JPH0977834A - Production of rubber-reinforced styrenic resin - Google Patents

Production of rubber-reinforced styrenic resin

Info

Publication number
JPH0977834A
JPH0977834A JP23361995A JP23361995A JPH0977834A JP H0977834 A JPH0977834 A JP H0977834A JP 23361995 A JP23361995 A JP 23361995A JP 23361995 A JP23361995 A JP 23361995A JP H0977834 A JPH0977834 A JP H0977834A
Authority
JP
Japan
Prior art keywords
reactor
rubber
solution
tubular reactor
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23361995A
Other languages
Japanese (ja)
Other versions
JP3600325B2 (en
Inventor
Kazuhiko Sho
和彦 正
Toshiharu Kawasaki
敏晴 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23361995A priority Critical patent/JP3600325B2/en
Publication of JPH0977834A publication Critical patent/JPH0977834A/en
Application granted granted Critical
Publication of JP3600325B2 publication Critical patent/JP3600325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain rubber-reinforced styrenic resin readily controllable of rubber particulate diameter in a wide range of rubber particulate diameter and having excellent strength, appearance, etc., and productivity. SOLUTION: This polymerization system has an annular reactor (I) comprising a tubular reactor (i) including a static mixer having a flowing path through which a heat medium passes, a reactor (ii) having mixing blades and a pump (iii) transferring a reacting solution, and a tubular reactor (II) including a static mixer having a flowing path through which a heat medium passes. The polymerization is performed by supplying a raw material solution containing a styrenic monomer and a rubbery polymer into the reactor (ii) having mixing blades while circulating a part of the solution in the annular reactor (I) and then supplying the solution to the tubular reactor (II). A volume ratio of a tubular reactor constituting the annular reactor (I) to the reactor having mixing blackes and a volume ratio of the annular reactor (I) to the tubular reactor (II) are (5/1)-(20/1) and (1/1)-(1/5), respectively and an organic peroxide solution is supplied into the tubular reactor (II) from at least one place, then a rubber- reinforcing styrenic resin comprising granularly dispersed rubbery elastomer in a continuous styrenic resin phase is produced by controlling a polymer concentration in the reactor (ii) having mixing blades in the reactor (I).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粒子状に分散した
ゴム状弾性体粒子の大きさを制御する方法であり、更に
は、衝撃強度、外観特性等に優れ、かつ、高い生産性を
有するゴム補強スチレン系樹脂の製造方法を提供するも
のである。
TECHNICAL FIELD The present invention relates to a method for controlling the size of rubber-like elastic particles dispersed in the form of particles, and further, is excellent in impact strength, appearance characteristics and the like and has high productivity. Provided is a method for producing a rubber-reinforced styrene resin.

【0002】[0002]

【従来の技術】ゴム補強スチレン系樹脂の製造は比較的
古く、そして当該業者にとって現状の工業的方法は明ら
かに周知である。代表的な技術によれば、単量体の中に
溶解されたゴム溶液を最初の段階の反応機内で機械的撹
拌下で重合させる。重合がバッチ式、又は連続式の撹拌
されたプラグフロー反応機内で起ころうか、又は連続式
の撹拌されたタンク反応機内で起ころうかであるが、殆
ど全ての従来の技術及び開示は最終生成物中に分散され
たゴム状弾性体に関する粒子径、粒子径分布はプロセス
の早い時点で大部分決定されてしまうと明示している。
The production of rubber-reinforced styrenic resins is relatively old, and the state of the art industrial processes are clearly known to those skilled in the art. According to a typical technique, a rubber solution dissolved in a monomer is polymerized in a first stage reactor under mechanical stirring. Whether the polymerization occurs in a batch or continuous stirred plug flow reactor, or in a continuous stirred tank reactor, almost all prior art and disclosures have resulted in end products. It is clarified that the particle size and particle size distribution of the rubber-like elastic material dispersed in the object are largely determined at an early stage of the process.

【0003】重合がバッチ式、又は連続式の撹拌された
プラグフロー反応機内で進行すると、単量体の転化率が
5〜20%の或る時点において、機械的撹拌による剪断
で、ゴム状弾性体が分散相に、ポリスチレン系樹脂相が
連続相になる。即ち、相転換が生じ、ゴム粒子が形成さ
れる。この相転換は瞬時に起こるわけではなく、かなり
の時間、空間にわたって生じる。代表的には、20〜5
0分間にわたって、又は2〜8%の単量体転化率を生じ
る反応機空間にわたって生じる。それ故、ゴム粒子径、
ゴム粒子径分布を正確に制御することには困難が伴う。
また、連続式の完全混合型反応機の場合は、ゴム粒子形
成は瞬時に生じるが、反応系の動的挙動に起因する滞留
時間分布、反応系の各単位容量に同じ剪断履歴を確実に
与えることは不可能ではないにしても非常に困難である
為、結果として、分散されたゴム粒子径分布は一般的最
も広くなる。
As the polymerization proceeds in a batch or continuous stirred plug flow reactor, at some point when the monomer conversion is between 5 and 20%, shearing by mechanical stirring causes a rubbery elasticity. The body becomes the dispersed phase and the polystyrene resin phase becomes the continuous phase. That is, phase inversion occurs and rubber particles are formed. This phase change does not occur instantaneously, but rather over time and space. Typically 20-5
It occurs over 0 minutes or over the reactor space resulting in 2-8% monomer conversion. Therefore, the rubber particle size,
Accurate control of the rubber particle size distribution is difficult.
Also, in the case of a continuous type complete mixing type reactor, rubber particle formation occurs instantaneously, but the residence time distribution due to the dynamic behavior of the reaction system and the same shear history for each unit volume of the reaction system are surely given. As a result, the dispersed rubber particle size distribution is generally the broadest, since this is very difficult, if not impossible.

