JP2005068044A - Fluorine-containing divinyl compound and method for producing the same - Google Patents

Fluorine-containing divinyl compound and method for producing the same Download PDF

Info

Publication number
JP2005068044A
JP2005068044A JP2003297403A JP2003297403A JP2005068044A JP 2005068044 A JP2005068044 A JP 2005068044A JP 2003297403 A JP2003297403 A JP 2003297403A JP 2003297403 A JP2003297403 A JP 2003297403A JP 2005068044 A JP2005068044 A JP 2005068044A
Authority
JP
Japan
Prior art keywords
compound
formula
group
compound represented
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003297403A
Other languages
Japanese (ja)
Inventor
Kimiaki Kashiwagi
王明 柏木
Eisuke Murotani
英介 室谷
Masakuni Sato
正邦 佐藤
Hidenobu Murofushi
英伸 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003297403A priority Critical patent/JP2005068044A/en
Publication of JP2005068044A publication Critical patent/JP2005068044A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compound containing perfluorovinyl groups having different reactivities at both terminals from a readily available compound by a short process. <P>SOLUTION: A compound represented by formula 1:CH<SB>2</SB>=CH(CH<SB>2</SB>)<SB>m</SB>CR<SP>1</SP>R<SP>2</SP>(CH<SB>2</SB>)<SB>n</SB>OCF=CF<SB>2</SB>(R<SP>1</SP>and R<SP>2</SP>are each H, a 1-5C alkyl group, a 1-5C alkoxy group or the like; m and n are each an integer of 0-3; Z<SP>1</SP>, Z<SP>2</SP>, Z<SP>3</SP>and Z<SP>4</SP>are each Cl, Br or I) is obtained from a readily available compound represented by formula 1-1:CH<SB>2</SB>=CH(CH<SB>2</SB>)<SB>m</SB>CR<SP>1</SP>R<SP>2</SP>(CH<SB>2</SB>)<SB>n</SB>OH, halogenated, fluorinated and dehalogenated by turns to produce a compound represented by formula 4:CF<SB>2</SB>=CF(CF<SB>2</SB>)<SB>m</SB>CR<SP>F1</SP>R<SP>F2</SP>(CF<SB>2</SB>)<SB>n</SB>OCF=CF<SB>2</SB>(R<SP>F1</SP>and R<SP>F2</SP>are each a 1-5C polyfluoroalkyl group, a 1-5C polyfluoroalkoxy group or the like). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主鎖の片末端にペルフルオロビニル基を有し、他の片末端にペルフルオロビニルオキシ基を有する含フッ素ジビニル化合物の製造方法、および該製造方法において用いうる、有用かつ新規な含フッ素化合物に関する。   The present invention relates to a method for producing a fluorinated divinyl compound having a perfluorovinyl group at one end of the main chain and a perfluorovinyloxy group at the other end, and a useful and novel fluorine-containing compound that can be used in the production method. Relates to compounds.

主鎖の片末端にペルフルオロビニル基を有し、他の片末端にペルフルオロビニルオキシ基を有する含フッ素ジビニル化合物としては、下式aで表される化合物が知られている(特許文献1参照。)。
CF=CF(CFOCF=CF・・・式a
ただし、kは2〜4の整数を示す。
式aで表される化合物を環化重合した非晶質重合体は、弾性率、降伏伸度、破断伸度が大きく、耐衝撃性に優れ、透明性が高い。したがって、該非晶質重合体は、光ファイバ、光導波路等の光学材料として使用されている。さらに、より高いガラス転移点を有し高温使用に適した非晶質重合体の単量体として、トリフルオロメチル基を側鎖に有する下式bで表される化合物、およびトリフルオロメトキシ基を側鎖に有する下式cで表される化合物が知られている(特許文献2および特許文献3参照。)。
CF=CFCFCF(CF)OCF=CF・・・・式b
CF=CFCF(OCF)CFOCF=CF・・・式c
式aで表される化合物、式bで表される化合物、および式cで表される化合物の二重結合部位は、−CFClCFCl基の脱塩素化反応、および/または、−CF(COF)CF基の熱分解反応等により導入される。
As a fluorine-containing divinyl compound having a perfluorovinyl group at one end of the main chain and having a perfluorovinyloxy group at the other end, a compound represented by the following formula a is known (see Patent Document 1). ).
CF 2 = CF (CF 2 ) k OCF = CF 2 Formula a
However, k shows the integer of 2-4.
An amorphous polymer obtained by cyclopolymerizing a compound represented by the formula a has a large elastic modulus, yield elongation, elongation at break, excellent impact resistance, and high transparency. Therefore, the amorphous polymer is used as an optical material such as an optical fiber and an optical waveguide. Furthermore, as a monomer of an amorphous polymer having a higher glass transition point and suitable for high temperature use, a compound represented by the following formula b having a trifluoromethyl group in the side chain, and a trifluoromethoxy group: A compound represented by the following formula c in the side chain is known (see Patent Document 2 and Patent Document 3).
CF 2 = CFCF 2 CF (CF 3 ) OCF = CF 2 ... Formula b
CF 2 = CFCF (OCF 3 ) CF 2 OCF = CF 2 Formula c
The double bond site of the compound represented by the formula a, the compound represented by the formula b, and the compound represented by the formula c is a dechlorination reaction of -CFClCF 2 Cl group and / or -CF (COF ) Introduced by thermal decomposition reaction of CF 3 group or the like.

式aで表される化合物の製造方法として、下記製造ルートAおよび下記製造ルートBが知られている(特許文献1参照。)。製造ルートAは、式aで表される化合物においてkが2または4である該化合物の製造ルート、製造ルートBは、式aで表される化合物においてkが3である該化合物の製造ルートである。ただし、sは2または4を示す。また、HFPOはヘキサフルオロプロピレンオキサイドを示す。   The following production route A and the following production route B are known as methods for producing the compound represented by formula a (see Patent Document 1). Production route A is a production route of the compound represented by formula a wherein k is 2 or 4, Production route B is a production route of the compound represented by formula a wherein k is 3. is there. However, s shows 2 or 4. HFPO represents hexafluoropropylene oxide.

[製造ルートA]   [Production route A]

Figure 2005068044
Figure 2005068044

[製造ルートB]   [Manufacturing route B]

Figure 2005068044
Figure 2005068044

また、式aで表される化合物においてkが2である化合物を製造する方法として、下記製造ルートCが知られている(特許文献4参照)。   Further, the following production route C is known as a method for producing a compound in which k is 2 in the compound represented by the formula a (see Patent Document 4).

[製造ルートC]   [Manufacturing route C]

Figure 2005068044
Figure 2005068044

式bで表される化合物を、下記製造ルートDで製造する方法が知られている(特許文献2参照。)。   A method for producing a compound represented by the formula b by the following production route D is known (see Patent Document 2).

[製造ルートD]   [Manufacturing route D]

Figure 2005068044
Figure 2005068044

式cで表される化合物を、下記製造ルートEで製造する方法が知られている(特許文献3参照。)。   A method for producing a compound represented by the formula c by the following production route E is known (see Patent Document 3).

[製造ルートE]   [Manufacturing route E]

Figure 2005068044
Figure 2005068044

特開平01−143843号公報(第3頁〜第4頁)Japanese Patent Laid-Open No. 01-143843 (pages 3 to 4) 国際公開第01/92194号パンフレット(第13頁〜第18頁)International Publication No. 01/92194 Pamphlet (pages 13-18) 国際公開第03/037838号パンフレット(第24頁〜第34頁)International Publication No. 03/037838 pamphlet (pages 24 to 34) 特開平02−311436号公報(第3頁)Japanese Patent Laid-Open No. 02-311436 (page 3)

製造ルートAおよび製造ルートBでは、高価なHFPOを用いる、生成物の構造が直鎖の構造に限定される、製造ルートBの方法における出発物質であるCF=CFCFOCF=CFは別途合成が必要であり、総反応工程数が多くなる、などの問題がある。製造ルートCでは、取扱いの難しいフルオロオキシハロ化合物を経由する、kが2である式aで表される化合物の製造のみ適用できる方法である、などの問題がある。すなわち、式aで表される化合物を安価な化合物を用いて、短工程で製造する製造ルートは知られていない。 In production route A and production route B, an expensive HFPO, the structure of the product is limited to the structure of linear, CF 2 = CFCF 2 OCF = CF 2 is the starting material in the process of the production route B separately There is a problem that synthesis is necessary and the total number of reaction steps is increased. In the production route C, there are problems such as a method that can be applied only to the production of a compound represented by the formula a in which k is 2 via a fluorooxyhalo compound that is difficult to handle. That is, there is no known production route for producing a compound represented by the formula a in a short process using an inexpensive compound.

また、製造ルートDにおいても、高価なHFPOを用いる点、CFClCFClCFCF=CFは別途合成が必要であり総反応工程数が多くなる、ルートDの生成物以外の製造に適用できない点、などの問題がある。製造ルートEには、入手容易な炭化水素系アルコールを原料に利用できる利点がある。しかし、反応工程数が多い点、フッ化水素が副生する反応が何工程もある点、フッ素化反応が複数工程ある点、生成物が目的物に限定される、などの問題がある。すなわち、種々の構造を有する該含フッ素ジビニル化合物を、安価な原料から短工程で製造する方法は知られていない。 Also in production route D, the point of using an expensive HFPO, CF 2 ClCFClCF 2 CF = CF 2 is much total reaction step number is required separately synthesized, that can not be applied to the manufacture of other products of Route D , Etc. Production route E has an advantage that a readily available hydrocarbon alcohol can be used as a raw material. However, there are problems such as a large number of reaction steps, a number of reactions in which hydrogen fluoride is by-produced, a plurality of fluorination reactions, and a limited product. That is, a method for producing the fluorine-containing divinyl compound having various structures from an inexpensive raw material in a short process is not known.

本発明は、従来の方法が有する前記問題を解決する目的でなされた発明であり、入手容易で安価な化合物を用い、種々の構造を有する該含フッ素ジビニル化合物を、短工程で、工業的に有利な、かつ実用的な方法、および該方法において有用な新規化合物を提供する。   The present invention has been made for the purpose of solving the above-mentioned problems of conventional methods. Industrially, the fluorine-containing divinyl compound having various structures can be produced industrially in a short process using easily available and inexpensive compounds. There are provided advantageous and practical methods and novel compounds useful in the methods.

本発明は、下式1で表される化合物をフッ素化剤以外のハロゲン化剤を用いてハロゲン化せしめて下式2で表される化合物を得て、つぎに該式2で表される化合物をフッ素化せしめて下式3で表される化合物を得て、つぎに該式3で表される化合物を脱ハロゲン化剤によって脱ハロゲン化せしめることを特徴とする下式4で表される化合物の製造方法を提供する。
CH=CH(CHCR(CHOCF=CF・・・式1
CHCHZ(CHCR(CHOCFZCF・・・式2
CFCFZ(CFCRF1F2(CFOCFZCF・・・式3
CF=CF(CFCRF1F2(CFOCF=CF・・・式4
また、本発明は下式2で表される化合物をフッ素化せしめることを特徴とする下式3で表される化合物の製造方法を提供する。
CHCHZ(CHCR(CHOCFZCF・・・式2
CFCFZ(CFCRF1F2(CFOCFZCF・・・式3
さらに、本発明は下式1−Aで表される化合物、下式2で表される化合物、および下式3−1で表される化合物を提供する。
CH=CH(CHCR(CHOCF=CF・・・式1−A
CHCHZ(CHCR(CHOCFZCF・・・式2
CFCFZ(CF)C(RF10)(CF)(CFOCFZCF・・・式3−1。
In the present invention, the compound represented by the following formula 1 is halogenated using a halogenating agent other than the fluorinating agent to obtain a compound represented by the following formula 2, and then the compound represented by the formula 2 Is fluorinated to obtain a compound represented by the following formula 3, and then the compound represented by the formula 3 is dehalogenated by a dehalogenating agent. A manufacturing method is provided.
CH 2 = CH (CH 2 ) m CR 1 R 2 (CH 2 ) n OCF═CF 2 Formula 1
CH 2 Z 1 CHZ 2 (CH 2 ) m CR 1 R 2 (CH 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 2
CF 2 Z 1 CFZ 2 (CF 2 ) m CR F 1 R F 2 (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3
CF 2 = CF (CF 2 ) m CR F1 R F2 (CF 2 ) n OCF = CF 2 Formula 4
Moreover, this invention provides the manufacturing method of the compound represented by the following Formula 3 characterized by fluorinating the compound represented by the following Formula 2.
CH 2 Z 1 CHZ 2 (CH 2 ) m CR 1 R 2 (CH 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 2
CF 2 Z 1 CFZ 2 (CF 2 ) m CR F 1 R F 2 (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3
Furthermore, the present invention provides a compound represented by the following formula 1-A, a compound represented by the following formula 2, and a compound represented by the following formula 3-1.
CH 2 ═CH (CH 2 ) a CR 1 R 2 (CH 2 ) b OCF═CF 2 Formula 1-A
CH 2 Z 1 CHZ 2 (CH 2 ) m CR 1 R 2 (CH 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 2
CF 2 Z 1 CFZ 2 (CF 2 ) m C (R F10 ) (CF 3 ) (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3-1.

ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。RF1およびRF2は、R、Rがフッ素化された原子またはフッ素化された基であり、フッ素原子、炭素数1〜5のポリフルオロアルキル基、または炭素数1〜5のポリフルオロアルコキシ基を示す。RF10はフッ素原子、トリフルオロメチル基、またはトリフルオロメトキシ基を示す。mおよびnは、それぞれ独立に0〜3の整数を示す。Z、Z、Z、およびZは、それぞれ独立に、塩素原子、臭素原子、またはヨウ素原子を示す。aおよびbは、一方が1であり、他方が0である。 However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. R F1 and R F2 are atoms in which R 1 and R 2 are fluorinated or a fluorinated group, and are a fluorine atom, a C 1-5 polyfluoroalkyl group, or a C 1-5 polyfluoro An alkoxy group is shown. R F10 represents a fluorine atom, a trifluoromethyl group, or a trifluoromethoxy group. m and n each independently represents an integer of 0 to 3. Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a chlorine atom, a bromine atom, or an iodine atom. One of a and b is 1 and the other is 0.

本発明の方法によれば入手容易で安価な化合物から、片末端にペルフルオロビニル基を有し、他の片末端にペルフルオロビニルオキシ基を有する種々の構造の化合物を、短工程で工業的に有利であり、かつ実用的な方法で製造できる。また本発明は、該製造方法において有用な新規化合物を提供する。   According to the method of the present invention, compounds having various structures having a perfluorovinyl group at one end and a perfluorovinyloxy group at the other end are industrially advantageous in a short process from readily available and inexpensive compounds. And can be produced by a practical method. The present invention also provides a novel compound useful in the production method.

本発明における以下の説明においては、特に記載しない限り、式1で表される化合物を化合物1と記す。他の式で表される化合物においても同様に記す。また圧力は、ゲージ圧で表記する。   In the following description of the present invention, a compound represented by Formula 1 is referred to as Compound 1 unless otherwise specified. The same applies to compounds represented by other formulas. The pressure is expressed as a gauge pressure.

本発明における化合物および各化合物の製造方法の概要については、つぎの合成ルートで示すことができる。   The outline of the compound and the production method of each compound in the present invention can be shown by the following synthesis route.

[合成ルート]
CH=CH(CHCR(CHOH・・・式1−1
↓アルカリ金属、アルカリ金属水素化物、アルカリ金属塩、またはAg
CH=CH(CHCR(CHOM・・・式1−2
↓テトラフルオロエチレン
CH=CH(CHCR(CHOCF=CF・・・式1
↓ハロゲン化剤
CHCHZ(CHCR(CHOCFZCF・・・式2
↓フッ素化
CFCFZ(CFCRF1F2(CFOCFZCF・・・式3
↓脱ハロゲン化剤
CF=CF(CFCRF1F2(CFOCF=CF・・・式4。
[Synthetic route]
CH 2 = CH (CH 2) m CR 1 R 2 (CH 2) n OH ··· formula 1-1
↓ Alkali metal, alkali metal hydride, alkali metal salt, or Ag
CH 2 = CH (CH 2 ) m CR 1 R 2 (CH 2 ) n OM Formula 1-2
↓ tetrafluoroethylene CH 2 ═CH (CH 2 ) m CR 1 R 2 (CH 2 ) n OCF═CF 2 Formula 1
↓ halogenating agent CH 2 Z 1 CHZ 2 (CH 2) m CR 1 R 2 (CH 2) n OCFZ 3 CF 2 Z 4 ··· Equation 2
↓ Fluorinated CF 2 Z 1 CFZ 2 (CF 2 ) m CR F 1 R F 2 (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3
↓ Dehalogenating agent CF 2 = CF (CF 2 ) m CR F1 R F2 (CF 2 ) n OCF = CF 2 .

ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。RF1およびRF2は、R、Rがフッ素化された原子またはフッ素化された基であり、フッ素原子、炭素数1〜5のポリフルオロアルキル基、または炭素数1〜5のポリフルオロアルコキシ基を示す。mおよびnは、それぞれ独立に、0〜3の整数を示す。Mはアルカリ金属原子またはAgを示す。Z、Z、Z、およびZは、それぞれ独立に、塩素原子、臭素原子、またはヨウ素原子を示す。 However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. R F1 and R F2 are atoms in which R 1 and R 2 are fluorinated or a fluorinated group, and are a fluorine atom, a C 1-5 polyfluoroalkyl group, or a C 1-5 polyfluoro An alkoxy group is shown. m and n each independently represents an integer of 0 to 3. M represents an alkali metal atom or Ag. Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a chlorine atom, a bromine atom, or an iodine atom.

およびRとしては、それぞれ独立に、水素原子、メチル基、メトキシ基が好ましい。RF1およびRF2としては、それぞれ独立に、フッ素原子、炭素数1〜5のペルフロオロアルキル基、炭素数1〜5のペルフルオロアルコキシ基であるのが好ましい。炭素数1〜5のペルフルオロアルキル基としては、トリフルオロメチル基が好ましい。炭素数1〜5のペルフルオロアルコキシ基としては、トリフルオロメトキシ基が好ましい。Mはアルカリ金属原子であるのが好ましく、Na、Li、Ka、またはCsが挙げられ、Naが好ましい。Z、Z、Z、Zは、全て塩素原子であるのが好ましい。 R 1 and R 2 are each independently preferably a hydrogen atom, a methyl group, or a methoxy group. R F1 and R F2 are preferably each independently a fluorine atom, a C 1-5 perfluoroalkyl group, or a C 1-5 perfluoroalkoxy group. The perfluoroalkyl group having 1 to 5 carbon atoms is preferably a trifluoromethyl group. The perfluoroalkoxy group having 1 to 5 carbon atoms is preferably a trifluoromethoxy group. M is preferably an alkali metal atom such as Na, Li, Ka, or Cs, with Na being preferred. Z 1 , Z 2 , Z 3 and Z 4 are preferably all chlorine atoms.

以下、前記合成ルートにしたがって、順に説明する。
化合物1−1としては、多種類の構造を有する化合物を容易に入手できる。すなわち、化合物1−1は市販品として安価に入手でき、または市販の化合物から公知の反応によって製造できる化合物である。化合物1−1中のRおよびRは、特に限定されず、前記する基が好ましく、メチル基またはメトキシ基であるのが特に好ましい。また、化合物1−1中のmおよびnは、特に限定されず、mとnの和が1であるのが特に好ましい。
Hereinafter, it demonstrates in order according to the said synthetic | combination route | root.
As compound 1-1, compounds having many kinds of structures can be easily obtained. That is, compound 1-1 is a compound that can be obtained as a commercial product at a low cost or can be produced from a commercially available compound by a known reaction. R 1 and R 2 in the compound 1-1 are not particularly limited, and the above-described groups are preferable, and a methyl group or a methoxy group is particularly preferable. Further, m and n in the compound 1-1 are not particularly limited, and it is particularly preferable that the sum of m and n is 1.

化合物1−1の具体例としては、つぎの化合物が挙げられる。
およびRが水素原子である化合物1−1の例;
CH=CHCHOH、CH=CHCHCHOH、CH=CHCHCHCHOH、CH=CHCHCHCHCHOH等。
Specific examples of the compound 1-1 include the following compounds.
Example of compound 1-1 wherein R 1 and R 2 are hydrogen atoms;
CH 2 = CHCH 2 OH, CH 2 = CHCH 2 CH 2 OH, CH 2 = CHCH 2 CH 2 CH 2 OH, CH 2 = CHCH 2 CH 2 CH 2 CH 2 OH and the like.

またはRが水素原子以外の基であり、mとnの和が0である化合物1−1の例;
CH=CHCH(CH)OH、CH=CHC(CHOH、CH=CHCH(OCH)OH、CH=CHC(OCHOH等。
Example of Compound 1-1 wherein R 1 or R 2 is a group other than a hydrogen atom, and the sum of m and n is 0;
CH 2 = CHCH (CH 3) OH, CH 2 = CHC (CH 3) 2 OH, CH 2 = CHCH (OCH 3) OH, CH 2 = CHC (OCH 3) 2 OH , and the like.

またはRが水素原子以外の基であり、mとnの和が1である化合物1−1の例;
CH=CHCHCH(CH)OH、CH=CHCHC(CHOH、CH=CHCHCH(OCH)OH、CH=CHCHC(OCHOH、CH=CHCH(CH)CHOH、CH=CHC(CHCHOH、CH=CHCH(OCH)CHOH、CH=CHC(OCHCHOH等。
Example of Compound 1-1 wherein R 1 or R 2 is a group other than a hydrogen atom, and the sum of m and n is 1;
CH 2 = CHCH 2 CH (CH 3) OH, CH 2 = CHCH 2 C (CH 3) 2 OH, CH 2 = CHCH 2 CH (OCH 3) OH, CH 2 = CHCH 2 C (OCH 3) 2 OH, CH 2 = CHCH (CH 3) CH 2 OH, CH 2 = CHC (CH 3) 2 CH 2 OH, CH 2 = CHCH (OCH 3) CH 2 OH, CH 2 = CHC (OCH 3) 2 CH 2 OH , etc. .

またはRが水素原子以外の基であり、mとnの和が2である化合物1−1の例;
CH=CHCHCHCH(CH)OH、CH=CHCHCHC(CHOH、CH=CHCHCHCH(OCH)OH、CH=CHCHCHCH(OCHOH、CH=CHCH(CH)CHCHOH、CH=CHC(CHCHCHOH、CH=CHCH(OCH)CHCHOH、CH=CHC(OCHCHCHOH、CH=CHCHCH(CH)CHOH、CH=CHCHCH(OCH)CHOH等。
Example of Compound 1-1 wherein R 1 or R 2 is a group other than a hydrogen atom, and the sum of m and n is 2;
CH 2 = CHCH 2 CH 2 CH (CH 3) OH, CH 2 = CHCH 2 CH 2 C (CH 3) 2 OH, CH 2 = CHCH 2 CH 2 CH (OCH 3) OH, CH 2 = CHCH 2 CH 2 CH (OCH 3) 2 OH, CH 2 = CHCH (CH 3) CH 2 CH 2 OH, CH 2 = CHC (CH 3) 2 CH 2 CH 2 OH, CH 2 = CHCH (OCH 3) CH 2 CH 2 OH , CH 2 = CHC (OCH 3 ) 2 CH 2 CH 2 OH, CH 2 = CHCH 2 CH (CH 3) CH 2 OH, CH 2 = CHCH 2 CH (OCH 3) CH 2 OH and the like.

またはRが水素原子以外の基であり、mとnの和が3である化合物1−1の例;
CH=CHCHCHCHCH(CH)OH、CH=CHCHCHCHC(CHOH、CH=CHCHCHCHCH(OCH)OH、CH=CHCHCHCHC(OCHOH、CH=CHCH(CH)CHCHCHOH、CH=CHC(CHCHCHCHOH、CH=CHCH(OCH)CHCHCHOH、CH=CHC(OCHCHCHCHOH、CH=CHCHCH(CH)CHCHOH等。
Example of Compound 1-1 wherein R 1 or R 2 is a group other than a hydrogen atom, and the sum of m and n is 3;
CH 2 = CHCH 2 CH 2 CH 2 CH (CH 3) OH, CH 2 = CHCH 2 CH 2 CH 2 C (CH 3) 2 OH, CH 2 = CHCH 2 CH 2 CH 2 CH (OCH 3) OH, CH 2 = CHCH 2 CH 2 CH 2 C (OCH 3) 2 OH, CH 2 = CHCH (CH 3) CH 2 CH 2 CH 2 OH, CH 2 = CHC (CH 3) 2 CH 2 CH 2 CH 2 OH, CH 2 = CHCH (OCH 3) CH 2 CH 2 CH 2 OH, CH 2 = CHC (OCH 3) 2 CH 2 CH 2 CH 2 OH, CH 2 = CHCH 2 CH (CH 3) CH 2 CH 2 OH and the like.

化合物1−1としては、本製造方法の最終生成物である化合物4の有用性、すなわち化合物4が環化重合して非晶質重合体を与える単量体となる、RまたはRが水素原子以外の基であり、かつ、mとnの和が1である化合物1−1、およびCH=CHCHCHOHが好ましく、特に好ましくは高いガラス転移点を有する非晶質重合体を与える単量体である前者の化合物が好ましい。 As compound 1-1, the usefulness of compound 4 which is the final product of this production method, that is, compound 4 is a monomer that undergoes cyclopolymerization to give an amorphous polymer, R 1 or R 2 is A compound 1-1 which is a group other than a hydrogen atom and the sum of m and n is 1, and CH 2 ═CHCH 2 CH 2 OH are preferred, and an amorphous polymer having a high glass transition point is particularly preferred. The former compound, which is a monomer that provides the above, is preferred.

本発明における化合物1は、化合物1−1とアルカリ金属、もしくは反応性アルカリ金属化合物(以下、これらをまとめてアルカリ金属類と略記する。)、またはAgを反応せしめて化合物1−2とし、つぎに該化合物1−2にテトラフルオロエチレンを反応せしめて製造できる。化合物1−2は、化合物1−1とアルカリ金属類またはAgとの反応で生じる化合物1−1中の−OH基のHが、反応に用いたアルカリ金属類のアルカリ金属またはAgに置換した化合物である。   The compound 1 in the present invention is compound 1-2 by reacting compound 1-1 with an alkali metal, or a reactive alkali metal compound (hereinafter collectively referred to as alkali metals), or Ag. Can be produced by reacting the compound 1-2 with tetrafluoroethylene. Compound 1-2 is a compound in which H of —OH group in compound 1-1 produced by reaction of compound 1-1 with alkali metal or Ag is substituted with alkali metal or Ag of alkali metal used in the reaction It is.

化合物1−1とアルカリ金属類またはAgとを反応せしめて化合物1−2を得る反応は、無溶媒で行っても、または溶媒の存在下に行ってもよく、溶媒の存在下で行うのが好ましい。溶媒としては、特に限定されず、環状または非環状のエーテル系溶媒、および非プロトン性の極性溶媒を使用するのが好ましく、具体的にはジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、ジオキサン、モノグライム、ジグライム、トリグライム、テトラグライム、アセトニトリル、ベンゾニトリル、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、およびジメチルスルホキシド等から選ばれる1種または2種以上が挙げられる。さらにアルカリ金属類との反応に溶媒を用いる場合には、無水の溶媒を用いるのが好ましい。   The reaction of reacting compound 1-1 with an alkali metal or Ag to obtain compound 1-2 may be performed in the absence of a solvent or in the presence of a solvent, and may be performed in the presence of a solvent. preferable. The solvent is not particularly limited, and cyclic or acyclic ether solvents and aprotic polar solvents are preferably used. Specifically, diethyl ether, methyl-t-butyl ether, tetrahydrofuran, dioxane, monoglyme , Diglyme, triglyme, tetraglyme, acetonitrile, benzonitrile, sulfolane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and the like. Further, when a solvent is used for the reaction with alkali metals, it is preferable to use an anhydrous solvent.

化合物1−1との反応には、アルカリ金属類を用いるのが好ましい。反応性アルカリ金属化合物としては、アルカリ金属水素化物、アルカリ金属水酸化物、アルカリ金属塩、アルカリ金属アルコキシド等がある。アルカリ金属としてはNa、Li、K、またはCs、アルカリ金属水素化物としては水素化リチウム、または水素化ナトリウム、アルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等、アルカリ金属塩としては炭酸セシウム等、アルカリ金属アルコキシドとしてはナトリウムメトキシド、ナトリウムエトキシド等を用いるのが好ましい。化合物1−1との反応には、Na、水素化ナトリウムを用いるのが好ましい。   It is preferable to use alkali metals for the reaction with the compound 1-1. Examples of the reactive alkali metal compound include alkali metal hydride, alkali metal hydroxide, alkali metal salt, alkali metal alkoxide and the like. Na, Li, K, or Cs as the alkali metal, lithium hydride or sodium hydride as the alkali metal hydride, sodium hydroxide, potassium hydroxide, etc. as the alkali metal hydroxide, carbonate as the alkali metal salt As the alkali metal alkoxide such as cesium, sodium methoxide, sodium ethoxide and the like are preferably used. Na and sodium hydride are preferably used for the reaction with the compound 1-1.

該反応を定量的に進行せしめるには、化合物1−1に対して0.9〜1.5倍モルのアルカリ金属類を反応せしめるのが好ましい。化合物1−1とアルカリ金属類との反応温度は、特に限定されず、−78℃〜+30℃が好ましく、0℃〜+20℃が特に好ましい。反応温度は、加圧、減圧、大気圧のいずれであってもよく、大気圧が好ましい。反応時間は、特に限定されず、2〜24時間が好ましく、4〜10時間が特に好ましい。生成した化合物1−2は、分離操作や精製操作を行わずに、そのまま次工程の原料として使用してもよく、また必要に応じて後処理を行ってもよい。   In order to allow the reaction to proceed quantitatively, it is preferable to react 0.9 to 1.5 times moles of alkali metal with respect to compound 1-1. The reaction temperature between compound 1-1 and alkali metals is not particularly limited, and is preferably -78 ° C to + 30 ° C, particularly preferably 0 ° C to + 20 ° C. The reaction temperature may be any of pressurization, reduced pressure, and atmospheric pressure, and atmospheric pressure is preferred. The reaction time is not particularly limited, and is preferably 2 to 24 hours, particularly preferably 4 to 10 hours. The produced compound 1-2 may be used as it is as a raw material for the next step without performing a separation operation or a purification operation, and may be post-treated as necessary.

化合物1−2とテトラフルオロエチレン(以下、TFEと略記する。)とを反応せしめて化合物1を製造する反応は、耐圧反応器中に化合物1−2を仕込んで密閉し、つぎにTFEを封入して加圧および加熱することによって行うのが好ましい。   In the reaction for producing Compound 1 by reacting Compound 1-2 with tetrafluoroethylene (hereinafter abbreviated as TFE), Compound 1-2 is charged in a pressure-resistant reactor and sealed, and then TFE is enclosed. Then, it is preferably performed by pressurization and heating.

封入するTFEの量は、化合物1−2に対して1.0〜2.0倍モルが好ましく、1.2〜1.6倍モルが特に好ましい。TFEは、そのまま耐圧反応器に封入してもよく、不活性ガスで希釈して耐圧反応器に導入してもよい。不活性ガスは、窒素ガス、アルゴンガスが好ましい。TFEの封入圧力は、TFEをそのまま封入する際は、0.5〜3.5MPaが好ましく、1.0〜2.2MPaが特に好ましい。TFEの封入圧力は、TFEを不活性ガスで希釈して封入する際は、0.5〜3.5MPaが好ましく、1.0〜2.2MPaが特に好ましい。TFEの封入温度は、−10℃〜+50℃が好ましく、0℃〜+30℃が特に好ましい。TFEの封入が終了した後に、加熱することによって化合物1−2とTFEとを反応せしめる。化合物1−2とTFEとの反応温度は+30℃〜+100℃が好ましく、+50℃〜+70℃が特に好ましい。反応時間は、TFEの圧力低下が停止するまで行うのが好ましく、具体的には30分〜120時間が特に好ましく、5時間〜10時間がとりわけ好ましい。   The amount of TFE to be encapsulated is preferably 1.0 to 2.0 times mol and particularly preferably 1.2 to 1.6 times mol for the compound 1-2. TFE may be sealed in the pressure resistant reactor as it is, or diluted with an inert gas and introduced into the pressure resistant reactor. The inert gas is preferably nitrogen gas or argon gas. The sealing pressure of TFE is preferably 0.5 to 3.5 MPa, and particularly preferably 1.0 to 2.2 MPa when TFE is sealed as it is. The TFE sealing pressure is preferably 0.5 to 3.5 MPa, and particularly preferably 1.0 to 2.2 MPa when TFE is diluted with an inert gas and sealed. The sealing temperature of TFE is preferably −10 ° C. to + 50 ° C., particularly preferably 0 ° C. to + 30 ° C. After the encapsulation of TFE is completed, the compound 1-2 and TFE are reacted by heating. The reaction temperature between Compound 1-2 and TFE is preferably + 30 ° C. to + 100 ° C., particularly preferably + 50 ° C. to + 70 ° C. The reaction time is preferably carried out until the pressure drop of TFE stops, specifically 30 minutes to 120 hours is particularly preferable, and 5 hours to 10 hours is particularly preferable.

またTFEは、耐圧反応器に連続添加してもよい。この場合、TFEを一定の圧力、および一定の温度で、耐圧反応器へ所定量まで連続添加するのが好ましい。連続添加する場合の圧力は、0.5〜3.5MPaが好ましく、安全上の点で0.8〜1.0MPaが特に好ましい。連続添加する場合の反応温度は、+30℃〜+100℃が好ましく、+50℃〜+70℃が特に好ましい。また、TFEの所定量は化合物1−2に対して、1.0〜2.0倍モルが好ましく、1.2〜1.6倍モルが特に好ましい。連続で添加する場合のTFEは、そのまま耐圧反応器に添加してもよく、不活性ガスで希釈して耐圧反応器に導入してもよい。   TFE may be continuously added to the pressure resistant reactor. In this case, it is preferable to continuously add TFE up to a predetermined amount to the pressure resistant reactor at a constant pressure and a constant temperature. The pressure when continuously added is preferably 0.5 to 3.5 MPa, and particularly preferably 0.8 to 1.0 MPa from the viewpoint of safety. The reaction temperature for continuous addition is preferably + 30 ° C to + 100 ° C, particularly preferably + 50 ° C to + 70 ° C. In addition, the predetermined amount of TFE is preferably 1.0 to 2.0 times mol, particularly preferably 1.2 to 1.6 times mol, relative to compound 1-2. TFE in the case of continuous addition may be added to the pressure resistant reactor as it is, or may be diluted with an inert gas and introduced into the pressure resistant reactor.

化合物1−2とTFEとの反応で生成した化合物1を含む反応生成物は、後処理を行って精製された化合物1を得るのが好ましい。
反応の後処理方法は特に限定されず、つぎのいずれかの方法で行うのが好ましい。
[方法1]
耐圧反応器を開放して反応器内を大気圧とした後に、反応器に残存するアルカリ金属類をメタノール添加により処理する。つぎに、水および有機溶媒(ジエチルエーテル、塩化メチレン、またはジクロロペンタフルオロプロパン(たとえば、旭硝子社AK−225等。)を添加して抽出を行い、有機層を回収する。さらに、回収した有機層を硫酸マグネシウムで乾燥してから、溶媒を蒸留留去して化合物1を得る方法。
[方法2]
耐圧反応器を開放して反応器内を大気圧とした後に、反応生成物を減圧蒸留して化合物1を得ると共に溶媒を回収する方法。化合物1はさらに精留して精製してもよい。
The reaction product containing Compound 1 produced by the reaction of Compound 1-2 and TFE is preferably post-treated to obtain purified Compound 1.
The post-treatment method of the reaction is not particularly limited, and it is preferably carried out by any of the following methods.
[Method 1]
After opening the pressure-resistant reactor and setting the inside of the reactor to atmospheric pressure, the alkali metals remaining in the reactor are treated by adding methanol. Next, extraction is performed by adding water and an organic solvent (diethyl ether, methylene chloride, or dichloropentafluoropropane (for example, AK-225, etc., Asahi Glass Co., Ltd.) to recover the organic layer. Is dried over magnesium sulfate, and the solvent is distilled off to obtain compound 1.
[Method 2]
A method in which the pressure-resistant reactor is opened and the inside of the reactor is brought to atmospheric pressure, and then the reaction product is distilled under reduced pressure to obtain Compound 1 and the solvent is recovered. Compound 1 may be further purified by rectification.

化合物1−2とTFEの反応によって生成する化合物1のうち、下式1−Aで表される化合物は文献未記載の新規化合物である。
CH=CH(CHCR(CHOCF=CF・・・式1−A
ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。aおよびbは、一方が1であり、他方が0である。化合物1−Aのうち、本製造方法の最終生成物である化合物4の有用性の観点から、RおよびRとしては、それぞれ独立に、水素原子、メチル基、またはメトキシ基が好ましく、少なくとも一方がメチル基またはメトキシ基である、または両方が水素原子であるのが特に好ましく、Rがメチル基でありRが水素原子であるのがとりわけ好ましい。化合物1−Aの具体例としては、つぎの化合物が挙げられる。
CH=CHCHCHOCF=CF
CH=CHCHCH(CH)OCF=CF
CH=CHCHC(CHOCF=CF
CH=CHCH(CH)CHOCF=CF
CH=CHCH(OCH)CHOCF=CF
Of the compound 1 produced by the reaction of compound 1-2 and TFE, the compound represented by the following formula 1-A is a novel compound not described in any literature.
CH 2 ═CH (CH 2 ) a CR 1 R 2 (CH 2 ) b OCF═CF 2 Formula 1-A
However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. One of a and b is 1 and the other is 0. Among compounds 1-A, from the viewpoint of the usefulness of compound 4 which is the final product of the production method, R 1 and R 2 are each independently preferably a hydrogen atom, a methyl group, or a methoxy group, It is particularly preferred that one is a methyl group or a methoxy group, or both are hydrogen atoms, particularly preferred that R 1 is a methyl group and R 2 is a hydrogen atom. Specific examples of compound 1-A include the following compounds.
CH 2 = CHCH 2 CH 2 OCF = CF 2,
CH 2 = CHCH 2 CH (CH 3) OCF = CF 2,
CH 2 = CHCH 2 C (CH 3) 2 OCF = CF 2,
CH 2 = CHCH (CH 3) CH 2 OCF = CF 2,
CH 2 = CHCH (OCH 3) CH 2 OCF = CF 2.

つぎに、化合物1をハロゲン化剤を用いてハロゲン化せしめて化合物2を得る。本発明におけるハロゲン化とは、フッ素化剤以外のハロゲン化剤(すなわち、塩素化剤、臭素化剤、またはヨウ素化剤を言う。)を用いて、化合物1中に存在する実質的に全ての炭素−炭素不飽和二重結合にハロゲン原子が付加する反応をいう。ハロゲン原子は、1種であっても2種以上であってもよく、1種であるのが好ましい。ハロゲン原子としては、塩素原子、臭素原子、またはヨウ素原子が好ましく、塩素原子が特に好ましい。ハロゲン化剤としては、公知のハロゲン化剤が挙げられ、ハロゲンを用いる、またはハロゲンと2価のハロゲン化銅とを併用して用いるのが好ましい。ハロゲン化剤としては、塩素化剤が好ましい。塩素化剤としては、塩素(Cl)のみを用いる、または塩素と第2塩化銅とを併用して用いるのが好ましく、ハンドリング、コスト等の観点から塩素を用いるのが特に好ましい。 Next, compound 1 is halogenated using a halogenating agent to obtain compound 2. The halogenation in the present invention means substantially all of the compounds present in Compound 1 using a halogenating agent other than the fluorinating agent (that is, a chlorinating agent, a brominating agent, or an iodinating agent). A reaction in which a halogen atom is added to a carbon-carbon unsaturated double bond. The halogen atom may be one kind or two or more kinds, and preferably one kind. As a halogen atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, and a chlorine atom is particularly preferable. As a halogenating agent, a well-known halogenating agent is mentioned, It is preferable to use halogen or to use together halogen and divalent copper halide. As the halogenating agent, a chlorinating agent is preferable. As the chlorinating agent, it is preferable to use only chlorine (Cl 2 ), or it is preferable to use chlorine and cupric chloride in combination, and it is particularly preferable to use chlorine from the viewpoint of handling, cost, and the like.

以下、化合物1と塩素化剤との反応方法に関して説明する。ただし、該方法は臭素化剤、ヨウ素化剤にも同様に適用できる。化合物1と塩素化剤との反応方法としては、化合物1と塩素化剤とを溶媒の存在下または不存在下に反応させる方法が好ましく、溶媒の存在下に反応させる方法が特に好ましい。   Hereinafter, the reaction method of the compound 1 and the chlorinating agent will be described. However, this method can be similarly applied to brominating agents and iodinating agents. As a reaction method of Compound 1 and a chlorinating agent, a method of reacting Compound 1 and a chlorinating agent in the presence or absence of a solvent is preferable, and a method of reacting in the presence of a solvent is particularly preferable.

該溶媒としては、ペンタン、ヘキサン、ヘプタン等のアルカン系溶媒、ベンゼン、クロロベンゼン等の芳香族炭化水素系溶媒、アセトニトリル、ベンゾニトリル等の炭化水素ニトリル系溶媒、クロロメタン、ジクロロメタン、クロロホルム、四塩化炭素、ブロモメタン、ジブロモメタン、ブロモホルム等のハロゲン化炭化水素系溶媒、ペルフルオロアルカン類(商品名:FC−72等)、ペルフルオロエーテル類(商品名:FC−75、FC−77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等)、クロロフルオロカーボン類、ハイドロクロロフルオロカーボン類、ハイドロフルオロカーボン類、クロロフルオロポリエーテル類、ハイドロクロロフルオロポリエーテル類、ハイドロフルオロポリエーテル類、ペルフルオロトリアルキルアミン等のペルフルオロアルキルアミン類、不活性流体(商品名:フロリナート)等が挙げられる。また後述する化合物2、および化合物3も溶媒として挙げられる。   Examples of the solvent include alkane solvents such as pentane, hexane, and heptane, aromatic hydrocarbon solvents such as benzene and chlorobenzene, hydrocarbon nitrile solvents such as acetonitrile and benzonitrile, chloromethane, dichloromethane, chloroform, and carbon tetrachloride. Halogenated hydrocarbon solvents such as bromomethane, dibromomethane, bromoform, perfluoroalkanes (trade names: FC-72, etc.), perfluoroethers (trade names: FC-75, FC-77, etc.), perfluoropolyethers (Product names: Krytox, Fomblin, Galden, Demnam, etc.), Chlorofluorocarbons, Hydrochlorofluorocarbons, Hydrofluorocarbons, Chlorofluoropolyethers, Hydrochlorofluoropolyethers, Hydroful Roporieteru acids, perfluoroalkyl amines such as perfluorotrialkylamine, inert fluid (trade name: Fluorinert), and the like. Moreover, the compound 2 and the compound 3 which are mentioned later are also mentioned as a solvent.

塩素化剤として塩素のみを用いる場合、塩素と化合物1の反応温度は、−78℃〜+200℃が好ましく、−50℃〜+100℃が特に好ましく、−20℃〜+20℃がとりわけ好ましい。反応は発熱反応であるため、冷却しながら行うのがよい。また塩素の量は化合物1に対して2〜10倍モルが好ましく、2〜5倍モルが特に好ましい。塩素は、液状であってもガス状であってもよく、反応制御の観点からガス状であるのが好ましく、不活性ガスで希釈した塩素ガスが特に好ましい。塩素ガスを不活性ガスで希釈する場合の塩素濃度は、0.1〜80体積%が好ましく、1〜50体積%が特に好ましい。塩素ガスの導入方法としては、特に限定されず、つぎの2つの方法が挙げられる。   When only chlorine is used as the chlorinating agent, the reaction temperature between chlorine and compound 1 is preferably −78 ° C. to + 200 ° C., particularly preferably −50 ° C. to + 100 ° C., and particularly preferably −20 ° C. to + 20 ° C. Since the reaction is an exothermic reaction, it is preferable to carry out the reaction while cooling. Moreover, 2-10 times mole is preferable with respect to the compound 1, and, as for the quantity of chlorine, 2-5 times mole is especially preferable. Chlorine may be liquid or gaseous, and is preferably gaseous from the viewpoint of reaction control, and chlorine gas diluted with an inert gas is particularly preferred. When diluting chlorine gas with an inert gas, the chlorine concentration is preferably from 0.1 to 80% by volume, particularly preferably from 1 to 50% by volume. The method for introducing chlorine gas is not particularly limited, and the following two methods can be mentioned.

[方法1]
該反応器に塩素ガス、または不活性ガスで希釈した塩素ガスを流通させる方法。
[Method 1]
A method of circulating chlorine gas or chlorine gas diluted with an inert gas through the reactor.

[方法2]
密閉した反応器中に塩素ガスまたは不活性ガスで希釈した塩素ガスを導入する方法。希釈した塩素ガスを導入する場合、あらかじめ希釈した塩素ガスを導入してもよく、不活性ガスを導入した後に塩素ガスを導入してもよい。
[Method 2]
A method of introducing chlorine gas or chlorine gas diluted with an inert gas into a sealed reactor. In the case of introducing diluted chlorine gas, chlorine gas diluted in advance may be introduced, or chlorine gas may be introduced after introducing inert gas.

塩素化剤として塩素と第2塩化銅とを併用する場合、反応器に第2塩化銅および化合物1を添加して反応器を80〜85℃に加熱して1〜5時間反応させた後、つぎに反応器を−20℃〜+20℃に冷却して反応器に塩素ガスを導入して行うのが好ましい。第2塩化銅の量は、化合物1に対して1倍モル以上が好ましく、1〜12倍モルが特に好ましい。また第2塩化銅は、第2塩化銅に対して5〜30倍質量のアセトニトリル等の極性溶媒に分散させて反応器に仕込むのが好ましい。塩素ガスの量は、化合物1に対して1倍モル以上が好ましく、1〜5倍モルが特に好ましい。また該反応における塩素ガスは、前記の塩素のみを使用する方法と同様に用いることができる。   When chlorine and cupric chloride are used in combination as a chlorinating agent, after adding cupric chloride and compound 1 to the reactor and heating the reactor to 80 to 85 ° C. and reacting for 1 to 5 hours, Next, it is preferable to carry out by cooling the reactor to −20 ° C. to + 20 ° C. and introducing chlorine gas into the reactor. The amount of the second copper chloride is preferably at least 1 mole, more preferably 1 to 12 moles relative to Compound 1. Moreover, it is preferable to disperse | distribute 2nd copper chloride to polar solvents, such as acetonitrile of 5-30 times mass with respect to 2nd copper chloride, and to charge to a reactor. The amount of chlorine gas is preferably at least 1 mole, more preferably 1 to 5 moles relative to Compound 1. The chlorine gas in the reaction can be used in the same manner as in the method using only chlorine.

化合物1と塩素化剤の反応によって生成する化合物2は、文献未記載の新規化合物である。化合物2としては、本製造方法の最終生成物である化合物4の有用性の観点から、RおよびRの少なくとも一方が、メチル基またはメトキシ基である、またはRおよびRが水素原子であるのが好ましく、前者の基であるのが特に好ましく、とりわけRがメチル基でありRが水素原子であるのがとりわけ好ましい。化合物2の具体例としては、つぎの化合物が挙げられる。
CHClCHClCHOCFClCFCl、
CHClCHClCH(CH)OCFClCFCl、
CHClCHClCHCHOCFClCFCl、
CHClCHClCHCH(CH)OCFClCFCl、
CHClCHClCHC(CHOCFClCFCl、
CHClCHClCH(CH)CHOCFClCFCl、
CHClCHClCH(OCH)CHOCFClCFCl。
Compound 2 produced by the reaction of compound 1 and a chlorinating agent is a novel compound not described in any literature. As the compound 2, from the viewpoint of the usefulness of the compound 4 which is the final product of this production method, at least one of R 1 and R 2 is a methyl group or a methoxy group, or R 1 and R 2 are hydrogen atoms. And the former group is particularly preferred, and it is particularly preferred that R 1 is a methyl group and R 2 is a hydrogen atom. Specific examples of the compound 2 include the following compounds.
CH 2 ClCHClCH 2 OCCFClCF 2 Cl,
CH 2 ClCHClCH (CH 3 ) OCFClCF 2 Cl,
CH 2 ClCHClCH 2 CH 2 OCCFClCF 2 Cl,
CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl,
CH 2 ClCHClCH 2 C (CH 3 ) 2 OCCFClCF 2 Cl,
CH 2 ClCHClCH (CH 3) CH 2 OCFClCF 2 Cl,
CH 2 ClCHClCH (OCH 3) CH 2 OCFClCF 2 Cl.

つぎに、化合物2をフッ素化せしめて化合物3を得る。フッ素化反応としては、電気化学的フッ素化法(ECF法)、コバルトフッ素化法、気相フッ素化法、または液相フッ素化法が挙げられ、収率、反応装置、および反応操作の観点から液相フッ素化法が好ましい。液相フッ素化法は、溶媒中の化合物2とフッ素とを反応せしめて、化合物2中に存在する全ての水素原子をフッ素原子に置換する方法をいう。   Next, compound 3 is obtained by fluorinating compound 2. Examples of the fluorination reaction include an electrochemical fluorination method (ECF method), a cobalt fluorination method, a gas phase fluorination method, and a liquid phase fluorination method. From the viewpoints of yield, reaction apparatus, and reaction operation. A liquid phase fluorination method is preferred. The liquid phase fluorination method refers to a method in which compound 2 and fluorine in a solvent are reacted to replace all hydrogen atoms present in compound 2 with fluorine atoms.

溶媒としては、反応生成物である化合物3、ペルフルオロアルカン類(商品名:FC−72等)、ペルフルオロエーテル類(商品名:FC−75、FC−77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等)、クロロフルオロカーボン類、クロロフルオロポリエーテル類、ペルフルオロアルキルアミン類(たとえば、ペルフルオロトリアルキルアミン等)、不活性流体(商品名:フロリナート)等が挙げられる。溶媒の量は、化合物2に対して5倍質量以上が好ましく、10〜100倍質量が特に好ましい。   Examples of the solvent include compound 3, which is a reaction product, perfluoroalkanes (trade name: FC-72, etc.), perfluoroethers (trade names: FC-75, FC-77, etc.), perfluoropolyethers (trade name: Crytox, Fomblin, Galden, Demnam, etc.), chlorofluorocarbons, chlorofluoropolyethers, perfluoroalkylamines (eg, perfluorotrialkylamine), inert fluids (trade name: Florinato), and the like. The amount of the solvent is preferably 5 times or more, particularly preferably 10 to 100 times, the amount of the compound 2.

フッ素ガスは、不活性ガスで希釈して導入してもよい。不活性ガスとしては、窒素ガスまたはヘリウムガスが好ましく、窒素ガスが特に好ましい。フッ素ガスを希釈する場合には5体積%以上に希釈するのが好ましく、化合物2中のZ、Z、Z、Zの脱離や転位を抑制するためには5〜30体積%に希釈するのが特に好ましい。化合物2の液相フッ素化法において用いるフッ素量は、化合物2中の水素原子の量に対してフッ素(F)の量が、常に過剰当量となる量が好ましく、1.5倍モル以上になる量が特に好ましい。 The fluorine gas may be introduced after being diluted with an inert gas. As the inert gas, nitrogen gas or helium gas is preferable, and nitrogen gas is particularly preferable. In the case of diluting the fluorine gas, it is preferably diluted to 5% by volume or more. In order to suppress the detachment or rearrangement of Z 1 , Z 2 , Z 3 , Z 4 in the compound 2 , it is 5 to 30% by volume. It is particularly preferred to dilute to The amount of fluorine used in the liquid phase fluorination method of compound 2 is preferably such that the amount of fluorine (F 2 ) is always an excess equivalent to the amount of hydrogen atoms in compound 2, and is 1.5 times mol or more. Is particularly preferred.

また液相フッ素化において、化合物2中のフッ素置換されにくい水素原子を効率的にフッ素化するためには、化合物2以外のC−H結合含有化合物を化合物2と共存させる方法、および/または、紫外線照射を行う方法を採用するのが好ましい。たとえば、フッ素化反応後期にC−H結合含有化合物を反応系中に添加する方法、および/または、紫外線照射を行う方法を採用するのが特に好ましい。C−H結合含有化合物としては、芳香族炭化水素が好ましく、ベンゼン、トルエンが特に好ましい。該C−H結合含有化合物の添加量は、化合物2中の水素原子に対して0.1〜10モル%が好ましく、0.1〜5モル%が特に好ましい。   In liquid phase fluorination, in order to efficiently fluorinate hydrogen atoms that are difficult to be substituted by fluorine in compound 2, a method of coexisting compound 2 with a C—H bond other than compound 2 and / or It is preferable to adopt a method of performing ultraviolet irradiation. For example, it is particularly preferable to employ a method in which a C—H bond-containing compound is added to the reaction system at a later stage of the fluorination reaction and / or a method in which ultraviolet irradiation is performed. As the C—H bond-containing compound, an aromatic hydrocarbon is preferable, and benzene and toluene are particularly preferable. The amount of the C—H bond-containing compound added is preferably 0.1 to 10 mol%, particularly preferably 0.1 to 5 mol%, relative to the hydrogen atom in compound 2.

液相フッ素化法における反応温度は、−60℃〜化合物2の沸点温度が好ましく、−50℃〜+100℃が特に好ましく、化合物2中のZ、Z、Z、Zの脱離や転位を抑制するためには−20℃〜+50℃がとりわけ好ましい。また液相フッ素化法における反応圧力は、特に限定されず、0〜2MPaが好ましい。また、化合物2のフッ素化反応で副生するHFは、反応系中にHF捕捉剤を共存させる、または反応器ガス出口でHF捕捉剤と出口ガスを接触させて除去するのが好ましい。HF捕捉剤としては、トリアルキルアミン、アルカリ金属フッ化物が挙げられ、NaFが好ましい。反応系にHF捕捉剤を共存させる場合、HF捕捉剤の量は化合物2中に存在する全水素原子量に対して1〜20倍モルが好ましく、1〜5倍モルが特に好ましい。 The reaction temperature in the liquid phase fluorination method is preferably −60 ° C. to the boiling point temperature of Compound 2, particularly preferably −50 ° C. to + 100 ° C., and elimination of Z 1 , Z 2 , Z 3 , and Z 4 in Compound 2 And −20 ° C. to + 50 ° C. is particularly preferable for suppressing dislocation. Moreover, the reaction pressure in a liquid phase fluorination method is not specifically limited, 0-2 Mpa is preferable. The HF produced as a by-product in the fluorination reaction of Compound 2 is preferably removed by allowing the HF scavenger to coexist in the reaction system or by bringing the HF scavenger and the outlet gas into contact at the reactor gas outlet. Examples of the HF scavenger include trialkylamines and alkali metal fluorides, and NaF is preferable. When the HF scavenger is allowed to coexist in the reaction system, the amount of the HF scavenger is preferably 1 to 20 moles, particularly preferably 1 to 5 moles, based on the total amount of hydrogen atoms present in the compound 2.

化合物2のフッ素化反応で生成する化合物3は、特に限定されず、本製造方法の最終生成物である化合物4の有用性の観点から、RF1およびRF2の少なくとも一方が、トリフルオロメチル基またはトリフルオロメトキシ基である、またはRF1およびRF2がフッ素原子であるのが好ましく、特に前者の基であるのが特に好ましい。 The compound 3 produced by the fluorination reaction of the compound 2 is not particularly limited, and from the viewpoint of the usefulness of the compound 4 which is the final product of this production method, at least one of R F1 and R F2 is a trifluoromethyl group. Or a trifluoromethoxy group, or R F1 and R F2 are preferably fluorine atoms, and particularly preferably the former group.

好ましい化合物3のうち、化合物3−1は文献未記載の新規化合物である。
CFCFZ(CF)C(RF10)(CF)(CFOCFZCF・・・式3−1
ただし、式中のZ、Z、Z、Z、m、およびnは前記と同じ意味を示し、RF10はフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基を示す。
Of the preferred compounds 3, compound 3-1 is a novel compound not described in any literature.
CF 2 Z 1 CFZ 2 (CF 2 ) m C (R F10 ) (CF 3 ) (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3-1
However, Z 1, Z 2, Z 3 in formula, Z 4, m, and n are as defined above, R F10 is a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group.

化合物3の具体例としては、つぎの化合物が挙げられる。
CFClCFClCFOCFClCFCl、
CFClCFClCFCFOCFClCFCl、
CFClCFClCF(CF)OCFClCFCl、
CFClCFClCFCF(CF)OCFClCFCl、
CFClCFClCFC(CFOCFClCFCl、
CFClCFClCF(CF)CFOCFClCFCl、
CFClCFClCF(OCF)CFOCFClCFCl。
Specific examples of the compound 3 include the following compounds.
CF 2 ClCFClCF 2 OCFClCF 2 Cl,
CF 2 ClCFClCF 2 CF 2 OCCFClCF 2 Cl,
CF 2 ClCFClCF (CF 3 ) OCFClCF 2 Cl,
CF 2 ClCFClCF 2 CF (CF 3 ) OCFClCF 2 Cl,
CF 2 ClCFClCF 2 C (CF 3 ) 2 OCCFClCF 2 Cl,
CF 2 ClCFClCF (CF 3 ) CF 2 OCFClCF 2 Cl,
CF 2 ClCFClCF (OCF 3) CF 2 OCFClCF 2 Cl.

つぎに、化合物3を脱ハロゲン化せしめて化合物4を得る。本発明における脱ハロゲン化剤としては脱フッ素化剤以外の脱ハロゲン化剤である。脱ハロゲン化は、極性溶媒中で脱ハロゲン化剤を作用せしめて行う。脱ハロゲン化剤とは、化合物3中のZ、Z、Z、およびZを脱離せしめる反応剤であり、Z、Z、Z、およびZが塩素原子である場合の脱ハロゲン化剤は脱塩素化剤である。脱ハロゲン化剤としては、亜鉛、ナトリウム、マグネシウム、スズ、銅、または鉄が好ましく、低温で反応を実施できる亜鉛が特に好ましい。脱ハロゲン化剤は化合物3に対して、1〜20倍モルを用いるのが好ましく、2〜8倍モルを用いるのが特に好ましい。 Next, compound 3 is dehalogenated to obtain compound 4. The dehalogenating agent in the present invention is a dehalogenating agent other than the defluorinating agent. Dehalogenation is performed by allowing a dehalogenating agent to act in a polar solvent. A dehalogenating agent is a reagent that desorbs Z 1 , Z 2 , Z 3 , and Z 4 in compound 3 , and when Z 1 , Z 2 , Z 3 , and Z 4 are chlorine atoms The dehalogenating agent is a dechlorinating agent. As the dehalogenating agent, zinc, sodium, magnesium, tin, copper, or iron is preferable, and zinc capable of performing the reaction at a low temperature is particularly preferable. The dehalogenating agent is preferably used in an amount of 1 to 20 times by mole, particularly preferably 2 to 8 times by mole, relative to Compound 3.

極性溶媒としては、特に限定されず、具体的にはジメチルホルムアミド、ジメチルアセトアミド、1,4−ジオキサン、ジグライム、メタノール等の有機極性溶媒、または水が挙げられる。反応温度は+30℃〜+100℃が好ましく、+40℃〜+70℃が特に好ましい。化合物3の脱ハロゲン化反応は、脱ハロゲン化剤と極性溶媒中に化合物3を滴下して行うのが好ましい。また、反応を反応蒸留で行い蒸留精製された化合物4を得るのが好ましい。   The polar solvent is not particularly limited, and specific examples include organic polar solvents such as dimethylformamide, dimethylacetamide, 1,4-dioxane, diglyme, and methanol, or water. The reaction temperature is preferably + 30 ° C to + 100 ° C, particularly preferably + 40 ° C to + 70 ° C. The dehalogenation reaction of compound 3 is preferably carried out by dropping compound 3 in a dehalogenating agent and a polar solvent. Moreover, it is preferable to obtain the compound 4 purified by distillation by reactive distillation.

化合物3の脱ハロゲン化反応によって生成する化合物4は、主鎖の片末端にペルフルオロビニル基を有し、他の片末端にペルフルオロビニルオキシ基を有する含フッ素化合物であれば、特に限定されない。化合物4としては、RF1およびRF2の少なくとも一方が、トリフルオロメチル基またはトリフルオロメトキシ基である、またはRF1およびRF2がフッ素原子であるのが好ましく、環化重合して高いガラス転移点を有する非晶質重合体を与える化合物が好ましいことから、RF1およびRF2が前者の基であるのが好ましい。該化合物4の具体例としては、つぎの化合物が挙げられる。
CF=CFCFOCF=CF
CF=CFCFCFOCF=CF
CF=CFCF(CF)OCF=CF
CF=CFCFCF(CF)OCF=CF
CF=CFCFC(CFOCF=CF
CF=CFCF(CF)CFOCF=CF
CF=CFCF(OCF)CFOCF=CF
Compound 4 produced by the dehalogenation reaction of compound 3 is not particularly limited as long as it is a fluorine-containing compound having a perfluorovinyl group at one end of the main chain and a perfluorovinyloxy group at the other end. As the compound 4, it is preferable that at least one of R F1 and R F2 is a trifluoromethyl group or a trifluoromethoxy group, or R F1 and R F2 are fluorine atoms. Since the compound which gives the amorphous polymer which has a point is preferable, it is preferable that R F1 and R F2 are the former groups. Specific examples of the compound 4 include the following compounds.
CF 2 = CFCF 2 OCF = CF 2 ,
CF 2 = CFCF 2 CF 2 OCF = CF 2 ,
CF 2 = CFCF (CF 3 ) OCF = CF 2 ,
CF 2 = CFCF 2 CF (CF 3 ) OCF = CF 2 ,
CF 2 = CFCF 2 C (CF 3 ) 2 OCF = CF 2 ,
CF 2 = CFCF (CF 3 ) CF 2 OCF = CF 2 ,
CF 2 = CFCF (OCF 3) CF 2 OCF = CF 2.

以下に本発明を、実施例を挙げて具体的に説明するが、これらによって本発明は限定されない。
[例1(実施例)]CH=CHCHCH(CH)OCF=CFの合成例(その1)
撹拌機、滴下漏斗、3方コックを備えた四つ口フラスコ(内容積500ml)を用意し、水素化ナトリウム(30.65g、0.766mol)を仕込み、つぎに1,4−ジオキサン(250ml)を仕込んだ。該フラスコの内温を10〜15℃にして撹拌しながら、CH=CHCHCH(CH)OH(60.8g、0.706mol)を滴下した。その後、内温を25℃に昇温して、そのまま4〜5時間反応を行った。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1 (Example) Synthesis example of CH 2 ═CHCH 2 CH (CH 3 ) OCF═CF 2 (Part 1)
A four-necked flask (with an internal volume of 500 ml) equipped with a stirrer, dropping funnel and three-way cock was prepared, sodium hydride (30.65 g, 0.766 mol) was charged, and then 1,4-dioxane (250 ml) Was charged. While stirring the flask at an internal temperature of 10 to 15 ° C., CH 2 ═CHCH 2 CH (CH 3 ) OH (60.8 g, 0.706 mol) was added dropwise. Thereafter, the internal temperature was raised to 25 ° C., and the reaction was carried out for 4 to 5 hours as it was.

得られた反応液を耐圧反応器(内容積500ml)にそのまま移液して、つぎに窒素ガスを導入して内圧を1.0MPaまで上昇させた後に、大気圧に戻す操作を3回行ってから、再び窒素ガスを導入し内圧を0.05MPa、および内温を10〜15℃にした。続いて、テトラフルオロエチレン(107g、1.07mol)を導入し反応温度を55℃に調整すると、内圧が2.2MPaになった。そのまま4〜5時間経過すると、テトラフルオロエチレンの圧力降下が停止して、内圧が1.3MPaとなった。次に、反応器を冷却してから反応器内を大気圧にした。   The obtained reaction solution was transferred as it was to a pressure resistant reactor (internal volume 500 ml), then nitrogen gas was introduced to increase the internal pressure to 1.0 MPa, and then the operation of returning to atmospheric pressure was performed three times. Then, nitrogen gas was again introduced to adjust the internal pressure to 0.05 MPa and the internal temperature to 10 to 15 ° C. Subsequently, when tetrafluoroethylene (107 g, 1.07 mol) was introduced and the reaction temperature was adjusted to 55 ° C., the internal pressure became 2.2 MPa. When 4 to 5 hours passed as it was, the pressure drop of tetrafluoroethylene stopped and the internal pressure became 1.3 MPa. Next, after cooling the reactor, the inside of the reactor was brought to atmospheric pressure.

得られた反応液にメタノール(15.0g)および塩酸(1.0mol/L、160g)とを添加し撹拌した。次に、ジエチルエーテルで抽出し、蒸留してCH=CHCHCH(CH)OCF=CF(76.9g、収率70%)を得た。
19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm);−123.1(F,1F,Jab=103Hz),−130.9(F,1F,Jca=55Hz), −132.0(F,1F,Jbc=107.5Hz).
1H−NMR(300.4MHz,溶媒:CDCl3,基準:TMS)δ(ppm);5.77(H,1H), 5.13(H,2H),4.17(H,1H),2.37(H,2H),1.28(H,3H).
沸点:42℃/10.7kPa(絶対圧)。
Methanol (15.0 g) and hydrochloric acid (1.0 mol / L, 160 g) were added to the obtained reaction solution and stirred. Then extracted with diethyl ether and distilled to CH 2 = CHCH 2 CH (CH 3) was obtained OCF = CF 2 (76.9g, 70 % yield).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm); -123.1 (F a , 1 F, J ab = 103 Hz), −130.9 (F c , 1F, J ca = 55 Hz), −132.0 (F b , 1F, J bc = 107.5 Hz).
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm); 5.77 (H g , 1H), 5.13 (H h , 2H), 4.17 (H d , 1H), 2.37 (H f, 2H), 1.28 (H e, 3H).
Boiling point: 42 ° C./10.7 kPa (absolute pressure).

Figure 2005068044
Figure 2005068044

[例2(実施例)]CHClCHClCHCH(CH)OCFClCFClの合成例(その1)
撹拌機、ドライアイスコンデンサーを備えた3つ口フラスコ(内容積1L)を用意し、該フラスコに例1の方法で得たCH=CHCHCH(CH)OCF=CF(71g、0.426mol)、およびCCl(680g)を仕込んだ。該フラスコを撹拌しながら内温が−15℃〜−10℃になるように冷却した。次に反応器を撹拌して内温を−10℃〜−5℃に保持しながら、窒素ガスで希釈された5体積%の塩素ガスを反応器に導入した。塩素ガス(85g、1.18mol)を導入した後に、窒素ガスのみを導入して反応器から塩素ガスを排除した。得られた粗生成物を回収し、カラムクロマトグラフィー(展開溶媒:ヘキサン100%)で精製してCHClCHClCHCH(CH)OCFClCFCl(85g、収率65%)を得た。
19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm);−65.9〜−67.9(1F), −69.0〜−69.2(2F).
1H−NMR(300.4MHz,溶媒:CDCl3,基準:TMS)δ(ppm);4.85(m,1H), 4.10(m,1H), 3.73(m,2H),1.75〜2.38(2H), 1.45(m,3H)。
Example 2 (Example) Synthesis Example of CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl (Part 1)
A three-necked flask (internal volume 1 L) equipped with a stirrer and a dry ice condenser was prepared, and CH 2 ═CHCH 2 CH (CH 3 ) OCF═CF 2 (71 g, 0) obtained by the method of Example 1 was added to the flask. 426 mol), and CCl 4 (680 g). The flask was cooled with stirring so that the internal temperature was -15 ° C to -10 ° C. Next, 5 vol% chlorine gas diluted with nitrogen gas was introduced into the reactor while stirring the reactor and maintaining the internal temperature at −10 ° C. to −5 ° C. After introducing chlorine gas (85 g, 1.18 mol), only nitrogen gas was introduced to remove chlorine gas from the reactor. The obtained crude product was collected and purified by column chromatography (developing solvent: hexane 100%) to obtain CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl (85 g, yield 65%).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm); −65.9 to −67.9 (1F), −69.0 to −69.2 (2F).
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm); 4.85 (m, 1H), 4.10 (m, 1H), 3.73 (m, 2H), 1.75-2.38 (2H), 1.45 (m, 3H).

[例3(実施例)]CHClCHClCHCH(CH)OCFClCFClの合成例(その2)
耐圧反応器(内容積1L)に例1の方法で得たCH=CHCHCH(CH)OCF=CF(15g、0.090mol)、ヘキサン(36g)、およびクロロホルム(540g)とを仕込み、反応器内を窒素ガスにて置換した。続いて、内温が−15℃〜−10℃になるように冷却し、反応中の内温を−10℃〜−5℃、および反応中の内圧を0.02MPaに保持して塩素ガスを導入した。塩素ガス(85g、1.18mol)を導入した後に、窒素ガスのみを導入して反応器から塩素ガスを除外した。得られた粗生成物を回収し、カラムクロマトグラフィー(展開溶媒:ヘキサン100%)で精製してCHClCHClCHCH(CH)OCFClCFCl(21g、収率74%)を得た。NMRで標記化合物の生成を確認した。
Example 3 (Example) Synthesis example of CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl (part 2)
CH 2 ═CHCH 2 CH (CH 3 ) OCF═CF 2 (15 g, 0.090 mol), hexane (36 g), and chloroform (540 g) obtained by the method of Example 1 were added to a pressure-resistant reactor (internal volume 1 L). The reactor was charged and replaced with nitrogen gas. Subsequently, the internal temperature is cooled to −15 ° C. to −10 ° C., the internal temperature during the reaction is maintained at −10 ° C. to −5 ° C., and the internal pressure during the reaction is maintained at 0.02 MPa. Introduced. After introducing chlorine gas (85 g, 1.18 mol), only nitrogen gas was introduced to exclude chlorine gas from the reactor. The obtained crude product was collected and purified by column chromatography (developing solvent: hexane 100%) to obtain CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl (21 g, yield 74%). The formation of the title compound was confirmed by NMR.

[例4(実施例)]CHClCHClCHCH(CH)OCFClCFClの合成例(その3)
撹拌機、環流コンデンサーを備えた3つ口フラスコ(内容積100mL)を用意し、該フラスコに第2塩化銅(3.3g、0.024mol)、例1の方法で得たCH=CHCHCH(CH)OCF=CF(2.0g、0.012mol)、およびアセトニトリル(35g)を仕込んだ。該フラスコを撹拌しながら内温を80〜85℃になるように加熱し、2時間反応させた。この時点での主生成物は、CH=CHCHCH(CH)OCFClCFClであった。続いて、環流コンデンサーをドライアイスコンデンサーに付け替え、内温が−15℃〜−10℃になるように冷却した。次に反応器を撹拌して−10℃〜−5℃に保持しながら、窒素ガスで希釈された5体積%の塩素ガスを反応器に導入した。塩素ガス(1.3g、0.018mol)を導入した後に、窒素ガスのみを導入して反応器から塩素ガスを排除した。得られた粗生成物を回収し、カラムクロマトグラフィー(展開溶媒:ヘキサン100%)で精製してCHClCHClCHCH(CH)OCFClCFCl(2.2g、収率60%)を得た。NMRで標記化合物の生成を確認した。
Example 4 (Example) Synthesis example of CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl (part 3)
A three-necked flask (internal volume: 100 mL) equipped with a stirrer and a reflux condenser was prepared, and cupric chloride (3.3 g, 0.024 mol), CH 2 = CHCH 2 obtained by the method of Example 1, was prepared in the flask. CH (CH 3 ) OCF═CF 2 (2.0 g, 0.012 mol) and acetonitrile (35 g) were charged. While stirring the flask, the internal temperature was heated to 80 to 85 ° C. and reacted for 2 hours. The main product at this point was CH 2 = CHCH 2 CH (CH 3) OCFClCF 2 Cl. Subsequently, the reflux condenser was replaced with a dry ice condenser, and the internal temperature was cooled to −15 ° C. to −10 ° C. Next, while the reactor was stirred and maintained at −10 ° C. to −5 ° C., 5% by volume of chlorine gas diluted with nitrogen gas was introduced into the reactor. After introducing chlorine gas (1.3 g, 0.018 mol), only nitrogen gas was introduced to remove chlorine gas from the reactor. The obtained crude product was collected and purified by column chromatography (developing solvent: hexane 100%) to obtain CH 2 ClCHClCH 2 CH (CH 3 ) OCFClCF 2 Cl (2.2 g, yield 60%). . The formation of the title compound was confirmed by NMR.

[例5(実施例)]CFClCFClCFCF(CF)OCFClCFClの合成例
オートクレーブ(内容積500ml、ニッケル製)に、1,1,2−トリクロロトリフルオロエタン(312g)を投入し撹拌して、25℃に保った。窒素ガスを1.0時間導入した後、窒素ガスで20体積%に希釈されたフッ素ガスを、13.43L/hの流速で、系を大気圧に保持して1時間導入した。ガス出口には、ガス出口側から順に20℃に保持した冷却器、NaFペレット充填層、−10℃に保持した冷却器を直列に設置した。また−10℃に保持した冷却器からは、凝集液をオートクレーブに戻す液体返送ラインを設置した。つぎに、同じ20体積%のフッ素ガスを同じ流速で、系を常圧に保って導入しながら、1,1,2−トリクロロトリフルオロエタン(100g)に溶解したCHClCHClCHCH(CH)OCFClCFCl(5g、16.23mmol)を、3.8時間かけてオートクレーブに投入した。
Example 5 (Example) Synthesis Example of CF 2 ClCFClCF 2 CF (CF 3 ) OCFClCF 2 Cl 1,1,2-trichlorotrifluoroethane (312 g) was charged into an autoclave (internal volume 500 ml, made of nickel). Stir and keep at 25 ° C. After introducing nitrogen gas for 1.0 hour, fluorine gas diluted to 20% by volume with nitrogen gas was introduced at a flow rate of 13.43 L / h for 1 hour while maintaining the system at atmospheric pressure. At the gas outlet, a cooler kept at 20 ° C., a NaF pellet packed bed, and a cooler kept at −10 ° C. were installed in series from the gas outlet side. Further, from the cooler maintained at −10 ° C., a liquid return line for returning the aggregated liquid to the autoclave was installed. Next, CH 2 ClCHClCH 2 CH (CH 3 dissolved in 1,1,2-trichlorotrifluoroethane (100 g) while introducing the same 20 vol% fluorine gas at the same flow rate and maintaining the system at normal pressure. ) OCFClCF 2 Cl (5 g, 16.23 mmol) was charged to the autoclave over 3.8 hours.

続いて、窒素ガスで20体積%に希釈したフッ素ガスを13.43L/hの流速で導入しながら、反応器圧力を0.15MPaに保持して、ベンゼン濃度が0.01g/mlの1,1,2−トリクロロトリフルオロエタン溶液(9ml)を、反応器を25℃から40℃に昇温させながら注入した。つぎにオートクレーブのベンゼン注入口を閉め、さらに0.3時間撹拌を続けた。引き続き該操作を3回行い、オートクレーブ中にベンゼン(0.336g)、および1,1,2−トリクロロトリフルオロエタン(57ml)を注入した。さらに1.0時間撹拌を続け、つぎに窒素ガスを1.0時間導入して、反応器からフッ素ガスを排除した。反応液を蒸留して精製し、CFClCFClCFCF(CF)OCFClCFCl(2.1g、収率34%)を得た。
19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm);−61.0〜−65.0(2F), −69.7〜−70.1(2F), −72.9〜−74.6(1F),−75.5〜−76.6(3F),−109.2〜−115.0(2F)−128.3〜−137.0(2F)。
Subsequently, while introducing fluorine gas diluted to 20% by volume with nitrogen gas at a flow rate of 13.43 L / h, the reactor pressure was maintained at 0.15 MPa, and a benzene concentration of 0.01 g / ml A 1,2-trichlorotrifluoroethane solution (9 ml) was injected while the reactor was heated from 25 ° C to 40 ° C. Next, the benzene inlet of the autoclave was closed, and stirring was continued for another 0.3 hours. Subsequently, this operation was performed three times, and benzene (0.336 g) and 1,1,2-trichlorotrifluoroethane (57 ml) were injected into the autoclave. Stirring was further continued for 1.0 hour, and then nitrogen gas was introduced for 1.0 hour to eliminate fluorine gas from the reactor. The reaction solution was purified by distillation to obtain CF 2 ClCFClCF 2 CF (CF 3 ) OCFClCF 2 Cl (2.1 g, yield 34%).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm); −61.0 to −65.0 (2F), −69.7 to −70.1 (2F), -72.9 to -74.6 (1F), -75.5 to -76.6 (3F), -109.2 to -115.0 (2F) -128.3 to -137.0 (2F) .

[例6(実施例)]CF2=CFCF2CF(CF3)OCF=CFの合成例
撹拌機、環流コンデンサー、滴下漏斗を備えたガラス製4つ口フラスコ(内容積200ml、ガラス製)を用意した。該フラスコに亜鉛(21g、325mmol)、およびジメチルホルムアミド(50g)を仕込んだ。つぎに該フラスコの内圧を10.7kPa(絶対圧)、および内温を60〜65℃に調整し、例3で得たCFClCFClCFCF(CF)OCFClCFCl(19g、41mmol)を撹拌しながら滴下し、生成物を蒸留により回収しながら反応を行い粗生成物を得た。粗生成物を精留してCF2=CFCF2CF(CF3)OCF=CF(9.8g、収率70%)を得た。
[Example 6 (Example)] Synthesis example of CF 2 = CFCF 2 CF (CF 3 ) OCF = CF 2 A glass four-necked flask equipped with a stirrer, a reflux condenser, and a dropping funnel (internal volume 200 ml, glass) Prepared. The flask was charged with zinc (21 g, 325 mmol), and dimethylformamide (50 g). Next, the internal pressure of the flask was adjusted to 10.7 kPa (absolute pressure) and the internal temperature was adjusted to 60 to 65 ° C., and CF 2 ClCFClCF 2 CF (CF 3 ) OCFClCF 2 Cl (19 g, 41 mmol) obtained in Example 3 was added. The mixture was added dropwise with stirring, and the reaction was carried out while collecting the product by distillation to obtain a crude product. The crude product was fractionated CF 2 = CFCF 2 CF (CF 3) OCF = CF 2 was obtained (9.8 g, 70% yield).

[例7(参考例)]CF=CFCFCF(CF)OCF=CFの重合例
CF=CFCFCF(CF)OCF=CF(2g、6.1mmol)とジイソプロピルペルオキシジカーボネート(6.2mg)をガラスアンプル中に入れ、液体窒素中で凍結してから真空脱気後封管する。40℃、20時間オーブン中で加熱してから、固化した内容物を取り出して、200℃で1時間乾燥する。得られる重合体(以下、重合体A1という)の収率は99%である。重合体A1の一部をペルフルオロ(2−ブチルテトラヒドロフラン)(以下、PBTHFという)に溶解して固有粘度を測定すると、0.44dl/gである。重合体の分子量は数平均分子量(M)で131500、重量平均分子量(M)で263000である。
EXAMPLE 7 (Reference Example)] CF 2 = CFCF 2 CF (CF 3) Polymerization Example CF 2 = CFCF 2 CF (CF 3) of OCF = CF 2 OCF = CF 2 (2g, 6.1mmol) and diisopropyl peroxydicarbonate Carbonate (6.2 mg) is placed in a glass ampule, frozen in liquid nitrogen, vacuum degassed and sealed. After heating in an oven at 40 ° C. for 20 hours, the solidified content is taken out and dried at 200 ° C. for 1 hour. The yield of the resulting polymer (hereinafter referred to as polymer A1) is 99%. When a part of the polymer A1 is dissolved in perfluoro (2-butyltetrahydrofuran) (hereinafter referred to as PBTHF) and the intrinsic viscosity is measured, it is 0.44 dl / g. The molecular weight of the polymer is 131500 in number average molecular weight (M n ) and 263000 in weight average molecular weight (M w ).

プレス成型により作成する重合体A1のフィルムのアッベ屈折率計により測定すると、屈折率は1.327、また、動的熱機械分析(DMA)により測定するガラス転移温度は124℃である。重合体A1の引張特性を測定すると、引張弾性率1430MPa、降伏応力36MPa、および破断伸度4.2%である。また、回転式溶融粘弾性測定装置により230℃におけるゼロシェア粘度を測定すると、89000Pa・sである。   When measured with an Abbe refractometer of the film of polymer A1 produced by press molding, the refractive index is 1.327, and the glass transition temperature measured by dynamic thermomechanical analysis (DMA) is 124 ° C. When the tensile properties of the polymer A1 are measured, the tensile modulus is 1430 MPa, the yield stress is 36 MPa, and the elongation at break is 4.2%. Further, when the zero shear viscosity at 230 ° C. is measured by a rotary melt viscoelasticity measuring apparatus, it is 89000 Pa · s.

また、重合体の赤外吸収スペクトルを測定すると、単量体に見られたCF=CF−に基づく1785cm−1およびCF=CFO−に基づく1835cm−1の吸収が消失している。この重合体A1はペンダント二重結合がなく架橋反応も生じておらず、高反応率でもジクロロペンタフルオロプロパン(旭硝子製AK−225)に完全に溶解することから環化重合体であることがわかる。また、19F−NMR解析により下記の構造の繰り返し単位を有する重合体であることがわかる。 Also, when measuring the infrared absorption spectrum of the polymer, the absorption of 1785 cm -1 and CF 2 = CFO- to based 1835Cm -1 based on CF 2 = CF- seen the monomer has disappeared. This polymer A1 has no pendant double bond, does not cause a crosslinking reaction, and is completely dissolved in dichloropentafluoropropane (Asahi Glass AK-225) even at a high reaction rate. . Moreover, it turns out that it is a polymer which has a repeating unit of the following structure by 19 F-NMR analysis.

Figure 2005068044
Figure 2005068044

[例8(実施例)]CH=CHCHCHOCF=CFの合成例(その2)
例1のCH=CHCHCH(CHOHの代わりに、CH=CHCHCHOH(20g、0.28mol)を用い、他の反応剤を例1と同様の割合で用いて、例1と同様の方法でTFEの付加反応を行い、CH=CHCHCHOCF=CF(27g、収率64%)を得た。
19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm);−123.0(F,1F,Jab=103Hz), −130.0(F,1F,Jca=55Hz), −134.1(F,1F,Jbc=107Hz).
1H−NMR(300.4MHz,溶媒:CDCl3,基準:TMS)δ(ppm);5.77(H,1H), 5.10(H,2H),3.98(H,2H),2.44(He,2H)
[Example 8 (Example) Synthesis Example of CH 2 = CHCH 2 CH 2 OCF = CF 2 ( Part 2)
Instead of CH 2 ═CHCH 2 CH (CH 3 ) 2 OH in Example 1, CH 2 ═CHCH 2 CH 2 OH (20 g, 0.28 mol) was used, and other reagents were used in the same proportions as in Example 1. Te performs addition reaction of TFE in the same manner as in example 1 to obtain CH 2 = CHCH 2 CH 2 OCF = CF 2 (27g, 64% yield).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm); −123.0 (F a , 1 F, J ab = 103 Hz), −130.0 (F c , 1F, J ca = 55 Hz), −134.1 (F b , 1F, J bc = 107 Hz).
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm); 5.77 (H f , 1H), 5.10 (H g , 2H), 3.98 (H d , 2H), 2.44 (H e , 2H)

Figure 2005068044
Figure 2005068044

[例9(実施例)]CH=CHCH(OCH)CHOCF=CFの合成例(その3)
例1のCH=CHCHCH(CHOHの代わりに、CH=CHCH(OCH)CHOH(20g、0.20mol)を用い、他の反応剤を例1と同様の割合で用いて、例1と同様の方法でTFEの付加反応を行い、CH=CHCH(OCH)CHOCF=CF(25g、収率70%)を得た。
19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm);−122.8(F,1F,Jab=103Hz), −129.7(F,1F,Jca=55Hz),−133.5(F,1F,Jbc=107Hz).
1H−NMR(300.4MHz,溶媒:CDCl3,基準:TMS)δ(ppm);5.64(H,1H), 5.28(H,2H),4.01(He,1H),3.62(H,2H),3.31(H,3H)
[Example 9 (Example)] CH 2 = CHCH (OCH 3) CH 2 Synthesis Example of OCF = CF 2 (Part 3)
Instead of Example 1 of CH 2 = CHCH 2 CH (CH 3) 2 OH, CH 2 = CHCH (OCH 3) CH 2 OH (20g, 0.20mol) was used, similar to that of Example 1 other reactants Using the ratio, TFE addition reaction was performed in the same manner as in Example 1 to obtain CH 2 ═CHCH (OCH 3 ) CH 2 OCF═CF 2 (25 g, yield 70%).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm); -122.8 (F a , 1 F, J ab = 103 Hz), -129.7 (F c , 1F, J ca = 55 Hz), -133.5 (F b , 1F, J bc = 107 Hz).
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm); 5.64 (H g , 1H), 5.28 (H g , 2H), 4.01 (H e , 1H), 3.62 (H d, 2H), 3.31 (H f, 3H)

Figure 2005068044
Figure 2005068044

本発明の製造方法により、安価で入手容易なビニルアルコールである化合物1から、両末端に反応性の異なるペルフルオロビニル基を有する含フッ素ジビニル化合物の、短工程で工業的に有利な製造方法が提供される。また本発明の製造方法により、直鎖構造の含フッ素ジビニル化合物、または任意の位置に分岐構造を有する種々の含フッ素ジビニル化合物の製造方法が提供される。また本発明によれば、該方法に有用な新規化合物が提供される。本発明の方法を用いて製造される含フッ素ジビニル化合物を環化重合して得られる非晶質重合体は、弾性率、降伏伸度、破断伸度が大きく、かつ耐衝撃性に優れた透明性が高い性質を有し、ガラス転移点が高い重合体であり、該重合体は耐熱性に優れた光学材料となる。
The production method of the present invention provides an industrially advantageous production method of a fluorine-containing divinyl compound having perfluorovinyl groups having different reactivities at both ends from compound 1 which is an inexpensive and readily available vinyl alcohol. Is done. The production method of the present invention provides a method for producing a fluorine-containing divinyl compound having a linear structure or various fluorine-containing divinyl compounds having a branched structure at an arbitrary position. The present invention also provides novel compounds useful for the method. An amorphous polymer obtained by cyclopolymerizing a fluorine-containing divinyl compound produced by using the method of the present invention has a large elastic modulus, yield elongation, elongation at break and excellent impact resistance. It is a polymer having high properties and a high glass transition point, and the polymer is an optical material having excellent heat resistance.

Claims (6)

下式1で表される化合物をフッ素化剤以外のハロゲン化剤を用いてハロゲン化せしめて下式2で表される化合物を得て、つぎに該式2で表される化合物をフッ素化せしめて下式3で表される化合物を得て、つぎに該式3で表される化合物を脱ハロゲン化剤によって脱ハロゲン化せしめることを特徴とする下式4で表される化合物の製造方法。
CH=CH(CHCR(CHOCF=CF・・・式1
CHCHZ(CHCR(CHOCFZCF・・・式2
CFCFZ(CFCRF1F2(CFOCFZCF・・・式3
CF=CF(CFCRF1F2(CFOCF=CF・・・式4
ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。RF1およびRF2は、R、Rがフッ素化された原子またはフッ素化された基であり、フッ素原子、炭素数1〜5のポリフルオロアルキル基、または炭素数1〜5のポリフルオロアルコキシ基を示す。mおよびnは、それぞれ独立に0〜3の整数を示す。Z、Z、Z、およびZは、それぞれ独立に、塩素原子、臭素原子、またはヨウ素原子を示す。
The compound represented by the following formula 1 is halogenated using a halogenating agent other than the fluorinating agent to obtain the compound represented by the following formula 2, and then the compound represented by the formula 2 is fluorinated. A method for producing a compound represented by the following formula 4, wherein the compound represented by the following formula 3 is obtained, and then the compound represented by the formula 3 is dehalogenated by a dehalogenating agent.
CH 2 = CH (CH 2 ) m CR 1 R 2 (CH 2 ) n OCF═CF 2 Formula 1
CH 2 Z 1 CHZ 2 (CH 2 ) m CR 1 R 2 (CH 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 2
CF 2 Z 1 CFZ 2 (CF 2 ) m CR F 1 R F 2 (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3
CF 2 = CF (CF 2 ) m CR F1 R F2 (CF 2 ) n OCF = CF 2 Formula 4
However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. R F1 and R F2 are atoms in which R 1 and R 2 are fluorinated or a fluorinated group, and are a fluorine atom, a C 1-5 polyfluoroalkyl group, or a C 1-5 polyfluoro An alkoxy group is shown. m and n each independently represents an integer of 0 to 3. Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a chlorine atom, a bromine atom, or an iodine atom.
下式2で表される化合物をフッ素化せしめることを特徴とする下式3で表される化合物の製造方法。
CHCHZ(CHCR(CHOCFZCF・・・式2
CFCFZ(CFCRF1F2(CFOCFZCF・・・式3
ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。RF1およびRF2は、R、Rがフッ素化された原子またはフッ素化された基であり、フッ素原子、炭素数1〜5のポリフルオロアルキル基、または炭素数1〜5のポリフルオロアルコキシ基を示す。mおよびnは、それぞれ独立に0〜3の整数を示す。Z、Z、Z、およびZは、それぞれ独立に、塩素原子、臭素原子、またはヨウ素原子を示す。
A method for producing a compound represented by the following formula 3, which comprises fluorinating a compound represented by the following formula 2.
CH 2 Z 1 CHZ 2 (CH 2 ) m CR 1 R 2 (CH 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 2
CF 2 Z 1 CFZ 2 (CF 2 ) m CR F 1 R F 2 (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3
However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. R F1 and R F2 are atoms in which R 1 and R 2 are fluorinated or a fluorinated group, and are a fluorine atom, a C 1-5 polyfluoroalkyl group, or a C 1-5 polyfluoro An alkoxy group is shown. m and n each independently represents an integer of 0 to 3. Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a chlorine atom, a bromine atom, or an iodine atom.
下式1−Aで表される化合物。
CH=CH(CHCR(CHOCF=CF・・・式1−A
ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。aおよびbは、一方が1であり、他方が0である。
A compound represented by the following formula 1-A.
CH 2 ═CH (CH 2 ) a CR 1 R 2 (CH 2 ) b OCF═CF 2 Formula 1-A
However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. One of a and b is 1 and the other is 0.
下式2で表される化合物。
CHCHZ(CHCR(CHOCFZCF・・・式2
ただし、式中のRおよびRは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を示す。mおよびnは、それぞれ独立に、0〜3の整数を示す。Z、Z、Z、およびZは、それぞれ独立に、塩素原子、臭素原子、またはヨウ素原子を示す。
A compound represented by the following formula 2.
CH 2 Z 1 CHZ 2 (CH 2 ) m CR 1 R 2 (CH 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 2
However, R < 1 > and R < 2 > in a formula shows a hydrogen atom, a C1-C5 alkyl group, or a C1-C5 alkoxy group each independently. m and n each independently represents an integer of 0 to 3. Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a chlorine atom, a bromine atom, or an iodine atom.
およびRが、それぞれ独立に、水素原子、メチル基、またはメトキシ基である請求項3または4に記載の化合物。 The compound according to claim 3 or 4, wherein R 1 and R 2 are each independently a hydrogen atom, a methyl group, or a methoxy group. 下式3−1で表される化合物。
CFCFZ(CF)C(RF10)(CF)(CFOCFZCF・・・式3−1
ただし、式中のmおよびnは、それぞれ独立に、0〜3の整数を示す。Z、Z、Z、およびZは、それぞれ独立に、塩素原子、臭素原子、またはヨウ素原子を示す。mおよびnは、0〜3の整数を示す。RF10はフッ素原子、トリフルオロメチル基、またはトリフルオロメトキシ基を示す。
A compound represented by the following formula 3-1.
CF 2 Z 1 CFZ 2 (CF 2 ) m C (R F10 ) (CF 3 ) (CF 2 ) n OCFZ 3 CF 2 Z 4 ... Formula 3-1
However, m and n in a formula show the integer of 0-3 each independently. Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a chlorine atom, a bromine atom, or an iodine atom. m and n show the integer of 0-3. R F10 represents a fluorine atom, a trifluoromethyl group, or a trifluoromethoxy group.
JP2003297403A 2003-08-21 2003-08-21 Fluorine-containing divinyl compound and method for producing the same Withdrawn JP2005068044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297403A JP2005068044A (en) 2003-08-21 2003-08-21 Fluorine-containing divinyl compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297403A JP2005068044A (en) 2003-08-21 2003-08-21 Fluorine-containing divinyl compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005068044A true JP2005068044A (en) 2005-03-17

Family

ID=34403271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297403A Withdrawn JP2005068044A (en) 2003-08-21 2003-08-21 Fluorine-containing divinyl compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005068044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169276A (en) * 2005-12-22 2007-07-05 Solvay Solexis Spa Manufacturing method of fluoro halogen ether
JP2007169275A (en) * 2005-12-22 2007-07-05 Solvay Solexis Spa Manufacturing method of fluoro halogen ether
US7247757B2 (en) 2004-10-06 2007-07-24 Fujifilm Corporation Method of producing a fluorine-containing vinyl ether compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247757B2 (en) 2004-10-06 2007-07-24 Fujifilm Corporation Method of producing a fluorine-containing vinyl ether compound
JP2007169276A (en) * 2005-12-22 2007-07-05 Solvay Solexis Spa Manufacturing method of fluoro halogen ether
JP2007169275A (en) * 2005-12-22 2007-07-05 Solvay Solexis Spa Manufacturing method of fluoro halogen ether

Similar Documents

Publication Publication Date Title
JP5242879B2 (en) Perfluoropolyether and method for producing and using the same
JP4905214B2 (en) Method for producing fluorine-containing sulfonyl fluoride compound
US7501540B2 (en) Process for producing perfluorodiacyl fluorinated compounds
JP2020007276A (en) Novel fluorine-containing compound
JP6288094B2 (en) Method for producing fluorine-containing compound
KR100704527B1 (en) Process for producing a vic-dichloro acid fluoride
JP4534765B2 (en) Fluorinated adamantane derivative and method for producing the same
JP2005068044A (en) Fluorine-containing divinyl compound and method for producing the same
JP2001139509A (en) Method for production of unsaturated compound by thermal decomposition reaction
JP4956856B2 (en) Method for producing fluoride compound
JP5126936B2 (en) Process for producing fluoro (alkyl vinyl ether) and its derivatives
JPWO2002026689A1 (en) Method for producing fluorine-containing polyvalent carbonyl compound
JPWO2005123653A1 (en) Fluoroadamantane derivatives
JP5092192B2 (en) Process for producing perfluoro compounds and derivatives thereof
JPWO2005123650A1 (en) Novel fluorinated adamantane derivatives
JPWO2002026682A1 (en) Method for producing fluorine-containing vinyl ether compound
JP2019014667A (en) Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)
WO2004050649A1 (en) Perfluoro five-membered ring compound
JPWO2002079274A1 (en) Method for producing fluoropolymer and derivative thereof, and use of derivative of fluoropolymer
WO2005042456A1 (en) Fluorine-containing ether compound
JP2005225816A (en) Production method for fluorine-containing allyl ether
JP2002255901A (en) New vic-dichloroacid fluoride compound
JP2007332068A (en) New fluoroadamantane derivative and method for producing the same
JP2009203172A (en) Method for producing perfluoro multifunctional vinyl ether compound
JP2006282619A (en) New compound having perfluoro(2,2-divinyl-1,3-dioxolane) structure and fluorine-containing polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Effective date: 20090527

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20090618

Free format text: JAPANESE INTERMEDIATE CODE: A761