分野に用いられている。透明性を良好にする手法として、一般的にプロピレンにエチレンあるいは炭素数4〜10のα−オレフィンを共重合させ、プロピレン・α−オレフィン共重合体とする手法がある。この場合、共重合させるα−オレフィンの成分を増加させることにより、透明性は良好になることが知られているが、α−オレフィン成分の増加は、溶媒に可溶な成分を増加させ、ボトル内容物を汚染させる場合もある。また、従来公知である担持型チタン触媒は、分子量分布が広くなり、低分子量成分が多いため、溶媒可溶分が多く、透明性に優れたボトル用途には不適であった。このため、透明性に優れ、溶媒可溶成分の少ない、ボトル材として用いることができるようなプロピレン・α−オレフィン共重合体の出現が望まれている。
Since polypropylene is a crystalline polymer, it is used as a thick molded product for bottles or the like in fields where moderate transparency is required or where transparency is not required. As a technique for improving the transparency, there is generally a technique in which propylene is copolymerized with ethylene or an α-olefin having 4 to 10 carbon atoms to form a propylene / α-olefin copolymer. In this case, it is known that the transparency is improved by increasing the α-olefin component to be copolymerized. However, the increase of the α-olefin component increases the component soluble in the solvent, and the bottle. The contents may be contaminated. Further, the conventionally known supported titanium catalysts have a wide molecular weight distribution and a large amount of low molecular weight components, so that they have a large amount of solvent-soluble components and are not suitable for bottles having excellent transparency. For this reason, the appearance of a propylene / α-olefin copolymer that is excellent in transparency, has a small amount of solvent-soluble components, and can be used as a bottle material is desired.

解決しようとする問題点は、透明性に優れ、溶媒可溶成分の少ない、ボトル材として用いることができるようなプロピレン・α−オレフィン共重合体を提供することである。   The problem to be solved is to provide a propylene / α-olefin copolymer that is excellent in transparency, has a small amount of solvent-soluble components, and can be used as a bottle material.

本発明のプロピレン系共重合体は、(X)プロピレンホモポリマー、および(Y)プロピレンとエチレンから得られる共重合体、並びに(Z)プロピレンと炭素数4以上のα−オレフィンから得られる共重合体、および(W)プロピレンとエチレンと炭素数4以上のα−オレフィンから得られる共重合体から選ばれる少なくても1種の共重合体、が均一に分散されたポリプロピレンであって、1≦MFR≦100g/10min(230℃、2160g)、Tm≦120℃、ゲルパーミエイションクロマトグラフィーで測定したMw/Mn≦3であることを特徴とするポリプロピレン系共重合体であり、管状反応器を用いるプロピレン単独重合を第1工程とする連続多段重合によって製造され、好ましくは、次の第1工程〜第3工程を連続的に実施することによって得られるポリプロピレン系共重合体である。
(第1工程)管状反応器を用い、5〜40℃の重合温度にてプロピレン単独重合を行い、プロピレンホモポリマー(X)を全重量の2〜15重量%を製造する工程。
(第2工程)プロピレンとエチレンを共重合し、プロピレンとエチレンに由来する構成単位を有する共重合体(Y)を製造する工程。
(第3工程)プロピレンと、エチレンおよび炭素数4以上のα−オレフィンから選ばれる少なくても1種のオレフィンを共重合し、プロピレンとエチレンに由来する構成単位を有する共重合体(Y)、プロピレンと炭素数4以上のα−オレフィンに由来する構成単位を有する共重合体(Z)およびプロピレン、炭素数4以上のα−オレフィンおよびエチレンに由来する構成単位を有する共重合体(W)の少なくても1種の共重合体を、前記第2工程で製造した、共重合体(Y)との合計量が、ポリプロピレン共重合体全重量の98〜85重量%となるように製造する工程。
The propylene-based copolymer of the present invention comprises (X) a propylene homopolymer, (Y) a copolymer obtained from propylene and ethylene, and (Z) a copolymer obtained from propylene and an α-olefin having 4 or more carbon atoms. And (W) a polypropylene in which at least one copolymer selected from a copolymer obtained from propylene, ethylene, and an α-olefin having 4 or more carbon atoms is uniformly dispersed, and 1 ≦ A polypropylene copolymer characterized by MFR ≦ 100 g / 10 min (230 ° C., 2160 g), Tm ≦ 120 ° C., and Mw / Mn ≦ 3 measured by gel permeation chromatography. Produced by continuous multistage polymerization in which propylene homopolymerization is used as the first step, preferably, the following first to third steps are continuously performed It is a polypropylene copolymer obtained by carrying out.
(First step) A step of producing a propylene homopolymer (X) in an amount of 2 to 15% by weight based on the propylene homopolymer (X) using a tubular reactor at a polymerization temperature of 5 to 40 ° C.
(Second step) propylene and ethylene were copolymerized, the step of producing a copolymer having a constituent unit derived from propylene and ethylene (Y 1).
(Third Step) A copolymer (Y 2 ) having a structural unit derived from propylene and ethylene by copolymerizing propylene with at least one olefin selected from ethylene and an α-olefin having 4 or more carbon atoms. , A copolymer (Z) having a structural unit derived from propylene and an α-olefin having 4 or more carbon atoms, and a copolymer (W) having a structural unit derived from propylene, an α-olefin having 4 or more carbon atoms and ethylene Of at least one copolymer produced in the second step so that the total amount with the copolymer (Y 1 ) is 98 to 85% by weight of the total weight of the polypropylene copolymer. Process.

また、第3工程で用いる炭素数4以上のオレフィンは、1−ブテン、1−ヘキセン、および4−メチルペンテン−1から選ばれる少なくても1種であることが好ましい。本発明に係わるプロピレン系共重合体の製造においては、第2工程、第3工程においてプロピレンと共重合モノマーの種類、重合量を自由に制御でき、ポリマーの組成分布を自在にコントロールできるため、透明性に優れ、低溶媒抽出量の新たなプロピレン・α−オレフィン共重合体を製造できることも見出し、本発明に至った。   The olefin having 4 or more carbon atoms used in the third step is preferably at least one selected from 1-butene, 1-hexene, and 4-methylpentene-1. In the production of the propylene-based copolymer according to the present invention, it is possible to freely control the kind of propylene and copolymerization monomer and the polymerization amount in the second step and the third step, and the polymer composition distribution can be freely controlled. The present inventors have also found that a new propylene / α-olefin copolymer having excellent properties and a low solvent extraction amount can be produced, and the present invention has been achieved.

本発明のプロピレン系共重合体は、透明性に優れ、低溶媒可溶量の優れたボトル材として用いることができる。   The propylene-based copolymer of the present invention is excellent in transparency and can be used as an excellent bottle material having a low solvent solubility.

本発明のプロピレン系共重合体は、
(X)メタロセン触媒存在下で得られるプロピレンホモポリマー、および
(Y)メタロセン触媒存在下でプロピレンとエチレンから得られる共重合体、並びに
(Z)メタロセン触媒存在下でプロピレンと炭素数4以上のα−オレフィンから得られる共重体、および
(W)メタロセン触媒存在下でプロピレンとエチレンと炭素数4以上のα−オレフィンから得られる共重体、から選ばれる少なくても1種の共重合体、
が均一に分散されたポリプロピレン共重合体である。より具体的には、本発明のプロピレン系共重合体は、[1]プロピレンホモポリマー(X)と共重合体(Y)とから構成される場合、[2]プロピレンホモポリマー(X)と共重合体(Y)と共重合体(Z)から構成される場合、[3] プロピレンホモポリマー(X)と共重合体(Y)と共重合体(W)から構成される場合、[4] プロピレンホモポリマー(X)と共重合体(Y)と共重合体(Z)と共重合体(W)から構成される場合が有り得る。本発明のプロピレン系共重合体は、上記ポリマーが均一分散していることを特徴としている。なお、均一分散とは、分子鎖レベルで分子鎖が絡み合っていることを示す。
The propylene-based copolymer of the present invention is
(X) a propylene homopolymer obtained in the presence of a metallocene catalyst, (Y) a copolymer obtained from propylene and ethylene in the presence of a metallocene catalyst, and (Z) an α having 4 or more carbon atoms in the presence of a metallocene catalyst. A copolymer obtained from an olefin, and (W) a copolymer obtained from propylene, ethylene and an α-olefin having 4 or more carbon atoms in the presence of a metallocene catalyst, and at least one copolymer selected from
Is a polypropylene copolymer in which is uniformly dispersed. More specifically, when the propylene-based copolymer of the present invention is composed of [1] propylene homopolymer (X) and copolymer (Y), [2] propylene homopolymer (X) is copolymerized. When composed of a polymer (Y) and a copolymer (Z), [3] When composed of a propylene homopolymer (X), a copolymer (Y), and a copolymer (W), [4] There may be a case where it is composed of propylene homopolymer (X), copolymer (Y), copolymer (Z) and copolymer (W). The propylene copolymer of the present invention is characterized in that the polymer is uniformly dispersed. Uniform dispersion means that molecular chains are intertwined at the molecular chain level.

本発明のポリプロピレン系共重合体のメルトフローレート(MFR)は、通常、1≦MFR≦100g/10min(230℃、2160g)、好ましくは、5≦MFR≦50g/10min、特に好ましくは、10≦MFR≦35g/10minである。本発明のポリプロピレン系共重合体のDSCで測定される融点(Tm)は、Tm≦120℃であり、またゲルパーミエイションクロマトグラフィー(GPC)で測定される重量平均分子量(Mw)および数平均分子量(Mn)から算出される分子量分布(Mw/Mn)は通常Mw/Mn≦3、好ましくは、Mw/Mn≦2.8、特に好ましくは、Mw/Mn≦2.6である。   The melt flow rate (MFR) of the polypropylene copolymer of the present invention is usually 1 ≦ MFR ≦ 100 g / 10 min (230 ° C., 2160 g), preferably 5 ≦ MFR ≦ 50 g / 10 min, particularly preferably 10 ≦. MFR ≦ 35 g / 10 min. The melting point (Tm) measured by DSC of the polypropylene copolymer of the present invention is Tm ≦ 120 ° C., and the weight average molecular weight (Mw) and number average measured by gel permeation chromatography (GPC). The molecular weight distribution (Mw / Mn) calculated from the molecular weight (Mn) is usually Mw / Mn ≦ 3, preferably Mw / Mn ≦ 2.8, and particularly preferably Mw / Mn ≦ 2.6.

本発明のプロピレン系共重合体を構成する、プロピレンホモポリマー(X)、プロピレンとエチレンから得られる共重合体(Y)、プロピレンと炭素数4以上のα−オレフィンから得られる共重合体(Z)およびプロピレンとエチレンと炭素数4以上のα−オレフィンから得られる共重合体(W)はいずれも、メタロセン触媒成分の存在下に前記モノマーを重合することによって得られる。本発明に係わる、メタロセン触媒は、
(A)遷移金属化合物
(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物、さらに必要に応じて、
(C)粒子状担体
から構成されることが好ましい。
以下、各成分について具体的に説明する。
The propylene homopolymer (X), the copolymer (Y) obtained from propylene and ethylene, the copolymer obtained from propylene and an α-olefin having 4 or more carbon atoms (Z) constituting the propylene-based copolymer of the present invention And a copolymer (W) obtained from propylene, ethylene and an α-olefin having 4 or more carbon atoms can be obtained by polymerizing the monomer in the presence of a metallocene catalyst component. The metallocene catalyst according to the present invention is
(A) transition metal compounds (B) (B-1) organometallic compounds, (B-2) organoaluminum oxy compounds, and (B-3) compounds that react with transition metal compounds (A) to form ion pairs At least one compound selected from: and, if necessary,
(C) It is preferably composed of a particulate carrier.
Hereinafter, each component will be specifically described.

(A)遷移金属化合物
本発明で用いられる(A)遷移金属化合物として、具体的には下記一般式のような遷移金属化合物が用いられる。
(A)一般式:ZR“Z‘MQ
一般式中、(a)ZとZ‘は、同じでも異なっていても良く、シクロペンタジエニル環を含むπ-結合性配位子を表し、(b)R“は、架橋部を表し、(c)Mは、第4族遷移金属化合物を表し、(d)Qは、直鎖または分枝鎖アルキル基、アリール基、アルケニル基、アルキルアリール基、アリールアルキル基またはハロゲン原子を表し、(e)kは、1から3の整数であり、(f)mは、0から3の整数である。
(A) Transition metal compound As the (A) transition metal compound used in the present invention, specifically, a transition metal compound represented by the following general formula is used.
(A) General formula: ZR " m Z 'MQ k
In the general formula, (a) Z and Z ′ may be the same or different, each represents a π-bonding ligand containing a cyclopentadienyl ring, (b) R ″ represents a bridge portion, (C) M represents a Group 4 transition metal compound, (d) Q represents a linear or branched alkyl group, aryl group, alkenyl group, alkylaryl group, arylalkyl group or halogen atom, e) k is an integer from 1 to 3, and (f) m is an integer from 0 to 3.

ここで、ZとZ‘は整数mの違いによって、構造が次のように分類される。   Here, the structure of Z and Z ′ is classified as follows according to the difference of the integer m.

Figure 2005068261
Figure 2005068261

ここで、Rは直鎖または分枝鎖アルキル基、アリール基、アルケニル基、アルキルアリール基、アリールアルキル基などを表す。また、隣接したRは互いに結合して環を形成してもよい。   Here, R represents a linear or branched alkyl group, an aryl group, an alkenyl group, an alkylaryl group, an arylalkyl group, or the like. Further, adjacent Rs may be bonded to each other to form a ring.

次にシクロペンタジエニル環について具体例を示すと、 Cp, MeCp, EtCp, i-PrCp, n-BuCp, t-BuCp, 1,3-Me2Cp, 1-t-Bu-3-MeCp, 1,3,4-Me3Cp, Me5Cp, Ind, 2-MeInd, 2-EtInd, 3-MeInd, 3-t-BuInd, 2-i-PrInd, 2,4-Me2Ind, 2,4,7-Me3Ind, 2-Me-4-i-PrInd, 2-Me-4-PhInd, 2-Me-4-(1-Naph)Ind, 2-Me-Benz[e]Ind, Flu, 2,7-Me2Flu, 2,7-t-Bu2Flu, 3,6-t-Bu2Fluここで、略号は以下の(置換)シクロペンタジエニル基を意味する。 Next, specific examples of the cyclopentadienyl ring include Cp, MeCp, EtCp, i-PrCp, n-BuCp, t-BuCp, 1,3-Me 2 Cp, 1-t-Bu-3-MeCp, 1,3,4-Me 3 Cp, Me 5 Cp, Ind, 2-MeInd, 2-EtInd, 3-MeInd, 3-t-BuInd, 2-i-PrInd, 2,4-Me 2 Ind, 2, 4,7-Me 3 Ind, 2-Me-4-i-PrInd, 2-Me-4-PhInd, 2-Me-4- (1-Naph) Ind, 2-Me-Benz [e] Ind, Flu , 2,7-Me2Flu, 2,7-t-Bu 2 Flu, 3,6-t-Bu 2 Flu Here, the abbreviations mean the following (substituted) cyclopentadienyl groups.

Figure 2005068261
Figure 2005068261

特にQ=Cl、k=2の場合について、以下に具体例を示す。
Cp2ZrCl2, (MeCp)2ZrCl2, (EtCp)2ZrCl2, (n-BuCp)2ZrCl2, (Me5Cp)2ZrCl2, Me2Si(Ind)2ZrCl2, Me2Si(2-MeInd)2ZrCl2, Et(2,4,7-Me3Ind)2ZrCl2, Et(2,4,5,6,7-Me5Ind)2ZrCl2, Me2Si(2-Me-4-PhInd)2ZrCl2, Me2Si(2-Me-4-PhInd)(2-i-PrInd)ZrCl2, Me2Si(2-Me-(1-Naph)Ind)2ZrCl2, Me2C(Cp)2ZrCl2, Me2C(Cp)(Ind)ZrCl2, Me2C(Cp)(2-MeInd)ZrCl2, Me2C(Cp)(3-MeInd)ZrCl2, Me2C(Cp)(3-t-BuInd)ZrCl2, Me2C(Cp)(Flu)ZrCl2, Me2C(Cp)(2,7-Me2Flu)ZrCl2, Me2C(Cp)(2,7-t-Bu2Flu)ZrCl2, Me2C(3-MeCp)2ZrCl2, Me2C(3-MeCp)(Ind)ZrCl2, Me2C(3-MeCp)(2-MeInd)ZrCl2, Me2C(3-MeCp)(3-MeInd)ZrCl2, Me2C(3-MeCp)(3-t-BuInd)ZrCl2, Me2C(3-MeCp)(Flu)ZrCl2, Me2C(3-MeCp)(2,7-Me2Flu)ZrCl2, Me2C(3-MeCp)(2,7-t-Bu2Flu)ZrCl2, Me2C(3-t-BuCp)2ZrCl2, Me2C(3-t-BuCp)(Ind)ZrCl2, Me2C(3-t-BuCp)(2-MeInd)ZrCl2, Me2C(3-t-BuCp)(3-MeInd)ZrCl2, Me2C(3-t-BuCp)(3-t-BuInd)ZrCl2, Me2C(3-t-BuCp)(Flu)ZrCl2, Me2C(3-t-BuCp)(2,7-Me2Flu)ZrCl2,Me2C(3-t-BuCp)(2,7-t-Bu2Flu)ZrCl2, Me2C(3-t-Bu-5-MeCp)(Flu)ZrCl2, Me2C(3-t-Bu-5-MeCp)(2,7-t-Bu2Flu)ZrCl2, Me2C(3-t-Bu-5-MeCp)(3,6-t-Bu2Flu)ZrCl2,Ph2C(Cp)2ZrCl2, Ph2C(Cp)(Ind)ZrCl2, Ph2C(Cp)(2-MeInd)ZrCl2, Ph2C(Cp)(3-MeInd)ZrCl2, Ph2C(Cp)(3-t-BuInd)ZrCl2, Ph2C(Cp)(Flu)ZrCl2, Ph2C(Cp)(2,7-Me2Flu)ZrCl2, Ph2C(Cp)(2,7-t-Bu2Flu)ZrCl2, Ph2C(3-MeCp)2ZrCl2, Ph2C(3-MeCp)(Ind)ZrCl2, Ph2C(3-MeCp)(2-MeInd)ZrCl2, Ph2C(3-MeCp)(3-MeInd)ZrCl2, Ph2C(3-MeCp)(3-t-BuInd)ZrCl2, Ph2C(3-MeCp)(Flu)ZrCl2, Ph2C(3-MeCp)(2,7-Me2Flu)ZrCl2, Ph2C(3-MeCp)(2,7-t-Bu2Flu)ZrCl2, Ph2C(3-t-BuCp)2ZrCl2, Ph2C(3-t-BuCp)(Ind)ZrCl2, Ph2C(3-t-BuCp)(2-MeInd)ZrCl2, Ph2C(3-t-BuCp)(3-MeInd)ZrCl2, Ph2C(3-t-BuCp)(3-t-BuInd)ZrCl2, Ph2C(3-t-BuCp)(Flu)ZrCl2, Ph2C(3-t-BuCp)(2,7-Me2Flu)ZrCl2, Ph2C(3-t-BuCp)(2,7-t-Bu2Flu)ZrCl2, Me2C(Ind)(Flu)ZrCl2, Me2C(3-MeInd)(Flu)ZrCl2, Me2C(3-t-BuInd)(Flu)ZrCl2, Me2C(3-t-BuInd)2ZrCl2, Me2C(3-t-BuInd)(2,7-t-Bu2Flu)ZrCl2, Me2Si(Ind)(Flu)ZrCl2, Me2Si(3-MeInd)(Flu)ZrCl2, Me2Si(3-t-BuInd)(Flu)ZrCl2, Me2Si(3-t-BuInd)2ZrCl2, Me2Si(3-t-BuInd)(2,7-t-Bu2Flu)ZrCl2, Ph2C(Ind)(Flu)ZrCl2, Ph2C(3-MeInd)(Flu)ZrCl2, Ph2C(3-t-BuInd)(Flu)ZrCl2, Ph2C(3-t-BuInd)2ZrCl2, Ph2C(3-t-BuInd)(2,7-t-Bu2Flu)ZrCl2
A specific example will be given below particularly in the case of Q = Cl and k = 2.
Cp 2 ZrCl 2 , (MeCp) 2 ZrCl 2 , (EtCp) 2 ZrCl 2 , (n-BuCp) 2 ZrCl 2 , (Me 5 Cp) 2 ZrCl 2 , Me 2 Si (Ind) 2 ZrCl 2 , Me 2 Si (2-MeInd) 2 ZrCl 2 , Et (2,4,7-Me 3 Ind) 2 ZrCl 2 , Et (2,4,5,6,7-Me 5 Ind) 2 ZrCl 2 , Me 2 Si (2 -Me-4-PhInd) 2 ZrCl 2 , Me 2 Si (2-Me-4-PhInd) (2-i-PrInd) ZrCl 2 , Me 2 Si (2-Me- (1-Naph) Ind) 2 ZrCl 2 , Me 2 C (Cp) 2 ZrCl 2 , Me 2 C (Cp) (Ind) ZrCl 2 , Me 2 C (Cp) (2-MeInd) ZrCl 2 , Me 2 C (Cp) (3-MeInd) ZrCl 2 , Me 2 C (Cp) (3-t-BuInd) ZrCl 2 , Me 2 C (Cp) (Flu) ZrCl 2 , Me 2 C (Cp) (2,7-Me 2 Flu) ZrCl 2 , Me 2 C (Cp) (2,7-t-Bu 2 Flu) ZrCl 2 , Me 2 C (3-MeCp) 2 ZrCl 2 , Me 2 C (3-MeCp) (Ind) ZrCl 2 , Me 2 C (3- MeCp) (2-MeInd) ZrCl 2 , Me2C (3-MeCp) (3-MeInd) ZrCl 2 , Me 2 C (3-MeCp) (3-t-BuInd) ZrCl 2 , Me 2 C (3-MeCp) (Flu) ZrCl 2 , Me 2 C (3-MeCp) (2,7-Me 2 Flu) ZrCl 2 , Me 2 C (3-MeCp) (2,7-t-Bu 2 Flu) ZrCl 2 , Me 2 C (3-t-BuCp) 2 ZrCl 2 , Me 2 C (3-t-BuCp) (Ind) ZrCl 2 , Me 2 C (3-t-BuCp) (2-MeInd) ZrCl 2 , Me 2 C ( 3-t-BuCp) (3-MeInd) ZrCl 2 , Me 2 C (3-t-BuCp) (3-t-BuInd) ZrCl 2 , Me 2 C (3-t-BuCp) (Flu) ZrCl 2 , Me 2 C (3-t-B uCp) (2,7-Me 2 Flu) ZrCl 2 , Me 2 C (3-t-BuCp) (2,7-t-Bu 2 Flu) ZrCl 2 , Me 2 C (3-t-Bu-5- MeCp) (Flu) ZrCl 2 , Me 2 C (3-t-Bu-5-MeCp) (2,7-t-Bu 2 Flu) ZrCl 2 , Me 2 C (3-t-Bu-5-MeCp) (3,6-t-Bu 2 Flu) ZrCl 2 , Ph 2 C (Cp) 2 ZrCl 2 , Ph 2 C (Cp) (Ind) ZrCl 2 , Ph 2 C (Cp) (2-MeInd) ZrCl 2 , Ph 2 C (Cp) (3-MeInd) ZrCl 2 , Ph 2 C (Cp) (3-t-BuInd) ZrCl 2 , Ph 2 C (Cp) (Flu) ZrCl 2 , Ph 2 C (Cp) (2 , 7-Me 2 Flu) ZrCl 2 , Ph 2 C (Cp) (2,7-t-Bu 2 Flu) ZrCl 2 , Ph 2 C (3-MeCp) 2 ZrCl 2 , Ph 2 C (3-MeCp) (Ind) ZrCl 2 , Ph 2 C (3-MeCp) (2-MeInd) ZrCl 2 , Ph 2 C (3-MeCp) (3-MeInd) ZrCl 2 , Ph 2 C (3-MeCp) (3-t -BuInd) ZrCl 2 , Ph 2 C (3-MeCp) (Flu) ZrCl 2 , Ph 2 C (3-MeCp) (2,7-Me 2 Flu) ZrCl 2 , Ph 2 C (3-MeCp) (2 , 7-t-Bu 2 Flu) ZrCl 2 , Ph 2 C (3-t-BuCp) 2 ZrCl 2 , Ph 2 C (3-t-BuCp) (Ind) ZrCl 2 , Ph 2 C (3-t- BuCp) (2-MeInd) ZrCl 2 , Ph 2 C (3-t-BuCp) (3-MeInd) ZrCl 2 , Ph 2 C (3-t-BuCp) (3-t-BuInd) ZrCl 2 , Ph 2 C (3-t-BuCp) (Flu) ZrCl 2 , Ph 2 C (3-t-BuCp) (2,7-Me 2 Flu) ZrCl 2 , Ph 2 C (3-t-BuCp) (2,7 -t-Bu 2 Flu) ZrCl 2 , Me 2 C (Ind) (Flu) ZrCl 2 , Me 2 C (3-MeInd) (Flu) ZrCl 2 , M e 2 C (3-t-BuInd) (Flu) ZrCl 2 , Me 2 C (3-t-BuInd) 2 ZrCl 2 , Me 2 C (3-t-BuInd) (2,7-t-Bu 2 Flu ) ZrCl 2 , Me 2 Si (Ind) (Flu) ZrCl 2 , Me 2 Si (3-MeInd) (Flu) ZrCl 2 , Me 2 Si (3-t-BuInd) (Flu) ZrCl 2 , Me 2 Si ( 3-t-BuInd) 2 ZrCl 2 , Me 2 Si (3-t-BuInd) (2,7-t-Bu 2 Flu) ZrCl 2 , Ph 2 C (Ind) (Flu) ZrCl 2 , Ph 2 C ( 3-MeInd) (Flu) ZrCl 2 , Ph 2 C (3-t-BuInd) (Flu) ZrCl 2 , Ph 2 C (3-t-BuInd) 2 ZrCl 2 , Ph 2 C (3-t-BuInd) (2,7-t-Bu 2 Flu) ZrCl 2

(B-1)有機金属化合物
本発明で用いられる(B-1)有機金属化合物として、具体的には下記のような第1、2族および第12、13族の有機金属化合物が用いられる。
(B-1a)一般式:R Al(OR
(式中、RおよびRは、互いに同一でも異なっていてもよく、炭素数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)で表される有機アルミニウム化合物。このような化合物の具体例として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジイソブチルアルミニウムハイドライドなどを例示することができる。
(B-1b)一般式:MAlR
(式中、MはLi、NaまたはKを示し、Rは炭素数が1〜15、好ましくは1〜4の炭化水素基を示す)で表される第1族金属とアルミニウムとの錯アルキル化物。このような化合物としては、LiAl(C、LiAl(C15などを例示することができる。
(B-1c)一般式:R
(式中、RおよびRは、互いに同一でも異なっていてもよく、炭素数が1〜15、好ましくは1〜4の炭化水素基を示し、MはMg、ZnまたはCdである)で表される第2族または第12族金属のジアルキル化合物。上記の有機金属化合物(B−1)のなかでは、有機アルミニウム化合物が好ましい。また、このような有機金属化合物(B-1)は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
(B-1) Organometallic Compound As the (B-1) organometallic compound used in the present invention, specifically, the following Group 1, 2, and 12, 13 organometallic compounds are used.
(B-1a) General formula: R a m Al (OR b ) n H p X q
(In the formula, R a and R b may be the same or different from each other, each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X represents a halogen atom, and m represents 0 < m ≦ 3, n is 0 ≦ n <3, p is a number of 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3). Specific examples of such compounds include trimethylaluminum, triethylaluminum, triisobutylaluminum, diisobutylaluminum hydride and the like.
(B-1b) General formula: M 2 AlR a 4
(Wherein, M 2 represents a Li, Na or K, R a is a carbon number 1 to 15, preferably a 1-4 hydrocarbon group) complex of Group 1 metal and aluminum represented by Alkylates. Examples of such compounds include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
(B-1c) General formula: R a R b M 3
(In the formula, R a and R b may be the same or different from each other, and each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and M 3 is Mg, Zn or Cd) A dialkyl compound of a Group 2 or Group 12 metal represented by: Of the organometallic compounds (B-1), organoaluminum compounds are preferred. Moreover, such an organometallic compound (B-1) may be used individually by 1 type, and may be used in combination of 2 or more type.

(B-2)有機アルミニウムオキシ化合物
本発明で用いられる(B-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
(B-2) Organoaluminum Oxy Compound The organoaluminum oxy compound (B-2) used in the present invention may be a conventionally known aluminoxane, or as exemplified in JP-A-2-78687. It may be a benzene-insoluble organoaluminum oxy compound.

従来公知のアルミノキサンは、たとえば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(1)吸着水を含有する化合物または結晶水を含有する塩類、たとえば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(2)ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
A conventionally well-known aluminoxane can be manufactured, for example with the following method, and is normally obtained as a solution of a hydrocarbon solvent.
(1) Compounds containing adsorbed water or salts containing water of crystallization, such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc. A method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the hydrocarbon medium suspension of
(2) A method of allowing water, ice or water vapor to act directly on an organoaluminum compound such as trialkylaluminum in a medium such as benzene, toluene, diethyl ether or tetrahydrofuran.
(3) A method in which an organotin oxide such as dimethyltin oxide or dibutyltin oxide is reacted with an organoaluminum compound such as trialkylaluminum in a medium such as decane, benzene, or toluene.

なお、上記アルミノキサンは、少量の有機金属成分を含有してもよい。また、回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同一の有機アルミニウム化合物を挙げることができる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。   The aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent. Specific examples of the organoaluminum compound used when preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to (B-1a). Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable. The above organoaluminum compounds are used singly or in combination of two or more.

また、本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。これらの有機アルミニウムオキシ化合物(B-2)は、1種単独でまたは2種以上組み合せて用いられる。   The benzene-insoluble organoaluminum oxy compound used in the present invention has an Al component dissolved in benzene at 60 ° C. of usually 10% or less, preferably 5% or less, particularly preferably 2% or less in terms of Al atoms. That is, those which are insoluble or hardly soluble in benzene are preferred. These organoaluminum oxy compounds (B-2) are used singly or in combination of two or more.

(B-3)遷移金属化合物と反応してイオン対を形成する化合物
本発明で用いられる(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物(以下、「イオン化イオン性化合物」という。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、USP−5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(B-3)は、1種単独または2種以上組み合せて用いられる。本発明の遷移金属化合物をオレフィン重合用触媒として使用する場合、助触媒成分としてのメチルアルミノキサンなどの有機アルミニウムオキシ化合物(B-2)を併用すると、オレフィン化合物に対して特に高い重合活性を示す。
(B-3) A compound that reacts with a transition metal compound to form an ion pair (B-3) A compound that reacts with a transition metal compound (A) to form an ion pair (hereinafter referred to as “ionized ions”) Examples of such compounds are as follows: JP-A-1-501950, JP-A-1-502016, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703, Examples include Lewis acids, ionic compounds, borane compounds, and carborane compounds described in Kaihei 3-207704, USP-5321106, and the like. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned. Such ionized ionic compounds (B-3) are used singly or in combination of two or more. When the transition metal compound of the present invention is used as an olefin polymerization catalyst, when an organoaluminum oxy compound (B-2) such as methylaluminoxane as a co-catalyst component is used in combination, the olefin compound exhibits a particularly high polymerization activity.

また、本発明に係るオレフィン重合用触媒は、上記遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-2)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)とともに、必要に応じて担体(C)を用いることもできる。   Further, the olefin polymerization catalyst according to the present invention comprises the above transition metal compound (A), (B-1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-2) an ionized ionic compound. A carrier (C) can be used together with at least one selected compound (B), if necessary.

(C)担体
本発明で用いられる(C)担体は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
(C) Carrier The carrier (C) used in the present invention is an inorganic or organic compound and is a granular or particulate solid. Among these, as the inorganic compound, porous oxides, inorganic chlorides, clays, clay minerals or ion-exchangeable layered compounds are preferable.

多孔質酸化物として、具体的にはSiO、Al、MgO、ZrO、B、CaO、ZnO、BaO、ThOなど、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、SiO−MgO、SiO−Al、SiO−ZrO、SiO−V、SiO−Cr、SiO−ZrO−MgOなどを使用することができる。これらのうち、SiOおよび/またはAlを主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が5〜300μm、より好ましくは10〜200μmであって、比表面積が50〜1000m/g、より好ましくは100〜700m/gの範囲にあり、細孔容積が0.3〜3.0cm/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成して使用される。 As the porous oxide, specifically, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, etc., or a composite or mixture containing these is used, for example using natural or synthetic zeolites, SiO 2 -MgO, etc. SiO 2 -Al 2 O 3, SiO 2 -ZrO 2, SiO 2 -V 2 O 5, SiO 2 -Cr 2 O 3, SiO 2 -ZrO 2 -MgO can do. Of these, those containing SiO 2 and / or Al 2 O 3 as main components are preferred. Such porous oxides have different properties depending on the type and production method, but the carrier preferably used in the present invention has a particle size of 5 to 300 μm, more preferably 10 to 200 μm, and a specific surface area of 50 to 1000 m 2 / g, more preferably in the range of 100~700m 2 / g, it is desirable that the pore volume is in the range of 0.3~3.0cm 3 / g. Such a carrier is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary.

無機塩化物としては、MgCl、MgBr、MnCl、MnBr等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。 As the inorganic chloride, MgCl 2 , MgBr 2 , MnCl 2 , MnBr 2 or the like is used. The inorganic chloride may be used as it is or after being pulverized by a ball mill or a vibration mill. In addition, an inorganic chloride dissolved in a solvent such as alcohol and then precipitated in a fine particle form by a precipitating agent may be used.

本発明で用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方最密パッキング型、アンチモン型、CdCl型、CdI型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO・HO、α−Zr(HPO、α−Zr(KPO・3HO、α−Zr(HPO、α−Zr(HAsO・HO、α−Sn(HPO・HO、γ−Zr(HPO、γ−Zr(HPO、γ−Zr(NHPO・HOなどの多価金属の結晶性酸性塩などが挙げられる。本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。 The clay used in the present invention is usually composed mainly of clay minerals. The ion-exchangeable layered compound used in the present invention is a compound having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other with a weak binding force, and the contained ions can be exchanged. . Most clay minerals are ion-exchangeable layered compounds. In addition, these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used. Further, as clay, clay mineral, or ion-exchangeable layered compound, clay, clay mineral, ionic crystalline compound having a layered crystal structure such as hexagonal close-packed packing type, antimony type, CdCl 2 type, CdI 2 type, etc. Can be illustrated. Examples of such clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite , Halloysite and the like, and as the ion-exchangeable layered compound, α-Zr (HAsO 4 ) 2 .H 2 O, α-Zr (HPO 4 ) 2 , α-Zr (KPO 4 ) 2 .3H 2 O, α-Zr (HPO 4 ) 2 , α-Zr (HAsO 4 ) 2 .H 2 O, α-Sn (HPO 4 ) 2 .H 2 O, γ-Zr (HPO 4 ) 2 , γ-Zr (HPO 4 ) 2 and crystalline acid salts of polyvalent metals such as γ-Zr (NH 4 PO 4 ) 2 .H 2 O. The clay and clay mineral used in the present invention are preferably subjected to chemical treatment. As the chemical treatment, any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used. Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.

本発明で用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、ZrClなどの陽イオン性無機化合物、Zr(OR)、PO(OR)、B(OR)などの金属アルコキシド(Rは炭化水素基など)、[Al13(OH)24]7+、[Zr(OH)14]2+、[FeO(OCOCH]などの金属水酸化物イオンなどが挙げられる。これらの化合物は単独、または2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)、Al(OR)、Ge(OR)などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。 The ion-exchangeable layered compound used in the present invention may be a layered compound in a state where the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchange property. . Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars. Moreover, introducing another substance between the layers of the layered compound in this way is called intercalation. Examples of guest compounds to be intercalated include cationic inorganic compounds such as ZrCl 4 , metal alkoxides such as Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 (R is a hydrocarbon group, etc.), [ Examples thereof include metal hydroxide ions such as Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , and [Fe 3 O (OCOCH 3 ) 6 ] + . These compounds are used alone or in combination of two or more. Moreover, when intercalating these compounds, obtained by hydrolyzing metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.) Polymers, colloidal inorganic compounds such as SiO 2, and the like can also coexist. Examples of the pillar include oxides generated by heat dehydration after intercalation of the metal hydroxide ions between layers. Of these, preferred are clays or clay minerals, and particularly preferred are montmorillonite, vermiculite, pectolite, teniolite and synthetic mica.

有機化合物としては、粒径が5〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素数が2〜14のα−オレフィンを主成分として生成される(共)重合体、ビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。   Examples of the organic compound include granular or fine particle solids having a particle size in the range of 5 to 300 μm. Specifically, a (co) polymer, vinylcyclohexane, styrene, which is produced mainly from an α-olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, etc. The (co) polymer produced | generated as a main component and those modifications can be illustrated.

本発明に係るオレフィン重合用触媒は、本発明の遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)、必要に応じて担体(C)と共に、必要に応じて後述するような特定の有機化合物成分(D)を含むこともできる。   The catalyst for olefin polymerization according to the present invention comprises the transition metal compound (A), (B-1) organometallic compound, (B-2) organoaluminum oxy compound, and (B-3) ionized ionic compound of the present invention. A specific organic compound component (D) as described later can be included together with at least one selected compound (B) and, if necessary, the carrier (C) as necessary.

(D)有機化合物成分
本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、この限りではない。
(D) Organic Compound Component In the present invention, the (D) organic compound component is used for the purpose of improving the polymerization performance and the physical properties of the produced polymer, if necessary. Examples of such organic compounds include, but are not limited to, alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, and sulfonates.

重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
(1)成分(A)を単独で重合器に添加する方法。
(2)成分(A)をおよび成分(B)を任意の順序で重合器に添加する方法。
(3)成分(A)を担体(C)に担持した触媒成分、成分(B)を任意の順序で重合器に添加する方法。
(4)成分(B)を担体(C)に担持した触媒成分、成分(A)を任意の順序で重合器に添加する方法。
(5)成分(A)と成分(B)とを担体(C)に担持した触媒成分を重合器に添加する方法。
In the polymerization, the method of using each component and the order of addition are arbitrarily selected, and the following methods are exemplified.
(1) A method of adding the component (A) alone to the polymerization vessel.
(2) A method in which component (A) and component (B) are added to the polymerization vessel in any order.
(3) A method in which the catalyst component having component (A) supported on carrier (C) and component (B) are added to the polymerization vessel in any order.
(4) A method in which the catalyst component having component (B) supported on carrier (C) and component (A) are added to the polymerization vessel in any order.
(5) A method in which a catalyst component in which the component (A) and the component (B) are supported on the carrier (C) is added to the polymerization vessel.

上記(2)〜(5)の各方法においては、各触媒成分の少なくとも2つ以上は予め接触されていてもよい。成分(B)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない成分(B)を、任意の順序で添加してもよい。この場合成分(B)は、同一でも異なっていてもよい。また、上記の成分(C)に成分(A)が担持された固体触媒成分、成分(C)に成分(A)および成分(B)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。   In each of the above methods (2) to (5), at least two or more of the catalyst components may be contacted in advance. In the above methods (4) and (5) in which the component (B) is supported, the component (B) that is not supported may be added in any order as necessary. In this case, the components (B) may be the same or different. The solid catalyst component in which the component (A) is supported on the component (C) and the solid catalyst component in which the component (A) and the component (B) are supported on the component (C) are prepolymerized with olefin. Alternatively, a catalyst component may be further supported on the prepolymerized solid catalyst component.

本発明では、上記のような触媒を用いてポリプロピレン樹脂を製造するに際して、予め予備重合を行うこともできる。   In the present invention, when a polypropylene resin is produced using the catalyst as described above, prepolymerization can be performed in advance.

上記予備重合オレフィンとしては、エチレン、プロピレン、1−ブテン、1−オクテン、1−ヘキサデセン、1−エイコセンなどの直鎖状のオレフィン;3−メチル−1−ブテン、3−メチル−1−ペンテン、1−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、アリルナフタレン、アリルノルボルナン、スチレン、ジメチルスチレン類、ビニルナフタレン類、アリルトルエン類、アリルベンゼン、ビニルシクロヘキサン、ビニルシクロペンタン、ビニルシクロヘプタン、アリルトリアルキルシラン類などの分岐構造を有するオレフィンなどを用いることができ、これらを共重合させてもよい。これらの中ではエチレン、プロピレンが特に好ましく用いられる。   Examples of the prepolymerized olefin include linear olefins such as ethylene, propylene, 1-butene, 1-octene, 1-hexadecene, and 1-eicocene; 3-methyl-1-butene, 3-methyl-1-pentene, 1-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1- Hexene, 3-ethyl-1-hexene, allylnaphthalene, allylnorbornane, styrene, dimethylstyrenes, vinylnaphthalenes, allyltoluenes, allylbenzene, vinylcyclohexane, vinylcyclopentane, vinylcycloheptane, allyltrialkylsilanes, etc. Olefin having a branched structure can be used, and these are copolymerized It may be. Of these, ethylene and propylene are particularly preferably used.

予備重合は、不活性炭化水素媒体に予備重合オレフィンおよび上記触媒成分を加え、温和な条件下で行うことが好ましい。   The prepolymerization is preferably carried out under mild conditions by adding the prepolymerized olefin and the catalyst component to an inert hydrocarbon medium.

不活性炭化水素媒体としては、たとえばプロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素;これらの混合物などを用いることができる。特に脂肪族炭化水素を用いることが好ましい。   Examples of the inert hydrocarbon medium include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane; benzene Aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene; and mixtures thereof. In particular, it is preferable to use an aliphatic hydrocarbon.

本発明に係るオレフィン系重合体の製造方法では、上記のようなオレフィン重合用触媒の存在下に、オレフィンを重合または共重合することによりオレフィン系重合体を得る。
本発明では、重合はプロピレン自身を溶媒とした塊状重合で行うことが望ましい。
In the method for producing an olefin polymer according to the present invention, an olefin polymer is obtained by polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst as described above.
In the present invention, the polymerization is desirably carried out by bulk polymerization using propylene itself as a solvent.

上記のようなオレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、成分(A)は、反応容積1リットル当り、通常10−8〜10−2モル、好ましくは10−7〜10−3モルになるような量で用いられる。成分(B-1)は、成分(B-1)と成分(A)中の全遷移金属原子(M)とのモル比〔(B-1)/M〕が通常0.01〜5,000、好ましくは0.05〜2,000となるような量で用いられる。成分(B-2)は、成分(B-2)中のアルミニウム原子と成分(A)中の全遷移金属(M)とのモル比〔(B-2)/M〕が、通常10〜5,000、好ましくは20〜2,000となるような量で用いられる。成分(B-3)は、成分(B−3)と成分(A)中の遷移金属原子(M)とのモル比〔(B-3)/M〕が、通常1〜10、好ましくは1〜5となるような量で用いられる。 When the olefin polymerization is carried out using the above olefin polymerization catalyst, the component (A) is usually 10 −8 to 10 −2 mol, preferably 10 −7 to 10 −3 , per liter of reaction volume. It is used in such an amount that it becomes a mole. Component (B-1) has a molar ratio [(B-1) / M] of component (B-1) to all transition metal atoms (M) in component (A) of usually 0.01 to 5,000. The amount is preferably 0.05 to 2,000. Component (B-2) has a molar ratio [(B-2) / M] of aluminum atoms in component (B-2) to all transition metals (M) in component (A) of usually 10-5. 2,000, preferably 20 to 2,000. Component (B-3) has a molar ratio [(B-3) / M] of component (B-3) to transition metal atom (M) in component (A) of usually 1 to 10, preferably 1. Used in an amount such that it is ˜5.

成分(D)は、成分(B)が成分(B-1)の場合には、モル比〔(D)/(B-1)〕が通常0.01〜10、好ましくは0.1〜5となるような量で、成分(B)が成分(B-2)の場合には、モル比〔(D)/(B-2)〕が通常0.01〜2、好ましくは0.005〜1となるような量で、成分(B)が成分(B-3)の場合は、モル比(D)/(B-3)〕が通常0.01〜10、好ましくは0.1〜5となるような量で用いられる。
また、このようなオレフィン重合用触媒を用いたオレフィンの重合温度は、通常−50〜+200℃、好ましくは0〜170℃の範囲である。重合圧力は、通常常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。得られるオレフィン系重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、使用する成分(B)の量により調節することもできる。水素を添加する場合、その量はオレフィン1kgあたり0.001〜100NL程度が適当である。
When component (B) is component (B-1), component (D) has a molar ratio [(D) / (B-1)] of usually 0.01 to 10, preferably 0.1 to 5. When the component (B) is the component (B-2), the molar ratio [(D) / (B-2)] is usually 0.01 to 2, preferably 0.005. When the component (B) is the component (B-3) in such an amount that it becomes 1, the molar ratio (D) / (B-3)] is usually 0.01 to 10, preferably 0.1 to 5. Is used in such an amount that
Moreover, the polymerization temperature of the olefin using such an olefin polymerization catalyst is usually in the range of −50 to + 200 ° C., preferably 0 to 170 ° C. The polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 5 MPa gauge pressure, and the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. The molecular weight of the resulting olefin polymer can be adjusted by allowing hydrogen to be present in the polymerization system or changing the polymerization temperature. Furthermore, it can also adjust with the quantity of the component (B) to be used. When hydrogen is added, the amount is suitably about 0.001 to 100 NL per kg of olefin.

次に、本発明における連続多段重合反応に供給されるオレフィンについて詳細に説明する。第1工程において用いられるオレフィンはプロピレンのみである。第2工程において用いられるオレフィンは、プロピレンおよびエチレンの二種である。さらに第3工程において用いられるオレフィンは、プロピレンと、エチレンおよび炭素数4以上のα−オレフィンから選ばれる少なくても1種のオレフィンであり、具体的には、Case 1) プロピレンとエチレンの二種類の場合、Case 2) プロピレンと炭素数4以上のα−オレフィンの二種類の場合、およびCase 3) プロピレン、エチレンおよび炭素数4以上のα−オレフィンの三種類の場合がありうる。本発明で使用する、炭素数4以上のα−オレフィンとしては、炭素原子数が4〜20、好ましくは4〜10の直鎖状または分岐状のα−オレフィン、例えば1−ブテン、2−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセなどが挙げられる。また、炭素原子数が4〜30、好ましくは4〜20の環状オレフィン、例えばシクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセン、2−メチル1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン;極性モノマー、例えば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ(2,2,1)−5−ヘプテン−2,3−ジカルボン酸無水物などのα,β−不飽和カルボン酸、およびこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸tert−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチルなどのα,β−不飽和カルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジルなどを挙げることができる。また、ビニルシクロヘキサン、ジエンまたはポリエンなどの芳香族ビニル化合物、例えばスチレン、ο−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ο,p−ジメチルスチレン、ο−エチルスチレン、m-−エチルスチレン、p−エチルスチレンなどのモノもしくはポリアルキルスチレン;メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、ο−クロロスチレン、p−クロロスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体;および3−フェニルプロピレン、4−フェニルプロピレン、α−メチルスチレンなどを反応系に共存させて重合を進めることもできる。   Next, the olefin supplied to the continuous multistage polymerization reaction in the present invention will be described in detail. Propylene is the only olefin used in the first step. The olefin used in the second step is two kinds of propylene and ethylene. Furthermore, the olefin used in the third step is at least one olefin selected from propylene, ethylene and an α-olefin having 4 or more carbon atoms. Specifically, Case 1) Two types of propylene and ethylene In this case, there may be two cases: Case 2) propylene and α-olefin having 4 or more carbon atoms, and Case 3) three types of propylene, ethylene and α-olefin having 4 or more carbon atoms. The α-olefin having 4 or more carbon atoms used in the present invention is a linear or branched α-olefin having 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, such as 1-butene and 2-butene. 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 -Hexadecene, 1-octadecene, 1-eicose and the like. Also, cyclic olefins having 4 to 30 carbon atoms, preferably 4 to 20 carbon atoms, such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-methyl 1, 4, 5, 8- Dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene; polar monomers such as acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, bicyclo (2 , 2,1) -5-heptene-2,3-dicarboxylic acid anhydride and other α, β-unsaturated carboxylic acids and their sodium, potassium, lithium, zinc, magnesium, calcium salts, etc. Metal salts of; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, Α, β-insoluble such as isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate Saturated carboxylic acid esters; vinyl esters such as vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate; glycidyl acrylate, glycidyl methacrylate, monoglycidyl itaconate Examples thereof include unsaturated glycidyl such as ester. Aromatic vinyl compounds such as vinylcyclohexane, diene or polyene, such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene Mono- or polyalkyl styrene such as p-ethylstyrene; functionalities such as methoxystyrene, ethoxystyrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl benzyl acetate, hydroxy styrene, ο-chlorostyrene, p-chlorostyrene, divinylbenzene Polymerization can also proceed by allowing a group-containing styrene derivative; and 3-phenylpropylene, 4-phenylpropylene, α-methylstyrene and the like to coexist in the reaction system.

なお、本発明の第3工程においては、炭素数4以上のα-オレフィンは二種類以上併用してもよい。   In the third step of the present invention, two or more α-olefins having 4 or more carbon atoms may be used in combination.

本発明の第1段目は、管状反応器を用いる。管状反応器は、2重管で冷却ジャケットを有するパイプをループ化したものであり、反応容器の内面積に対して冷却面積が大きいという特徴を持つ反応器である。   The first stage of the present invention uses a tubular reactor. The tubular reactor is a reactor in which a pipe having a cooling jacket with a double pipe is formed into a loop and has a characteristic that the cooling area is larger than the inner area of the reaction vessel.

本発明では、プロピレンの重合を2段以上の多段で行う。例えば、前段の重合でプロピレンホモポリマーを製造し、後段の重合でプロピレン共重合体を製造することができる。   In the present invention, propylene is polymerized in two or more stages. For example, a propylene homopolymer can be produced by the former polymerization, and a propylene copolymer can be produced by the latter polymerization.

具体的には、3段重合の場合、第1段目において重合温度0〜100℃、最も好ましいのは5〜40℃、重合圧力常圧〜5MPaゲージ圧で、プロピレンホモポリマーを最終的に得られるポリプロピレン樹脂中の含有量が5〜15重量%となる量で製造し、次いで第2段目において重合温度0〜100℃、重合圧力常圧〜5MPaゲージ圧で、プロピレン−エチレンなどのα−オレフィン共重合体を、3段目において、重合温度0〜100℃、重合圧力常圧〜5MPaゲージ圧で、プロピレン−α−オレフィン共重合体、または、プロピレン−エチレン−ブテン−1などのプロピレンと2種類のα−オレフィン共重合体を最終的に得られるポリプロピレン樹脂中の含有量が2段目、3段目を合わせて、95〜85重量%となる量で製造することが好ましい。また、プロピレン−エチレンなどのα−オレフィン共重合体で、2段目、3段目でそのプロピレンとα−オレフィン組成比率の異なるものを製造しても良い。   Specifically, in the case of three-stage polymerization, a propylene homopolymer is finally obtained in the first stage at a polymerization temperature of 0 to 100 ° C., most preferably 5 to 40 ° C. and a polymerization pressure of normal pressure to 5 MPa gauge pressure. Is produced in such an amount that the content in the polypropylene resin is 5 to 15% by weight, and in the second stage, the polymerization temperature is 0 to 100 ° C., the polymerization pressure is normal pressure to 5 MPa gauge pressure, α- such as propylene-ethylene, etc. In the third stage, the olefin copolymer has a polymerization temperature of 0 to 100 ° C., a polymerization pressure of normal pressure to 5 MPa gauge pressure, and a propylene-α-olefin copolymer or propylene such as propylene-ethylene-butene-1. Producing two kinds of α-olefin copolymers in an amount such that the final content of the polypropylene resin is 95 to 85% by weight in the second and third stages. Preferred. Further, α-olefin copolymers such as propylene-ethylene may be produced in the second and third stages having different propylene and α-olefin composition ratios.

本発明においては、第1段目において、プロピレンホモポリマーを重合することにより、本発明におけるプロピレンボトルの透明性が良好となる。   In the present invention, the transparency of the propylene bottle in the present invention is improved by polymerizing the propylene homopolymer in the first stage.

本発明のポリプロピレン系共重合体を原料としてフィルムまたシートなどを成形する場合、本発明のポリプロピレン系共重合体には、必要に応じて、他の樹脂またはゴムなどの他の重合体を本発明の目的を損なわない範囲内で添加してもよい。前記他の樹脂またはゴムとしては、たとえばポリエチレン、ポリブテン−1、ポリイソブテン、ポリペンテン−1、ポリメチルペンテン−1などのポリα−オレフィン;プロピレン含有量が75重量%未満のエチレン・プロピレン共重合体、エチレン・ブテン−1共重合体、プロピレン含有量が75重量%未満のプロピレン・ブテン−1共重合体などのエチレンまたはα−オレフィン・α−オレフィン共重合体;プロピレン含有量が75重量%未満のエチレン・プロピレン・5−エチリデン−2−ノルボルネン共重合体などのエチレンまたはα−オレフィン・α−オレフィン・ジエン単量体共重合体;スチレン・ブタジエンランダム共重合体などのビニル単量体・ジエン単量体ランダム共重合体;スチレン・ブタジエン・スチレンブロック共重合体などのビニル単量体・ジエン単量体・ビニル単量体ブロック共重合体;水素化(スチレン・ブタジエンランダム共重合体)などの水素化(ビニル単量体・ジエン単量体ランダム共重合体);水素化(スチレン・ブタジエン・スチレンブロック共重合体)などの水素化(ビニル単量体・ジエン単量体・ビニル単量体ブロック共重合体)などがあげられる。   In the case of forming a film or sheet using the polypropylene copolymer of the present invention as a raw material, the polypropylene copolymer of the present invention may include other resins or other polymers such as rubber, if necessary. You may add in the range which does not impair the objective. Examples of the other resin or rubber include poly α-olefins such as polyethylene, polybutene-1, polyisobutene, polypentene-1, and polymethylpentene-1, ethylene / propylene copolymers having a propylene content of less than 75% by weight, Ethylene or α-olefin / α-olefin copolymer such as ethylene / butene-1 copolymer, propylene / butene-1 copolymer having a propylene content of less than 75% by weight; propylene content of less than 75% by weight Ethylene such as ethylene / propylene / 5-ethylidene-2-norbornene copolymer or α-olefin / α-olefin / diene monomer copolymer; vinyl monomer / diene monomer such as styrene / butadiene random copolymer Random copolymer; styrene / butadiene / styrene block copolymer Vinyl monomer / diene monomer / vinyl monomer block copolymer; hydrogenation (styrene / butadiene random copolymer) and other hydrogenation (vinyl monomer / diene monomer random copolymer) Hydrogenation (vinyl monomer / diene monomer / vinyl monomer block copolymer) and the like such as hydrogenation (styrene / butadiene / styrene block copolymer).

他の重合体の添加量は、添加する樹脂の種類またはゴムの種類により異なり、前記のように本発明の目的を損なわない範囲であればよいが、通常ポリプロピレン樹脂樹脂100重量部に対して約5重量部以下であることが好ましい。   The amount of other polymer added varies depending on the type of resin to be added or the type of rubber, and may be in a range that does not impair the object of the present invention as described above, but is usually about 100 parts by weight of polypropylene resin resin. The amount is preferably 5 parts by weight or less.

また本発明のポリプロピレン樹脂を原料としてシートまたはフィルムを成形する場合、本発明のポリプロピレン樹脂には、必要に応じて、酸化防止剤、紫外線吸収剤、金属石鹸、塩酸吸収剤などの安定剤、滑剤、可塑剤、難燃剤、帯電防止剤などの添加剤を本発明の目的を損なわない範囲内で添加してもよい。   In the case of forming a sheet or film from the polypropylene resin of the present invention as a raw material, the polypropylene resin of the present invention is optionally provided with stabilizers such as antioxidants, ultraviolet absorbers, metal soaps, hydrochloric acid absorbers, and lubricants. Additives such as plasticizers, flame retardants, and antistatic agents may be added within a range that does not impair the object of the present invention.

次に本発明を実施例に基づき詳細に説明するが、本発明はかかる実施例に限定されるものではない。実施例における物性の測定方法は次の通りである。
1)メルトフローレート(MFR)
ASTM D−1238の方法により230℃、荷重2.16kgで測定した。シリンダーには特に窒素は導入せず、直接ペレットをシリンダーに投入し溶融させた。
2)Mw、MnおよびMz
GPC(ゲルパーミエーションクロマトグラフィー)を使用して以下の条件で測定した。
EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited to this Example. The measuring method of the physical property in an Example is as follows.
1) Melt flow rate (MFR)
Measurement was performed at 230 ° C. and a load of 2.16 kg by the method of ASTM D-1238. Nitrogen was not introduced into the cylinder, and the pellets were charged directly into the cylinder and melted.
2) Mw, Mn and Mz
It measured on condition of the following using GPC (gel permeation chromatography).

測定装置:Waters社製 allianceGPC2000
サンプル濃度:30mg/20mL−ODCB
カラム:TSKgel GMH6HT×2
TSKgel GMH6HTL×2
測定温度:140℃
移動相:o−ジクロロベンゼン(ODCB)
解析装置:MILLENNIUM
3)ノルマルデカン(nC10)可溶部量
サンプルをノルマルデカンに加熱溶解し、室温まで冷却させた後、析出物とノルマルデカンをろ別した。ろ液をアセトン中入れ、ノルマルデカン中に溶解していた成分を析出させた。析出物とアセトンをろ別し、析出物を乾燥した。
ノルマルデカン可溶部量(wt%)=析出物重量/サンプル重量×100
4)ボトルヘイズ
内容量1Lのボトルを成型し、その直胴部のヘイズをASTM D−1003に準拠して測定した。
5)Tm
パーキンエルマー社DSC−7を用いて、試料7mgを10℃/minで233℃まで昇温し、233℃で10分保持後、5℃/minで60℃まで冷却し、10℃/minで昇温する際の吸熱曲線より求めた。
Measuring device: Alliance GPC2000 manufactured by Waters
Sample concentration: 30 mg / 20 mL-ODCB
Column: TSKgel GMH6HT × 2
TSKgel GMH6HTL × 2
Measurement temperature: 140 ° C
Mobile phase: o-dichlorobenzene (ODCB)
Analysis device: MILLENNIUM
3) Amount of normal decane (nC10) soluble part The sample was heated and dissolved in normal decane and cooled to room temperature, and then the precipitate and normal decane were separated by filtration. The filtrate was put in acetone to precipitate components dissolved in normal decane. The precipitate and acetone were filtered off and the precipitate was dried.
Normal decane soluble part amount (wt%) = precipitate weight / sample weight × 100
4) Bottle haze A bottle having an internal capacity of 1 L was molded, and the haze of the straight body portion was measured according to ASTM D-1003.
5) Tm
Using PerkinElmer DSC-7, 7 mg of the sample was heated to 233 ° C. at 10 ° C./min, held at 233 ° C. for 10 minutes, cooled to 60 ° C. at 5 ° C./min, and increased at 10 ° C./min. It calculated | required from the endothermic curve at the time of warming.

1)固体触媒担体の製造
1L枝付フラスコにSiO(洞海化学社製)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)−トルエン溶液(アルベマール社製10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで置換し、置換率が95%になるまで、置換を行った。
2)固体触媒の製造(担体への金属触媒成分の担持)
グローブボックス内にて、5L4口フラスコにイソプロピル(3−t−ブチル−5−メチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリドを2.0g秤取った。フラスコを外へ出し、トルエン0.46リットルと1)で調製したMAO/SiO2/トルエンスラリー1.4リットルを窒素下で加え、30分間攪拌し担持を行った。得られたイソプロピル(3−t−ブチル−5−メチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド/MAO/SiO2/トルエンスラリーはノルマル−ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
3)予備重合触媒の製造
2)で調製した固体触媒成分202g、トリエチルアルミニウム109mL、ヘプタン100Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15〜20℃に保ちエチレンを2020g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で2g/Lとなるよう、ヘプタンにより調整を行った。この予備重合触媒は固体触媒成分1g当りポリエチレンを10g含んでいた。
4)本重合
内容量58Lの管状重合器にプロピレンを45kg/時間、水素を10NL/時間、触媒スラリーを固体触媒成分として5.0g/時間、トリエチルアルミニウム2.4mL/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状反応器の温度は30℃であり、圧力は3.0MPa/Gであった。
1) Production of solid catalyst support 300 g of SiO 2 (manufactured by Dokai Chemical Co., Ltd.) was sampled into a 1 L branch flask, and 800 mL of toluene was added to make a slurry. Next, the solution was transferred to a 5 L four-necked flask, and 260 mL of toluene was added. 2830 mL of methylaluminoxane (hereinafter referred to as MAO) -toluene solution (Albemarle 10 wt% solution) was introduced. The mixture was stirred for 30 minutes while remaining at room temperature. The temperature was raised to 110 ° C. over 1 hour, and the reaction was carried out for 4 hours. After completion of the reaction, it was cooled to room temperature. After cooling, the supernatant toluene was extracted and replaced with fresh toluene, and the replacement was performed until the replacement rate reached 95%.
2) Production of solid catalyst (support of metal catalyst component on support)
In a glove box, 2.0 g of isopropyl (3-t-butyl-5-methylcyclopentadienyl) (fluorenyl) zirconium dichloride was weighed in a 5 L 4-neck flask. The flask was taken out, 0.46 liters of toluene and 1.4 liters of MAO / SiO2 / toluene slurry prepared in 1) were added under nitrogen, and the mixture was stirred for 30 minutes to carry. The resulting isopropyl (3-tert-butyl-5-methylcyclopentadienyl) (fluorenyl) zirconium dichloride / MAO / SiO 2 / toluene slurry was 99% substituted with normal-heptane to give a final slurry amount of 4 .5 liters. This operation was performed at room temperature.
3) Production of prepolymerized catalyst 202 g of the solid catalyst component prepared in 2), 109 mL of triethylaluminum, and 100 L of heptane were inserted into an autoclave with a stirrer having an internal volume of 200 L, and the internal temperature was kept at 15 to 20 ° C., and 2020 g of ethylene was inserted and 180 The reaction was allowed to stir for 1 minute. After completion of the polymerization, the solid component was precipitated, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane and adjusted with heptane so that the solid catalyst component concentration was 2 g / L. This prepolymerized catalyst contained 10 g of polyethylene per 1 g of the solid catalyst component.
4) Main polymerization Propylene 45 kg / hour, hydrogen 10 NL / hour, catalyst slurry as solid catalyst component 5.0 g / hour, and triethylaluminum 2.4 mL / hour are continuously fed into a 58 L tubular polymerizer. The polymerization was carried out in a full liquid state without a gas phase. The temperature of the tubular reactor was 30 ° C., and the pressure was 3.0 MPa / G.

得られたスラリーは内容量1000Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを72kg/時間、水素を20NL/時間、エチレンを0.75kg/時間で供給した。重合温度70℃、圧力2.9MPa/Gで重合を行った。   The obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 1000 L, and further polymerized. The polymerization vessel was supplied with propylene at 72 kg / hour, hydrogen at 20 NL / hour, and ethylene at 0.75 kg / hour. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 2.9 MPa / G.

更に、得られたスラリーは内容量500Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを16kg/時間、水素を15NL/時間、エチレンを0.5kg/時間で供給した。重合温度69℃、圧力2.8MPa/Gで重合を行った。
5)ペレット化
得られたポリプロピレン樹脂100重量部に対して、酸化防止剤として3,5−ジ−t−ブチル−4−ヒドロキシトルエンを0.1重量部、酸化防止剤としてテトラキス[メチレン−3(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンを0.2重量部、ステアリン酸カルシウムを0.01重量部、核剤として、NA−21(旭電化社製)0.3重量部を配合し、単軸押出機を用いて、樹脂温度230℃で溶融混練してポリプロピレン樹脂のペレット化を行った。造粒機は(株)ジーエムエンジニアリング製GMZ50−32(L/D=32、単軸)を使用した。
6)ボトル成型
(i)プリフォーム成形条件
成形機:NISSEI FE160
金型温度:20/20℃
成形温度:190−200−200−200−200℃
射出圧力:10%(171.5kg/cm2)
射出速度:7%
保圧:7%(120kg/cm2)
射出時間:4.7秒
保持時間:5.3秒(充填時間10秒)
冷却時間:12秒

(ii)インブロ成形条件
成形機:フロンティアFEB2000(コールドパリソン式:1Lブロー容器金型)
1次圧:4kg/cm2
2次圧:10kg/cm2
金型温度:20℃
プリフォーム予熱温度:80〜140℃
延伸ロット:10φ
延伸比:タテ2.8倍、ヨコ2.9倍
Furthermore, the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized. To the polymerization reactor, propylene was supplied at 16 kg / hour, hydrogen was supplied at 15 NL / hour, and ethylene was supplied at 0.5 kg / hour. Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.8 MPa / G.
5) Pelletization With respect to 100 parts by weight of the obtained polypropylene resin, 0.1 part by weight of 3,5-di-t-butyl-4-hydroxytoluene as an antioxidant and tetrakis [methylene-3 as an antioxidant (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 0.2 parts by weight of methane, 0.01 parts by weight of calcium stearate, NA-21 (manufactured by Asahi Denka) 3 parts by weight was blended and melt-kneaded at a resin temperature of 230 ° C. using a single screw extruder to pelletize a polypropylene resin. The granulator used was GMZ50-32 (L / D = 32, single axis) manufactured by GM Engineering.
6) Bottle molding (i) Preform molding conditions Molding machine: NISSEI FE160
Mold temperature: 20/20 ° C
Molding temperature: 190-200-200-200-200 ° C
Injection pressure: 10% (171.5 kg / cm2)
Injection speed: 7%
Holding pressure: 7% (120kg / cm2)
Injection time: 4.7 seconds Holding time: 5.3 seconds (filling time 10 seconds)
Cooling time: 12 seconds

(Ii) Inbro molding conditions Molding machine: Frontier FEB2000 (cold parison type: 1L blow container mold)
Primary pressure: 4kg / cm2
Secondary pressure: 10kg / cm2
Mold temperature: 20 ℃
Preform preheating temperature: 80-140 ° C
Drawing lot: 10φ
Stretch ratio: Vertical 2.8 times, horizontal 2.9 times

重合方法を以下の様に変えた以外は、実施例1と同様の方法で行った。
1)本重合
内容量58Lの管状重合器にプロピレンを45kg/時間、水素を10NL/時間、触媒スラリーを固体触媒成分として5.0g/時間、トリエチルアルミニウム2.4mL/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状反応器の温度は30℃であり、圧力は3.0MPa/Gであった。
The polymerization was performed in the same manner as in Example 1 except that the polymerization method was changed as follows.
1) Main polymerization A tubular polymerization vessel having an internal volume of 58 L was continuously supplied with 45 kg / hour of propylene, 10 NL / hour of hydrogen, 5.0 g / hour of catalyst slurry as a solid catalyst component, and 2.4 mL / hour of triethylaluminum. The polymerization was carried out in a full liquid state without a gas phase. The temperature of the tubular reactor was 30 ° C., and the pressure was 3.0 MPa / G.

得られたスラリーは内容量1000Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを72kg/時間、水素を20NL/時間、エチレンを0.75kg/時間で供給した。重合温度70℃、圧力2.9MPa/Gで重合を行った。   The obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 1000 L, and further polymerized. The polymerization vessel was supplied with propylene at 72 kg / hour, hydrogen at 20 NL / hour, and ethylene at 0.75 kg / hour. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 2.9 MPa / G.

更に、得られたスラリーは内容量500Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを16kg/時間、水素を15NL/時間、エチレンを0.6kg/時間、1−ブテンを2.5kg/時間で供給した。重合温度69℃、圧力2.8MPa/Gで重合を行った。   Furthermore, the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized. To the polymerization vessel, propylene was supplied at 16 kg / hour, hydrogen was supplied at 15 NL / hour, ethylene was supplied at 0.6 kg / hour, and 1-butene was supplied at 2.5 kg / hour. Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.8 MPa / G.

[比較例1]
重合方法を以下の様に変えた以外は、実施例1と同様の方法で行った。
1)本重合
内容量58Lの管状重合器にプロピレンを45kg/時間、水素を8NL/時間、触媒スラリーを固体触媒成分として5.0g/時間、トリエチルアルミニウム2.4mL/時間、エチレン0.08kg/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状反応器の温度は30℃であり、圧力は3.0MPa/Gであった。
[Comparative Example 1]
The polymerization was performed in the same manner as in Example 1 except that the polymerization method was changed as follows.
1) Main polymerization In a tubular polymerization vessel having an internal volume of 58 L, propylene is 45 kg / hour, hydrogen is 8 NL / hour, catalyst slurry is a solid catalyst component of 5.0 g / hour, triethylaluminum is 2.4 mL / hour, ethylene is 0.08 kg / hour. The time was continuously supplied, and polymerization was carried out in a full liquid state without a gas phase. The temperature of the tubular reactor was 30 ° C., and the pressure was 3.0 MPa / G.

得られたスラリーは内容量1000Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを72kg/時間、水素を20NL/時間、エチレンを0.75kg/時間で供給した。重合温度70℃、圧力2.9MPa/Gで重合を行った。   The obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 1000 L, and further polymerized. The polymerization vessel was supplied with propylene at 72 kg / hour, hydrogen at 20 NL / hour, and ethylene at 0.75 kg / hour. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 2.9 MPa / G.

更に、得られたスラリーは内容量500Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを16kg/時間、水素を15NL/時間、エチレンを0.5kg/時間で供給した。重合温度69℃、圧力2.8MPa/Gで重合を行った。   Furthermore, the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized. To the polymerization reactor, propylene was supplied at 16 kg / hour, hydrogen was supplied at 15 NL / hour, and ethylene was supplied at 0.5 kg / hour. Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.8 MPa / G.

[比較例2]
重合方法を以下の様に変えた以外は、実施例1と同様の方法で行った。
1)本重合
内容量58Lの管状重合器にプロピレンを45kg/時間、水素を10NL/時間、触媒スラリーを固体触媒成分として5.0g/時間、トリエチルアルミニウム2.4mL/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状反応器の温度は30℃であり、圧力は3.0MPa/Gであった。
[Comparative Example 2]
The polymerization was performed in the same manner as in Example 1 except that the polymerization method was changed as follows.
1) Main polymerization A tubular polymerization vessel having an internal volume of 58 L was continuously supplied with 45 kg / hour of propylene, 10 NL / hour of hydrogen, 5.0 g / hour of catalyst slurry as a solid catalyst component, and 2.4 mL / hour of triethylaluminum. The polymerization was carried out in a full liquid state without a gas phase. The temperature of the tubular reactor was 30 ° C., and the pressure was 3.0 MPa / G.

得られたスラリーは内容量1000Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを72kg/時間、水素を25NL/時間で供給した。重合温度70℃、圧力2.9MPa/Gで重合を行った。   The obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 1000 L, and further polymerized. To the polymerization reactor, propylene was supplied at 72 kg / hour and hydrogen was supplied at 25 NL / hour. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 2.9 MPa / G.

更に、得られたスラリーは内容量500Lの攪拌器付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを16kg/時間、水素を15NL/時間で供給した。重合温度69℃、圧力2.8MPa/Gで重合を行った。   Furthermore, the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized. To the polymerization vessel, propylene was supplied at 16 kg / hour and hydrogen was supplied at 15 NL / hour. Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.8 MPa / G.

[比較例3]
1)固体状チタン触媒成分の調製
無水塩化マグネシウム952g、デカン4420mlおよび2−エチルヘキシルアルコール3906gを、130℃で2時間加熱して均一溶液とした。この溶液中に無水フタル酸213gを添加し、130℃にてさらに1時間攪拌混合を行って無水フタル酸を溶解させた。
[Comparative Example 3]
1) Preparation of solid titanium catalyst component 952 g of anhydrous magnesium chloride, 4420 ml of decane and 3906 g of 2-ethylhexyl alcohol were heated at 130 ° C. for 2 hours to obtain a homogeneous solution. To this solution, 213 g of phthalic anhydride was added, and further stirred and mixed at 130 ° C. for 1 hour to dissolve phthalic anhydride.

このようにして得られた均一溶液を23℃まで冷却した後、この均一溶液の750mlを、−20℃に保持された四塩化チタン2000ml中に1時間にわたって滴下した。滴下後、得られた混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)52.2gを添加し、これより2時間攪拌しながら同温度に保持した。次いで熱時濾過にて固体部を採取し、この固体部を2750mlの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。   After cooling the homogeneous solution thus obtained to 23 ° C., 750 ml of this homogeneous solution was dropped into 2000 ml of titanium tetrachloride maintained at −20 ° C. over 1 hour. After the dropwise addition, the temperature of the resulting mixture was raised to 110 ° C. over 4 hours. When the temperature reached 110 ° C., 52.2 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred at the same temperature for 2 hours. Held on. Subsequently, the solid part was collected by hot filtration, and the solid part was resuspended in 2750 ml of titanium tetrachloride, and then heated again at 110 ° C. for 2 hours.

加熱終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。   After the heating, the solid part was again collected by hot filtration, and washed with decane and hexane at 110 ° C. until no titanium compound was detected in the washing solution.

上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを3重量%、塩素を58重量%、マグネシウムを18重量%およびDIBPを21重量%の量で含有していた。
2)予備重合触媒の調製
10Lの攪拌機付きオートクレーブ中に、窒素雰囲気下、精製ヘプタン7L、トルエチルアルミニウム0.16mol、および上記で得られた固体状チタン触媒成分をチタン原子換算で0.053mol装入した後、プロピレンを900g導入し、温度5℃以下に保ちながら、1時間反応させた。
The solid titanium catalyst component prepared as described above was stored as a hexane slurry. A part of the catalyst was dried to examine the catalyst composition. The solid titanium catalyst component contained 3 wt% titanium, 58 wt% chlorine, 18 wt% magnesium and 21 wt% DIBP.
2) Preparation of prepolymerized catalyst In a 10 L autoclave equipped with a stirrer, 7 L of purified heptane, 0.16 mol of toluethylaluminum, and 0.053 mol of the solid titanium catalyst component obtained in the above were charged in terms of titanium atoms. After the introduction, 900 g of propylene was introduced and reacted for 1 hour while keeping the temperature at 5 ° C. or lower.

重合終了後、反応器内を窒素で置換し、上澄液の除去および精製ヘプタンによる洗浄を3回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して触媒供給槽に移し、固体状チタン触媒成分濃度で1g/Lとなるよう、精製ヘプタンにより調整を行った。この予備重合触媒は固体状チタン触媒成分1g当りポリプロピレンを10g含んでいた。
3)重合
内容積100リットルの攪拌機付き重合槽1に液化プロピレンを66Lを装入し、この液位を保ちながら、液化プロピレン110kg/時間、予備重合触媒1.2g/時間、トリエチルアルミニウム5.4mL/時間、シクロヘキシルメチルジメトキシシラン9.9mL/時間、エチレン0.09kg/時間を連続的に供給し、温度66℃で重合した。また水素は重合槽1の気相部の濃度を1.5mol%に保つように連続的に供給した。得られた重合体を内容積1000Lの攪拌機付き重合槽2にスラリー状のまま送液した。
After completion of the polymerization, the inside of the reactor was replaced with nitrogen, and the supernatant was removed and washed with purified heptane three times. The obtained prepolymerized catalyst was resuspended in purified heptane, transferred to a catalyst supply tank, and adjusted with purified heptane so that the solid titanium catalyst component concentration was 1 g / L. This prepolymerized catalyst contained 10 g of polypropylene per 1 g of the solid titanium catalyst component.
3) Polymerization 66 L of liquefied propylene was charged into a polymerization tank 1 with a stirrer having an internal volume of 100 liters, and while maintaining this liquid level, 110 kg / hour of liquefied propylene, 1.2 g / hour of prepolymerized catalyst, 5.4 ml of triethylaluminum. / Hour, cyclohexylmethyldimethoxysilane (9.9 mL / hour) and ethylene (0.09 kg / hour) were continuously fed to polymerize at a temperature of 66 ° C. Hydrogen was continuously supplied so as to keep the concentration of the gas phase part of the polymerization tank 1 at 1.5 mol%. The obtained polymer was fed in the form of a slurry into a polymerization tank 2 with a stirrer having an internal volume of 1000 L.

重合槽2では液位300リットルを保ちながら、新たに液化プロピレン20kg/時間、エチレン2.1kg/時間、1−ブテン11.2kg/時間を連続的に供給し、温度67℃で重合した。また、水素も重合槽2の気相部の濃度を3.3mol%に保つように連続的に供給し、重合を行った。   In the polymerization tank 2, while maintaining the liquid level at 300 liters, newly liquefied propylene 20 kg / hour, ethylene 2.1 kg / hour, and 1-butene 11.2 kg / hour were continuously supplied to perform polymerization at a temperature of 67 ° C. Further, hydrogen was continuously supplied so as to keep the concentration of the gas phase part of the polymerization tank 2 at 3.3 mol%, and polymerization was performed.

実施例1と同様の方法で、ペレット化し、ボトルを作成した。   In the same manner as in Example 1, it was pelletized to produce a bottle.

Figure 2005068261
Figure 2005068261

本発明のプロピレン・α−オレフィン共重合体は、透明性に優れ、低溶媒可溶量であり、優れたボトル材として用いることができる。   The propylene / α-olefin copolymer of the present invention is excellent in transparency, has a low solvent-soluble amount, and can be used as an excellent bottle material.

Claims (5)

(X)メタロセン触媒存在下で得られるプロピレンホモポリマー、および
(Y)メタロセン触媒存在下でプロピレンとエチレンから得られる共重合体、並びに
(Z)メタロセン触媒存在下でプロピレンと炭素数4以上のα−オレフィンから得られる共重体、および
(W)メタロセン触媒存在下でプロピレンとエチレンと炭素数4以上のα−オレフィンから得られる共重体、から選ばれる少なくても1種の共重合体、
が均一に分散されたポリプロピレン共重合体であって、1≦MFR≦100g/10min(230℃、2160g)、Tm≦120℃、ゲルパーミエイションクロマトグラフィーで測定したMw/Mn≦3であることを特徴とするプロピレン系共重合体。
(X) a propylene homopolymer obtained in the presence of a metallocene catalyst, (Y) a copolymer obtained from propylene and ethylene in the presence of a metallocene catalyst, and (Z) an α having 4 or more carbon atoms in the presence of a metallocene catalyst. A copolymer obtained from an olefin, and (W) a copolymer obtained from propylene, ethylene and an α-olefin having 4 or more carbon atoms in the presence of a metallocene catalyst, and at least one copolymer selected from
Is a uniformly dispersed polypropylene copolymer, 1 ≦ MFR ≦ 100 g / 10 min (230 ° C., 2160 g), Tm ≦ 120 ° C., and Mw / Mn ≦ 3 measured by gel permeation chromatography. A propylene-based copolymer characterized by
管状反応器を用いるプロピレン単独重合を第1工程とする連続多段重合によって得られることを特徴とする請求項1記載のポリプロピレン系共重合体。 2. The polypropylene copolymer according to claim 1, wherein the polypropylene copolymer is obtained by continuous multistage polymerization in which propylene homopolymerization using a tubular reactor is the first step. 下記の第1工程〜第3工程を連続的に実施することによって得られる請求項2記載のポリプロピレン系共重合体。
(第1工程)管状反応器を用い、5〜40℃の重合温度にてプロピレン単独重合を行い、プロピレンホモポリマー(X)を全重量の2〜15重量%を製造する工程。
(第2工程)プロピレンとエチレンを共重合し、プロピレンとエチレンに由来する構成単位を有する共重合体(Y)を製造する工程。
(第3工程)プロピレンと、エチレンおよび炭素数4以上のα−オレフィンから選ばれる少なくても1種のオレフィンを共重合し、プロピレンとエチレンに由来する構成単位を有する共重合体(Y)、プロピレンと炭素数4以上のα−オレフィンに由来する構成単位を有する共重合体(Z)およびプロピレン、炭素数4以上のα−オレフィンおよびエチレンに由来する構成単位を有する共重合体(W)の少なくても1種の共重合体を、前記第2工程で製造した、共重合体(Y)との合計量が、ポリプロピレン共重合体全重量の98〜85重量%となるように製造する工程。
The polypropylene copolymer according to claim 2, which is obtained by continuously performing the following first to third steps.
(First step) A step of producing a propylene homopolymer (X) in an amount of 2 to 15% by weight based on the propylene homopolymer (X) using a tubular reactor at a polymerization temperature of 5 to 40 ° C.
(Second step) propylene and ethylene were copolymerized, the step of producing a copolymer having a constituent unit derived from propylene and ethylene (Y 1).
(Third Step) A copolymer (Y 2 ) having a structural unit derived from propylene and ethylene by copolymerizing propylene with at least one olefin selected from ethylene and an α-olefin having 4 or more carbon atoms. , A copolymer (Z) having a structural unit derived from propylene and an α-olefin having 4 or more carbon atoms, and a copolymer (W) having a structural unit derived from propylene, an α-olefin having 4 or more carbon atoms and ethylene Of at least one copolymer produced in the second step so that the total amount with the copolymer (Y 1 ) is 98 to 85% by weight of the total weight of the polypropylene copolymer. Process.
第3工程で用いる、炭素数4以上のオレフィンが1−ブテン、1−ヘキセン、および4−メチルペンテン−1から選ばれる少なくても1種である請求項1〜3のいずれか1項に記載のポリプロピレン系共重合体。 The olefin having 4 or more carbon atoms used in the third step is at least one selected from 1-butene, 1-hexene and 4-methylpentene-1. Polypropylene copolymer. 請求項1〜4のいずれか1項に記載のポリプロピレン系共重合体を射出ブローして得られるボトル。 A bottle obtained by injection blowing the polypropylene copolymer according to any one of claims 1 to 4.
JP2003298336A 2003-08-22 2003-08-22 Propylene copolymer Expired - Lifetime JP4097581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298336A JP4097581B2 (en) 2003-08-22 2003-08-22 Propylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298336A JP4097581B2 (en) 2003-08-22 2003-08-22 Propylene copolymer

Publications (2)

Publication Number Publication Date
JP2005068261A true JP2005068261A (en) 2005-03-17
JP4097581B2 JP4097581B2 (en) 2008-06-11

Family

ID=34403859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298336A Expired - Lifetime JP4097581B2 (en) 2003-08-22 2003-08-22 Propylene copolymer

Country Status (1)

Country Link
JP (1) JP4097581B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203463A1 (en) * 2021-03-26 2022-09-29 주식회사 엘지화학 Polypropylene resin composition and non-woven fabric prepared using same
WO2022203461A1 (en) * 2021-03-26 2022-09-29 주식회사 엘지화학 Polypropylene resin composition and method for preparing same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335789A (en) * 1976-09-16 1978-04-03 Mitsui Toatsu Chem Inc Preparation of propylene-ethylene copolymer
JPH05503546A (en) * 1990-02-09 1993-06-10 エクソン・ケミカル・パテンツ・インク Block copolymer manufacturing method
JPH05202152A (en) * 1989-12-21 1993-08-10 Hoechst Ag Production of polypropylene molding material
JPH05339327A (en) * 1992-02-22 1993-12-21 Hoechst Ag Cycloolefin block copolymer and its manufacture
JPH06206921A (en) * 1989-12-21 1994-07-26 Hoechst Ag Preparation of polypropylene molding compound
JPH08208737A (en) * 1995-02-07 1996-08-13 Mitsui Petrochem Ind Ltd Production of olefin polymer
JPH0977834A (en) * 1995-09-12 1997-03-25 Asahi Chem Ind Co Ltd Production of rubber-reinforced styrenic resin
JPH09316147A (en) * 1996-06-03 1997-12-09 Sumitomo Chem Co Ltd Propylene/ethylene-alpha-olefin block copolymer and its production
JPH10158351A (en) * 1996-12-05 1998-06-16 Sumitomo Chem Co Ltd Propylene/ethylene-alpha-olefin-based block copolymer
JPH11286584A (en) * 1998-02-04 1999-10-19 Mitsui Chem Inc Polypropylene-based resin molded product
JP2000129053A (en) * 1998-10-28 2000-05-09 Mitsui Chemicals Inc Polypropylene resin composition and its non-stretched film
JP2002275342A (en) * 2001-03-15 2002-09-25 Mitsui Chemicals Inc Polyolefin resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335789A (en) * 1976-09-16 1978-04-03 Mitsui Toatsu Chem Inc Preparation of propylene-ethylene copolymer
JPH05202152A (en) * 1989-12-21 1993-08-10 Hoechst Ag Production of polypropylene molding material
JPH06206921A (en) * 1989-12-21 1994-07-26 Hoechst Ag Preparation of polypropylene molding compound
JPH05503546A (en) * 1990-02-09 1993-06-10 エクソン・ケミカル・パテンツ・インク Block copolymer manufacturing method
JPH05339327A (en) * 1992-02-22 1993-12-21 Hoechst Ag Cycloolefin block copolymer and its manufacture
JPH08208737A (en) * 1995-02-07 1996-08-13 Mitsui Petrochem Ind Ltd Production of olefin polymer
JPH0977834A (en) * 1995-09-12 1997-03-25 Asahi Chem Ind Co Ltd Production of rubber-reinforced styrenic resin
JPH09316147A (en) * 1996-06-03 1997-12-09 Sumitomo Chem Co Ltd Propylene/ethylene-alpha-olefin block copolymer and its production
JPH10158351A (en) * 1996-12-05 1998-06-16 Sumitomo Chem Co Ltd Propylene/ethylene-alpha-olefin-based block copolymer
JPH11286584A (en) * 1998-02-04 1999-10-19 Mitsui Chem Inc Polypropylene-based resin molded product
JP2000129053A (en) * 1998-10-28 2000-05-09 Mitsui Chemicals Inc Polypropylene resin composition and its non-stretched film
JP2002275342A (en) * 2001-03-15 2002-09-25 Mitsui Chemicals Inc Polyolefin resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203463A1 (en) * 2021-03-26 2022-09-29 주식회사 엘지화학 Polypropylene resin composition and non-woven fabric prepared using same
WO2022203461A1 (en) * 2021-03-26 2022-09-29 주식회사 엘지화학 Polypropylene resin composition and method for preparing same

Also Published As

Publication number Publication date
JP4097581B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP5773852B2 (en) Olefin polymer and process for producing the same
JP5405806B2 (en) Olefin polymerization catalyst and method for producing ethylene polymer using the same
JP2006008983A (en) Propylenic polymer
JPWO2006068308A1 (en) PROPYLENE POLYMER, COMPOSITION CONTAINING THE POLYMER, AND MOLDED BODY OBTAINED FROM THEM
JP5587556B2 (en) Ethylene polymer, thermoplastic resin composition containing the ethylene polymer, and molded product obtained therefrom
WO2012053261A1 (en) Method for producing ethylene-based polymer particles, and stretch-molded article obtained from ethylene-based polymer particles
JP2006188625A (en) Polypropylene-based composite material
JP2002105132A (en) Polymer and method for producing the same
JP2006028449A (en) Propylene-based polymer
JP4097581B2 (en) Propylene copolymer
JP2009173798A (en) Ethylenic polymer, thermoplastic resin composition containing the ethylenic polymer and molded article produced therefrom
JP2000169513A (en) Olefin polymerization catalyst and process
JP4039961B2 (en) Method for producing polypropylene copolymer
JP2009197226A (en) Ethylene copolymer, thermoplastic resin composition containing the ethylene copolymer, and molded product obtained from them
JP2015137352A (en) Method of producing olefin polymer
JP6190594B2 (en) Process for producing olefin polymerization catalyst and process for producing ethylene polymer using olefin polymerization catalyst obtained thereby
JP2004238520A (en) Olefin polymerization catalyst and polymerization method of olefin
JP2016164264A (en) Olefin polymer production method and olefin polymerization catalyst
JP4389071B2 (en) Propylene polymer
JP6559490B2 (en) Olefin polymerization catalyst and method for synthesizing ethylene polymer
JP4144099B2 (en) Polypropylene composition and method for producing the same
TW202346379A (en) Method for producing olefin polymer
JP2020164685A (en) Method for producing olefin polymer
JP2005008711A (en) Method for producing ultra high molecular weight olefin-based polymer
JP4350636B2 (en) Propylene polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4097581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term