【0004】ゴム補強スチレン系樹脂の物性は分散され
たゴム状弾性体の粒子径、粒子径分布に大きく依存して
いる。ゴム粒子径、粒子径分布の正確な制御がゴム補強
スチレン系樹脂の物性を制御する重要な因子であること
は公知の事実である。又、プラグフロー反応機、完全混
合型反応機等は単位体積当たりの伝熱面積が小さいた
め、反応熱の除熱能力が小さく、その結果、生産性の向
上が期待できない。又、単量体の転化率が高くなると、
高粘度溶液の撹拌による熱が生じ、除熱する熱量が増
え.結果、生産性の低下を招くという欠点も有してい
る。
The physical properties of the rubber-reinforced styrenic resin greatly depend on the particle size and particle size distribution of the dispersed rubber-like elastic material. It is a known fact that accurate control of the rubber particle size and particle size distribution is an important factor controlling the physical properties of the rubber-reinforced styrene resin. Moreover, since the plug flow reactor, the complete mixing type reactor and the like have a small heat transfer area per unit volume, the heat removal capacity of the reaction heat is small, and as a result, improvement in productivity cannot be expected. Also, when the conversion rate of the monomer becomes high,
Heat is generated by stirring the highly viscous solution, increasing the amount of heat removed. As a result, it also has a drawback of lowering productivity.

【0005】上述の撹拌されたプラグフロー反応機、完
全混合型反応機の欠点を解消する為に、静的混合器を内
蔵した管状反応器で構成された環状反応器で相転換を行
わせ、ゴム粒子を形成する方法が提案されている(特公
平7−25856号公報)。しかし、この方法では、ゴ
ム粒子形成に必要な剪断力は環状反応器内を流れる反応
溶液粘度、流速に依存しており、比較的大きいゴム粒子
径は製造しやすいが、比較的小さいゴム粒子径を得るに
は、還流速度を速めなければならず、環状反応器内の圧
力損失が大きくなるため困難を伴う。この方法の欠点を
解消する為に、環状反応器を構成する管状反応器の中間
に動的インラインミキサーを導入する方法が提案されて
いる(特公平7−25857号公報)。
In order to solve the above-mentioned drawbacks of the agitated plug flow reactor and the complete mixing type reactor, the phase conversion is performed in an annular reactor composed of a tubular reactor having a static mixer. A method for forming rubber particles has been proposed (Japanese Patent Publication No. 7-25856). However, in this method, the shearing force required to form rubber particles depends on the viscosity of the reaction solution flowing in the annular reactor and the flow rate. In order to obtain the above, the reflux rate must be increased, which causes difficulty because the pressure loss in the annular reactor becomes large. In order to solve the drawbacks of this method, a method of introducing a dynamic in-line mixer in the middle of a tubular reactor forming a ring reactor has been proposed (Japanese Patent Publication No. 7-25857).

【0006】この方法では、一度相転換したゴム粒子を
更に強い剪断力で小さくする為、ゴム粒子の破壊が生
じ、又、ゴム状弾性体の分子鎖切断等が生じ、その結
果、物性低下に繋がり好ましくない。又、特公平7−2
5856号公報、特公平7−25857号公報で開示さ
れている管状型反応器では、反応熱の交換はジャケット
部の伝熱のみであり、プラグフロー反応機と同じ程度に
しか除熱できず、生産性の向上は期待できない。
In this method, since the rubber particles once phase-converted are made smaller by a stronger shearing force, the rubber particles are broken, and the molecular chains of the rubber-like elastic body are broken, resulting in deterioration of physical properties. Connection is not preferable. Also, Japanese Patent Fair 7-2
In the tubular reactor disclosed in Japanese Patent No. 5856 and Japanese Patent Publication No. 7-25857, the heat of reaction is exchanged only by heat transfer in the jacket, and the heat can be removed only to the same extent as in the plug flow reactor. No improvement in productivity can be expected.

【0007】[0007]

【発明が解決しようとする課題】大ゴム粒子径から小ゴ
ム粒子径まで広いゴム粒子径範囲でのゴム粒子径制御が
容易になるゴム補強スチレン系樹脂の製造方法を提供す
るもので、この製造方法により、強度、外観等に優れ、
かつ生産性に優れたゴム補強スチレン系樹脂が得られ
る。
The present invention provides a method for producing a rubber-reinforced styrene resin which facilitates control of the rubber particle size in a wide rubber particle size range from a large rubber particle size to a small rubber particle size. Depending on the method, it has excellent strength and appearance,
Moreover, a rubber-reinforced styrene resin having excellent productivity can be obtained.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、熱
媒体が通る流路を有する静的混合器を内蔵した管状反応
器と撹拌翼を備えた反応機と反応液を移送するポンプと
からなる環状反応器(I)と熱媒体が通る流路を有する
静的混合器を内蔵した管状反応器(II)とからなり、ス
チレン系モノマーおよびゴム状重合体を含む原材料溶液
を撹拌翼を備えた反応器に供給し、環状反応器(I)を
一部循環しつつ、管状反応器(II)に供給する重合方法
であって、環状反応器(I)を構成する管状反応器と撹
拌翼を備えた反応機の体積比が5/1〜20/1であ
り、環状反応器(I)と管状反応器(II)の体積比が1
/1〜1/5である重合装置であり、管状反応器(II)
に少なくとも1か所以上から有機過酸化物溶液を供給す
るもので、反応器(I)中の撹拌翼を備えた反応機のポ
リマー濃度が原材料中のゴム状弾性体濃度の2〜10倍
になるように制御することを特徴とする、連続したスチ
レン系樹脂相中にゴム状弾性体が粒子状に分散したゴム
補強スチレン系樹脂の製造方法である。
That is, the present invention comprises a tubular reactor containing a static mixer having a flow path through which a heat medium passes, a reactor equipped with a stirring blade, and a pump for transferring a reaction solution. And a tubular reactor (II) having a static mixer having a flow path through which a heat medium passes, the raw material solution containing a styrene monomer and a rubbery polymer is provided with a stirring blade. A polymerization method in which the cyclic reactor (I) is supplied to the tubular reactor (I) while partly circulating the cyclic reactor (I), and the tubular reactor and the stirring blade constitute the cyclic reactor (I). The volume ratio of the reactor equipped with is 5/1 to 20/1, and the volume ratio of the annular reactor (I) and the tubular reactor (II) is 1
Tubular reactor (II)
The organic peroxide solution is supplied from at least one or more locations in the reactor, and the polymer concentration in the reactor equipped with a stirring blade in the reactor (I) is 2 to 10 times the concentration of the rubber-like elastic material in the raw material. The present invention is a method for producing a rubber-reinforced styrene-based resin in which a rubber-like elastic material is dispersed in particles in a continuous styrene-based resin phase.

【0009】環状反応器(I)を構成する熱媒体が通る
流路を有する静的混合器を内蔵してなる管状反応器とし
ては、熱媒体が通過できる構造を有した静的混合構造部
が内部に固定されたものである。単位体積当たりの伝熱
面積(A/V)の値は、30(m2 /m3 )以上が好ま
しい。管状反応機のジャケット部は必ずしも必要ではな
い。かかる管状反応器としては、スルザー社のSMR反
応器が好適に用いることができる。
As a tubular reactor having a static mixer having a flow path through which a heat medium that composes the annular reactor (I) is built, a static mixing structure having a structure through which the heat medium can pass is provided. It is fixed inside. The value of the heat transfer area (A / V) per unit volume is preferably 30 (m 2 / m 3 ) or more. The tubular reactor jacket is not always necessary. As such a tubular reactor, an SMR reactor manufactured by Sulzer can be preferably used.

【0010】環状反応器を構成する撹拌翼を備えた反応
機としては、一般的に使用されている撹拌翼を備えた完
全混合型反応機、あるいは撹拌翼を備えた塔型反応機
(プラグフロー反応機)、回転円筒型反応機等が使用で
きる。中でも、撹拌翼を備えた塔型反応機、回転円筒型
反応機が好適に用いることができる。熱媒体が通る流路
を有する静的混合器を内蔵してなる管状反応器(II)と
しては、熱媒体が通過できる構造を有した静的混合構造
部が内部に固定されたものである。単位体積当たりの伝
熱面積の値は、30(m2 /m3 )以上が好ましい。管
状反応機のジャケット部は必ずしも必要ではない。かか
る管状反応器としては、図1に示す概略図のような管状
反応器であり、具体的には、スルザー社のSMR反応器
が好適例に用いることができる。
The reactor equipped with stirring blades that constitutes the annular reactor is a generally used complete mixing type reactor equipped with stirring blades, or a tower type reactor (plug flow) equipped with stirring blades. Reactor), a rotating cylinder type reactor, etc. can be used. Above all, a tower reactor equipped with a stirring blade and a rotating cylinder reactor can be preferably used. As a tubular reactor (II) having a static mixer having a flow path through which a heat medium passes, a static mixing structure having a structure through which the heat medium can pass is fixed inside. The value of the heat transfer area per unit volume is preferably 30 (m 2 / m 3 ) or more. The tubular reactor jacket is not always necessary. Such a tubular reactor is a tubular reactor as shown in the schematic view of FIG. 1, and specifically, an SMR reactor manufactured by Sulzer can be used as a suitable example.

【0011】原材料溶液は撹拌翼を備えた反応機に供給
する必要がある。原材料溶液と環状反応器を循環してい
る重合溶液との混合性がゴム粒子径を決める最大の因子
である。低粘度液を高粘度液中に短時間で分散する必要
がある。原材料溶液が環状反応器中の管状反応器中に供
給されると、静的混合器の剪断力が弱い為に分散に長時
間かかり、その間にゴム粒子が形成され、結果的にゴム
粒子径が大きく、比較的広い粒子径分布のものしか得ら
れない。原材料溶液と重合溶液が撹拌翼を備えた反応機
内で短時間で混合される時、原材料溶液と重合溶液の混
合度合いに応じて、弱い剪断力を与える静的混合器を有
する管状反応器内で粒子径分布の狭い大粒子から小粒子
までのゴム粒子径を形成する。原材料溶液と重合溶液の
混合度合いは、撹拌翼を備えた反応機の撹拌数によって
も制御できるが、撹拌数を高めるとゴム状弾性体、還流
された重合溶液中のゴム粒子に大きな剪断力を与え、ゴ
ム状弾性体の切断、ゴム粒子の破壊が生じ好ましくな
い。原材料溶液と還流された重合溶液の粘度差を利用し
て分散度合いを制御することが好ましい。混合度合いを
高めるには二つの溶液の粘度差を小さくし、混合度合い
を低めるには二つの溶液の粘度差を 高めることにより
達成される。その為に、撹拌翼を備えた反応機内のポリ
マー濃度(ゴム状弾性体と単量体から生成したスチレン
系樹脂の総和の重量濃度)が原材料中のゴム状弾性体濃
度(重量濃度)の2〜10倍になるように制御する必要
がある。2倍以下の場合は、還流された重合溶液中のゴ
ム粒子が解体され(解相転)、ゴム状弾性体が疑似連続
相的形態を示し、ゴム粒子径の制御が非常に困難にな
る。10倍を越える場合は、原材料溶液と重合溶液の混
合が困難になり、ゴム粒子径制御が困難になる。この
時、撹拌翼を備えた反応機の撹拌数はゴム状弾性体の切
断、ゴム粒子の破壊が生じない程度で制御する必要があ
る。
The raw material solution must be fed to a reactor equipped with a stirring blade. Mixability between the raw material solution and the polymerization solution circulating in the annular reactor is the largest factor that determines the rubber particle size. It is necessary to disperse the low viscosity liquid in the high viscosity liquid in a short time. When the raw material solution is fed into the tubular reactor in the annular reactor, it takes a long time to disperse due to the weak shearing force of the static mixer, during which rubber particles are formed, and as a result, the rubber particle diameter is reduced. Only large and relatively wide particle size distributions can be obtained. When the raw material solution and the polymerization solution are mixed in a reactor equipped with a stirring blade for a short time, depending on the mixing degree of the raw material solution and the polymerization solution, in a tubular reactor having a static mixer that gives a weak shearing force. It forms rubber particle sizes from large particles to small particles with a narrow particle size distribution. The mixing degree of the raw material solution and the polymerization solution can be controlled by the number of agitation of the reactor equipped with a stirring blade, but if the number of agitation is increased, a large shear force is applied to the rubber-like elastic body and the rubber particles in the refluxed polymerization solution. If applied, the rubber-like elastic body is cut and the rubber particles are broken, which is not preferable. It is preferable to control the degree of dispersion by utilizing the difference in viscosity between the raw material solution and the refluxed polymerization solution. It can be achieved by decreasing the difference in viscosity between the two solutions to increase the degree of mixing, and increasing the difference in viscosity between the two solutions to decrease the degree of mixing. Therefore, the polymer concentration (the total weight concentration of the styrene resin generated from the rubber-like elastic body and the monomer) in the reactor equipped with the stirring blade is equal to the rubber-like elastic body concentration (weight concentration) of the raw material. It is necessary to control so that it becomes 10 times. When the amount is 2 times or less, the rubber particles in the refluxed polymerization solution are disassembled (phase inversion), the rubber-like elastic body exhibits a quasi-continuous phase morphology, and it becomes very difficult to control the rubber particle diameter. If it exceeds 10 times, it becomes difficult to mix the raw material solution and the polymerization solution, and it becomes difficult to control the rubber particle size. At this time, it is necessary to control the stirring number of the reactor equipped with stirring blades to such an extent that the rubber-like elastic body is not cut and the rubber particles are not broken.

【0012】環状反応器を構成する管状反応器と撹拌翼
を備えた反応機の体積比は5/1〜20/1である。こ
の比が5/1より小さい場合は、撹拌翼を備えた反応機
内での滞留時間が長くなり、滞留時間分布に起因する粒
子径分布の広がり、ゴム粒子の肥大化等が生じゴム粒子
径制御が困難になる。又、この比が大きい場合は原材料
溶液と重合溶液の混合度合いの制御が困難となり、その
結果、ゴム粒子径制御が困難になる。
The volume ratio of the tubular reactor constituting the annular reactor and the reactor equipped with a stirring blade is 5/1 to 20/1. If this ratio is less than 5/1, the residence time in the reactor equipped with a stirring blade becomes longer, the particle size distribution is broadened due to the residence time distribution, and the rubber particles become enlarged, etc. Becomes difficult. If this ratio is large, it becomes difficult to control the degree of mixing of the raw material solution and the polymerization solution, and as a result, it becomes difficult to control the rubber particle size.

【0013】有機過酸化物溶液を管状反応器(II)の任
意の所に1か所以上供給する必要がある。単量体転化率
が高くなると、反応速度が遅くなり、生産性の低下に繋
がる。又、環状反応器で形成されたゴム粒子は表面にポ
リスチレンがグラフトされていないか、されていても不
十分である。強度、外観特性等高めるために管状反応器
(II)でポリスチレンをグラフトさせる必要がある。こ
れらの目的達成のためには、有機過酸化物溶液を供給
し、反応速度を早め、グラフト反応を促進することが必
要である。有機過酸化物溶液の供給部位は1か所以上が
好ましい。有機過酸化物溶液の供給部位は特に制約はな
いが、1か所の場合は、管状反応器(II)の入口、2か
所の場合は管状反応器(II)の入口部と中央部が好まし
い。3か所以上の場合は、管状反応器(II)を等分割し
た部位に供給することが好ましい。有機過酸化物溶液は
有機過酸化物単独あるいはエチルベンゼン等溶媒に希釈
して供給してもよい。使用される有機過酸化物も特に制
約はないが、10時間半減期温度が90〜140℃、例
えば、日本油脂株式会社のパーヘキサC、パーヘキサ3
M、パーブチルZ、パーブチルD、パーヘキサ25B、
パーブチルI等が好適に用いられる。
It is necessary to feed the organic peroxide solution to one or more arbitrary places in the tubular reactor (II). When the monomer conversion rate becomes high, the reaction rate becomes slow, which leads to a decrease in productivity. Further, the rubber particles formed in the ring reactor are not grafted with polystyrene on the surface or are insufficient even if they are grafted with polystyrene. It is necessary to graft polystyrene in the tubular reactor (II) in order to enhance strength and appearance characteristics. In order to achieve these objects, it is necessary to supply an organic peroxide solution to accelerate the reaction rate and accelerate the graft reaction. It is preferable that the supply site of the organic peroxide solution is one or more. The supply site of the organic peroxide solution is not particularly limited, but in the case of one location, the inlet of the tubular reactor (II) and in the case of two locations, the inlet and center of the tubular reactor (II) are preferable. In the case of three or more places, it is preferable to supply the tubular reactor (II) to equally divided sites. The organic peroxide solution may be supplied alone or diluted with a solvent such as ethylbenzene. The organic peroxide used is also not particularly limited, but the 10-hour half-life temperature is 90 to 140 ° C., for example, Perhexa C or Perhexa 3 of NOF Corporation.
M, perbutyl Z, perbutyl D, perhexa 25B,
Perbutyl I and the like are preferably used.

【0014】環状反応器(I)と管状反応器(II)の体
積比は1/1〜1/5である。好ましくは、1/1〜1
/3である。この比が1/1より大きい場合、環状反応
器(I)はゴム粒子径制御の観点からある程度反応速度
に制約があり、管状反応器(II)での生産性向上の為の
負荷が大きくなり、品質と生産性のバランスが悪くな
る。この比が1/3より小さい場合、単位体積当たりの
生産性が悪くなる。本発明で言う生産性とは、単位体積
当たり、単位時間当たりの生産量を言う。従来の製造プ
ロセス、製造条件では1〜2トン/m3 /日であるが、
本発明で言う高生産性とは3〜5トン/m3 /日で程度
の値を意味する。
The volume ratio of the annular reactor (I) to the tubular reactor (II) is 1/1 to 1/5. Preferably, 1/1 to 1
/ 3. When this ratio is larger than 1/1, the reaction rate of the annular reactor (I) is limited to some extent from the viewpoint of controlling the rubber particle size, and the load for improving productivity in the tubular reactor (II) becomes large. , The balance between quality and productivity becomes poor. If this ratio is smaller than 1/3, the productivity per unit volume becomes poor. The productivity referred to in the present invention means the production amount per unit time per unit volume. In the conventional manufacturing process and manufacturing conditions, it is 1-2 ton / m 3 / day,
The high productivity referred to in the present invention means a value of about 3 to 5 ton / m 3 / day.

【0015】本発明で言うゴム補強スチレン系樹脂と
は、連続相がスチレン、α−メチルスチレン等からなる
ポリマー、あるいはスチレン、α−メチルスチレンと共
重合可能な単量体、(メタ)アクリル酸エステル、例え
ばブチルアクリレート、メチルメタクリレート、ブチル
メタクリレート、メチルアクリレート等、及びアクリロ
ニトリル等の共重合体であり、分散相がポリブタジエ
ン、スチレン・ブタジエン共重合体、スチレン・ブタジ
エンブロック共重合体、エチレン・プロピレンターポリ
マー等のゴム状弾性体によって形成されたゴム粒子から
構成されている樹脂である。
The rubber-reinforced styrene resin referred to in the present invention means a polymer having a continuous phase of styrene, α-methylstyrene or the like, or styrene, a monomer copolymerizable with α-methylstyrene, or (meth) acrylic acid. Esters such as butyl acrylate, methyl methacrylate, butyl methacrylate, methyl acrylate, etc., and acrylonitrile, etc., and the dispersed phase is polybutadiene, styrene / butadiene copolymer, styrene / butadiene block copolymer, ethylene / propylene terpolymer. It is a resin composed of rubber particles formed of a rubber-like elastic body such as a polymer.

【0016】本発明でいう原料溶液としては、単量体に
ゴム状弾性体を溶解した溶液であり、必要に応じてエチ
ルベンゼン、トルエン等の重合溶媒、分子量調整剤、1
0時間半減期温度が90〜140℃、例えば日本油脂株
式会社のパーヘキサC、パーヘキサ3M、パーブチル
Z、パーブチルD、パーヘキサ25B、パーブチルI等
の重合開始剤、ミネラルオイル、シリコーンオイル等の
可塑剤、酸化防止剤等を原材料溶液に添加してもよい。
The raw material solution referred to in the present invention is a solution in which a rubber-like elastic material is dissolved in a monomer, and if necessary, a polymerization solvent such as ethylbenzene or toluene, a molecular weight modifier, 1
The 0-hour half-life temperature is 90 to 140 ° C., for example, polymerization initiators such as Perhexa C, Perhexa 3M, Perbutyl Z, Perbutyl D, Perhexa 25B and Perbutyl I of NOF CORPORATION, plasticizers such as mineral oil and silicone oil, An antioxidant or the like may be added to the raw material solution.

【0017】原材料溶液は撹拌翼を備えた反応機に供給
されるが、撹拌翼を備えた反応機に供給される前の段階
で予備重合等の前処理を行ってもよい。但し、ゴム状弾
性体がゴム粒子を形成しない転化率に押さえることが肝
要である。環状反応器(I)の重合温度は、100〜1
50℃の範囲が好適に用いられる。環状反応器の循環量
も特に制約はないが、用いる静的混合器が混合能力を十
二分に発揮できる最低流速以上で使用する必要がある。
The raw material solution is supplied to a reactor equipped with a stirring blade, but a pretreatment such as prepolymerization may be carried out at a stage before being supplied to a reactor equipped with a stirring blade. However, it is important that the rubber-like elastic body has a conversion rate that does not form rubber particles. The polymerization temperature of the annular reactor (I) is 100 to 1
A range of 50 ° C is preferably used. The circulation amount of the annular reactor is not particularly limited, but it is necessary to use the static mixer at a minimum flow rate or more at which the mixing capacity of the static mixer used can be fully exhibited.

【0018】例えばスルーザー社のSMR反応機の場
合、2m/h以上の流速が得られる循環量で循環するこ
とが好ましい。循環比(循環流量/原材料溶液供給流
量)は2〜15が好適に用いられる。循環比を変化させ
ることによりゴム粒子径を制御することも可能である
が、制御できる自由度は小さい。しかし、圧力損失等を
考慮しつつ循環量でゴム粒子径の微調整を行うことはな
んら問題はない。
For example, in the case of an SMR reactor manufactured by Sulzer, it is preferable to circulate the SMR reactor at such a circulation rate that a flow rate of 2 m / h or more can be obtained. A circulation ratio (circulation flow rate / raw material solution supply flow rate) of 2 to 15 is preferably used. It is possible to control the rubber particle size by changing the circulation ratio, but the degree of freedom that can be controlled is small. However, there is no problem in finely adjusting the rubber particle size by the circulation amount while considering the pressure loss and the like.

【0019】管状反応器(II)での重合温度は、120
〜180℃の範囲が好適に用いられる。そして、管状反
応器(II)の出口の固形分(連続相と分散相のポリマー
の総和)濃度は70重量%以上、好ましくは80重量%
以上になるように重合条件を設定することが好ましい。
固形分濃度が低いと、高生産性を維持するために、回収
能力の負荷が大きくなり好ましくない。
The polymerization temperature in the tubular reactor (II) is 120.
The range of to 180 ° C is preferably used. The concentration of solids (total of polymer in continuous phase and dispersed phase) at the outlet of the tubular reactor (II) is 70% by weight or more, preferably 80% by weight.
It is preferable to set the polymerization conditions as described above.
When the solid content concentration is low, the load on the recovery capacity becomes large in order to maintain high productivity, which is not preferable.

【0020】管状反応器(II)から出た重合溶液は回収
設備に送られ、未反応単量体、重合溶媒等を除去されペ
レット化される。回収系に入る前、又は回収系を出た後
にゴム補強スチレン系樹脂に多用されている添加剤、例
えば、酸化防止剤、可塑剤、着色剤、帯電防止剤、難燃
剤等を添加することができる。
The polymerization solution discharged from the tubular reactor (II) is sent to a recovery facility where unreacted monomers, polymerization solvent and the like are removed and pelletized. Additives often used in rubber-reinforced styrene resin before entering the recovery system or after exiting the recovery system, for example, antioxidants, plasticizers, colorants, antistatic agents, flame retardants, etc. may be added. it can.

【0021】[0021]

【発明の実施の形態】物性等の測定方法は以下の方法に
よる。 SOLID%:重合溶液約5gを精秤し、約5ccのメ
タノールを加えた後、200℃、10mmHgの条件下
の真空乾燥機で20分加熱後精秤し、固形分濃度(重量
%)を計算する。
BEST MODE FOR CARRYING OUT THE INVENTION The method of measuring physical properties is as follows. SOLID%: About 5 g of the polymerization solution was precisely weighed, about 5 cc of methanol was added, and after heating for 20 minutes in a vacuum dryer under the conditions of 200 ° C. and 10 mmHg, the weight was precisely weighed to calculate the solid content concentration (% by weight). To do.

【0022】ゴム粒子径、粒子径分布:Coulter
Coporation社の下記の型式のコールターカ
ウンターを用いて測定する。 本体:MULTISIZER II型、測定機:MULT
ISIZER IIE型、ジメチルホルムアミドとチオシ
アン酸アンモニウムからなる電解液を使用し、体積平均
と数平均の50%メジアン径を求める。本発明で言うゴ
ム粒子径とは体積平均50%メジアン径を、ゴム粒子径
分布とは、体積平均50%メジアン径と数平均50%メ
ジアン径の比を意味する。
Rubber particle size and particle size distribution: Coulter
The measurement is performed using a Coulter counter of the following type manufactured by Corporation. Main body: MULTISIZER II type, Measuring machine: MULT
The volume averaged and number averaged 50% median diameters are determined using an electrolyte solution of ISIZER IIE type, dimethylformamide and ammonium thiocyanate. In the present invention, the rubber particle diameter means the volume average 50% median diameter, and the rubber particle diameter distribution means the ratio of the volume average 50% median diameter and the number average 50% median diameter.

【0023】アイゾット衝撃強度:ASTM D638
I準拠して測定した。 外観:成型温度220度、金型温度60度の条件で、ダ
ンベル試験片を成形し、ケート側から4cmの所をJI
S Z8741に準拠して測定した。図1は、本発明の
方法の実施に用いた装置の概略のフローシートである。
タンク(1)内で調合された原料溶液はポンプ(2)で
反応機(3)に送られる。反応機(3)はL/D=1
0、15段の棒状羽根を有し、容積0.6Lのプラグフ
ロータイプの反応機である。反応機(3)を出た重合溶
液は反応器(4)に送らる。反応器(4)はスルーザー
社のSMRタイプの、内部に熱媒体が通る流路を有する
静的混合器を内臓した管状反応器である。容積は6Lで
ある。反応器(4)を出た重合溶液の一部はポプ(5)
で反応機(3)に循環される。残りの重合溶液は反応器
(6)に送られる。反応器(6)は反応器(4)と同じ
構造を有し、容積は12Lである。反応器(6)の入口
部、中間部に開始剤溶液がポンプ(7)、(8)で追添
できる。反応器(6)を出た重合溶液は二段ベント付二
軸押出機(9)に送られ、未反応単量体、重合溶媒等を
除去した後、ペレット化される。
Izod impact strength: ASTM D638
It measured according to I. Appearance: A dumbbell test piece was molded under the conditions of a molding temperature of 220 ° C. and a mold temperature of 60 ° C., and 4 cm from the kate side was JI.
It measured based on SZ8741. FIG. 1 is a schematic flow sheet of the apparatus used to carry out the method of the present invention.
The raw material solution prepared in the tank (1) is sent to the reactor (3) by the pump (2). Reactor (3) has L / D = 1
It is a plug flow type reactor having 0 and 15 stages of rod-shaped blades and a volume of 0.6 L. The polymerization solution exiting the reactor (3) is sent to the reactor (4). The reactor (4) is a tubular reactor of the SMR type of Sruzer Co., Ltd., which has a built-in static mixer having a flow passage through which a heat medium passes. The volume is 6L. A part of the polymerization solution exiting the reactor (4) is pop (5)
Is circulated to the reactor (3). The remaining polymerization solution is sent to the reactor (6). The reactor (6) has the same structure as the reactor (4) and has a volume of 12L. The initiator solution can be additionally added to the inlet part and the intermediate part of the reactor (6) by the pumps (7) and (8). The polymerization solution exiting the reactor (6) is sent to a twin-screw extruder with a two-stage vent (9) to remove unreacted monomers, polymerization solvent and the like, and then pelletized.

【0024】[0024]

【実施例1】スチレン81.5重量%、エチルベンゼン
12重量%、ゴム(旭化成工業株式会社製、アサプレン
730A)6.5重量%、有機過酸化物(日本油脂株式
会社製、パーヘキサC)300ppm、α−メチルスチ
レンダイマー200ppmになるようにタンク(1)で
調合し、原料溶液を作製する。
Example 1 Styrene 81.5% by weight, ethylbenzene 12% by weight, rubber (Asaprene 730A manufactured by Asahi Chemical Industry Co., Ltd.) 6.5% by weight, organic peroxide (Nippon Oil & Fats Co., Ltd., Perhexa C) 300 ppm, A raw material solution is prepared by mixing in the tank (1) so that the α-methylstyrene dimer becomes 200 ppm.

【0025】原料溶液を3.5L/Hの速度で反応機
(3)に供給する。反応機(3)、反応器(4)は12
3℃に制御する。反応機(3)の回転数は100rp
m、循環比(循環流量/原料溶液流量)は10で制御す
る。反応器(4)を出た重合溶液は反応器(6)に送ら
れ、反応器(6)は前段を145℃、後段を160℃に
制御する。ポンプ(7)を用いて、重合溶液に対して3
00ppmの有機過酸化物(パーヘキサCの50重量%
エチルベンゼン溶液)を追添する。
The raw material solution is fed to the reactor (3) at a rate of 3.5 L / H. 12 reactors (3) and reactors (4)
Control to 3 ° C. Revolution of the reactor (3) is 100 rp
m, the circulation ratio (circulation flow rate / raw material solution flow rate) is controlled at 10. The polymerization solution exiting the reactor (4) is sent to the reactor (6), and the reactor (6) is controlled to 145 ° C in the front stage and 160 ° C in the rear stage. 3 for the polymerization solution using the pump (7)
00 ppm organic peroxide (50% by weight of Perhexa C)
Ethylbenzene solution) is added.

【0026】反応器(6)を出た重合溶液は二段ベント
付二軸押出機(9)に送られ、240℃の温度で処理さ
れ、ペレット化される。結果を表1に示す。
The polymerization solution discharged from the reactor (6) is sent to a twin-screw extruder with a two-stage vent (9), treated at a temperature of 240 ° C., and pelletized. The results are shown in Table 1.

【0027】[0027]

【実施例2】反応機(3)の撹拌数が180rpm以
外、実施例1と同様にして、ペレットを得る。結果を表
1に示す。
Example 2 Pellets are obtained in the same manner as in Example 1 except that the stirring number in the reactor (3) is 180 rpm. The results are shown in Table 1.

【0028】[0028]

【実施例3】反応機(3)、反応器(4)が114℃
に、反応器(6)の前段が150℃、後段が170℃に
制御される以外、実施例1と同様にして、ペレットを得
る。結果を表1に示す。
Example 3 Reactor (3) and Reactor (4) were 114 ° C.
In addition, pellets are obtained in the same manner as in Example 1 except that the reactor (6) is controlled at 150 ° C. in the front stage and 170 ° C. in the rear stage. The results are shown in Table 1.

【0029】[0029]

【実施例4】反応機(3)の撹拌数が180rpm以
外、実施例3と同様にして、ペレットを得る。結果を表
1に示す。
Example 4 Pellets are obtained in the same manner as in Example 3 except that the stirring number in the reactor (3) is 180 rpm. The results are shown in Table 1.

【0030】[0030]

【実施例5】反応機(3)、反応器(4)が119℃
に、反応器(6)の前段が147℃、後段が165℃に
制御される以外、実施例1と同様にして、ペレットを得
る。結果を表1に示す。
[Example 5] The reactor (3) and the reactor (4) had a temperature of 119 ° C.
Further, pellets are obtained in the same manner as in Example 1 except that the reactor (6) is controlled at 147 ° C. in the front stage and 165 ° C. in the rear stage. The results are shown in Table 1.

【0031】[0031]

【比較例1】図1に於いて、反応機(3)を除き、原料
溶液、ポンプ(5)で循環される重合溶液を直接反応器
(4)に供給する以外、実施例1と同様にして、ペレッ
トを得る。結果を表1に示す。
Comparative Example 1 In the same manner as in Example 1 except that the reactor (3) is omitted and the raw material solution and the polymerization solution circulated by the pump (5) are directly supplied to the reactor (4) in FIG. To obtain pellets. The results are shown in Table 1.

【0032】[0032]

【比較例2】循環比が15以外、比較例1と同様にし
て、ペレットを得る。結果を表1に示す。
Comparative Example 2 Pellets are obtained in the same manner as in Comparative Example 1 except that the circulation ratio is 15. The results are shown in Table 1.

【0033】[0033]

【比較例3】反応器(4)の温度が114℃以外、比較
例1と同様にして、ペレットを得る。結果を表1に示
す。
Comparative Example 3 Pellets are obtained in the same manner as in Comparative Example 1 except that the temperature of the reactor (4) is 114 ° C. The results are shown in Table 1.

【0034】[0034]

【比較例4】ポンプ(7)を用いて有機過酸化物を追添
しない以外、実施例1と同様にして、ペレットを得る。
結果を表1に示す。
Comparative Example 4 Pellets are obtained in the same manner as in Example 1 except that the organic peroxide is not additionally added using the pump (7).
The results are shown in Table 1.

【0035】[0035]

【比較例5】ポンプ(7)を用いて有機過酸化物を追添
しない以外、実施例3と同様にして、ペレットを得る。
結果を表1に示す。
[Comparative Example 5] Pellets are obtained in the same manner as in Example 3, except that the organic peroxide is not additionally added using the pump (7).
The results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【実施例6】図1の反応器(6)の容量が9Lであり、
ポンプ(8)で200ppmの有機過酸化物(日本油脂
株式会社製、パーブチルDの50重量%エチルベンゼン
溶液)を追添し、反応器(6)後段(容積3L)を16
5℃に制御する以外、実施例−1と同様にしてペレット
を得る。ポンプ(8)で追添する位置は反応器(6)の
入口部から2/3の位置である。反応器(6)を出た重
合溶液のSOLID%は86%である。結果を表2に示
す。
Example 6 The reactor (6) in FIG. 1 has a capacity of 9 L,
A pump (8) was added with 200 ppm of an organic peroxide (manufactured by NOF CORPORATION, 50% by weight solution of perbutyl D in ethylbenzene), and the latter part of the reactor (6) (volume 3 L) was added 16 times.
Pellets are obtained in the same manner as in Example 1 except that the temperature is controlled to 5 ° C. The position to be added by the pump (8) is ⅔ from the inlet of the reactor (6). The SOLID% of the polymerized solution leaving the reactor (6) is 86%. Table 2 shows the results.

【0038】[0038]

【比較例6】反応機(3)と相似の構造を有し、容積が
6Lの反応機を直列に3基配置し、実施例1と同じ組成
の原料溶液を2.5L/Hで供給し、一段目の反応機の
温度を120℃−125℃、二段目の反応機の温度を1
35℃−145℃、三段目の温度を155℃−165℃
に制御し、得られた重合溶液は二段ベント付二軸押出機
(9)に送られ、240℃の温度で処理され、ペレット
化される。三段目反応機を出た重合溶液のSOLID%
は73%である。結果を表2に示す。
Comparative Example 6 Three reactors having a structure similar to that of the reactor (3) and a volume of 6 L are arranged in series, and a raw material solution having the same composition as in Example 1 is supplied at 2.5 L / H. , The temperature of the first stage reactor is 120 ° C-125 ° C, the temperature of the second stage reactor is 1
35 ℃ -145 ℃, the third stage temperature 155 ℃ -165 ℃
The resulting polymerization solution is sent to a twin-screw extruder with a two-stage vent (9), treated at a temperature of 240 ° C., and pelletized. SOLID% of polymerization solution exiting the third stage reactor
Is 73%. Table 2 shows the results.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【比較例7】比較例6と同じ装置を用い、実施例1と同
じ組成の原料溶液を3.5L/Hで供給し、二段反応機
の温度を135〜150℃、三段反応機の温度を150
〜170℃の範囲で制御しつつ、三段目反応機を出た重
合溶液のSOLID%が75%前後になるように運転し
たが、暴走的反応、失速的反応を繰り返し安定な運転は
出来なかった。このプロセスでは高生産性は達成出来な
かった。
Comparative Example 7 Using the same apparatus as in Comparative Example 6, a raw material solution having the same composition as in Example 1 was supplied at 3.5 L / H, the temperature of the two-stage reactor was 135 to 150 ° C., and the temperature of the three-stage reactor was the same. Temperature 150
While controlling in the range of ~ 170 ° C, the SOLID% of the polymerization solution exiting the third stage reactor was operated to be around 75%, but a runaway reaction and a stall reaction were repeated and stable operation could not be performed. It was High productivity could not be achieved by this process.

【0041】[0041]

【発明の効果】本発明のゴム補強スチレン系樹脂の製造
方法を用いることにより、大ゴム粒子径から小ゴム粒子
径まで広いゴム粒子径範囲でのゴム粒子径制御が容易に
なる。そして、強度、外観等に優れ、かつ生産性に優れ
たゴム補強スチレン系樹脂が得られる。
By using the method for producing a rubber-reinforced styrene resin according to the present invention, it becomes easy to control the rubber particle size in a wide rubber particle size range from a large rubber particle size to a small rubber particle size. Then, a rubber-reinforced styrene-based resin having excellent strength and appearance and excellent productivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】管状反応器の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a tubular reactor.

【図2】本発明の方法の実施に用いた装置の概略のフロ
ーシートである。
FIG. 2 is a schematic flow sheet of the apparatus used to carry out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱媒体が通る流路を有する静的混合器を
内蔵した管状反応器と撹拌翼を備えた反応機と反応液を
移送するポンプとからなる環状反応器(I)と熱媒体が
通る流路を有する静的混合器を内蔵した管状反応器(I
I)とからなり、スチレン系モノマーおよびゴム状重合
体を含む原材料溶液を撹拌翼を備えた反応器に供給し、
環状反応器(I)を一部循環しつつ、管状反応器(II)
に供給する重合方法であって、環状反応器(I)を構成
する管状反応器と撹拌翼を備えた反応機の体積比が5/
1〜20/1であり、環状反応器(I)と管状反応器
(II)の体積比が1/1〜1/5である重合装置であ
り、管状反応器(II)に少なくとも1か所以上から有機
過酸化物溶液を供給するもので、反応器(I)中の撹拌
翼を備えた反応機のポリマー濃度が原材料中のゴム状弾
性体濃度の2〜10倍になるように制御することを特徴
とする、連続したスチレン系樹脂相中にゴム状弾性体が
粒子状に分散したゴム補強スチレン系樹脂の製造方法。
1. A ring reactor (I) comprising a tubular reactor containing a static mixer having a flow path through which a heat medium passes, a reactor equipped with stirring blades, and a pump for transferring a reaction solution, and a heat medium. Tubular reactor with a static mixer (I
I) and a raw material solution containing a styrenic monomer and a rubbery polymer are fed to a reactor equipped with a stirring blade,
Tubular reactor (II) while partially circulating the annular reactor (I)
And a volume ratio of the tubular reactor constituting the annular reactor (I) and the reactor equipped with a stirring blade is 5 /
1 to 20/1, and the volume ratio of the annular reactor (I) to the tubular reactor (II) is 1/1 to 1/5, and the tubular reactor (II) has at least one location. From the above, the organic peroxide solution is supplied, and the concentration of the polymer in the reactor equipped with the stirring blade in the reactor (I) is controlled to be 2 to 10 times the concentration of the rubber-like elastic material in the raw material. A method for producing a rubber-reinforced styrene resin, in which a rubber-like elastic material is dispersed in particles in a continuous styrene resin phase.
JP23361995A 1995-09-12 1995-09-12 Method for producing rubber-reinforced styrenic resin Expired - Fee Related JP3600325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23361995A JP3600325B2 (en) 1995-09-12 1995-09-12 Method for producing rubber-reinforced styrenic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23361995A JP3600325B2 (en) 1995-09-12 1995-09-12 Method for producing rubber-reinforced styrenic resin

Publications (2)

Publication Number Publication Date
JPH0977834A true JPH0977834A (en) 1997-03-25
JP3600325B2 JP3600325B2 (en) 2004-12-15

Family

ID=16957892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23361995A Expired - Fee Related JP3600325B2 (en) 1995-09-12 1995-09-12 Method for producing rubber-reinforced styrenic resin

Country Status (1)

Country Link
JP (1) JP3600325B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068261A (en) * 2003-08-22 2005-03-17 Mitsui Chemicals Inc Propylene-based copolymer
WO2005085304A1 (en) 2004-03-01 2005-09-15 Bridgestone Corporation Continuous polymerization reactor
JPWO2009107765A1 (en) * 2008-02-28 2011-07-07 東レ株式会社 Method for producing thermoplastic copolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068261A (en) * 2003-08-22 2005-03-17 Mitsui Chemicals Inc Propylene-based copolymer
WO2005085304A1 (en) 2004-03-01 2005-09-15 Bridgestone Corporation Continuous polymerization reactor
JPWO2009107765A1 (en) * 2008-02-28 2011-07-07 東レ株式会社 Method for producing thermoplastic copolymer

Also Published As

Publication number Publication date
JP3600325B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
EP0254304B1 (en) Process for producing high impact styrene resin by continuous bulk polymerization
US3658946A (en) Production of rubber-modified vinylaromatic polymers
CA1129150A (en) Process for the continuous mass polymerization of alkenyl-aromatic compounds
EP0067536B1 (en) Mass polymerization process for abs polyblends
US3903199A (en) Continuous mass polymerization process for ABS polymeric polyblends
JPH037708A (en) Production of rubber-modified styrene resin
US3475514A (en) Process for producing graft copolymer compositions containing a varying range of graft ratios
JP3207207B2 (en) Method for producing rubber-reinforced styrenic resin
JPH0977834A (en) Production of rubber-reinforced styrenic resin
EP0096555B1 (en) Rubber-modified thermoplastic resins and production thereof
JPS63113009A (en) Production of rubber modified styrenic resin
US5747593A (en) Process for producing rubber-modified styrene resin
KR930001698B1 (en) Continuous process for preparing rubber modified high impact resins
JP3236056B2 (en) Method for producing rubber-modified styrenic resin
JPH07173231A (en) Method and apparatus for producing high-impact styrenic resin
JPH09124885A (en) Rubber-modified styrenic resin composition and its production
US4598124A (en) Mass polymerization process for ABS polyblends
JP3045347B2 (en) Method for producing rubber-modified styrenic resin
JPH0725856B2 (en) Continuous bulk polymerization of rubber-modified styrenic resin
JPH06192346A (en) Production of abs resin
JPH04366116A (en) Preparation of rubber-modified styrene-based resin
EP0444704A2 (en) Process for preparing rubber-modified styrene resins
JPH10168259A (en) Production of rubber-reinforced styrene resin
US5189095A (en) High-impact polystyrene
JP3365854B2 (en) Impact resistant styrenic resin composition and continuous production method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040916

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090924

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees