JP2005066684A - Method for producing forged member - Google Patents
Method for producing forged member Download PDFInfo
- Publication number
- JP2005066684A JP2005066684A JP2003303316A JP2003303316A JP2005066684A JP 2005066684 A JP2005066684 A JP 2005066684A JP 2003303316 A JP2003303316 A JP 2003303316A JP 2003303316 A JP2003303316 A JP 2003303316A JP 2005066684 A JP2005066684 A JP 2005066684A
- Authority
- JP
- Japan
- Prior art keywords
- punching
- hole
- intermediate member
- punch
- forged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Forging (AREA)
Abstract
Description
本発明は鍛造部材の製造方法に関する。より詳しくは、フランジ部に穴を有する鍛造部材の製造方法に関する。 The present invention relates to a method for producing a forged member. More specifically, the present invention relates to a method for manufacturing a forged member having a hole in a flange portion.
熱間鍛造部材の製造方法としては、例えば、自動車などに用いられるクラッチ用ハブフランジについて以下のような方法が提案されている(特許文献1参照)。 As a method for manufacturing a hot forged member, for example, the following method has been proposed for a hub flange for a clutch used in an automobile or the like (see Patent Document 1).
すなわち、(1)素材の切断工程→(2)加熱工程→(3)潰し工程(熱間鍛造)→(4)ブロッカ工程(熱間鍛造)→(5)フィニッシャ工程(熱間鍛造)→(6)打ち抜き工程(熱間打ち抜き)→(7)熱処理工程→(8)ショットブラスト工程→(9)潤滑処理処理工程→(10)しごき工程(冷間しごき)→(11)旋削工程である。そして、冷間しごき工程を有することにより、特に、中間の四角孔及び中央のスプライン孔を高い精度に仕上げることができ、製造装置にかかる負荷を小さくすることができるとしている。 (1) Material cutting step → (2) Heating step → (3) Crushing step (hot forging) → (4) Blocker step (hot forging) → (5) Finisher step (hot forging) → ( 6) Punching process (hot punching) → (7) Heat treatment process → (8) Shot blasting process → (9) Lubricating treatment process → (10) Ironing process (cold ironing) → (11) Turning process. And by having a cold ironing process, especially an intermediate | middle square hole and a center spline hole can be finished with high precision, and it is supposed that the load concerning a manufacturing apparatus can be made small.
しかしながら、上記の鍛造部材の製造方法では、(6)の打ち抜き工程でフランジ部に穴を形成するので、(7)の熱処理工程で穴部の形状が変化して精度のよい形状が得られないために(10)のしごき工程が必要となる。また、(11)の旋削工程では熱処理により部材が硬化しているので加工負荷が大きく、生産性を低下させると同時に製造コストも嵩むこととなる。といった問題がある。 However, in the method for manufacturing a forged member described above, since the hole is formed in the flange portion in the punching step (6), the shape of the hole portion is changed in the heat treatment step (7), and an accurate shape cannot be obtained. Therefore, the ironing step (10) is required. Further, in the turning process of (11), since the member is hardened by the heat treatment, the processing load is large, the productivity is reduced and the manufacturing cost is increased. There is a problem.
特に、駆動系ユニットに用いられるハスバ歯車などのフランジが大型の鍛造部材に軽量化のための穴を設けるような場合には、歯面や端面などについては高精度なものが要求されるが、穴自体の形状精度はそれほど問題とならない。機械加工部位の精度を低下させることなくフランジ部に容易に穴を形成する方法の開発が望まれていた。
本発明は上記の要請に鑑みてなされたもので、フランジ部に軽量化のための穴を有する鍛造部材を既存の工程を大きく変化させることなく高精度で製造することのできる製造方法を提供することを目的とする。 The present invention has been made in view of the above-described requirements, and provides a manufacturing method capable of manufacturing a forged member having a hole for weight reduction in a flange portion with high accuracy without greatly changing an existing process. For the purpose.
本発明の鍛造部材の製造方法は、熱間鍛造により型打ちした中間部材に対して熱間打ち抜きにより所定の穴を形成する鍛造部材の製造方法において、前記中間部材の肉厚寸法以下の抜き量で剪断加工するハーフ抜き工程と、ハーフ抜きされたハーフ抜き芯部を押圧してハーフ抜き工程で形成されたハーフ抜き穴内に押し戻す押し戻し工程と、この押し戻されたハーフ抜き芯部を含む中間部材を所定の形状に機械加工する機械加工工程と、機械加工された前記中間部材に熱処理を施す熱処理工程と、熱処理された前記中間部材のハーフ抜き芯部を抜き落とす抜き落とし工程と、を有することを特徴とする。 The method for manufacturing a forged member according to the present invention is a method for manufacturing a forged member in which a predetermined hole is formed by hot punching in an intermediate member stamped by hot forging. A half punching process for shearing, a pressing back process for pressing the half punched core part into a half punching hole formed in the half punching process, and an intermediate member including the half punched core part pushed back. A machining step for machining into a predetermined shape, a heat treatment step for heat-treating the machined intermediate member, and a drawing-out step for drawing off a half-punch core portion of the heat-treated intermediate member. Features.
本発明の製造方法は以上の工程を有することにより、機械加工後の中間部材に浸炭処理などの熱処理を施しても、フランジ部の穴部に抜き芯部が圧入された状態であるので、熱歪みによる変形の発生することがなく、穴がない状態で加工されたものと同じ高い精度で鍛造部材を製造することができる。 The manufacturing method of the present invention includes the above steps, so that even if heat treatment such as carburizing is performed on the intermediate member after machining, the core portion is pressed into the hole portion of the flange portion. A forged member can be manufactured with the same high accuracy as that processed without a hole without deformation due to distortion.
また、ハーフ抜き穴内に押し戻された抜き芯部は、熱処理後に低荷重で抜き落とすことができる。従って、穴の形状(抜き芯部の形状)に関係なく異形形状のものであっても円筒形などの安価で単純な形状の抜きピンなどを用いて、上下運動をする簡易なアクチュエータで抜き落とすことができ、低廉な設備費用とわずかな製造コストで実施することが可能である。 Further, the core portion pushed back into the half punch hole can be removed with a low load after the heat treatment. Therefore, regardless of the shape of the hole (the shape of the core), even if it is irregularly shaped, it can be pulled out with a simple actuator that moves up and down using an inexpensive and simple punching pin such as a cylindrical shape. It can be implemented with low equipment costs and a small manufacturing cost.
また、本発明の鍛造部材の製造方法においては、ハーフ抜き工程と押し戻し工程とを同時に行う工程とすることもできる。さらに、この集約されたハーフ抜き戻し工程と他の部位の打ち抜き工程とを同時に行うことも好ましい。このように各工程を集約することにより工程数を削減でき、製造コストを低減することができる。また、既存の熱間鍛造工程を大きく変更することなく実施することができる。 Moreover, in the manufacturing method of the forge member of this invention, it can also be set as the process of performing a half punching process and a pushing-back process simultaneously. Furthermore, it is also preferable to perform the integrated half-returning step and the punching step for other portions at the same time. Thus, by integrating each process, the number of processes can be reduced and manufacturing cost can be reduced. Further, the existing hot forging process can be carried out without greatly changing.
本発明の鍛造部材の製造方法では、抜き落とし工程の抜き落とし荷重の狙い値を設定して、この狙い値を満足するように前記ハーフ抜き工程のハーフ抜き条件と前記押し戻し工程の押し戻し条件とを調整することが望ましい。 In the method for producing a forged member according to the present invention, a target value of a drop load in the drop step is set, and the half punching condition of the half punching step and the push back condition of the push back step are set so as to satisfy the target value. It is desirable to adjust.
抜き落とし荷重の狙い値は、機械加工時の負荷や熱処理の膨張・収縮などで抜き芯部が脱落せず、かつ、抜き落とし工程で機械加工した高精度部位に変形などの歪みを発生させない範囲で設定されるので、この狙い値を満足することにより、安定した生産と品質とを確保することができる。 The target value of the pull-out load is the range in which the core part does not fall off due to the load during machining or the expansion / contraction of heat treatment, and the high-precision part machined in the drop-out process does not cause distortion such as deformation. Therefore, stable production and quality can be ensured by satisfying this target value.
本発明の鍛造部材の製造方法は、熱間鍛造により型打ちした中間部材に対して、
この中間部材の肉厚寸法以下の抜き量で剪断加工するハーフ抜き工程と、ハーフ抜きされたハーフ抜き芯部を押圧してハーフ抜き工程で形成されたハーフ抜き穴内に押し戻す押し戻し工程と、押し戻されたハーフ抜き芯部を含む中間部材を所定の形状に機械加工する機械加工工程と、所定の形状に機械加工されたハーフ抜き芯部を含む中間部材に熱処理を施す熱処理工程と、熱処理された中間部材のハーフ抜き芯部を抜き落とす抜き落とし工程と、を有することを特徴とする。
The method for producing a forged member of the present invention is based on an intermediate member stamped by hot forging,
A half punching process in which the intermediate member is sheared with a punching amount equal to or less than the thickness of the intermediate member; A machining step for machining an intermediate member including a half-punched core portion into a predetermined shape, a heat treatment step for heat-treating the intermediate member including a half-punch core portion machined into a predetermined shape, and a heat-treated intermediate And a drawing-out step of drawing off the half-drawn core portion of the member.
本発明の鍛造部材の製造方法を図1の概略工程図を用いて説明する。 The manufacturing method of the forged member of this invention is demonstrated using the schematic process drawing of FIG.
まず、鍛造部材に適した素材をビレットシャー又は、鋸で所定の大きさに切断し、この素材を熱間鍛造するのに適した温度、例えば、1200℃に加熱する(a)。なお、この加熱温度は、素材の材質に応じて決定することができる。 First, a material suitable for a forged member is cut into a predetermined size with a billet shear or a saw, and this material is heated to a temperature suitable for hot forging, for example, 1200 ° C. (a). In addition, this heating temperature can be determined according to the material of a raw material.
加熱後、素材を複数の熱間鍛造工程、すなわち、スケールオフ工程(b)、荒地工程(c)および仕上げ工程(d)を経ることにより型打ちした第1中間部材W1に形成する。 After heating, the material is formed into a stamped first intermediate member W1 through a plurality of hot forging processes, that is, a scale-off process (b), a wasteland process (c), and a finishing process (d).
次に、この第1中間部材W1の中心の軸穴P1とフランジ部の所定の場所に穴P2を熱間打ち抜きにより形成する。この時、フランジ部の穴P2はフランジ部の肉厚寸法以下の抜き量でプレスストロークを止めるいわゆるハーフ抜きの状態とする(e)。なお、中心の軸穴P1は完全に抜き落としてもよい。 Next, a hole P2 is formed by hot punching at a predetermined position of the shaft hole P1 and the flange portion of the center of the first intermediate member W1. At this time, the hole P2 in the flange portion is in a so-called half-extracted state in which the press stroke is stopped with an extraction amount less than the thickness of the flange portion (e). The central shaft hole P1 may be completely removed.
このハーフ抜きされたフランジ部の穴P2の抜き芯部Qを、次の押し戻し工程(f)で元の位置(すなわち、穴P2の内部)へ押し戻して第2中間部材W2を形成する。この押し戻し工程は、第1中間部材のバリ取りと同時にトリミングプレス工程で行うこともできる。 The core part Q of the hole P2 in the half-punched flange part is pushed back to the original position (that is, inside the hole P2) in the next push-back step (f) to form the second intermediate member W2. This push-back process can also be performed by a trimming press process simultaneously with deburring of the first intermediate member.
得られた第2中間部材W2の軸穴P1の内面に切削加工あるいは、フランジ外周に歯切加工などの所定の機械加工を施し(g)、引き続いて浸炭処理や焼き入れなどの熱処理を施す(h)。 The inner surface of the shaft hole P1 of the obtained second intermediate member W2 is subjected to predetermined machining such as cutting or gear cutting on the outer periphery of the flange (g), followed by heat treatment such as carburizing and quenching ( h).
そして、熱処理を施された第2中間部材W2に残っているフランジ部のハーフ抜き芯部Qを簡易プレスなどで抜き落としてフランジ部に所望の穴を有する鍛造部材を得ることができる(i)。 And the forged member which has a desired hole in a flange part can be obtained by pulling out the half punching core part Q of the flange part remaining on the heat-treated second intermediate member W2 with a simple press or the like (i). .
ここで、第1中間部材W1を形成する素材切断・加熱工程(a)から熱間鍛造工程の仕上げ工程(d)までは通常の熱間鍛造方法を採用することができる。 Here, a normal hot forging method can be employed from the material cutting / heating step (a) for forming the first intermediate member W1 to the finishing step (d) of the hot forging step.
図1のハーフ抜き工程(e)を実施するためのハーフ抜き金型の一例を図2に示す。図2の金型は中間部材の軸穴とP1とハーフ抜き穴P2とを同時に形成する金型の断面を模式的に示したものである。上型1には軸穴P1を打ち抜くパンチ3とハーフ抜き穴P2を形成するパンチ2とが併設されており、また、ハーフ抜き穴P2の形成位置には中間部材W1を介してパンチ2に対向するように抜きダイス4が配設されている。パンチ2はパンチ3よりも短く設定されており、プレスのストロークを調整することにより軸穴P1を打ち抜くと同時に、抜き芯部Qを抜き落とすことなく所定の深さまで剪断してハーフ抜き穴P2を形成することができる。
An example of the half punching die for carrying out the half punching step (e) of FIG. 1 is shown in FIG. The mold shown in FIG. 2 schematically shows a cross section of a mold that simultaneously forms the shaft hole of the intermediate member, P1, and the half punch hole P2. The upper die 1 is provided with a
図3はハーフ抜きされた抜き芯部Qをハーフ抜き穴P2内へ押し戻す押し戻し工程における戻しパンチの一例である。図3では円筒形の戻しパンチ5を例示しているが、このパンチ5は抜き芯部Qをハーフ抜き穴P2内へ押し戻すことができる形状であれば良く特に制約はない。例えば、突起タイプやピンタイプなどの形状でもよい。
FIG. 3 shows an example of a return punch in a push-back process in which the half-punched core portion Q is pushed back into the half punch hole P2. Although the
また、ハーフ抜き工程と押し戻し工程とを1工程で可能とする工程集約型の金型とすることも望ましい(以降、ハーフ抜き戻しという。)。図4にその一例を示す。図4のハーフ抜き戻し金型は、ハーフ抜き穴P2を形成したのち、パンチ2を打ち抜き方向に押圧するスプリングなどの付勢手段7を有し、また、抜きダイス4にはその中空部に抜き芯部Qを抜き穴P2内へ押し戻すスプリングなどの付勢手段8を備えた戻しパンチ5が軸心に沿って移動自在に嵌合されている。このような構造の金型で中間部材W1を打ち抜き加工すると、まず上型に設けられたパンチ2でハーフ抜き穴P2を形成する。このとき付勢手段8は圧縮されて付勢力が高まっているので、上型の上昇とともに戻しパンチ5が付勢され、抜き芯部Qはパンチ2と戻しパンチ5に挟持されるようにしてハーフ抜き穴P2内へ押し戻される。
It is also desirable to use a process-intensive mold that enables the half-drawing step and the push-back step in one step (hereinafter referred to as half-drawing back). An example is shown in FIG. 4 has a biasing means 7 such as a spring for pressing the
以上のように1工程に集約したハーフ抜き戻し工程に、さらに中間部材の別の部位(例えば、軸穴など)の打ち抜き工程を集約することも好ましい。図5は軸穴P1の打ち抜きとハーフ抜き穴P2のハーフ抜き戻し工程とを1工程に集約した金型の例である。前記の図4の金型に軸穴P1を形成するパンチ3を上型に付け加えたものである。
As described above, it is also preferable to consolidate a punching process of another part (for example, a shaft hole) of the intermediate member into the half pulling back process consolidated into one process. FIG. 5 shows an example of a mold in which the punching of the shaft hole P1 and the half punching back process of the half punching hole P2 are integrated into one process. The
このように金型の一部を改造するだけで工程を集約することができるので、熱間鍛造の全体の工程数を増加させることなく所定のハーフ抜き戻しを実施することができる。 As described above, since the processes can be integrated only by remodeling a part of the mold, it is possible to carry out the predetermined half pull-out without increasing the total number of processes for hot forging.
ハーフ抜き戻しを行った第2中間部材W2に対するフランジ外周の歯切りなどの機械加工と浸炭処理などの熱処理は、フランジ部に穴を有さない通常の中間部材と同様の方法で実施することができ、特に制約はない。 Machining such as gear cutting on the outer periphery of the flange and carburizing treatment for the second intermediate member W2 that has been half-removed can be performed in the same manner as a normal intermediate member that does not have a hole in the flange portion. Yes, there are no restrictions.
ハーフ抜き工程は熱間鍛造工程で行われるので、ハーフ抜き後の穴P2の周辺はポンチによって急冷され、また、抜き芯部Qを穴P2内へ押し戻すことにより、抜き戻し部の周辺は更に冷却される。従って、第2中間部材W2が冷却される際には、中間部材全体の収縮バランスから、押し戻された抜き芯部Qは抜き穴P2に軽く圧入された状態となっている。従って、後工程である機械加工工程や熱処理工程で抜き芯部Qが脱落する心配はない。また、穴を有する中間部材に機械加工や熱処理を施すと、穴があることによって中間部材に歪みが発生することがあるが、ハーフ抜き戻しを行った第2中間部材W2では、穴P2に同じ材質の詰め物があることになるので、機械加工による負荷や熱処理による膨張・収縮などは穴がない状態の中間部材とほぼ同じであると考えられる。 Since the half punching process is performed in the hot forging process, the periphery of the hole P2 after half punching is rapidly cooled by a punch, and the periphery of the pulling back part is further cooled by pushing the punching core part Q back into the hole P2. Is done. Therefore, when the second intermediate member W2 is cooled, the pulled-out core portion Q is lightly press-fitted into the punch hole P2 due to the shrinkage balance of the entire intermediate member. Therefore, there is no fear that the core portion Q will drop off in the subsequent machining process or heat treatment process. Further, when machining or heat treatment is performed on the intermediate member having a hole, the intermediate member may be distorted due to the presence of the hole. However, in the second intermediate member W2 that has been half-removed, it is the same as the hole P2. Since there is a stuffing of material, it is considered that the load due to machining and the expansion / contraction due to heat treatment are almost the same as those of the intermediate member without holes.
ところで、浸炭処理などのような高温で長時間の熱処理では、材質によっては、熱処理中に材料成分の拡散現象が生じ、抜き芯部Qが抜き穴P2の内周部に再着する場合がある。しかし、第2中間部材W2は熱間でハーフ抜きされているので、抜き穴P2の内表面と抜き芯部Qの抜き断面に酸化スケールが生成されている。そして、この酸化スケールが熱処理中の材料成分の拡散現象を阻害して強固な再着を防止することができるので、抜き芯部Qを抜き落とす抜き落とし荷重を低く抑えることができる。 By the way, in a heat treatment for a long time at a high temperature such as carburizing treatment, depending on the material, a diffusion phenomenon of material components may occur during the heat treatment, and the core portion Q may be reattached to the inner peripheral portion of the punch hole P2. . However, since the second intermediate member W2 is half-cut hot, an oxide scale is generated on the inner surface of the punch hole P2 and the cross-section of the punch core portion Q. And since this oxide scale can inhibit the diffusion phenomenon of the material component during the heat treatment and prevent strong reattachment, it is possible to keep the pull-out load for pulling the core-out portion Q low.
このように、熱処理後の第2中間部材W2に残った抜き芯部Qは、低荷重で抜き落とすことができる。例えば、図6に示すような円柱形の抜きピン9を固設した抜き落とし治具10を用いて、単純な構成の上下運動可能な簡易なアクチュエータで抜き芯部Qを押圧することにより、容易に抜き落とすことが可能である。この場合には、例えば、抜き芯部の形状(穴形状)が図7のPでに示すような異形形状であっても、円形または正方形などの単純な断面形状の抜きピンを使用することができる。
Thus, the core part Q remaining on the second intermediate member W2 after the heat treatment can be removed with a low load. For example, by using a pull-out
また、この抜き芯部Qを抜き落とす抜き落とし荷重は、第1中間部材W1をハーフ抜きした量やハーフ抜き時のクリアランス、抜き芯部Qをプッシュバックする戻し時の温度および戻し量などの各要因を適正な値に調整することによって狙い荷重に調節することができる。 The pull-out load for pulling out the core portion Q includes various amounts such as the amount by which the first intermediate member W1 is half-extracted, the clearance at the time of half-extraction, the temperature at the time of pushing back the core portion Q and the amount of return. The target load can be adjusted by adjusting the factor to an appropriate value.
これらのハーフ抜き戻し工程における諸要因と抜き落とし荷重との関係の一例を図8に定性的に示した。(a)はハーフ抜き量(抜き穴P2の深さ)との関係であり、ハーフ抜き量が増加するに従って、抜き落とし荷重は低減する。また、(b)は押し戻し工程での抜き芯部Qの戻し量との関係である。この場合には、抜き芯部Qが抜き穴P2の内面とコイニングを生じるまでは抜き落とし荷重はほとんど変化しない。しかし、コイニングの発生につれて増加する傾向にある。 An example of the relationship between various factors and the drop-off load in these half-drawing steps is qualitatively shown in FIG. (A) is a relationship with the half punching amount (depth of the punching hole P2). As the half punching amount increases, the dropout load decreases. Moreover, (b) is a relationship with the return amount of the extraction core part Q in the pushing back process. In this case, the removal load hardly changes until the extraction core portion Q coins with the inner surface of the extraction hole P2. However, it tends to increase as coining occurs.
従って、予めこれらの各要因について抜き落とし荷重との関係をデータ化しておけば、機械加工時の負荷や熱処理の膨張・収縮などで抜き芯部Qが脱落せず、かつ、抜き落とし工程で機械加工した高精度部位に変形などの歪みを発生させない抜き落とし狙い荷重に合わせて、抜き戻し工程における諸要因の適正な値を求めることができる。 Therefore, if the relationship between the above-mentioned factors and the drop-off load is converted into data, the pull-out core part Q will not drop off due to the load during machining or the expansion / contraction of heat treatment, and the machine can be used in the drop-off process. Appropriate values of various factors in the redrawing process can be obtained in accordance with the target load for pulling out that does not cause distortion such as deformation in the processed high-accuracy part.
図9に抜き落とし荷重を制御するフローチャートを示す。まず、抜き落とし工程で部材の機械加工精度を維持できる抜き落とし応力αを求める。次に、機械加工工程で抜き芯部が脱落しない応力βと、熱処理工程で抜き芯部が脱落しない応力γとを求める。ここで、応力βと応力γとは応力αよりも小さくなければならない。これらの値から応力βと応力γとを比較して大きい方の値を抽出して抜き落としの狙い荷重Fを決定する。 FIG. 9 shows a flowchart for controlling the drop load. First, a drop stress α that can maintain the machining accuracy of the member in the drop step is obtained. Next, a stress β at which the core part does not fall off in the machining process and a stress γ at which the core part does not fall off in the heat treatment process are obtained. Here, the stress β and the stress γ must be smaller than the stress α. From these values, the stress β is compared with the stress γ, and the larger value is extracted to determine the target load F to be removed.
狙い荷重Fが決定されると、図8に例示したような予め求めたハーフ抜き量や押し戻し量といった、抜き戻し工程における各要因と抜き落とし荷重Fとの関係から、各要因の適正な値を求めることができる。 得られた各要因の適正な値で型打ちを実施して相互に矛盾がないか検証し、矛盾がある場合には狙い荷重Fが許容範囲となるまで繰り返し、各要因に補正を加えて検証する。なお、得られた条件について設備上の制約や製造コストを考慮して最終決定することは言うまでもない。 When the target load F is determined, the appropriate value of each factor is determined from the relationship between each factor in the withdrawal process and the withdrawal load F, such as the half withdrawal amount and pushback amount obtained in advance as illustrated in FIG. Can be sought. Perform stamping with appropriate values of each factor obtained to verify whether there is any contradiction, and if there is a conflict, repeat until the target load F is within the allowable range and verify each factor with correction. To do. Needless to say, the obtained conditions are finally determined in consideration of equipment restrictions and manufacturing costs.
以上のように、本発明の鍛造部材の製造方法では、鍛造部材の最終的に抜き落としたい部分をハーフ抜き状態にして、その後ハーフ抜き芯部を押圧してほぼ元の第1中間部材W1の形状まで戻す。そして所定の機械加工を実施し、所定の熱処理を施した後、ハーフ抜き芯部を抜き落として所望の鍛造部材とする。従って、本発明の鍛造部材の製造方法は、以下のような利点を有している。
1)機械加工後に熱処理を施しても、フランジに穴がない場合とほぼ同様の寸法精度を有する鍛造部材を得ることができる。例えば、図10(b)に示すようにフランジ部に熱間鍛造などで穴Pを打ち抜いた後に機械加工や熱処理を施した場合には、穴Pの形成された部分は収縮してフランジ全体の形状が変形することがある。しかし、(a)のようにハーフ抜き戻しを実施して穴部Pに抜き芯部を有する場合には、フランジ部に穴のない部材とほぼ同様の形状の部材を得ることができる。
2)本発明は、わずかな型構造の複雑化によって、ハーフ抜き戻し工程を既存の熱間鍛造工程へ組み込むことができる。また、抜き芯部の抜き落とし工程も安価な簡易プレスなどで行うことが可能である。従って、本発明の方法は、既存工程を大きく変更することなく低廉な設備費用とわずかな製造コストの上昇だけで実施することができる。
3)鍛造部材の他の高精度部位の精度を確保しながら限界まで軽量化の穴を形成することが可能であり、鍛造部材の軽量化を実現するとともに、ノイズの発生をも抑制することができる。
4)図11に示す筒状部21に歯形面22を有する熱冷複合歯形鍛造部材20において、(a)のように芯部Qを抜き戻しすることにより、芯部を抜き落とした歯形部の抜き拡がりや縮みによる寸法変化を((b)図の矢印)防止することができる。なお、抜き戻された芯部Qは、冷間コイニングなどで同時に抜き落とすことができる。この結果高精度の冷間コイニングが可能となる。
5)ハーフ抜き後の抜き戻し量を調整することで、抜き戻し部位に抜き芯部の浮き出しや、へこみ変形を形成しておくことにより、機械加工工程や抜き芯部の抜き落とし工程での位相決めを容易にすることができる。
As described above, in the method for producing a forged member of the present invention, the portion of the forged member that is finally desired to be removed is brought into a half-removed state, and then the half-removed core portion is pressed to obtain substantially the original first intermediate member W1. Return to shape. And after carrying out a predetermined machining and performing a predetermined heat treatment, the half-punched core part is pulled out to obtain a desired forged member. Therefore, the method for manufacturing a forged member of the present invention has the following advantages.
1) Even if heat treatment is performed after machining, a forged member having substantially the same dimensional accuracy as when there is no hole in the flange can be obtained. For example, as shown in FIG. 10B, when the hole P is punched into the flange portion by hot forging or the like and then subjected to machining or heat treatment, the portion where the hole P is formed contracts and the entire flange is contracted. The shape may be deformed. However, when half extraction is performed as shown in (a) and the hole portion P has a core portion, a member having substantially the same shape as a member having no hole in the flange portion can be obtained.
2) The present invention can incorporate the half-draw back process into the existing hot forging process with a slight complication of the mold structure. Also, the process of removing the core part can be performed by an inexpensive simple press or the like. Therefore, the method of the present invention can be carried out with low equipment cost and a slight increase in manufacturing cost without greatly changing the existing process.
3) It is possible to form a hole that is lighter to the limit while ensuring the accuracy of other high-precision parts of the forged member, and it is possible to reduce the weight of the forged member and to suppress noise generation. it can.
4) In the heat-cooled composite tooth
5) By adjusting the amount of withdrawal after half-punching, the core in the withdrawal core is raised and dent deformation is formed, so that the phase in the machining process and the withdrawal step of the core Can make decisions easier.
本発明は、自動車などの変速機に用いられる変速用ギヤなどに用いられるハスバ歯車の熱間鍛造部材の製造に好適に利用することができる。特に大型のフランジ部を有する鍛造部材の軽量化に効果を奏する。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for manufacturing a hot forged member of a helical gear used for a transmission gear used in a transmission such as an automobile. In particular, it is effective in reducing the weight of a forged member having a large flange portion.
2:ハーフ抜きパンチ 3:打ち抜きパンチ 4:ハーフ抜きダイス 5:戻しパンチ 9:抜きピン 10:抜き落とし治具 20:熱冷複合歯形鍛造部材
21:筒状部 22:歯形面 P1:軸穴 P2:ハーフ抜き穴 Q:抜き芯部
2: Half punching punch 3: Punching punch 4: Half punching die 5: Return punch 9: Punching pin 10: Removal jig 20: Heat-cooled composite tooth profile forging member 21: Cylindrical portion 22: Tooth profile P1: Shaft hole P2 : Half punch hole Q: Pull core
Claims (4)
前記中間部材の肉厚寸法以下の抜き量で剪断加工するハーフ抜き工程と、
該ハーフ抜きされたハーフ抜き芯部を押圧して前記ハーフ抜き工程で形成されたハーフ抜き穴内に押し戻す押し戻し工程と、
該押し戻されたハーフ抜き芯部を含む前記中間部材を所定の形状に機械加工する機械加工工程と、
該機械加工された前記中間部材に熱処理を施す熱処理工程と、
該熱処理された前記中間部材の前記ハーフ抜き芯部を抜き落とす抜き落とし工程と、 を有することを特徴とする鍛造部材の製造方法。 In the method for manufacturing a forged member in which a predetermined hole is formed by hot punching for an intermediate member stamped by hot forging,
A half punching process in which shearing is performed with a punching amount equal to or less than the thickness of the intermediate member;
A pushing-back step of pressing the half-punched core portion half-pressed and pushing it back into the half-punching hole formed in the half-punching step;
A machining step of machining the intermediate member including the pushed back core portion into a predetermined shape;
A heat treatment step for heat-treating the machined intermediate member;
A forging member, comprising: a step of removing the half core portion of the intermediate member that has been heat-treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003303316A JP4049055B2 (en) | 2003-08-27 | 2003-08-27 | Method for manufacturing forged members |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003303316A JP4049055B2 (en) | 2003-08-27 | 2003-08-27 | Method for manufacturing forged members |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005066684A true JP2005066684A (en) | 2005-03-17 |
JP4049055B2 JP4049055B2 (en) | 2008-02-20 |
Family
ID=34407347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003303316A Expired - Fee Related JP4049055B2 (en) | 2003-08-27 | 2003-08-27 | Method for manufacturing forged members |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4049055B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009274124A (en) * | 2008-05-16 | 2009-11-26 | Ibaraki Steel Center Kk | Method for working spring washer blind hole of piston for automobile change gear |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108421951B (en) * | 2018-03-23 | 2019-04-02 | 韶关市中机重工股份有限公司 | EMU driving device wheel hub forging production technique |
-
2003
- 2003-08-27 JP JP2003303316A patent/JP4049055B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009274124A (en) * | 2008-05-16 | 2009-11-26 | Ibaraki Steel Center Kk | Method for working spring washer blind hole of piston for automobile change gear |
Also Published As
Publication number | Publication date |
---|---|
JP4049055B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2797705B1 (en) | A method for manufacturing hollow shafts | |
JP3108710B2 (en) | Method of manufacturing gear for transmission | |
EP1574271B1 (en) | Method and device for manufacturing a gear | |
US20100299925A1 (en) | Method for forming a gear | |
US3835686A (en) | Method of manufacturing a steel component having a head part and a hollow shank part | |
US12070782B2 (en) | Method for producing a hollow part made of a metal material and use of this method for producing a landing gear rod or beam | |
KR19990077992A (en) | Method for the manufacture of hub-flange for clutch | |
KR101383362B1 (en) | Manufacturing method of planet carrier for vechicle | |
JP4049055B2 (en) | Method for manufacturing forged members | |
JP5056631B2 (en) | Manufacturing method of shaft | |
JP2000015381A (en) | Formation of disk parts with shaft | |
US6199275B1 (en) | Method for forming crank shaft and method for producing crank shaft | |
KR100502219B1 (en) | Method of forming by cold worked powdered metal forged parts | |
JP2003266138A (en) | Forging with hole, and method and device for forging the same | |
JP2826255B2 (en) | Method of manufacturing shaft with gears supported at both ends | |
KR100357977B1 (en) | Auto transmission | |
JP2000140976A (en) | Production of parts | |
EP1055465B1 (en) | Method and apparatus for deep drawing sheet metal plates | |
RU2240198C2 (en) | Shaping tool for making parts such as rods with head | |
JP4265480B2 (en) | Manufacturing method of forged parts and forged parts | |
KR101736837B1 (en) | Over driver hub clutch process of manufacture of automatic transmission for cars | |
JP2018118257A (en) | Hot-forging device and method for manufacturing engine valve using the same | |
JP2019089078A (en) | Method for forging gear | |
JP3083762B2 (en) | Method of manufacturing synchronizer hub | |
US11707786B2 (en) | Apparatus and method for internal surface densification of powder metal articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060201 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070810 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Effective date: 20071012 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071106 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20071119 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20121207 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20131207 |
|
LAPS | Cancellation because of no payment of annual fees |