JP3365854B2 - Impact resistant styrenic resin composition and continuous production method thereof - Google Patents
Impact resistant styrenic resin composition and continuous production method thereofInfo
- Publication number
- JP3365854B2 JP3365854B2 JP08027494A JP8027494A JP3365854B2 JP 3365854 B2 JP3365854 B2 JP 3365854B2 JP 08027494 A JP08027494 A JP 08027494A JP 8027494 A JP8027494 A JP 8027494A JP 3365854 B2 JP3365854 B2 JP 3365854B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- reactor
- mixing tank
- complete mixing
- styrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Graft Or Block Polymers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は耐衝撃性スチレン系樹脂
の組成物及びその製法に関するものである。さらに詳し
く云えば、塊状連続重合法で製造される耐衝撃性スチレ
ン系樹脂組成物の衝撃強度の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impact-resistant styrenic resin composition and a method for producing the same. More specifically, it relates to improvement of impact strength of impact-resistant styrene resin composition produced by bulk continuous polymerization method.
【0002】[0002]
【従来の技術】硬質で脆いスチレン系樹脂の強靭化剤と
して各種の未加硫ゴムを用いることは従来より広く知ら
れており、また未加硫ゴムを用いたスチレン系樹脂は一
般に耐衝撃性ポリスチレン(HIPS)と呼ばれてい
る。特に、未加硫ゴムとしてポリブタジエン、ブタジエ
ン−スチレン共重合体などをスチレン系単量体に溶解
し、塊状−懸濁重合もしくは塊状重合でランダム共重合
を行って得られるHIPSは安価で各種の物性バランス
の優れていることから広く使用されてきた。このような
HIPSにおいて衝撃強度をより向上させるには製品中
のゴム含有量を増やすという手段が一般に用いられてい
る。しかし、ゴム含有量をあまりに増加させると製造時
に重合装置内の粘度が上昇し、撹拌、混合などの運転に
支障を来すほか、衝撃強度の増加が微少であり、一方で
は光沢、剛性の低下などが著しい。2. Description of the Related Art It has been widely known that various unvulcanized rubbers are used as a toughening agent for hard and brittle styrenic resins, and styrene resins using unvulcanized rubber generally have impact resistance. It is called polystyrene (HIPS). In particular, HIPS obtained by dissolving polybutadiene, butadiene-styrene copolymer, or the like as an unvulcanized rubber in a styrene-based monomer and performing random copolymerization by bulk-suspension polymerization or bulk polymerization is inexpensive and has various physical properties. It has been widely used due to its excellent balance. In order to further improve the impact strength in such HIPS, a means of increasing the rubber content in the product is generally used. However, if the rubber content is increased too much, the viscosity in the polymerization equipment will increase during production, which will hinder operations such as stirring and mixing, and the impact strength will increase only slightly, while the gloss and rigidity will decrease. Etc. are remarkable.
【0003】ゴム含有量を過度に増加させることなく、
効率的に衝撃強度を向上させるにはゴム粒子を小粒子と
大粒子の二峰性粒子径分布とする方法が公知である。こ
のゴム粒子径の二峰性化による衝撃強度向上の機構は文
献(例えばMacromolecules,Vol.24,5639-5644,(1991))
に示されている。この方法の具体例として、バッチプロ
セスで転相の終わったゴム液に、あらためてゴム液を添
加する方法が特公平1−41177号公報で提案されて
いる。また、スチレン−ブタジエン共重合体ゴムを用い
て形成された単一オクルージョン構造のゴム粒子を有す
る高光沢HIPSと小量のサラミ構造のゴム粒子を有す
る通常のHIPSをブレンドすることで衝撃強度を改良
しようとする試みが米国特許第4,493,922号明細
書、特開昭63−112646号公報などでみられる。
また、第1反応槽でゴム粒子を形成させた後、スチレン
−ブタジエンブロック共重合体ゴムを含む原料を第1反
応槽出口の液に供給した後、第2反応器でスチレン−ブ
タジエンブロック共重合体ゴムを粒子化してゴム粒子径
を二峰性化する方法が特開平3−199212号公報で
提案されている。さらに反応系を2系列化し、そこで粒
子径の異なるHIPSを製造した後、両者を合流させて
二峰性化する方法が特開平3−263415号公報で提
案されている。これらの方法では確かに衝撃強度は向上
するものの、プロセスがバッチプロセスであったり、そ
れぞれ別々に製造した樹脂を押出機でブレンドしたり、
小粒子ゴムと大粒子ゴムの重合液を反応槽で混合した
り、製造ラインを2系列にして製造する必要があるた
め、製造工程が複雑になったり、製造コストが高くなる
という欠点がある。Without excessively increasing the rubber content,
In order to efficiently improve impact strength, a method is known in which rubber particles have a bimodal particle size distribution of small particles and large particles. The mechanism of impact strength improvement by making the rubber particle diameter bimodal is described in the literature (eg Macromolecules, Vol.24, 5639-5644, (1991)).
Is shown in. As a specific example of this method, Japanese Patent Publication No. 1-41177 proposes a method of newly adding a rubber liquid to a rubber liquid that has undergone phase inversion in a batch process. In addition, impact strength is improved by blending high-gloss HIPS having rubber particles with a single occlusion structure formed using styrene-butadiene copolymer rubber and ordinary HIPS having a small amount of rubber particles having a salami structure. Attempts to do so can be found in U.S. Pat. No. 4,493,922, Japanese Patent Laid-Open No. 63-112646, and the like.
In addition, after forming rubber particles in the first reaction tank, a raw material containing a styrene-butadiene block copolymer rubber is supplied to the liquid at the outlet of the first reaction tank, and then the styrene-butadiene block copolymer is loaded in the second reactor. Japanese Patent Laid-Open No. 3-199212 proposes a method in which a coalesced rubber is made into particles to make the rubber particle diameter bimodal. Further, Japanese Unexamined Patent Publication (Kokai) No. 3-263415 proposes a method in which the reaction system is made into two series, HIPS having different particle diameters are produced therein, and then both are merged to make bimodal. Although impact strength is certainly improved by these methods, the process is a batch process, or the resins produced separately are blended in an extruder,
Since it is necessary to mix the polymerization liquid of the small particle rubber and the large particle rubber in the reaction tank or to manufacture the production line in two lines, there are disadvantages that the manufacturing process becomes complicated and the manufacturing cost becomes high.
【0004】[0004]
【発明が解決しようとする問題点】本発明の目的は従来
の耐衝撃性スチレン系樹脂組成物に比べて衝撃強度が優
れた耐衝撃性スチレン系樹脂組成物を提供するものであ
り、更にその組成物を効率的にしかも簡単なプロセスで
製造する連続的製法を提供することである。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide an impact-resistant styrenic resin composition having an impact strength superior to that of the conventional impact-resistant styrene resin composition. It is an object of the present invention to provide a continuous process for producing a composition efficiently and in a simple process.
【0005】[0005]
【課題を解決するための手段】すなわち、本発明はゴム
状重合体の存在下にスチレン系単量体を重合して得たゴ
ム粒子がスチレン系重合体樹脂相に分散しているゴム変
性スチレン系樹脂組成物において、(a)樹脂組成物中
に分散しているゴム粒子の粒子径の分布が一峰性であり
かつ、コールターカウンターで測定したゴム粒子径D
[μm]の粒子数をn[個]とした時、
Dv=ΣD4n/ΣD3n ・・・(1)
で定義される体積平均ゴム粒子径(Dv)が
1.5≦Dv≦5.0 ・・・(2)
であり、さらに
(b)下記の式で定義される体積ゴム粒子径分布(f
(D))
f(D)=D3n/ΣD3n ・・・(3)
において、(f(D))の大粒子径側からの累積度数分
率が25、50、75%となるDを、それぞれD25、D
50、D75とした時、
Cv=(D25−D75)/D50 ・・・(4)
で定義されるCvが
0.60≦Cv≦0.85 ・・・(5)
の範囲であることを特徴とする耐衝撃性スチレン系樹脂
組成物である。That is, the present invention provides a rubber-modified styrene in which rubber particles obtained by polymerizing a styrene monomer in the presence of a rubbery polymer are dispersed in a styrene polymer resin phase. In the resin composition, (a) the particle size distribution of the rubber particles dispersed in the resin composition is monomodal, and the rubber particle size D measured with a Coulter counter is D.
When the number of [μm] particles is n [pieces], Dv = ΣD 4 n / ΣD 3 n (1), the volume average rubber particle diameter (Dv) is 1.5 ≦ Dv ≦ 5. .0 (2), and (b) the volume rubber particle size distribution (f
(D)) In f (D) = D 3 n / ΣD 3 n (3), the cumulative frequency fraction of (f (D)) from the large particle diameter side is 25, 50, 75%. D to D25 and D respectively
When 50 and D75, Cv = (D25-D75) / D50 (4) The Cv defined by (4) is in the range of 0.60≤Cv≤0.85 (5). The impact-resistant styrene resin composition is
【0006】更に、本発明は上記耐衝撃性スチレン系樹
脂組成物の製造方法を提供する。即ち、本発明の耐衝撃
性スチレン系樹脂組成物の製造方法は、スチレン系単量
体にゴム状重合体を溶解した原料溶液を、錨型撹拌翼又
はパドル翼を持った完全混合槽型反応器(A)へ連続的
に供給し、該完全混合槽型反応器における樹脂率がゴム
状重合体の重量分率の2倍以上となる様にスチレン系単
量体の重合を行い、反応液を原料溶液供給量に相当する
量だけ反応器から連続的に取り出し、さらに必要に応じ
て前記完全混合槽型反応器の後段に直列に配置された1
基もしくは複数基のプラグフロー型反応器で重合を行
い、上記完全混合槽型反応器の攪拌回転数をN[sec
-1]、攪拌翼径をd[m]とした時
0.18≦N3d2≦0.90 ・・・(6)
を満足するように維持して重合することを特徴とする。Further, the present invention provides a method for producing the above impact resistant styrene resin composition. That is, the method for producing the impact-resistant styrene resin composition of the present invention comprises a raw material solution prepared by dissolving a rubber-like polymer in a styrene monomer, using an anchor type stirring blade or
Is continuously supplied to a complete mixing tank type reactor (A) having a paddle blade, and styrene is added so that the resin ratio in the complete mixing tank type reactor is at least twice the weight fraction of the rubber-like polymer. The system monomer is polymerized, and the reaction solution is continuously taken out from the reactor in an amount corresponding to the amount of the raw material solution supplied. Further, if necessary, the reaction mixture is placed in series at the subsequent stage of the complete mixing tank reactor.
Polymerization is carried out in a plug flow type reactor having a group or a plurality of groups, and the stirring rotation speed of the complete mixing tank type reactor is N [sec
-1], and when the diameter of the stirring blade is d [m], the polymerization is performed while maintaining 0.18≤N3d2≤0.90 (6).
【0007】更に、この製造方法において、原料溶液を
直接完全混合槽型反応器(A)に供給する代わりに、該
完全混合槽型反応器上流に、別途好ましくは完全混合槽
型反応器又はプラグフロー型反応器からなる予備重合器
を設け、該予備重合器にスチレン系単量体にゴム状重合
体を溶解した原料溶液を連続的に供給し、該予備重合器
中で予備重合器における樹脂率がゴム状重合体の重量分
率の2倍未満となる範囲で予備重合を行い、原料溶液供
給量に相当する量だけ予備重合器から連続的に取り出し
た予備重合反応液を、錨型撹拌翼又はパドル翼を持った
前記完全混合槽型反応器(A)に連続的に供給し、該完
全混合槽型反応器における樹脂率がゴム状重合体の重量
分率の2倍以上となる様にスチレン系単量体の重合を行
い、完全混合槽型反応器(A)に導入した予備重合反応
液供給量に相当するだけの量の反応液を完全混合槽型反
応器(A)から連続的に取り出し、さらに必要に応じて
前記槽型反応器の後段に直列に配置された1基もしくは
複数基のプラグフロー型反応器で重合を行い、上記完全
混合槽型反応器の攪拌回転数をN[sec-1]、攪拌翼
径をd[m]とした時
0.18≦N3d2≦0.90 ・・・(6)
を満足するように維持して重合することを特徴とする耐
衝撃性スチレン系樹脂組成物の製造方法である。ここで
樹脂率とは反応液中に占めるゴム状重合体、スチレン系
単量体の重合体及びゴム状重合体とスチレン系単量体の
共重合体の割合である。尚、コールターカウンターで得
られるゴム粒子径と体積ゴム粒子径分布及び大粒子径側
からの累積度数分率の一例を図.1に示す。Further, in this production method, instead of directly supplying the raw material solution to the complete mixing tank reactor (A), preferably upstream of the complete mixing tank reactor, preferably a complete mixing tank reactor or a plug. A prepolymerizer comprising a flow type reactor was provided, and a raw material solution in which a rubbery polymer was dissolved in a styrene-based monomer was continuously supplied to the prepolymerizer, and the resin in the prepolymerizer in the prepolymerizer was supplied. The prepolymerization is carried out in a range where the rate is less than twice the weight fraction of the rubbery polymer, and the prepolymerization reaction liquid continuously taken out from the prepolymerizer in an amount corresponding to the amount of the raw material solution supplied is anchored with stirring. It was continuously supplied to the complete mixing tank reactor (A) having blades or paddle blades, and the resin content in the complete mixing tank reactor was twice the weight fraction of the rubbery polymer. Polymerize the styrenic monomer as above and mix thoroughly. Type reaction vessel (A), the amount of the reaction solution corresponding to the supply amount of the prepolymerization reaction solution is continuously taken out from the complete mixing tank type reactor (A), and further, if necessary, the tank type reactor. Polymerization was carried out in one or a plurality of plug flow type reactors arranged in series in the subsequent stage, and the stirring rotation speed of the above complete mixing tank type reactor was N [sec-1] and the stirring blade diameter was d [m. ], 0.18≤N3d2≤0.90 (6) is maintained and polymerization is carried out, and a high-impact styrene-based resin composition is produced. Here, the resin ratio is the ratio of the rubber-like polymer, the polymer of the styrene-based monomer and the copolymer of the rubber-like polymer and the styrene-based monomer in the reaction solution. An example of the rubber particle size and volume rubber particle size distribution obtained with a Coulter counter and the cumulative frequency fraction from the large particle size side is shown in the figure. Shown in 1.
【0008】本発明におけるスチレン系単量体として
は、スチレン及びo−メチルスチレン、m−メチルスチ
レン、p−メチルスチレン、2、4−ジメチルスチレ
ン、エチルスチレンなどの核アルキル置換スチレン、α
−メチルスチレンなどのα−アルキル置換スチレン、o
−クロロスチレン、m−クロロスチレン、p−クロロス
チレンなどの核ハロゲン化スチレンであり単独またはい
ずれか2種以上の混合物として用いられる。Examples of the styrenic monomer in the present invention include styrene and nuclear alkyl-substituted styrenes such as o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene and ethylstyrene, α
Α-alkyl substituted styrenes such as -methylstyrene, o
-Nucleohalogenated styrenes such as chlorostyrene, m-chlorostyrene and p-chlorostyrene, which are used alone or as a mixture of any two or more thereof.
【0009】本発明におけるスチレン系重合体とは前記
のスチレン系単量体の単独重合体もしくは2種以上の共
重合体を意味する。The styrenic polymer in the present invention means a homopolymer or a copolymer of two or more kinds of the above-mentioned styrenic monomers.
【0010】本発明におけるゴム状重合体としては1,
3−ブタジエン単独もしくは、1,3−ブタジエンと共
重合可能なイソプレン、スチレン、α−メチルスチレン
などを有機リチウム系触媒で溶液重合をして作られる、
いわゆるローシスポリブタジエンや、配位重合で得られ
るハイシスポリブタジエンが好適である。The rubber-like polymer in the present invention is 1,
3-Butadiene alone or made by solution polymerization of isoprene, styrene, α-methylstyrene and the like copolymerizable with 1,3-butadiene with an organic lithium catalyst,
So-called low cis polybutadiene and high cis polybutadiene obtained by coordination polymerization are suitable.
【0011】本発明における原料溶液とは、スチレン系
単量体にゴム状重合体を溶解したもの及び必要に応じて
溶剤を加えたものを言う。溶解するゴム状重合体の割合
は全原料溶液に対して3〜12重量%がよい。ゴム状重
合体の割合が3重量%以下では衝撃強度の向上が小さ
く、12重量%以上では反応系の粘度が高くなり撹拌、
混合などの操作に不利となる。また、添加する溶剤量に
特に制限はないが、溶剤量が全原料溶液の50重量%を
越えると、反応槽の有効反応容積が減少することおよ
び、製品から溶剤を分離、回収するのに多大なエネルギ
ーが必要となり経済的に好ましくない。The raw material solution in the present invention means a solution in which a rubber-like polymer is dissolved in a styrene-based monomer and a solvent in which a solvent is added if necessary. The proportion of the rubbery polymer to be dissolved is preferably 3 to 12% by weight based on the total raw material solution. When the proportion of the rubber-like polymer is 3% by weight or less, the impact strength is not improved so much.
It is disadvantageous for operations such as mixing. The amount of the solvent to be added is not particularly limited, but if the amount of the solvent exceeds 50% by weight of the total raw material solution, the effective reaction volume of the reaction tank decreases and it is very difficult to separate and recover the solvent from the product. Energy is required, which is not economically preferable.
【0012】本発明において重合は触媒を加えない熱重
合によってもよいし、触媒を加える触媒重合によっても
良い。触媒は有機過酸化物など反応がフリーラジカル機
構で進むものであれば特に制限はない。この様な有機過
酸化物の例として1、1−ビス(ターシャリーブチルパ
ーオキシ)3、3、5−トリメチルシクロヘキサンなど
のパーオキシケタール類、ジターシャリーブチルパーオ
キサイドなどのジアルキルパーオキサイド類、ターシャ
リーブチルパーオキシイソプロピルカーボネイトなどの
パーオキシエステル類などが挙げられ、これらを単独も
しくは2種以上混合して用いる事ができる。In the present invention, the polymerization may be either thermal polymerization without addition of a catalyst or catalytic polymerization with addition of a catalyst. The catalyst is not particularly limited as long as the reaction proceeds by a free radical mechanism such as organic peroxide. Examples of such organic peroxides include peroxyketals such as 1,1-bis (tertiarybutylperoxy) 3,3,5-trimethylcyclohexane, dialkylperoxides such as ditertiarybutylperoxide, and tertiary. Examples thereof include peroxyesters such as tributyl peroxyisopropyl carbonate, and these can be used alone or in combination of two or more kinds.
【0013】また、本発明でゴム粒子の体積平均ゴム粒
子径Dvは1.5≦Dv≦5.0の範囲に保たれる。D
vが1.5より小さくなると、得られた樹脂の強度が低
く、耐衝撃性樹脂として実用的でない。また、Dvを
5.0より大きくしても、ゴム粒子径を大きくした事に
よる強度の向上が小さく効果的でないし、外観も劣る。
さらに粒子径を大きくするために完全混合槽の撹拌条件
を穏やかにすると、完全混合槽の混合状態が悪くなり、
この場合も安全運転を継続する事が難しい。In the present invention, the volume average rubber particle diameter Dv of the rubber particles is kept within the range of 1.5≤Dv≤5.0. D
When v is smaller than 1.5, the strength of the obtained resin is low and it is not practical as an impact resistant resin. Further, even if Dv is larger than 5.0, the improvement in strength due to the larger rubber particle size is small and ineffective, and the appearance is also poor.
If the stirring conditions in the complete mixing tank are made gentle to further increase the particle size, the mixing state in the complete mixing tank will deteriorate,
Even in this case, it is difficult to continue safe driving.
【0014】本発明でゴム粒子のゴム粒子径分布Cvは
0.60≦Cv≦0.85の範囲に保たれるが、Cvが
0.60より小さくなると実質的に従来のゴム粒子径分
布が一峰性の耐衝撃性スチレン系樹脂と変わるところが
ないために、本発明の効果が発現されず、衝撃強度の優
れた樹脂を得ることができない。また、Cvを大きくし
ていくと完全混合槽内部の混合状態が悪くなり、Cv>
0.85となるような条件では完全混合槽の温度を均一
に保つことが難しく、安定運転を継続する事が難しい。
尚、コールターカウンターで得られるゴム粒子径と体積
ゴム粒子径分布及び大粒子径側からの累積度数分率の一
例を図.1に示す。In the present invention, the rubber particle size distribution Cv of the rubber particles is maintained in the range of 0.60≤Cv≤0.85, but when Cv is smaller than 0.60, the conventional rubber particle size distribution is substantially the same. Since there is no difference from the monomodal impact-resistant styrene-based resin, the effect of the present invention is not exhibited, and a resin having excellent impact strength cannot be obtained. Also, as Cv is increased, the mixed state inside the complete mixing tank deteriorates, and Cv>
Under the condition of 0.85, it is difficult to keep the temperature of the complete mixing tank uniform, and it is difficult to continue stable operation.
An example of the rubber particle size and volume rubber particle size distribution obtained with a Coulter counter and the cumulative frequency fraction from the large particle size side is shown in the figure. Shown in 1.
【0015】本発明の耐衝撃性スチレン系樹脂組成物の
連続的製造方法は、錨型撹拌翼又はパドル翼を持った完
全混合槽型反応器を用いてスチレン系単量体をある一定
の樹脂率、攪拌条件下で重合することが特徴であり、こ
の反応器でゴム状重合体を、スチレン系重合体樹脂相に
内包ポリスチレン(オクルードポリスチレン)を含む分
散粒子として分散させること(ゴム粒子を形成するこ
と)が必須である。これは後述するが完全混合槽型反応
器以降はプラグフロー型反応器で過度な剪断を加えない
ために、完全混合槽型反応器でゴム粒子を形成しなくて
は以降のプロセスでゴム粒子を形成し得ず、目的とする
樹脂が得られないためである。攪拌翼の形状は、船舶係
留用の錨型をした、いわゆる錨型攪拌翼(アンカー翼、
馬蹄型攪拌翼)又はパドル翼である。図.2にその具体
例を示す。また、完全混合槽型反応器における樹脂率は
ゴム状重合体の重量分率の2倍以上である事が必須であ
るが、その上限は望ましくは50重量%、さらに望まし
くは40重量%が良い。これは、樹脂率を過度に高くす
ると反応器内の樹脂液粘度の上昇にともない槽内の均一
化が難しくなるためである。また、この反応器の前に予
備重合缶を設置しても構わない。この場合、予備重合缶
は例えば完全混合槽型反応器又はプラグフロー型反応器
が好ましいが、予備重合缶出口でゴム粒子が形成されな
いように、樹脂率をゴム状重合体の重量分率の2倍未満
に反応を抑える必要がある。ゴム粒子が形成された後
は、過剰な剪断がかからないようにプラグフロー型反応
器で反応を進める。このプラグフロー型反応器では、流
体の流れに対して垂直方向の濃度分布が無くなるように
する必要があるが、この操作は静止型混合器を内蔵させ
るなどして、必要最低限以上の剪断がかからないように
しなくてはいけない。これはプラグフロー型反応器で過
剰な剪断がかかると完全混合槽型反応器で形成されたゴ
ム粒子のモルフォロジーに影響を及ぼす可能性があるた
めである。また、静止型混合機としてはスルーザー社の
スタティックミキサー、ケニックス社のスタティックミ
キサー、東レ社のスタティックミキサーなどがある。The continuous production method of the impact resistant styrene resin composition of the present invention is carried out by using a complete mixing tank type reactor equipped with an anchor type stirring blade or paddle blade. Is characterized in that it is polymerized under a certain resin ratio and stirring conditions. In this reactor, a rubber-like polymer is dispersed as dispersed particles containing polystyrene (occluded polystyrene) in the styrene-based polymer resin phase. (Forming rubber particles) is essential. Although this will be described later, in order to prevent excessive shearing in the plug flow type reactor after the complete mixing tank type reactor, it is necessary to form rubber particles in the complete mixing tank type reactor so that the rubber particles will be formed in the subsequent process. This is because it cannot be formed and the desired resin cannot be obtained. The shape of the stirring blade is an anchor-type stirring blade for anchoring ships (anchor blade, anchor blade,
Horseshoe-shaped stirring blade) or paddle blade . Fig. 2 shows a specific example. Further, it is essential that the resin ratio in the complete mixing tank type reactor is at least twice the weight fraction of the rubber-like polymer, but the upper limit thereof is preferably 50% by weight, more preferably 40% by weight. . This is because if the resin ratio is excessively increased, it becomes difficult to make the inside of the tank uniform as the viscosity of the resin liquid in the reactor increases. Further, a prepolymerization vessel may be installed in front of this reactor. In this case, the prepolymerization vessel is preferably, for example, a complete mixing tank type reactor or a plug flow type reactor, but the resin ratio is set to 2% by weight of the rubbery polymer so that rubber particles are not formed at the prepolymerization vessel outlet. It is necessary to suppress the reaction to less than twice. After the rubber particles are formed, the reaction is allowed to proceed in a plug flow type reactor so that excessive shear is not applied. In this plug flow type reactor, it is necessary to eliminate the concentration distribution in the direction perpendicular to the fluid flow, but in this operation, a static mixer is built in, and shearing more than the necessary minimum is carried out. You have to make sure it doesn't happen. This is because excessive shear in the plug flow reactor may affect the morphology of the rubber particles formed in the complete mixing tank reactor. As static mixers, there are a static mixer manufactured by Sruzer, a static mixer manufactured by Kenix, and a static mixer manufactured by Toray.
【0016】さらに、本発明では完全混合槽の錨型撹拌
翼の撹拌条件として、反応器の撹拌回転数をN[sec
-1]、撹拌翼径をd[m]とした時のN3d2を0.18
≦N 3d2≦0.90の範囲に保つ必要がある。N3d2が
0.18未満では反応器を実質的に完全混合状態に保つ
事が困難となる。N3d2が0.90を越えると、反応器
を完全混合状態に保つ事はできても、ゴム粒子の平均粒
子径が小さくなったり、粒子径分布がシャープになるた
め、本発明の効果が発現されない。Further, in the present invention, the anchor type stirring of the complete mixing tank
As the stirring condition of the blade, the stirring rotation speed of the reactor is N [sec.
-1], N when the stirring blade diameter is d [m]3d2To 0.18
≦ N 3d2It is necessary to keep the range of ≦ 0.90. N3d2But
Below 0.18 keeps the reactor substantially completely mixed
Things become difficult. N3d2Is over 0.90, the reactor
Can be kept in a completely mixed state, but the average particle size of rubber particles
The particle size becomes smaller and the particle size distribution becomes sharper.
Therefore, the effect of the present invention is not exhibited.
【0017】本発明において最終プラグフロー反応器か
ら得られた樹脂液は連続的に200〜300℃の温度範
囲で真空雰囲気下で未反応単量体および溶剤を蒸発させ
る脱揮槽に送って耐衝撃性スチレン系樹脂として回収さ
れる。このようにして得られた樹脂はゴム粒子の粒子径
分布が一峰性であるにもかかわらず、同じ平均ゴム粒子
径、ゴム含有量の同じ樹脂組成物に比較して高い衝撃強
度を有するという特徴がある。In the present invention, the resin liquid obtained from the final plug flow reactor is continuously sent in a temperature range of 200 to 300 ° C. to a devolatilization tank for evaporating unreacted monomers and a solvent under a vacuum atmosphere, and the resin liquid is subjected to resistance. Recovered as impact styrene resin. The resin thus obtained is characterized in that it has a high impact strength as compared with resin compositions having the same average rubber particle diameter and rubber content, although the particle diameter distribution of the rubber particles is unimodal. There is.
【実施例】以下に本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.
【0018】得られた樹脂についてゴム粒子径、ゴム含
有量、Izod衝撃強度の測定を行った。以下にこれら
の測定方法について記す。ゴム粒子径はコールターカウ
ンター(COULTER社TA-II型)にてジメチルホルムアミド
(DMF)とチオシアン酸アンモニウム(NH4SC
N)との混合電解液を用いて、樹脂ペレット2〜5粒を
DMF約5mリットル中にいれ約2〜5分間放置し、次
にDMF溶解分を適度の粒子濃度として30μmのアパ
ーチャーチューブにて測定される。ゴム含有量はハロゲ
ン付加(沃素滴定)、Izod衝撃強度はASTM−D
256によった。樹脂率は、重合缶から採取した適量の
樹脂液(Xグラム)をメチルエチルケトン(MEK)で
溶解した後、溶解液を大過剰のメチルアルコールで析出
させ、80℃の乾燥機中で恒量(Yグラム)となるまで
乾燥させ次式にしたがって算出した。
樹脂率(%)=(Y/X)×100With respect to the obtained resin, the rubber particle diameter, the rubber content and the Izod impact strength were measured. Hereinafter, these measuring methods will be described. The rubber particle size is dimethylformamide (DMF) and ammonium thiocyanate (NH 4 SC) with a Coulter counter (TA-II type manufactured by COULTER).
Using the mixed electrolyte of N), 2 to 5 resin pellets are placed in about 5 ml of DMF and left for about 2 to 5 minutes, and then the DMF dissolved content is adjusted to an appropriate particle concentration in an aperture tube of 30 μm. To be measured. Rubber content is halogen addition (iodometric titration), Izod impact strength is ASTM-D
According to 256. The resin ratio was determined by dissolving an appropriate amount of resin solution (X grams) collected from a polymerization vessel with methyl ethyl ketone (MEK), precipitating the solution with a large excess of methyl alcohol, and then drying it at a constant weight (Y grams) in a dryer at 80 ° C. ) And dried according to the following formula. Resin ratio (%) = (Y / X) × 100
【0019】[0019]
【実施例1】ゴム状重合体として4.9重量%のローシ
スポリブタジエンゴム(旭化成製、商品名ジエン55A
S)を91.1重量%のスチレン、溶剤として4.0重
量%のエチルベンゼンに溶解して重合原料とした。ま
た、ゴムの酸化防止剤(チバガイギー製、商品名イルガ
ノックス1076)を0.1重量部を添加した。この重
合原料を翼径d=0.285[m]の錨型撹拌翼を備えた
14リットルのジャケット付き反応器(R−01、図.
2参照)に12.5[kg/hr]で供給した。反応温度は1
40℃、N3d2は0.83[m2/S3]で、樹脂率は25%
であった。得られた樹脂液を直列に配置した2基の内容
積21リットルのジャケット付きプラグフロー型反応器
に導入した。1基目のプラグフロー型反応器(R−0
2)では、反応温度が樹脂液の流れ方向に120℃〜1
40℃、2基目のプラグフロー型反応器(R−03)で
は、反応温度が樹脂液の流れ方向に130℃〜160℃
の勾配を持つようにジャケット温度を調整した。R−0
2出口での樹脂率は50%、R−03出口での樹脂率は
70%であった。得られた樹脂液は230℃に加熱後、
真空度5[torr]の脱揮槽に送られ、未反応単量体、溶剤
を分離・回収した後、脱揮槽からギヤポンプで抜き出
し、ダイプレートを通してストランドとした後、水槽を
通してペレット化し製品として回収した。得られた樹脂
のゴム含有量は7.1%、粒子径分布は0.79、Iz
od衝撃強度は10.2[kgf・cm/cm]であった。Example 1 4.9% by weight of low-cis polybutadiene rubber as a rubber-like polymer (made by Asahi Kasei, trade name Diene 55A
S) was dissolved in 91.1% by weight of styrene and 4.0% by weight of ethylbenzene as a solvent to prepare a polymerization raw material. Further, 0.1 part by weight of a rubber antioxidant (manufactured by Ciba Geigy, trade name Irganox 1076) was added. This polymerization raw material was provided with a 14-liter jacketed reactor equipped with an anchor type stirring blade having a blade diameter d = 0.285 [m] (R-01, FIG.
2)) at 12.5 [kg / hr]. Reaction temperature is 1
40 ° C, N 3 d 2 is 0.83 [m 2 / S 3 ], and the resin rate is 25%
Met. The obtained resin liquid was introduced into two plug flow type reactors with an internal volume of 21 liters arranged in series. The first plug flow reactor (R-0
In 2), the reaction temperature is 120 ° C to 1 in the flow direction of the resin liquid.
40 ° C. In the second plug flow reactor (R-03), the reaction temperature was 130 ° C. to 160 ° C. in the resin liquid flow direction.
The jacket temperature was adjusted so as to have a gradient of. R-0
The resin rate at the 2 outlet was 50%, and the resin rate at the R-03 outlet was 70%. The obtained resin liquid is heated to 230 ° C.,
After being sent to a devolatilization tank with a vacuum degree of 5 [torr] to separate and collect unreacted monomer and solvent, it is extracted from the devolatilization tank with a gear pump, made into a strand through a die plate, and then pelletized through a water tank as a product. Recovered. The rubber content of the obtained resin was 7.1%, the particle size distribution was 0.79, and Iz
The od impact strength was 10.2 [kgf · cm / cm].
【0020】[0020]
【比較例1】R−01のN3d2を0.13[m2/S3]とし
た以外は重合原料、重合条件、樹脂率は実施例1とまっ
たく同じ条件で製造を行った。この様な条件下では重合
温度を一定に保つ事がかなり困難であり、完全混合状態
で定常的な安定運転を継続するのは困難であった。[Comparative Example 1] Production was carried out under exactly the same conditions as in Example 1 except that the N 3 d 2 of R-01 was 0.13 [m 2 / S 3 ], the polymerization raw materials, the polymerization conditions, and the resin rate. Under such conditions, it was quite difficult to keep the polymerization temperature constant, and it was difficult to continue steady stable operation in a completely mixed state.
【0021】[0021]
【比較例2】R−01のN3d2を2.19[m2/S3]とし
た以外は重合原料、重合条件、樹脂率は実施例1とまっ
たく同じ条件で製造を行った。得られた樹脂は粒子径分
布が0.54と狭くなっており、Izod衝撃強度も
7.6[kgf・cm/cm]と、実施例1と比べるとかなり低い
値となった。[Comparative Example 2] Polymerization was carried out under exactly the same conditions as in Example 1 except that the N 3 d 2 of R-01 was 2.19 [m 2 / S 3 ]. The obtained resin had a narrow particle size distribution of 0.54 and an Izod impact strength of 7.6 [kgf · cm / cm], which was a considerably low value compared with Example 1.
【0022】[0022]
【比較例3】R−01のN3d2を1.51[m2/S3]とし
た以外は重合原料、重合条件、樹脂率は実施例1とまっ
たく同じ条件で製造を行った。この場合も比較例2と同
様にIzod衝撃強度が7.5[kgf・cm/cm]と、実施例
1と比べるとかなり低い値となった。[Comparative Example 3] Production was carried out under exactly the same conditions as in Example 1 except that the N 3 d 2 of R-01 was 1.51 [m 2 / S 3 ], the polymerization raw materials, the polymerization conditions, and the resin rate. In this case as well, as in Comparative Example 2, the Izod impact strength was 7.5 [kgf · cm / cm], which was considerably lower than that in Example 1.
【0023】[0023]
【実施例2】R−03出口の樹脂率を80%とした以外
は実施例1と同じ条件で製造を行った。得られた樹脂の
ゴム含有量は5.8%、粒子径分布は0.78、Izo
d衝撃強度は8.9[kgf・cm/cm]であった。Example 2 Production was carried out under the same conditions as in Example 1 except that the resin rate at the outlet of R-03 was set to 80%. The obtained resin has a rubber content of 5.8%, a particle size distribution of 0.78, and Izo.
d Impact strength was 8.9 [kgf · cm / cm].
【0024】[0024]
【比較例4】R−01のN3d2を2.19[m2/S3]とし
た以外は重合原料、重合条件、樹脂率は実施例2とまっ
たく同じ条件で製造を行った。得られた樹脂は粒子径分
布が0.54と狭くなっている。その結果、Izod衝
撃強度が7.6[kgf・cm/cm]と、実施例2と比べると低
い値となった。[Comparative Example 4] except that the N 3 d 2 of R-01 and 2.19 [m 2 / S 3] Polymerization raw materials, the polymerization conditions, the resin ratio was produced in the same conditions exactly as in Example 2. The obtained resin has a narrow particle size distribution of 0.54. As a result, the Izod impact strength was 7.6 [kgf · cm / cm], which was a low value as compared with Example 2.
【0025】[0025]
【実施例3】ゴム状重合体として7.3重量%のハイシ
スポリブタジエンゴム(宇部興産製、商品名BR−15
HL)を86.7重量%のスチレン、溶剤として6.0
重量%のエチルベンゼンに溶解して重合原料とした。ま
た、ゴムの酸化防止剤(チバガイギー製、商品名イルガ
ノックス1076)を0.1重量部を添加した。この重
合原料を実施例1と同様の翼径d=0.285[m]の錨
型撹拌翼を備えた14リットルのジャケット付き反応器
(R−01)に11.0[kg/hr]で供給した。反応温度
は140℃、N3d2を0.83[m2/S3]で、樹脂率は2
5%であった。得られた樹脂液を直列に配置した2基の
内容積21リットルのジャケット付きプラグフロー型反
応器に導入した。1基目のプラグフロー型反応器(R−
02)では、反応温度が樹脂液の流れ方向に120℃〜
150℃、2基目のプラグフロー型反応器(R−03)
では、反応温度が樹脂液の流れ方向に140℃〜180
℃の勾配を持つようにジャケット温度を調整した。R−
02出口での樹脂率は55%、R−03出口での樹脂率
は82%であった。揮発分を除去し得られた樹脂のゴム
含有量は9.4%、粒子径分布は0.66、Izod衝
撃強度は9.7[kgf・cm/cm]であった。Example 3 7.3 wt% high-cis polybutadiene rubber as a rubber-like polymer (trade name BR-15 manufactured by Ube Industries, Ltd.)
HL) 86.7% by weight of styrene, and 6.0 as a solvent.
It was dissolved in wt% ethylbenzene to obtain a polymerization raw material. Further, 0.1 part by weight of a rubber antioxidant (manufactured by Ciba Geigy, trade name Irganox 1076) was added. This polymerization raw material was fed into a 14-liter jacketed reactor (R-01) equipped with an anchor type stirring blade having a blade diameter d = 0.285 [m] as in Example 1 at 11.0 [kg / hr]. Supplied. The reaction temperature is 140 ° C., N 3 d 2 is 0.83 [m 2 / S 3 ], and the resin rate is 2
It was 5%. The obtained resin liquid was introduced into two plug flow type reactors with an internal volume of 21 liters arranged in series. The first plug flow reactor (R-
In 02), the reaction temperature is 120 ° C to the resin liquid flow direction.
150 ° C, second plug flow reactor (R-03)
Then, the reaction temperature is 140 ° C to 180 ° C in the flow direction of the resin liquid.
The jacket temperature was adjusted so as to have a gradient of ° C. R-
The resin rate at the 02 exit was 55%, and the resin rate at the R-03 exit was 82%. The resin obtained by removing the volatile matter had a rubber content of 9.4%, a particle size distribution of 0.66, and an Izod impact strength of 9.7 [kgf · cm / cm].
【0026】[0026]
【比較例5】R−01のN3d2を0.94[m2/S3]とし
た以外は重合原料、重合条件、樹脂率は実施例3とまっ
たく同じ条件で製造を行った。得られた樹脂は粒子径分
布が0.57と式(3)を満足しておらずIzod衝撃
強度が7.8[kgf・cm/cm]と、実施例3と比べると低い
値となった。[Comparative Example 5] except that the N 3 d 2 of R-01 and 0.94 [m 2 / S 3] Polymerization raw materials, the polymerization conditions, the resin ratio was produced under completely the same conditions as in Example 3. The obtained resin had a particle size distribution of 0.57, which did not satisfy the formula (3) and had an Izod impact strength of 7.8 [kgf · cm / cm], which was a low value as compared with Example 3. .
【0027】[0027]
【実施例4】R−01の撹拌翼を翼径0.184[m]の
パドル翼(図.3参照)に変更した以外は実施例1とま
ったく同じ条件で製造を行った。その結果粒子径分布が
0.68、Izod衝撃強度も9.0[kgf・cm/cm]とな
った。Example 4 Production was carried out under exactly the same conditions as in Example 1 except that the stirring blade of R-01 was changed to a paddle blade having a blade diameter of 0.184 [m] (see FIG. 3). As a result, the particle size distribution was 0.68 and the Izod impact strength was 9.0 [kgf · cm / cm].
【0028】[0028]
【比較例6】実施例4と同様のパドル翼を用い、N3d2
を5.63[m2/S3]とした以外は重合原料、重合条件、
樹脂率は実施例4とまったく同じ条件で製造を行った。Comparative Example 6 A paddle blade similar to that of Example 4 was used and N 3 d 2 was used.
Except for 5.63 [m 2 / S 3 ].
The resin was manufactured under the same conditions as in Example 4.
【0029】[0029]
【比較例7】実施例4と同様のパドル翼を用い、N3d2
を0.15[m2/S3]とした以外は重合原料、重合条件、
樹脂率は比較例7とまったく同じ条件で製造を行った。
尚、実施例1〜4及び比較例1〜7迄の結果を表1、表
2及び表3に記載する。[Comparative Example 7] A paddle blade similar to that of Example 4 was used and N 3 d 2 was used.
Except for 0.15 [m 2 / S 3 ].
The resin was manufactured under the same conditions as in Comparative Example 7.
The results of Examples 1 to 4 and Comparative Examples 1 to 7 are shown in Table 1, Table 2 and Table 3.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【表3】 [Table 3]
【0033】[0033]
【発明の効果】以上記述した様に、本発明の方法によっ
て得られたスチレン系樹脂は衝撃強度に優れており、家
電製品、食品包装材などの用途に於いて産業上の利用価
値は大きい。また、本発明では複雑な装置、操作を必要
とせずに、衝撃強度に優れた耐衝撃性スチレン系樹脂を
得る事ができることからエネルギー、経済的にも有利で
ある。As described above, the styrene resin obtained by the method of the present invention is excellent in impact strength and has great industrial utility value in applications such as home electric appliances and food packaging materials. Further, in the present invention, an impact-resistant styrene-based resin having excellent impact strength can be obtained without requiring a complicated device or operation, which is advantageous in terms of energy and economy.
【図1】コールターカウンターで得られるゴム粒子径と
体積ゴム粒子径分布及び大粒子径側からの累積度数分率
の一例である。FIG. 1 is an example of a rubber particle size and a volume rubber particle size distribution obtained by a Coulter counter and a cumulative frequency fraction from the large particle size side.
【図2】実施例1〜3及び比較例1〜5に用いた錨型撹
拌翼を備えた反応器を示す縦断面図の一例である。FIG. 2 is an example of a vertical cross-sectional view showing a reactor equipped with an anchor type stirring blade used in Examples 1 to 3 and Comparative Examples 1 to 5.
【図3】実施例4及び比較例6、7に用いたパドル翼を
備えた反応器を示す縦断面図の一例である。FIG. 3 is an example of a longitudinal sectional view showing a reactor equipped with paddle blades used in Example 4 and Comparative Examples 6 and 7.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−96006(JP,A) 特開 昭63−118315(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08F 279/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-57-96006 (JP, A) JP-A-63-118315 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08F 279/02
Claims (3)
体を重合して得た、ゴム粒子がスチレン系重合体樹脂相
に分散しているゴム変性スチレン系樹脂組成物におい
て、 (a)樹脂組成物中に分散しているゴム粒子の粒子径の
分布が一峰性でありかつ、コールターカウンターで測定
したゴム粒子径D[μm]の粒子数をn[個]とした
時、 Dv=ΣD4n/ΣD3n ・・・(1) で定義される体積平均ゴム粒子径(Dv)が 1.5≦Dv≦5.0 ・・・(2) であり、さらに (b)下記の式で定義される体積ゴム粒子径分布(f
(D)) f(D)=D3n/ΣD3n ・・・(3) において、(f(D))の大粒子径側からの累積度数分
率が25、50、75%となるDを、それぞれD25、D
50、D75とした時、 Cv=(D25−D75)/D50 ・・・(4) で定義されるCvが 0.60≦Cv≦0.85 ・・・(5) の範囲であることを特徴とする耐衝撃性スチレン系樹脂
組成物。1. A rubber-modified styrenic resin composition obtained by polymerizing a styrenic monomer in the presence of a rubbery polymer, wherein the rubber particles are dispersed in a styrenic polymer resin phase. ) When the particle size distribution of the rubber particles dispersed in the resin composition is monomodal and the number of rubber particle size D [μm] measured with a Coulter counter is n [pieces], Dv = The volume average rubber particle diameter (Dv) defined by ΣD 4 n / ΣD 3 n (1) is 1.5 ≦ Dv ≦ 5.0 (2), and (b) Volume rubber particle size distribution (f
(D)) In f (D) = D 3 n / ΣD 3 n (3), the cumulative frequency fraction of (f (D)) from the large particle diameter side is 25, 50, 75%. D to D25 and D respectively
When 50 and D75, Cv = (D25-D75) / D50 (4) The Cv defined by (4) is in the range of 0.60≤Cv≤0.85 (5). Impact resistant styrene resin composition.
た原料溶液を、錨型撹拌翼又はパドル翼を持った完全混
合槽型反応器へ連続的に供給し、該完全混合槽型反応器
における樹脂率がゴム状重合体の重量分率の2倍以上と
なる様にスチレン系単量体の重合を行い、反応液を原料
溶液供給量に相当する量だけ反応器から連続的に取り出
し、さらに必要に応じて前記槽型反応器の後段に直列に
配置された1基もしくは複数基のプラグフロー型反応器
で重合を行い、上記完全混合槽型反応器の攪拌回転数を
N[sec-1]、攪拌翼径をd[m]とした時 0.18≦N3d2≦0.90 ・・・(6) を満足するように維持して重合することを特徴とする請
求項1記載の耐衝撃性スチレン系樹脂組成物の製造方
法。2. A raw material solution in which a rubbery polymer is dissolved in a styrene-based monomer is continuously supplied to a complete mixing tank type reactor having an anchor type stirring blade or paddle blade, and the complete mixing tank type The styrene monomer was polymerized so that the resin ratio in the reactor was more than twice the weight fraction of the rubbery polymer, and the reaction liquid was continuously supplied from the reactor in an amount corresponding to the amount of the raw material solution supplied. After taking out, polymerization is carried out in one or a plurality of plug flow type reactors arranged in series in the latter stage of the tank type reactor, if necessary, and the stirring rotation speed of the complete mixing tank type reactor is N [ sec-1], and when the stirring blade diameter is d [m], the polymerization is carried out while maintaining 0.18 ≦ N 3 d 2 ≦ 0.90 (6). Item 2. A method for producing the impact resistant styrene resin composition according to Item 1.
た原料溶液を予備重合器に連続的に供給し、該予備重合
器中で予備重合器における樹脂率がゴム状重合体の重量
分率の2倍未満となる範囲で予備重合を行い、原料溶液
供給量に相当する量だけ予備重合器から連続的に取り出
した予備重合反応液を、錨型撹拌翼又はパドル翼を持っ
た完全混合槽型反応器に連続的に供給し、該完全混合槽
型反応器における樹脂率がゴム状重合体の重量分率の2
倍以上となる様にスチレン系単量体の重合を行い、完全
混合槽型反応器に導入した予備重合反応液供給量に相当
するだけの量の反応液を完全混合槽型反応器から連続的
に取り出し、さらに必要に応じて前記槽型反応器の後段
に直列に配置された1基もしくは複数基のプラグフロー
型反応器で重合を行い、上記完全混合槽型反応器の攪拌
回転数をN[sec-1]、攪拌翼径をd[m]とした時 0.18≦N3d2≦0.90 ・・・(6) を満足するように維持して重合することを特徴とする請
求項1記載の耐衝撃性スチレン系樹脂組成物の製造方
法。3. A raw material solution in which a rubbery polymer is dissolved in a styrene-based monomer is continuously supplied to a prepolymerizer, and the resin ratio in the prepolymerizer in the prepolymerizer is the weight of the rubbery polymer. Preliminary polymerization is performed in a range of less than twice the fraction, and the prepolymerization reaction liquid continuously taken out from the prepolymerizer in an amount corresponding to the amount of the raw material solution supplied has an anchor type stirring blade or paddle blade.
Continuously fed to a complete mixing tank type reactor, 2 resin ratio in said complete mixing tank type reactor of the weight fraction of the rubber-like polymer
Polymerize the styrene-based monomer so that it is more than double the amount, and continuously supply the amount of reaction solution equivalent to the supply amount of the prepolymerization reaction solution introduced into the complete mixing tank reactor from the complete mixing tank reactor. And, if necessary, polymerization is carried out in one or a plurality of plug flow type reactors arranged in series in the latter stage of the tank type reactor, and the stirring rotation speed of the complete mixing tank type reactor is set to N. [sec-1], which comprises polymerizing by maintaining the impeller diameter to satisfy the d [m] and the time 0.18 ≦ N 3 d 2 ≦ 0.90 ··· (6) The method for producing the impact resistant styrene resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08027494A JP3365854B2 (en) | 1994-04-19 | 1994-04-19 | Impact resistant styrenic resin composition and continuous production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08027494A JP3365854B2 (en) | 1994-04-19 | 1994-04-19 | Impact resistant styrenic resin composition and continuous production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07286014A JPH07286014A (en) | 1995-10-31 |
JP3365854B2 true JP3365854B2 (en) | 2003-01-14 |
Family
ID=13713704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08027494A Expired - Fee Related JP3365854B2 (en) | 1994-04-19 | 1994-04-19 | Impact resistant styrenic resin composition and continuous production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3365854B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5051950B2 (en) * | 2001-06-19 | 2012-10-17 | Psジャパン株式会社 | Molded product for light transmission with excellent light transmission characteristics |
-
1994
- 1994-04-19 JP JP08027494A patent/JP3365854B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07286014A (en) | 1995-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4904730A (en) | Rubber-modified resin blends | |
JP2971351B2 (en) | Multi-stage bulk process for production of ABS graft copolymer with controlled grafting, phase inversion and crosslinking | |
US3966842A (en) | Thermoplastic molding compositions of rubber-reinforced styrene/maleic anhydride resins and polycarbonate resins | |
US4530973A (en) | Transparent impact resistant polymeric compositions and process for the preparation thereof | |
US4334039A (en) | Process for preparing polymeric polyblends having a rubber phase as particles with a bimodal particle size distribution | |
US4417030A (en) | Mass polymerization process for ABS polyblends | |
US4252911A (en) | Mass polymerization process for ABS polyblends | |
US4097549A (en) | Polymer polyblend composition | |
US3903199A (en) | Continuous mass polymerization process for ABS polymeric polyblends | |
US3976721A (en) | Method of producing polystyrene composition | |
JPH037708A (en) | Production of rubber-modified styrene resin | |
JP2735660B2 (en) | Continuous production method of impact-resistant styrenic resin | |
US4419492A (en) | Process for preparing ABS polymeric polyblends | |
JP3365854B2 (en) | Impact resistant styrenic resin composition and continuous production method thereof | |
JP3207207B2 (en) | Method for producing rubber-reinforced styrenic resin | |
US6221969B1 (en) | Method for producing rubber-modified styrenic resin having high gloss and high impact strength | |
US4598124A (en) | Mass polymerization process for ABS polyblends | |
US20030139531A1 (en) | Anionically polymerised, impact-resistant polystyrene with capsule particle morphology | |
JPH0134453B2 (en) | ||
JP3297496B2 (en) | Rubber-modified styrene resin composition and method for producing the same | |
JPH0362723B2 (en) | ||
JPS6039282B2 (en) | Improved bulk polymerization method | |
JP3600325B2 (en) | Method for producing rubber-reinforced styrenic resin | |
JPH07173231A (en) | Method and apparatus for producing high-impact styrenic resin | |
JPH0725974B2 (en) | Styrene resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081101 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091101 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091101 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101101 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101101 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111101 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |