JP2005066572A - Three fluids nozzle and garbage disposal apparatus equipped with the nozzle - Google Patents

Three fluids nozzle and garbage disposal apparatus equipped with the nozzle Download PDF

Info

Publication number
JP2005066572A
JP2005066572A JP2003304016A JP2003304016A JP2005066572A JP 2005066572 A JP2005066572 A JP 2005066572A JP 2003304016 A JP2003304016 A JP 2003304016A JP 2003304016 A JP2003304016 A JP 2003304016A JP 2005066572 A JP2005066572 A JP 2005066572A
Authority
JP
Japan
Prior art keywords
liquid
nozzle
fluid
gas
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304016A
Other languages
Japanese (ja)
Other versions
JP4346380B2 (en
Inventor
Takeo Mizuno
毅男 水野
Yoshinari Iwamura
吉就 岩村
Shiro Nakai
志郎 中井
Jun Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Ikeuchi and Co Ltd
Kubota Corp
Original Assignee
H Ikeuchi and Co Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Ikeuchi and Co Ltd, Kubota Corp filed Critical H Ikeuchi and Co Ltd
Priority to JP2003304016A priority Critical patent/JP4346380B2/en
Publication of JP2005066572A publication Critical patent/JP2005066572A/en
Application granted granted Critical
Publication of JP4346380B2 publication Critical patent/JP4346380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nozzle for mixing and spraying without clogging three kinds of fluids consisting of two kinds of liquids and a gas which generate a solid when mixed. <P>SOLUTION: The nozzle 10 is used for mixing and spraying the three kinds of fluids consisting of a gas A, a first liquid N and a second liquid W, while the liquid N and W generate the solid when mixed. The nozzle 10 is provided with three passages R1, R2, R3 to which the first liquid N, the second liquid W and the gas A are supplied through separate piping, and is also provided with a section for mixing the gas A and the second liquid W, a first nozzle hole 21 for spraying the first liquid, and a second nozzle hole 22 for spraying the mixed fluid consisting of the second liquid W and the gas A. The first liquid N and the second liquid W are not mixed until the liquids reach the nozzle holes 21, 22 and the fluids sprayed from the first nozzle hole 21 and the second nozzle hole 22 are mixed externally to generate spray. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気体と2種類の液体の3つの流体を混合噴霧する三流体ノズル及び該三流体ノズルを備えたごみ処理装置に関し、ごみ処理装置のガス冷却塔において排ガス冷却用のノズルとして好適に用いられるものである。
詳しくは、排ガス中に含まれる酸性成分除去のために塩基性中和水溶液とその希釈液と空気との三流体を混合噴霧する排ガス冷却用ノズルにおいて、特に、希釈液としてプラント施設からの排水を循環させて用いた場合に、排水の含有物によるノズルに目詰まりを発生させないようにするものである。
The present invention relates to a three-fluid nozzle that mixes and sprays three fluids, gas and two types of liquid, and a waste treatment apparatus including the three-fluid nozzle, and is preferably used as a nozzle for exhaust gas cooling in a gas cooling tower of the waste treatment apparatus. It is used.
Specifically, in the exhaust gas cooling nozzle that mixes and sprays three fluids of a basic neutralized aqueous solution, its diluted solution, and air to remove acidic components contained in the exhaust gas, in particular, the waste water from the plant facility is used as the diluted solution. When it is used in a circulating manner, it prevents the nozzles from being clogged with wastewater inclusions.

ごみ焼却炉および該焼却炉で発生した焼却灰や焼却飛灰の溶融炉では、焼却時および溶融時に発生する高温ガス中に酸性ガス成分(HCl、SOx)が含まれているため、これら酸性ガス成分を除去した後に排気する必要がある。
上記酸性ガス成分の除去方法として、湿式方法、乾式方法、半湿式方法とがある。湿式方法では排ガスを塩基性水溶液の貯槽に通して酸性成分を吸収・中和している。
乾式方法では塩基性粉体を噴霧して粉体に酸性ガス成分を吸着させた後、排気ガスをバグフィルターなどの集塵機を通して排気している。
半湿式方法では塩基性水溶液を水で希釈してノズルよりガス冷却用噴霧として排ガスに噴霧する方法で、蒸発の過程で排ガスの冷却と排ガス中の酸性成分の吸収・中和を同時に行うものである。
In a refuse incinerator and a melting furnace for incineration ash generated in the incinerator and incineration fly ash, acidic gas components (HCl, SOx) are contained in the high-temperature gas generated during incineration and melting. It is necessary to evacuate after removing the components.
As a method for removing the acid gas component, there are a wet method, a dry method, and a semi-wet method. In the wet method, exhaust gas is passed through a basic aqueous solution storage tank to absorb and neutralize acidic components.
In the dry method, basic powder is sprayed to adsorb acid gas components to the powder, and then exhaust gas is exhausted through a dust collector such as a bag filter.
The semi-wet method is a method in which a basic aqueous solution is diluted with water and sprayed onto the exhaust gas as a gas cooling spray from a nozzle. During the evaporation process, exhaust gas cooling and absorption / neutralization of acidic components in the exhaust gas are performed simultaneously. is there.

上記湿式法は排水が発生する。ごみ焼却・溶解プラントでは、水についてはクローズドシステムが前提となり、排水を発生させない場合があるため、排水を発生させる湿式法を採用できない場合が多い。また、上記乾式法は塩基性粉体と排ガスとを接触させて直接反応させるため反応効率が低くなり、排ガス中に含まれる酸性ガス濃度が高くなると排出基準以下まで酸性成分を除去するのが困難となる。   The above wet method generates waste water. In a waste incineration / dissolution plant, a closed system is assumed for water, and there is a case where waste water is not generated. Therefore, a wet method that generates waste water cannot be adopted in many cases. In addition, since the dry method directly reacts by contacting the basic powder and the exhaust gas, the reaction efficiency becomes low, and when the concentration of acidic gas contained in the exhaust gas becomes high, it is difficult to remove acidic components below the emission standard. It becomes.

これに対して、半湿式法は上記湿式法と乾式法の問題を解消できると共に、排ガスの冷却と同時に酸性成分の吸収・中和を行える利点を有する。
よって、焼却炉および溶融炉から排ガスを導入するガス冷却塔に、苛性ソーダ水溶液等の塩基性中和剤水溶液を排ガスに噴霧するノズルを取り付ける上記半湿式法が好適に用いられる。其の際、酸性成分の中和には苛性ソーダ等の塩基性中和剤は同じモル数であれば、濃度を低くして水溶液量が多い方が反応効率が良くなるため、苛性ソーダ水溶液を更に水で希釈して濃度を低めることが好ましい。
また、半湿式法では噴霧する塩基性水溶液の粒子径が小さい程、排ガスとの接触部分が増加して酸性成分の除去機能を高めることができる点、噴霧によりガス冷却塔内の濡れを防止する点、排ガスの冷却効率を高めてランニングコストを増大させない点から、噴霧を微粒化する必要がある。
On the other hand, the semi-wet method has the advantages that it can solve the problems of the wet method and the dry method and can absorb and neutralize the acidic component simultaneously with cooling of the exhaust gas.
Therefore, the above semi-wet method in which a nozzle for spraying an aqueous solution of a basic neutralizing agent such as a caustic soda solution on the exhaust gas is suitably used in a gas cooling tower for introducing the exhaust gas from the incinerator and the melting furnace. At that time, for neutralizing acidic components, if the basic neutralizing agent such as caustic soda has the same number of moles, the reaction efficiency becomes better when the concentration is lower and the amount of the aqueous solution is larger. It is preferable to dilute with a lower concentration.
In addition, in the semi-wet method, the smaller the particle size of the basic aqueous solution to be sprayed, the more the contact part with the exhaust gas can be increased and the function of removing acidic components can be enhanced, and spraying prevents wetting in the gas cooling tower. It is necessary to atomize the spray from the point that the cooling efficiency of exhaust gas is increased and the running cost is not increased.

噴霧を微粒化させるために、特開2002−159889号公報(特許文献1)等に開示された液体に空気を混合して液体を微粒化させ、気液混合ミストを噴霧する二流体ノズルが排ガス冷却用ノズルとして好適に用いられる。   In order to atomize the spray, a two-fluid nozzle that mixes air with the liquid disclosed in Japanese Patent Application Laid-Open No. 2002-159889 (Patent Document 1), atomizes the liquid, and sprays the gas-liquid mixed mist is exhaust gas. It is suitably used as a cooling nozzle.

特開2002−159889号公報JP 2002-159889 A

一方、ごみ焼却・溶融プラントで、水をクローズドシステムとして排水出来ない場合、ごみ焼却炉および熔解炉において灰ビットやスラグの水冷用の排水もプラント外に排出することはできない。この排水をガス冷却用ノズルに供給する塩基性水溶液の希釈液として用いると、排水を噴霧することで蒸発させて煙突から排出できるため、ガス冷却塔を排水処理装置としても利用することができる。   On the other hand, when water cannot be discharged as a closed system in a waste incineration / melting plant, wastewater for water cooling of ash bits and slag cannot be discharged outside the plant in the waste incinerator and melting furnace. When this waste water is used as a diluting solution of the basic aqueous solution supplied to the gas cooling nozzle, it can be evaporated and discharged from the chimney by spraying the waste water, so that the gas cooling tower can also be used as a waste water treatment device.

しかしながら、上記排水を苛性ソーダ水溶液等の塩基性水溶液苛性ソーダの希釈液として用いると、排水にはカルシウム分が溶け込んでおり、このカルシウム分が苛性ソーダと混合すると配管等にカルシウム水和物(スケール)が発生しやすい問題がある。また、粘度の上昇や排水中に含まれる異物が顕在化しやすい問題がある。
よって、苛性ソーダの希釈水として上記排水を用いた混合液体を、前記特許文献の二流体ノズルに使用した場合、特に、気液混合部で上記スケールや異物による詰まりが発生しやすくなる。本発明者の実験によると、排水中のカルシウムイオン濃度が100mg/lを越えると数時間で噴霧が出来ない状態となる。詰まりが発生すると苛性ソーダ水溶液が十分に微粒化されずに噴霧されるため、排水の蒸発が完了せずに液体状態のまま冷却塔の下流に設置したバグフィルターにながれ、バグフィルターで目詰まりを生じさせる。この目詰まり状態が進行すると、排ガスが吸引できなくなり、プラントの運転ができなくなる。また、冷却塔内あるいは煙道にダストの析出を起こす、所謂ダストトラブルを引き起こし、プラントの運転に支障を来すこととなる。
これを防止するには、2流体ノズルのメンテナンスを頻繁に行う必要があるが、該メンテナンス作業は劇薬を扱う危険な作業となるため、安全上の観点からもノズルの詰まりを発生させないようにする必要がある。
However, when the above wastewater is used as a dilute solution for basic aqueous caustic soda such as aqueous caustic soda, calcium is dissolved in the wastewater, and when this calcium is mixed with caustic soda, calcium hydrate (scale) is generated in the piping. There is a problem that is easy to do. In addition, there is a problem in that the viscosity is increased and foreign substances contained in the drainage are easily manifested.
Therefore, when the mixed liquid using the waste water as the diluted water of the caustic soda is used for the two-fluid nozzle of the patent document, clogging due to the scale and foreign matters is likely to occur particularly in the gas-liquid mixing portion. According to the experiments by the present inventors, when the calcium ion concentration in the waste water exceeds 100 mg / l, spraying cannot be performed in a few hours. When clogging occurs, the aqueous solution of caustic soda is sprayed without being sufficiently atomized, so the evaporation of the wastewater does not complete and the bag filter installed downstream of the cooling tower remains in a liquid state, causing clogging in the bag filter. Let When this clogging state progresses, the exhaust gas cannot be sucked and the plant cannot be operated. In addition, it causes a so-called dust trouble that causes dust to deposit in the cooling tower or in the flue, which impedes the operation of the plant.
To prevent this, maintenance of the two-fluid nozzle needs to be performed frequently. However, since the maintenance work is a dangerous work for handling powerful drugs, the nozzle is not clogged from the viewpoint of safety. There is a need.

なお、排水と塩基性中和剤水溶液(苛性ソーダ水溶液等)との混合流体をノズル内部に流通させることにより発生するノズルの詰まりを防止するため、排水と苛性ソーダ水溶液を別々のノズルより排ガスに噴霧させる方法もあるが、苛性ソーダ水溶液を水で希釈していないため、苛性ソーダの濃度が高くなる。苛性ソーダ濃度が高くなると排気ガスと苛性ソーダの接触部分が低くなり、排気ガス中の酸性ガスとの反応効率が低くなる。よって、酸性ガス濃度を規則値以下に低減できない一方、酸性ガス濃度を十分に低減するには苛性ソーダの使用量を増加させモル数を多くしなければならない問題が生じる。   In order to prevent nozzle clogging caused by flowing a mixed fluid of waste water and basic neutralizer aqueous solution (caustic soda aqueous solution, etc.) inside the nozzle, waste water and caustic soda aqueous solution are sprayed on exhaust gas from separate nozzles. Although there is a method, the concentration of caustic soda is increased because the aqueous caustic soda solution is not diluted with water. When the caustic soda concentration is increased, the contact portion between the exhaust gas and the caustic soda is lowered, and the reaction efficiency with the acid gas in the exhaust gas is lowered. Therefore, while the acid gas concentration cannot be reduced below the regular value, there arises a problem that the amount of caustic soda must be increased to increase the number of moles in order to sufficiently reduce the acid gas concentration.

本発明は上記問題に鑑みてなされたもので、ノズルを別体とせず、1個のノズルより液体と、該液体と混合することにより固形物を発生させる液体と空気等の気体との三流体を混合して噴霧させると共に、上記2つの流体を混合すると発生する固形物により流路に詰まりを発生させないようにしたノズルを提供することを課題としている。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and does not use a nozzle as a separate body, but includes three fluids: a liquid from one nozzle and a liquid that generates a solid by mixing with the liquid and a gas such as air. It is an object of the present invention to provide a nozzle that mixes and sprays the above two fluids and prevents the flow path from being clogged with solids generated when the two fluids are mixed.

上記課題を解決するため、本発明は、第一に、気体、第1液体および第2液体を混合噴霧させる三流体ノズルであって、上記第1液体と第2液体とは混合により固形物を発生させる液体からなり、
上記気体、第1液体及び第2液体とが別々の配管より供給される3つの流路を備え、これら流路に上記気体と第1液体との混合部あるいは/および上記気体と第2液体との混合部を設けていると共に、上記第1液体あるいは該第1液体と上記気体との混合流体を噴射させる第1噴口と、第2液体あるいは該第2液体と上記気体との混合流体を噴射させる第2噴口とを設け、
上記第1噴口と第2噴口から噴射する流体を、これら噴口に達するまでは混合させずに外部混合させて噴霧を発生させる構成としていることを特徴とする三流体ノズルを提供している。
In order to solve the above problems, the present invention is firstly a three-fluid nozzle for mixing and spraying a gas, a first liquid and a second liquid, wherein the first liquid and the second liquid are mixed to form a solid material. Consisting of liquid to be generated,
The gas, the first liquid, and the second liquid are provided with three flow paths that are supplied from separate pipes, and the gas and the first liquid are mixed in the flow paths, and / or the gas and the second liquid. A first injection port for injecting the first liquid or a mixed fluid of the first liquid and the gas, and injecting a second liquid or a mixed fluid of the second liquid and the gas. A second nozzle hole is provided,
There is provided a three-fluid nozzle characterized in that the fluid ejected from the first nozzle hole and the second nozzle hole is externally mixed without being mixed until reaching the nozzle holes to generate spray.

上記気体は圧搾空気、上記第2液体は第1液体の希釈液からなる。
上記三流体ノズルをごみ処理装置のガス冷却塔に設置する排ガス冷却用ノズルとして用いる場合には、第1液体は苛性ソーダ等を含む塩基性中和剤水溶液、第2液体は第1液体を希釈するカルシウム成分を含むごみ焼却炉や焼却灰の溶融炉より発生する排水からなり、第1液体と第2液体との混合でカルシウム水和物からなる固形物(スケール)が発生すると共に第2液体の排水中に含まれる異物を顕在化させ、さらに、粘度の上昇をもたらし、ノズルの流路、特に、混合部に詰まりを発生させやすいものである。
The gas is compressed air, and the second liquid is a diluted liquid of the first liquid.
When the three-fluid nozzle is used as an exhaust gas cooling nozzle installed in a gas cooling tower of a waste treatment apparatus, the first liquid dilutes the first liquid and the second liquid dilutes the first liquid. It consists of wastewater generated from a waste incinerator containing calcium components and a melting furnace for incinerated ash, and a solid (scale) made of calcium hydrate is generated by mixing the first liquid and the second liquid, and the second liquid The foreign matter contained in the waste water becomes obvious, further increases in viscosity, and the nozzle flow path, particularly the mixing part, is likely to be clogged.

上記第一の発明の三流体ノズルでは、第1液体と第2液体とはノズル内部では混合させず、外部混合させているため、ノズル内部は第1液体と第2液体との混合により生ずる固形物で流路や混合部に詰まりを発生させない。 かつ、噴口近傍で、第1液体と第2液体とを混合させ、該第1液体と第2液体のいずれか一方はノズル内部で気体と混合して微粒化させており、この微粒化させた混合流体に、第1液体と第2液体のいずれか他方を外部混合しているため、外部混合される三流体の粒子はさらに微粒化される。   In the three-fluid nozzle according to the first aspect of the invention, the first liquid and the second liquid are not mixed inside the nozzle but are mixed outside, so that the solid inside the nozzle is generated by mixing the first liquid and the second liquid. It does not cause clogging in the flow path and mixing section. In addition, the first liquid and the second liquid are mixed in the vicinity of the nozzle, and one of the first liquid and the second liquid is mixed with the gas inside the nozzle and atomized, and the atomization is performed. Since one of the first liquid and the second liquid is externally mixed with the mixed fluid, the particles of the three fluids to be externally mixed are further atomized.

なお、本発明における外部混合とは、噴口から流体が噴射されると同時に混合が生じる噴口近傍での混合を指し、ノズル先端噴口から離れた位置の外部での混合のみを指すものではない。   The external mixing in the present invention refers to the mixing in the vicinity of the nozzle where mixing occurs at the same time as the fluid is ejected from the nozzle, and does not refer to only mixing outside the position away from the nozzle tip nozzle.

具体的には、軸芯に沿って形成する中心流路、該中心流路を囲む中間流路、該中間流路を囲む外周流路を備える3重管構造とし、上記各流路の基端に上記気体、第1液体、第2液体の配管をそれぞれ接続している。
例えば、上記中心流路を塩基性水溶液の流路とし、中間流路を上記排水の流路とし、外周流路に圧搾空気の流路として、上記中間流路と外周流路とをノズル内部の噴口近傍で連通させて圧搾空気と排水との混合部を設け、この圧搾空気と排水との混合流体を上記中心流路先端の噴口から噴射させる塩基性水溶液と外部混合させている。
Specifically, it has a triple pipe structure including a central flow path formed along the axis, an intermediate flow path surrounding the central flow path, and an outer peripheral flow path surrounding the intermediate flow path. The gas, the first liquid, and the second liquid pipes are connected respectively.
For example, the central flow path is a basic aqueous solution flow path, the intermediate flow path is a drainage flow path, the outer peripheral flow path is a compressed air flow path, and the intermediate flow path and the outer peripheral flow path are disposed inside the nozzle. The mixing part of compressed air and waste water is provided in the vicinity of the nozzle, and a mixed fluid of the compressed air and drain is externally mixed with a basic aqueous solution that is jetted from the nozzle at the tip of the central channel.

外部混合の形態としては、ノズルを単頭型とし、上記第1噴口を第2噴口で囲むと共に、第1噴口を第2噴口より突出させている。
あるいは、ノズル本体部の先端より複数の上記第2噴口を対向配置して突出した多頭型とすると共に、上記ノズル本体部の先端に上記第1噴口を設け、上記第1噴口及び第2噴口から噴射される流体を外部衝突混合させている。
上記単頭型ノズル、多頭型ノズルのいずれの場合も、上記第2噴口からは圧搾空気からなる気体と排水からなる第2液体との混合流体を噴射し、塩基性水溶液からなる第1液体を第1噴口より噴射して、第1液体と第2液体とは噴口の近傍外部で混合させることが好ましい。
As a form of external mixing, the nozzle is a single head type, the first nozzle hole is surrounded by the second nozzle hole, and the first nozzle hole is protruded from the second nozzle hole.
Alternatively, a plurality of the second nozzle holes are arranged to protrude from the tip of the nozzle body, and the first nozzle is provided at the tip of the nozzle body, and the first nozzle and the second nozzle are provided. The fluid to be ejected is mixed by external collision.
In both cases of the single-head nozzle and the multi-head nozzle, a mixed fluid of a gas composed of compressed air and a second liquid composed of drainage is ejected from the second nozzle, and the first liquid composed of a basic aqueous solution is ejected. It is preferable that the first liquid and the second liquid be ejected from the first nozzle and mixed outside in the vicinity of the nozzle.

上記ノズル内部で気体と第1液体との混合部、あるいは/および気体と第2液体との混合部では、一方の流体を流路周壁より流入させて他方の流体と衝突混合あるいは回転混合させる流体微粒化機構を設けていることが好ましい。
また、流体微粒化機構の他の手段として、上記中心流路、中間流路、外周流路のうち、少なくとも1つの流路中には、回転流を発生させて流体を微粒化するワーラを介在させていることが好ましい。なお、上記3つの全てにワーラを介在させてもよい。
上記のように微粒化機構を設けることにより、三流体を微粒子として噴霧でき、排ガス冷却用ノズルとして用いた場合に、排ガス中の酸性成分の除去効率、排ガスの冷却効率を高めることが出来ると共に、冷却塔内に濡れ発生の防止、ランニングコストの低減を図ることができる。
In the mixing part of the gas and the first liquid or / and the mixing part of the gas and the second liquid inside the nozzle, the fluid that causes one fluid to flow in from the peripheral wall of the flow path and collides or rotates and mixes with the other fluid. It is preferable to provide a atomization mechanism.
Further, as another means of fluid atomization mechanism, at least one of the central flow channel, the intermediate flow channel, and the outer peripheral flow channel is provided with a waller for generating a rotating flow to atomize the fluid. It is preferable to let it be. It should be noted that a waller may be interposed in all three.
By providing the atomization mechanism as described above, the three fluids can be sprayed as fine particles, and when used as an exhaust gas cooling nozzle, the removal efficiency of acidic components in the exhaust gas, the exhaust gas cooling efficiency can be increased, It is possible to prevent wetting in the cooling tower and reduce running costs.

本発明は、第二に、気体、第1液体および第2液体を混合噴霧させる三流体ノズルであって、上記第1液体と第2液体とは混合により固形物を発生させる液体からなり、
上記気体、第1液体及び第2液体とが別々の配管より供給される3つの流路を備え、上記第1液体と第2液体との混合部を噴口内に設けていると共に、該噴口の外周位置に上記気体の噴口を設け、噴霧直前で混合させた第1液体と第2液体の混合液体に上記気体を外部混合して噴霧を発生させる構成としていることを特徴とする三流体ノズルを提供している。
Secondly, the present invention is a three-fluid nozzle for mixing and spraying gas, first liquid and second liquid, wherein the first liquid and the second liquid are composed of a liquid which generates a solid by mixing,
The gas, the first liquid, and the second liquid are provided with three flow paths that are supplied from separate pipes, and a mixing portion of the first liquid and the second liquid is provided in the nozzle, A three-fluid nozzle characterized in that the gas nozzle is provided at an outer peripheral position, and the gas is externally mixed with the mixed liquid of the first liquid and the second liquid mixed immediately before spraying to generate spray. providing.

上記第二の発明の三流体ノズルでは、ノズル内部で第1液体と第2液体とを混合しているが、噴口を比較的広い断面積とし、噴口内部で混合させて外部混合と略同様としているため、ノズル内部の流路に詰まりを発生させない。また、気体と上記第1液体と第2液体との混合液体を噴口外部で混合させているため、混合液体を気体により微粒化させて噴霧させることができる。
ノズルを三重管構造とし、排ガス冷却用ノズルとする場合には気体として圧搾空気、第1液体として塩基性水溶液、第2液体として排水を用い、流体微粒化機構を設けることが好ましい点は、前記第一の発明と同様である。
In the three-fluid nozzle according to the second aspect of the invention, the first liquid and the second liquid are mixed inside the nozzle. The nozzle has a relatively wide cross-sectional area and is mixed in the nozzle so as to be substantially similar to external mixing. Therefore, clogging does not occur in the flow path inside the nozzle. Moreover, since the liquid mixture of gas, the said 1st liquid, and the 2nd liquid is mixed outside the nozzle, the liquid mixture can be atomized with gas and sprayed.
In the case where the nozzle has a triple pipe structure and the exhaust gas cooling nozzle is used, compressed air is used as the gas, a basic aqueous solution is used as the first liquid, waste water is used as the second liquid, and a fluid atomization mechanism is preferably provided. This is similar to the first invention.

本発明は、第三に、気体、第1液体および第2液体を混合噴霧させる三流体ノズルであって、上記第1液体と第2液体とは混合により固形物を発生させる液体からなり、
上記気体、第1液体及び第2液体とが個別に供給される3つの流路を備え、これら流路に上記気体と第1液体との混合部あるいは/および上記気体と第2液体との混合部を設けていると共に、上記第1液体あるいは該第1液体と上記気体との混合流体と、第2液体あるいは該第2液体と上記気体との混合流体とを混合する混合部を噴口直前に設け、上記第1液体と第2液体を噴口直前で混合させて噴霧を発生させる構成としていることを特徴とする三流体ノズルを提供している。
Thirdly, the present invention is a three-fluid nozzle for mixing and spraying gas, first liquid and second liquid, wherein the first liquid and the second liquid are composed of a liquid which generates a solid by mixing,
Three flow paths for supplying the gas, the first liquid, and the second liquid individually are provided, and the mixing section of the gas and the first liquid or / and the mixing of the gas and the second liquid are provided in the flow paths. And a mixing unit for mixing the first liquid or a mixed fluid of the first liquid and the gas and a second liquid or a mixed fluid of the second liquid and the gas immediately before the nozzle A three-fluid nozzle is provided, characterized in that the first liquid and the second liquid are mixed immediately before the nozzle to generate spray.

上記三流体ノズルも、前記第一、第二の三流体ノズルと同様に、三重管構造とし、排ガス冷却用ノズルとする場合には気体として圧搾空気、第1液体として塩基性水溶液、第2液体として排水を用い、流体微粒化機構を設けることが好ましい。   Similarly to the first and second three-fluid nozzles, the three-fluid nozzle has a triple-pipe structure, and in the case of an exhaust gas cooling nozzle, the compressed air is used as the gas, the basic aqueous solution is used as the first liquid, and the second liquid is used. It is preferable to provide a fluid atomization mechanism using waste water.

上記第三の発明の三流体ノズルでは、中心流路に気体を流通させ、該気体と第1液体或いは第2液体のいずれか一方を混合させる上記混合部を設け、該混合部の下流で且つ上記噴口直前に混合流体と上記第1液体或いは第2液体のいずれ他方を混合させる混合部を設けることが好ましい。
上記のように、噴口直前で第1液体と第2液体とを混合させると、発生する固形物による詰まりの発生を最小限とすることができ、かつ、第1液体と第2液体のいずれか一方を先に気体と混合させているため微粒化が図られ、この微粒化させた混合流体と他方の液体とを噴口直前に混合させることにより、より微粒化させた3流体の混合噴霧を発生させることが出来る。
In the three-fluid nozzle according to the third aspect of the present invention, the gas is circulated through the central flow path, and the mixing unit for mixing the gas with either the first liquid or the second liquid is provided, and the downstream of the mixing unit and It is preferable to provide a mixing unit that mixes the mixed fluid with the other one of the first liquid and the second liquid immediately before the nozzle.
As described above, when the first liquid and the second liquid are mixed immediately before the nozzle hole, the occurrence of clogging due to the generated solid matter can be minimized, and either the first liquid or the second liquid is used. One atom is mixed with the gas first, so atomization is achieved. By mixing this atomized mixed fluid and the other liquid immediately before the nozzle, a mixed atomization of three more atomized fluids is generated. It can be made.

本発明は、第四に、前記したいずれかの三流体ノズルを、ごみ焼却炉あるいは/および焼却灰の溶融炉から発生する排ガスの冷却塔に高温排気ガス冷却用のノズルとして設置している三流体ノズルを備えたごみ処理装置を提供している。
この排ガス冷却用ノズルとする場合には、上記第1液体としてごみ焼却炉あるいは/および溶融炉で発生する排水を用いる排水循環手段を備え、水をクローズドシステムとしている。また、上記第2液体として苛性ソーダ水溶液を用い、排ガスを微粒化した液で吸収してから、排ガス中に含まれる酸性成分を苛性ソーダで中和しているため、酸性成分の除去を効率よく行うことができる。
Fourthly, according to the present invention, any of the three-fluid nozzles described above is installed as a nozzle for cooling high-temperature exhaust gas in a cooling tower for exhaust gas generated from a waste incinerator or / and a melting furnace for incinerated ash. A waste disposal apparatus having a fluid nozzle is provided.
In the case of the exhaust gas cooling nozzle, the first liquid is provided with drainage circulation means that uses wastewater generated in a waste incinerator or / and a melting furnace, and water is a closed system. In addition, since the caustic soda aqueous solution is used as the second liquid and the exhaust gas is absorbed by the atomized liquid, the acidic component contained in the exhaust gas is neutralized with caustic soda, so that the acidic component is efficiently removed. Can do.

上記冷却塔の下流にはバグフィルターを設置し、該バグフィルターで更に煤塵、酸性ガス、ダイオキシン類、重金属類を除去した後に煙突より排気していることが好ましい。   It is preferable that a bag filter is installed downstream of the cooling tower, and dust, acid gas, dioxins, and heavy metals are further removed by the bag filter and then exhausted from the chimney.

上述した如く、本発明によれば、第1液体と第2液体とをノズル内部では混合させずに噴口近傍の外部で混合させ、ノズル内部において第1液体と第2液体との混合により生ずる固形物で流路や混合部に詰まりが発生するを防止できる。かつ、第1液体と第2液体のいずれか一方はノズル内部で気体と混合して微粒化させ、この微粒化させた混合流体に、第1液体と第2液体のいずれか他方を外部混合しているため、外部混合される三流体の粒子を十分に微粒化されることができる。また、噴口外部でなくとも噴口直前で混合させることによっても略同様の効果を得ることが出来る。
なお、第1液体と第2液体とをノズル内部で混合する場合には、噴口直前で混合しているため、混合により発生するスケールでノズル内部に詰まりが発生するのを抑制することが出来る。
As described above, according to the present invention, the first liquid and the second liquid are not mixed inside the nozzle, but mixed outside the vicinity of the nozzle, and the solid produced by mixing the first liquid and the second liquid inside the nozzle. It is possible to prevent clogging of the flow path and the mixing part due to the material. In addition, one of the first liquid and the second liquid is mixed with gas inside the nozzle to be atomized, and either the first liquid or the second liquid is externally mixed with the atomized mixed fluid. Therefore, the three fluid particles to be externally mixed can be sufficiently atomized. Moreover, the substantially similar effect can be obtained also by mixing just before the nozzle hole, not outside the nozzle hole.
In addition, when mixing the 1st liquid and the 2nd liquid inside a nozzle, since it mixes just before a nozzle hole, it can suppress that clogging generate | occur | produces inside a nozzle with the scale generated by mixing.

また、本発明の三流体ノズルをごみ処理装置のガス冷却塔に取り付け、排ガス冷却ノズルとし、第1液体として排ガス中の酸性成分を吸収中和する苛性ソーダ水溶液等の塩基性水溶液を用いると共に、該塩基性水溶液の希釈液としてごみ焼却炉および溶融炉で発生する排水を利用した場合、排水と塩基性水溶液との混合で生じるスケールの発生、異物の顕在化を防止でき、スケールおよび異物によるノズルの詰まり無くすことができ、ノズルのメンテナンスを最小に押さえることができる。また、ノズルより噴射する三流体噴霧を微粒化しているため、排ガスとの接触部が増加し、排ガス中の酸性成分の除去性能を高めることができると共に、排水をクローズドシステムで処理することができる利点も有する。   In addition, the three-fluid nozzle of the present invention is attached to the gas cooling tower of the waste treatment apparatus to form an exhaust gas cooling nozzle, and a basic aqueous solution such as an aqueous solution of caustic soda that absorbs and neutralizes acidic components in the exhaust gas is used as the first liquid. When wastewater generated in a waste incinerator or melting furnace is used as a diluting solution for a basic aqueous solution, it is possible to prevent the generation of scale caused by the mixing of the wastewater and the basic aqueous solution and the appearance of foreign matter. Clogging can be eliminated, and maintenance of the nozzle can be minimized. Further, since the three-fluid spray sprayed from the nozzle is atomized, the contact portion with the exhaust gas is increased, the removal performance of acidic components in the exhaust gas can be improved, and the wastewater can be treated with a closed system. There are also advantages.

以下、本発明の実施形態を図面を参照して説明する。
図1は本発明の三流体ノズルを使用するごみ処理装置の概略図を示す。
図1中に示すように、ごみ焼却炉1の下流に第1ガス冷却塔2、第1バグフィルター3、第1ファン4、煙突5を導管L1を介して接続している。
上記ごみ焼却炉1で高温加熱によるごみ焼却後に発生する焼却灰、第1ガス冷却塔2および第1バグフィルター3で発生する焼却飛灰を溶融炉6へ投入し高温で溶融している。
上記溶融炉6の下流に第2ガス冷却塔7、第2バグフィルター8、第2ファン9を導管L2を介して接続し、第2ファン9を通過後のガスを上記煙突5に導入して、ごみ焼却炉1側のガスと共に大気に放出している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a waste treatment apparatus using the three-fluid nozzle of the present invention.
As shown in FIG. 1, a first gas cooling tower 2, a first bag filter 3, a first fan 4, and a chimney 5 are connected to the downstream side of the waste incinerator 1 through a conduit L <b> 1.
Incineration ash generated after waste incineration by high-temperature heating in the waste incinerator 1 and incineration fly ash generated in the first gas cooling tower 2 and the first bag filter 3 are charged into the melting furnace 6 and melted at a high temperature.
A second gas cooling tower 7, a second bag filter 8, and a second fan 9 are connected downstream of the melting furnace 6 via a conduit L 2, and the gas after passing through the second fan 9 is introduced into the chimney 5. The waste incinerator 1 side gas is released into the atmosphere.

上記第1ガス冷却塔2および第2ガス冷却塔7には、模式的に示すように、本発明の三流体ノズル10を取り付けている。該三流体ノズル10には苛性ソーダ水溶液の貯留槽11より苛性ソーダ水溶液N、ごみ焼却炉1および溶融炉6で発生する排水W、コンプレッサー12より圧搾空気Aの三流体を配管T1、T2、T3を介して供給している。
ごみ焼却炉1および溶融炉6の排水を三流体ノズル10に循環させることにより、排水をごみ処理装置外には排出しないクローズドシステムとしている。
As shown schematically, the three-fluid nozzle 10 of the present invention is attached to the first gas cooling tower 2 and the second gas cooling tower 7. The three-fluid nozzle 10 is supplied with three fluids of the caustic soda aqueous solution storage tank 11 from the caustic soda aqueous solution N, the waste water W generated in the waste incinerator 1 and the melting furnace 6, and the compressed air A from the compressor 12 through the pipes T1, T2, and T3. Supply.
By circulating the waste water from the waste incinerator 1 and the melting furnace 6 to the three-fluid nozzle 10, a closed system is formed in which the waste water is not discharged out of the waste treatment apparatus.

図2および図3は第1実施形態の三流体ノズル10を示す。
三流体ノズル10は、内管15、中管16、外管17とからなる三重管構造で、内管15の中空部を苛性ソーダ水溶液Nを流通させる中心流路R1、内管15と中管16の間は排水Wを流路させる中間流路R2、中管16と外管17の間は圧搾空気Aを流通させる外周流路R3としている。
2 and 3 show the three-fluid nozzle 10 of the first embodiment.
The three-fluid nozzle 10 has a triple-pipe structure including an inner tube 15, an intermediate tube 16, and an outer tube 17. The three-fluid nozzle 10 has a central flow path R <b> 1 through which a caustic soda aqueous solution N flows through a hollow portion of the inner tube 15, an inner tube 15 and an intermediate tube 16. Between the intermediate pipe R2 and the intermediate pipe 16 and the outer pipe 17, an outer peripheral flow path R3 through which the compressed air A flows is provided.

上記内管15、中管16、外管17cの噴射側先端は順次寸法をあけて前方へ突出させ、キャップ18で外嵌している。キャップ18の先端中央に開口を設け、該開口から内管15の噴射端部15aを突出させ、その先端開口を第1噴口20とし、苛性ソーダ水溶液Nを噴射させている。該第1噴口20を囲むキャップ18の先端開口を第2噴口21とし、排水Wと圧搾空気Aとの混合流体を噴射させている。   The injection-side tips of the inner tube 15, the intermediate tube 16, and the outer tube 17 c are sequentially projected forward with dimensions, and are externally fitted with a cap 18. An opening is provided in the center of the tip of the cap 18, and the injection end portion 15 a of the inner tube 15 protrudes from the opening. The tip opening serves as the first injection port 20, and the caustic soda aqueous solution N is injected. The tip opening of the cap 18 surrounding the first nozzle 20 is a second nozzle 21, and a mixed fluid of the waste water W and the compressed air A is injected.

上記中心流路R1を形成する内管15の後端に苛性ソーダ水溶液供給口15bを設けて配管T1と接続し、中間流路R2を形成する中管16の後端側の周壁に排水供給口16bを設けて配管T2と接続し、外周流路R3を形成する外管17の後端側周壁に圧搾空気供給口17bを設けて配管T3と接続している。   A caustic soda aqueous solution supply port 15b is provided at the rear end of the inner pipe 15 forming the central flow path R1 and connected to the pipe T1, and a drainage supply port 16b is formed on the peripheral wall on the rear end side of the middle pipe 16 forming the intermediate flow path R2. Is connected to the pipe T2, and a compressed air supply port 17b is provided on the peripheral wall on the rear end side of the outer pipe 17 forming the outer peripheral flow path R3, and is connected to the pipe T3.

中管16には内管15の外周面に当接させる仕切壁部16cを突設すると共に、該仕切壁部16cに周方向に間隔をあけてオリフィス16dを穿設し、噴射側下流にむけて排水Wの流速を高めている。
仕切壁部16cより上流側は内周面に段差を設けて縮径化させていると共に、仕切壁部16cより噴射側下流の周壁に周方向に間隔をあけて圧搾空気流入穴16eを設け、仕切壁部16cより噴射側下流は混合部22とし、中管16の先端はキャップ18の内面に当接させている。
The middle pipe 16 is provided with a partition wall portion 16c that is brought into contact with the outer peripheral surface of the inner pipe 15, and an orifice 16d is formed in the partition wall portion 16c at intervals in the circumferential direction so as to face the downstream side of the injection side. The flow rate of the waste water W is increased.
The upstream side of the partition wall portion 16c is provided with a step on the inner peripheral surface to reduce the diameter, and the compressed air inflow hole 16e is provided in the peripheral wall on the downstream side of the injection wall from the partition wall portion 16c with a space in the circumferential direction. The downstream side of the injection wall from the partition wall portion 16 c is a mixing portion 22, and the tip of the intermediate tube 16 is in contact with the inner surface of the cap 18.

外管17の先端開口はキャップ18の内面と中管16に囲まれた中空部23に連通させている。この中空部23に圧搾空気Aを流入させ、中空部23に面する中管16の圧搾空気流入穴16eを通して混合部22に流入させ、排水Wと圧搾空気Aとを混合させている。混合部22はキャップ18内の段状に縮径させた第2噴口21に連通させ、該第2噴口21から排水Wと圧搾空気Aとの混合流体を噴射させている。   The distal end opening of the outer tube 17 communicates with the inner surface of the cap 18 and the hollow portion 23 surrounded by the middle tube 16. The compressed air A is caused to flow into the hollow portion 23, and is allowed to flow into the mixing portion 22 through the compressed air inflow hole 16 e of the intermediate tube 16 facing the hollow portion 23, thereby mixing the drainage W and the compressed air A. The mixing portion 22 communicates with the second injection port 21 whose diameter is reduced in a step shape in the cap 18, and the mixed fluid of the waste water W and the compressed air A is injected from the second injection port 21.

上記構成からなる三流体ノズル10では、配管T1から供給される苛性ソーダ水溶液Nは中心流路R1を流通して第1噴口20から噴射される。配管T2から中間流路R2に供給される排水Wはオリフィス16dを通って混合部22に流入する。配管T3から外周流路R3に供給される圧搾空気Aは、外周流路R3から圧搾空気流入穴16eを通って中間流路R2の混合部22に流入する。混合部において外周より中心に向けて流入する圧搾空気Aとオリフィス16dを通って流速が高められている排水Wとが衝突混合し、排水Wと圧搾空気Aとの混合流体の微粒化が図られる。   In the three-fluid nozzle 10 having the above-described configuration, the caustic soda aqueous solution N supplied from the pipe T1 flows through the central flow path R1 and is jetted from the first nozzle 20. Waste water W supplied from the pipe T2 to the intermediate flow path R2 flows into the mixing unit 22 through the orifice 16d. The compressed air A supplied from the pipe T3 to the outer peripheral flow path R3 flows from the outer peripheral flow path R3 through the compressed air inflow hole 16e into the mixing portion 22 of the intermediate flow path R2. In the mixing portion, the compressed air A flowing in from the outer periphery toward the center and the waste water W whose flow velocity is increased through the orifice 16d are collided and mixed, and the mixed fluid of the waste water W and the compressed air A is atomized. .

上記微粒化された混合流体は第2噴口21より気液混合ミストMとして噴射される。第2噴口21の中心より第1噴口20が突出し、該第1噴口20より苛性ソーダ水溶液Nが噴射されることにより、第2噴口21より噴射される圧搾空気Nを排水との微粒化された気液混合ミストMは苛性ソーダ水溶液Nの噴霧を囲む状態で外部混合される。   The atomized mixed fluid is ejected as gas-liquid mixed mist M from the second nozzle 21. The first nozzle 20 protrudes from the center of the second nozzle 21, and the caustic soda aqueous solution N is injected from the first nozzle 20, whereby the compressed air N injected from the second nozzle 21 is atomized with the waste water. The liquid mixing mist M is externally mixed while surrounding the spray of the caustic soda aqueous solution N.

上記構成とすると、排水Wと苛性ソーダ水溶液Nとは三流体ノズル10内部では混合されず、第1噴口20の外部で混合されるため、三流体ノズル10内部はカルシウム成分を含む排水Wと塩基性中和剤である苛性ソーダ水溶液Nとの混合により生ずる固形物(カルシウム水和物)は生成されず、ノズル内部流路や混合部に詰まりが発生することが防止できる。
また、排水Wは混合部22で圧搾空気Aと混合して微粒化され、この微粒化させた混合流体に、第1噴口20近傍で苛性ソーダ水溶液Nを外部混合しているため、苛性ソーダ水溶液Nは気液混合ミストMとの混合で微粒化される。
With the above configuration, the waste water W and the aqueous caustic soda solution N are not mixed inside the three-fluid nozzle 10 but are mixed outside the first nozzle 20, so the inside of the three-fluid nozzle 10 is basic with the waste water W containing calcium components. Solid matter (calcium hydrate) generated by mixing with the aqueous caustic soda solution N that is a neutralizing agent is not generated, and clogging can be prevented from occurring in the nozzle internal flow path and the mixing portion.
Further, since the waste water W is mixed with the compressed air A in the mixing unit 22 and atomized, the caustic soda aqueous solution N is externally mixed in the vicinity of the first nozzle 20 with the atomized mixed fluid. It is atomized by mixing with gas-liquid mixed mist M.

このように、ガス冷却用ノズルから苛性ソーダ水溶液を微粒化して噴霧しているため、排ガスとの接触面積が増加し、排ガス中の酸性成分を吸収率が高まりると共に排ガスの冷却効率を高めることができる。しかも、焼却炉や溶融炉で発生する排水を苛性ソーダ水溶液の希釈液および排ガスの冷却液に利用しているため、排水をクローズドシステムで処理することができる。   As described above, since the aqueous solution of caustic soda is atomized and sprayed from the gas cooling nozzle, the contact area with the exhaust gas is increased, the absorption rate of the acidic component in the exhaust gas is increased, and the cooling efficiency of the exhaust gas is increased. it can. In addition, since waste water generated in an incinerator or melting furnace is used as a dilute solution of caustic soda solution and an exhaust gas coolant, the waste water can be treated with a closed system.

図4(A)(B)は第2実施形態を示す。
第1実施形態との相違点は、第1実施形態ではノズル先端を単頭型としているが、第2実施形態の三流体ノズル30は多頭型としている点である。
4A and 4B show a second embodiment.
The difference from the first embodiment is that the nozzle tip is a single-head type in the first embodiment, but the three-fluid nozzle 30 of the second embodiment is a multi-head type.

三流体ノズル30は、内管15’、中管16’、外管17’の下流端に多頭型のY字状のアダプタ32を接続している。該アダプタ32の分岐部32aの先端に互い近接する方向に突出させた一対のチップ取付部32bを設けている。   The three-fluid nozzle 30 has a multi-headed Y-shaped adapter 32 connected to the downstream ends of the inner tube 15 ′, the middle tube 16 ′, and the outer tube 17 ′. A pair of chip attachment portions 32b are provided at the distal ends of the branch portions 32a of the adapter 32 so as to protrude in directions close to each other.

アダプタ32の基部32cの中心に内管15’と連通する中心流路部R1’を設け、基部32の先端に第1噴口20’を設け、苛性ソーダ水溶液を噴射している。
また、アダプタ32の基部32cから両側の分岐部32aに排水Wが流通する中間流路R2’と圧搾空気Aが流通する外周流路R3’を夫々設けている。
A central flow path portion R1 ′ communicating with the inner tube 15 ′ is provided at the center of the base portion 32c of the adapter 32, a first injection port 20 ′ is provided at the tip of the base portion 32, and a caustic soda aqueous solution is injected.
Further, an intermediate flow path R2 ′ through which the waste water W flows from the base portion 32c of the adapter 32 to the branch sections 32a on both sides and an outer peripheral flow path R3 ′ through which the compressed air A flows are provided.

上記一対のチップ取付部32bにはノズルチップ33を内嵌固定すると共に、近接して対向する先端に排水Wと圧搾空気Aとの気液混合ミストMを噴霧する第2噴口21’を設けている。
上記ノズルチップ33内に設けた圧搾空気流路33aは外周流路R3’とを連通させると共に排水流路33bは中間流路R2’と連通させ、かつ、ノズルチップ33の軸芯を流通する圧搾空気Aに混合部33dで排水Wを外周側より流入させ、排水Waを微粒化させて混合させている。この混合部33dに連続して小径部33e、大径部33f、小径部33gを通して、上記第2噴口21’より気液混合ミストMを噴霧している。
A nozzle tip 33 is fitted and fixed to the pair of tip mounting portions 32b, and a second nozzle hole 21 'for spraying a gas-liquid mixed mist M of the waste water W and the compressed air A is provided at the tip that is close to and opposed to the tip tip attachment portion 32b. Yes.
The compressed air flow path 33a provided in the nozzle chip 33 communicates with the outer peripheral flow path R3 ′, the drainage flow path 33b communicates with the intermediate flow path R2 ′, and squeezes the axial center of the nozzle chip 33. The waste water W is introduced into the air A from the outer peripheral side by the mixing part 33d, and the waste water Wa is atomized and mixed. The gas-liquid mixed mist M is sprayed from the second nozzle 21 'through the small diameter portion 33e, the large diameter portion 33f, and the small diameter portion 33g continuously from the mixing portion 33d.

第2実施形態の三流体ノズル30では、圧搾空気Aと排水Wをノズルチップ33で混合して第2噴口21’より対向噴射して衝突混合させている。かつ、この衝突混合位置に対して苛性ソーダ水溶液Nを第1噴口20’より噴射しているため、圧搾空気Aと排水Wの気液混合ミストMに苛性ソータ水溶液Nが更に衝突混合される。このように、苛性ソータ水溶液Nを気液混合ミストMに外部衝突混合させることにより、三流体ノズル30の内部で固形物を発生させず、かつ、苛性ソータ水溶液を超微粒化させて噴霧できるため、排ガスの酸性成分の除去機能および排ガスの冷却効率を高めることができる。
他の構成及び作用は第1実施形態と同様であるため、同一符号を付して説明を省略する。
In the three-fluid nozzle 30 according to the second embodiment, the compressed air A and the waste water W are mixed by the nozzle tip 33 and opposedly jetted from the second nozzle 21 ′ to perform collision mixing. In addition, since the caustic soda aqueous solution N is injected from the first nozzle 20 ′ to the collision mixing position, the caustic soda aqueous solution N is further collided and mixed with the gas-liquid mixing mist M of the compressed air A and the waste water W. As described above, the caustic sorter aqueous solution N is externally collided with the gas-liquid mixing mist M, so that no solid matter is generated inside the three-fluid nozzle 30 and the caustic sorter aqueous solution can be atomized and sprayed. Moreover, the removal function of the acidic component of exhaust gas and the cooling efficiency of exhaust gas can be improved.
Since other configurations and operations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

図5(A)(B)は第3実施形態を示す。
この第3実施形態の三流体ノズル40と前記第1実施形態のノズル10との相違点は、三流体ノズル内部で中心流路R1を流通する苛性ソーダ水溶液Nにも外周流路R3を流通する圧搾空気Aを混合し、第1噴口20から苛性ソーダ水溶液Nと圧搾空気Aとの気液混合ミストM1を噴射させている点である。第1噴口20の外周の第2噴口21からは第1実施形態と同様に排水Wと圧搾空気Aとの気液混合ミストM2を噴射させ、気液混合ミストM1とM2とを外部混合させ、苛性ソーダ水溶液Nと排水Wとは第1実施形態と同様にノズル内部では混合していない。
5A and 5B show a third embodiment.
The difference between the three-fluid nozzle 40 of the third embodiment and the nozzle 10 of the first embodiment is that the caustic soda aqueous solution N flowing through the central flow path R1 inside the three-fluid nozzle also squeezes through the outer peripheral flow path R3. The air A is mixed and the gas-liquid mixed mist M1 of the caustic soda aqueous solution N and the compressed air A is injected from the first nozzle 20. From the second nozzle hole 21 on the outer periphery of the first nozzle hole 20, the gas-liquid mixed mist M2 of the waste water W and the compressed air A is injected as in the first embodiment, and the gas-liquid mixed mist M1 and M2 are externally mixed. Caustic soda aqueous solution N and waste water W are not mixed inside the nozzle as in the first embodiment.

図5(A)に拡大して示すように、中管16”に設けた穴16b”と内管15”に設けた穴15b”との間に、外周流路R3から中心流路R1へ圧搾空気Aを流入させる連通用小径筒41を取り付けている。この連通用小径筒41は周方向に間隔をあけて複数本設け、噴射側へ傾斜させた状態で中間流路R2を横断させて取り付けている。上記連通用小径筒41は内管16”の穴16b”より中心流路R1内に突出し、中心流路R1内において外周側より噴射側に向けて圧搾空気Aを流入させている。かつ、連通用小径筒41を突出させる穴15b”の後部周縁にはオリフィス15c”を設け、該オリフィス15c”を流通した苛性ソーダ水溶液Nに連通用小径筒41から流入する圧搾空気Aを外周側より混合して苛性ソーダ水溶液Nの微粒化を図っている。   As shown in an enlarged view in FIG. 5 (A), between the hole 16b "provided in the intermediate tube 16" and the hole 15b "provided in the inner tube 15", the outer flow path R3 is squeezed to the central flow path R1. A communication small diameter cylinder 41 through which air A flows is attached. A plurality of small diameter cylinders 41 for communication are provided at intervals in the circumferential direction, and are attached across the intermediate flow path R2 while being inclined toward the injection side. The communication small-diameter cylinder 41 protrudes into the central flow path R1 from the hole 16b ″ of the inner tube 16 ″, and the compressed air A flows into the central flow path R1 from the outer peripheral side toward the injection side. In addition, an orifice 15c ″ is provided in the rear periphery of the hole 15b ″ through which the communication small-diameter cylinder 41 protrudes, and compressed air A flowing from the communication small-diameter cylinder 41 into the caustic soda aqueous solution N flowing through the orifice 15c ″ from the outer peripheral side. Mixing is performed to atomize the aqueous caustic soda solution N.

中管16”の噴射側に圧搾空気流入穴16c”を設け、外周流路R3から中間流路R2に圧搾空気Aを流入し、排水Wと混合している構成は第1実施形態と同様である。よって、第3実施形態では、まず、苛性ソーダ水溶液Nと圧搾空気Aとを混合させた後に、排水Wと圧搾空気Aとを混合させている。
よって、第1噴口20からは苛性ソーダ水溶液Nと圧搾空気Aの気液混合ミストM1が噴射されると共に、第1噴口20を囲む第2噴口21からは排水Wと圧搾空気Aの気液混合ミストM2が噴射され、これら気液混合ミストM1とM2とが第1噴口20の近傍で外部混合される。
なお、他の構成および作用は第1実施形態と同様であるため、同一符号を付して説明を省略する。
The configuration in which the compressed air inflow hole 16c ″ is provided on the injection side of the middle pipe 16 ″, the compressed air A flows into the intermediate flow path R2 from the outer peripheral flow path R3, and is mixed with the waste water W is the same as in the first embodiment. is there. Therefore, in 3rd Embodiment, after mixing the caustic soda aqueous solution N and the compressed air A, the waste_water | drain W and the compressed air A are mixed first.
Accordingly, a gas-liquid mixed mist M1 of the caustic soda aqueous solution N and the compressed air A is injected from the first nozzle 20, and a gas-liquid mixed mist of the drainage W and the compressed air A is surrounded from the second nozzle 21 surrounding the first nozzle 20. M2 is injected, and these gas-liquid mixing mists M1 and M2 are externally mixed in the vicinity of the first nozzle 20.
Since other configurations and operations are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.

図6(A)(B)は第4実施形態を示す。
第4実施形態の三流体ノズル50は、第1噴口20”の内部で苛性ソーダ水溶液Nと排水Wとを混合して噴射すると共に、第1噴口20”を囲む第2噴口21”から圧搾空気Aを噴射して、これら三流体を噴口近傍の外部で混合している。
6A and 6B show a fourth embodiment.
The three-fluid nozzle 50 of the fourth embodiment mixes and injects the caustic soda aqueous solution N and the waste water W inside the first nozzle 20 ″, and presses the compressed air A from the second nozzle 21 ″ surrounding the first nozzle 20 ″. These three fluids are mixed outside the vicinity of the nozzle.

第4実施形態では、内管15"'の内部に旋回流れを発生させるX状のワーラ51を取り付けると共に、噴射側前部の極小径筒部15c"'を中管16"'の先端開口よりも内方に位置させて開口している。一方、中管16"'の噴射側前部を内管15"'より突出させると共に先端内面を内向きテーパ部とし、該テーパ部に囲まれた部分を比較的大面積で且つ流路長さを有する第1噴口20”としている。この第1噴口20”の内部中心位置に上記極小筒部15c"'の先端開口を位置させ、噴射直前位置の第1噴口20”の内部で苛性ソーダ水溶液Nと排水Wとを混合させて、第1噴口20”より噴射している。   In the fourth embodiment, an X-shaped whirler 51 that generates a swirling flow is attached to the inside of the inner tube 15 "', and a very small diameter cylindrical portion 15c"' at the front side of the injection side is connected to the front end opening of the middle tube 16 "'. On the other hand, the front side of the injection side of the middle tube 16 "'protrudes from the inner tube 15"' and the inner surface of the tip is inwardly tapered, and is surrounded by the tapered portion. The portion is a first nozzle hole 20 ″ having a relatively large area and a flow path length. The tip opening of the small cylinder portion 15c ″ ′ is positioned at the center position inside the first nozzle hole 20 ″, and the caustic soda aqueous solution N and the waste water W are mixed inside the first nozzle hole 20 ″ immediately before the injection, Injecting from one nozzle 20 ".

噴射側先端に取り付けるキャップ18’は外管17"'の噴射側に外嵌して取り付け、その前壁中央に設けた開口より噴射側中管16"'の噴射側を突出させた状態で間隔をあけて囲み、上記第1噴口20”の外周に細幅円環状の第2噴口21”を設け、該第2噴口21”より圧搾空気Aを噴射させている。   A cap 18 'attached to the tip of the injection side is fitted on the injection side of the outer tube 17 "' and is spaced in a state where the injection side of the injection side inner tube 16" 'protrudes from an opening provided in the center of the front wall. A narrow annular second nozzle hole 21 ″ is provided on the outer periphery of the first nozzle hole 20 ″, and compressed air A is injected from the second nozzle hole 21 ″.

上記構成とすると、中心流路R1を流通する苛性ソーダ水溶液Nは、ワーラ51を通過して旋回流とされた状態で極小径筒部15c"'より第1噴口20”の内部に噴射される一方、中間流路R2を流通する排水Wは第1噴口20”から噴射され、第1噴口20”の内部及び噴口近傍の外部で噴射される苛性ソーダ水溶液Nと混合される。
上記排水Wと苛性ソーダ水溶液Nとの混合噴霧を囲むように、外周の第2噴口21”より圧搾空気Aが噴射され、第1、第2噴口の近傍外部で圧搾空気Aは排水Wおよび苛性ソーダ水溶液Nとの外部混合され、気液混合ミストとして噴霧される。
With the above configuration, the aqueous caustic soda N flowing through the central flow path R1 is injected into the first injection port 20 ″ from the very small diameter cylindrical portion 15c ″ ′ while being swirled through the whirlers 51. The waste water W flowing through the intermediate flow path R2 is injected from the first nozzle 20 "and mixed with the aqueous caustic soda solution N that is injected inside the first nozzle 20" and outside the vicinity of the nozzle.
Compressed air A is injected from the outer peripheral second nozzle 21 ″ so as to surround the mixed spray of the waste water W and the caustic soda aqueous solution N, and the compressed air A is discharged from the vicinity of the first and second nozzles to the drainage W and the caustic soda aqueous solution. Externally mixed with N and sprayed as gas-liquid mixed mist.

上記三流体ノズル50では、苛性ソーダ水溶液Nは旋回流を形成して微粒化していると共に、排水Wと第1噴口20”の内部で混合され、スケールの発生が抑制される。かつ、第1噴口20”を比較的広い断面積としているためノズル内部の流路に目詰まりを発生させることもない。
なお、他の構成および作用は第1実施形態と同様であるため、同一符号を付して説明を省略する。
In the three-fluid nozzle 50, the caustic soda aqueous solution N forms a swirling flow and is atomized, and is mixed with the waste water W and the inside of the first injection port 20 ″ to suppress the generation of scale. Since 20 ″ has a relatively wide cross-sectional area, the flow path inside the nozzle is not clogged.
Since other configurations and operations are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.

図7は第5実施形態を示す。
第5実施形態の三流体ノズル60は、ノズル内部において圧搾空気Aと苛性ソーダ水溶液Nとを混合させ、この気液混合流体にノズル内部で且つ噴口近傍において排水Wを混合させ、三流体をノズル内部で混合した状態で1つの噴口61より噴霧している。
FIG. 7 shows a fifth embodiment.
The three-fluid nozzle 60 of the fifth embodiment mixes the compressed air A and the aqueous caustic soda solution N inside the nozzle, and mixes the gas-liquid mixed fluid with the waste water W inside the nozzle and in the vicinity of the nozzle, so that the three fluids are inside the nozzle. And sprayed from one nozzle hole 61 in a mixed state.

内管150、中管160、外管170の三重管構造からなる点は第1実施形態と同様であるが、内管150で構成する中心流路R1を配管T3と接続して圧搾空気Aの流路とし、内管150と中管160との間の中間流路R2を配管T1と接続して苛性ソーダ水溶液Nの流路とし、中管160と外管170の間の外周流路R3を配管T2と接続して排水Wの流路としている。上記苛性ソーダ水溶液Nを流通させる環状の中間流路R2の流路幅は、排水Wを流通させる環状の外周流路R3の流路幅より小さくしている。   Although the point which consists of the triple pipe structure of the inner pipe 150, the middle pipe 160, and the outer pipe 170 is the same as that of 1st Embodiment, the central flow path R1 comprised by the inner pipe 150 is connected with the piping T3, and the compressed air A of As a flow path, an intermediate flow path R2 between the inner pipe 150 and the intermediate pipe 160 is connected to the pipe T1 to form a flow path of the caustic soda aqueous solution N, and an outer peripheral flow path R3 between the intermediate pipe 160 and the outer pipe 170 is piped. It is connected to T2 as a flow path for drainage W. The channel width of the annular intermediate channel R2 through which the aqueous caustic soda solution N is circulated is made smaller than the channel width of the annular outer peripheral channel R3 through which the drainage W is circulated.

詳細には、内管150の先端側に小径部150aを設け、該小径部150aの先端に開口150bを設け、この開口150bを中管160の先端テーパ部160aで空隙をあけて囲み、該空隙を一次混合部62としている。該一次混合部62の先端中央に開口160bを設けていると共に、該一次混合部61への中間流路R2に周方向に間隔をあけて穴65aを設けたスペーサ65を介在させている。 外管170の先端テーパ部170aで中管160の先端テーパ部160aを小径外周流路R3’”をあけて囲み、その中央に開口170bを設けている。
外管170にキャップ63を介してノズルチップ65を取り付け、外管170の先端面との間に大径の二次混合部66を設けると共に、該二次混合部66の先端側に段状に縮径する噴口61を設けている。
上記内管150の先端開口150b、中管160の先端開口160bと、外管170の先端開口170bは噴口61と共にノズルの軸芯に沿った位置に直列に設けている。
Specifically, a small-diameter portion 150a is provided on the distal end side of the inner tube 150, an opening 150b is provided at the distal end of the small-diameter portion 150a, and the opening 150b is surrounded by a distal-end tapered portion 160a of the middle tube 160, Is the primary mixing unit 62. An opening 160b is provided at the center of the tip of the primary mixing portion 62, and a spacer 65 having a hole 65a provided in the intermediate flow path R2 to the primary mixing portion 61 is provided in the circumferential direction. A tip tapered portion 170a of the outer tube 170 surrounds the tip tapered portion 160a of the middle tube 160 with a small-diameter outer peripheral flow path R3 ′ ″, and an opening 170b is provided at the center thereof.
The nozzle tip 65 is attached to the outer tube 170 via the cap 63, and a large-diameter secondary mixing portion 66 is provided between the outer tube 170 and the distal end surface of the outer tube 170. A nozzle hole 61 having a reduced diameter is provided.
The tip opening 150b of the inner tube 150, the tip opening 160b of the middle tube 160, and the tip opening 170b of the outer tube 170 are provided in series with the nozzle 61 along the axis of the nozzle.

上記構成の三流体ノズル60では、内管150の小径部150bを通って流速をあげた圧搾空気Aを一次混合部62の中央に流入させると共に、スペーサ65の流路65aを通して流速をあげた苛性ソーダ水溶液Nを一次混合部61の外周側から流入し、一次混合部61で圧搾空気Aと苛性ソーダ水溶液Nとを混合している。この一次混合された気液混合流体は、開口160bより小径外周流路R3’、開口170bを通して二次混合部66へ流入する。該気液混合流体が小径外周流路R3'"を通る時に、外周より排水Wが衝突混合され、排水Wも開口170bを通って二次混合部66へ流入する。この二次混合部66で三流体が均等に撹拌混合され、噴口61より噴射される。   In the three-fluid nozzle 60 having the above-described configuration, the compressed air A whose flow velocity is increased through the small diameter portion 150b of the inner pipe 150 is caused to flow into the center of the primary mixing portion 62 and the flow velocity is increased through the flow path 65a of the spacer 65. The aqueous solution N flows from the outer peripheral side of the primary mixing unit 61, and the compressed air A and the caustic soda aqueous solution N are mixed in the primary mixing unit 61. The primarily mixed gas-liquid mixed fluid flows from the opening 160b into the secondary mixing section 66 through the small-diameter outer peripheral flow path R3 'and the opening 170b. When the gas-liquid mixed fluid passes through the small-diameter outer peripheral flow path R3 ′ ″, the waste water W is collided and mixed from the outer periphery, and the waste water W also flows into the secondary mixing portion 66 through the opening 170b. The three fluids are stirred and mixed evenly and are ejected from the nozzle 61.

上記構成とすると、苛性ソーダ水溶液Nは先に圧搾空気Aと混合させているため微粒化が図られ、この微粒化させた混合流体を排水Wとを噴口67の直前に混合させることにより、より微粒化させた三流体の混合噴霧を発生させることができる。
なお、外周流路R3に苛性ソーダ水溶液Nを流通させて、中間流路R2に排水Wを流通させ、圧搾空気Aと排水Wとを先に混合し、この混合流体に噴口直線で苛性ソーダ水溶液Nを混合させてもよい。
他の構成は第1実施形態と同様であるため説明を省略する。
With the above configuration, the aqueous caustic soda solution N is mixed with the compressed air A first, so that the atomization is achieved. The three-fluid mixed spray can be generated.
In addition, the caustic soda aqueous solution N is circulated through the outer peripheral flow path R3, the waste water W is circulated through the intermediate flow path R2, the compressed air A and the waste water W are mixed first, and the caustic soda aqueous solution N is mixed with this mixed fluid at the nozzle straight line. You may mix.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.

本発明の実施形態の三流体ノズルが使用されるごみ処理装置の全体概略図である。1 is an overall schematic diagram of a waste treatment apparatus in which a three-fluid nozzle according to an embodiment of the present invention is used. 第1実施形態の三流体ノズルを示し、(A)は断面図、(B)は正面図である。The three-fluid nozzle of 1st Embodiment is shown, (A) is sectional drawing, (B) is a front view. 第1実施形態の三流体ノズルの要部拡大図である。It is a principal part enlarged view of the three fluid nozzle of 1st Embodiment. 第2実施形態の三流体ノズルを示し、(A)は要部拡大断面図、(B)は正面図である。The three fluid nozzle of 2nd Embodiment is shown, (A) is a principal part expanded sectional view, (B) is a front view. 第3実施形態の三流体ノズルを示し、(A)は要部拡大断面図、(B)は正面図である。The three fluid nozzle of 3rd Embodiment is shown, (A) is a principal part expanded sectional view, (B) is a front view. 第4実施形態の三流体ノズルを示し、(A)は要部拡大断面図、(B)は正面図である。The three fluid nozzle of 4th Embodiment is shown, (A) is a principal part expanded sectional view, (B) is a front view. 第5実施形態の三流体ノズルの断面図である。It is sectional drawing of the three fluid nozzle of 5th Embodiment.

符号の説明Explanation of symbols

1 ごみ焼却炉
2 第1ガス冷却塔
6 溶融炉
7 第2ガス冷却塔
10 三流体ノズル
15 内管
16 中管
17 外管
18 キャップ
20 第1噴口
21 第2噴口
22 混合部
R1 中心流路
R2 中間流路
R3 外周流路
A 圧搾空気
N 苛性ソーダ水溶液
W 排水
T1 苛性ソーダ水溶液の配管
T2 排水の配管
T3 圧搾空気の配管
DESCRIPTION OF SYMBOLS 1 Waste incinerator 2 1st gas cooling tower 6 Melting furnace 7 2nd gas cooling tower 10 Three fluid nozzle 15 Inner pipe 16 Middle pipe 17 Outer pipe 18 Cap 20 1st injection hole 21 2nd injection hole 22 Mixing part R1 Central flow path R2 Intermediate flow path R3 Peripheral flow path A Compressed air N Caustic soda aqueous solution W Drainage T1 Caustic soda aqueous solution piping T2 Drainage piping T3 Compressed air piping

Claims (14)

気体、第1液体および第2液体を混合噴霧させる三流体ノズルであって、上記第1液体と第2液体とは混合により固形物を発生させる液体からなり、
上記気体、第1液体及び第2液体とが別々の配管より供給される3つの流路を備え、これら流路に上記気体と第1液体との混合部あるいは/および上記気体と第2液体との混合部を設けていると共に、上記第1液体あるいは該第1液体と上記気体との混合流体を噴射させる第1噴口と、第2液体あるいは該第2液体と上記気体との混合流体を噴射させる第2噴口とを設け、
上記第1噴口と第2噴口から噴射する流体を、これら噴口に達するまでは混合させずに外部混合させて噴霧を発生させる構成としていることを特徴とする三流体ノズル。
A three-fluid nozzle for mixing and spraying a gas, a first liquid, and a second liquid, wherein the first liquid and the second liquid are composed of a liquid that generates a solid by mixing;
The gas, the first liquid, and the second liquid are provided with three flow paths that are supplied from separate pipes, and the gas and the first liquid are mixed in the flow paths, and / or the gas and the second liquid. A first injection port for injecting the first liquid or a mixed fluid of the first liquid and the gas, and injecting a second liquid or a mixed fluid of the second liquid and the gas. A second nozzle hole is provided,
A three-fluid nozzle characterized in that the fluid ejected from the first nozzle hole and the second nozzle hole is externally mixed without being mixed until reaching the nozzle holes to generate spray.
気体、第1液体および第2液体を混合噴霧させる三流体ノズルであって、上記第1液体と第2液体とは混合により固形物を発生させる液体からなり、
上記気体、第1液体及び第2液体とが別々の配管より供給される3つの流路を備え、上記第1液体と第2液体との混合部を噴口内に設けていると共に、該噴口の外周位置に上記気体の噴口を設け、噴霧直前で混合させた第1液体と第2液体の混合液体に上記気体を外部混合して噴霧を発生させる構成としていることを特徴とする三流体ノズル。
A three-fluid nozzle for mixing and spraying a gas, a first liquid, and a second liquid, wherein the first liquid and the second liquid are composed of a liquid that generates a solid by mixing;
The gas, the first liquid, and the second liquid are provided with three flow paths that are supplied from separate pipes, and a mixing portion of the first liquid and the second liquid is provided in the nozzle, A three-fluid nozzle characterized in that the gas nozzle is provided at an outer peripheral position, and the gas is externally mixed with the mixed liquid of the first liquid and the second liquid mixed immediately before spraying to generate spray.
気体、第1液体および第2液体を混合噴霧させる三流体ノズルであって、上記第1液体と第2液体とは混合により固形物を発生させる液体からなり、
上記気体、第1液体及び第2液体とが個別に供給される3つの流路を備え、これら流路に上記気体と第1液体との混合部あるいは/および上記気体と第2液体との混合部を設けていると共に、上記第1液体あるいは該第1液体と上記気体との混合流体と、第2液体あるいは該第2液体と上記気体との混合流体とを混合する混合部を噴口直前に設け、上記第1液体と第2液体を噴口直前で混合させて噴霧を発生させる構成としていることを特徴とする三流体ノズル。
A three-fluid nozzle for mixing and spraying a gas, a first liquid, and a second liquid, wherein the first liquid and the second liquid are composed of a liquid that generates a solid by mixing;
Three flow paths for supplying the gas, the first liquid, and the second liquid individually are provided, and the mixing section of the gas and the first liquid or / and the mixing of the gas and the second liquid are provided in the flow paths. And a mixing unit for mixing the first liquid or a mixed fluid of the first liquid and the gas and a second liquid or a mixed fluid of the second liquid and the gas immediately before the nozzle A three-fluid nozzle characterized in that it is configured to generate spray by mixing the first liquid and the second liquid immediately before the nozzle.
上記気体は圧搾空気、上記第2液体は第1液体の希釈液からなる請求項1乃至請求項3のいずれか1項に記載の三流体ノズル。   The three-fluid nozzle according to any one of claims 1 to 3, wherein the gas is compressed air, and the second liquid is a diluted liquid of the first liquid. 上記第1液体は苛性ソーダ等を含む塩基性中和剤水溶液、第2液体は第1液体を希釈するカルシウム成分を含む排水からなり、第1液体と第2液体との混合でカルシウム水和物からなる上記固形物が発生すると共に第2液体中に含まれる異物を顕在化させるものである請求項4に記載の三流体ノズル。   The first liquid comprises a basic neutralizer aqueous solution containing caustic soda, etc., the second liquid comprises waste water containing a calcium component for diluting the first liquid, and the calcium hydrate is mixed with the first liquid and the second liquid. The three-fluid nozzle according to claim 4, wherein the solid matter is generated and the foreign matter contained in the second liquid is made visible. 軸芯に沿って形成する中心流路、該中心流路を囲む中間流路、該中間流路を囲む外周流路を備える3重管構造とし、上記各流路の基端に上記気体、第1液体、第2液体の配管をそれぞれ接続している請求項1乃至請求項5のいずれか1項に記載の三流体ノズル。   A triple pipe structure including a central flow path formed along the shaft core, an intermediate flow path surrounding the central flow path, and an outer peripheral flow path surrounding the intermediate flow path; The three-fluid nozzle according to any one of claims 1 to 5, wherein pipes for one liquid and a second liquid are connected to each other. 上記第1噴口を第2噴口で囲むと共に、第1噴口を第2噴口より突出させている請求項1、請求項4乃至請求項6のいずれか1項に記載の三流体ノズル。   The three-fluid nozzle according to any one of claims 1 and 4, wherein the first nozzle hole is surrounded by a second nozzle hole, and the first nozzle hole is protruded from the second nozzle hole. ノズル本体部の先端より複数の上記第2噴口を対向配置して突出した多頭型とすると共に、上記ノズル本体部の先端に上記第1噴口を設け、上記第1噴口及び第2噴口から噴射される流体を外部衝突混合させている請求項1、請求項4乃至請求項6のいずれか1項に記載の三流体ノズル。   A plurality of the second nozzle holes are arranged to protrude from the tip of the nozzle main body so as to face each other, and the first nozzle is provided at the tip of the nozzle main body to be injected from the first nozzle and the second nozzle. The three-fluid nozzle according to any one of claims 1 to 4, wherein the fluid to be mixed is subjected to external collision mixing. 上記気体と第2液体との混合流体を上記第2噴口より噴射し、上記第1液体を第1噴口より噴射して外部混合している請求項7または請求項8に記載の三流体ノズル。   The three-fluid nozzle according to claim 7 or 8, wherein a mixed fluid of the gas and the second liquid is jetted from the second nozzle and the first liquid is jetted from the first nozzle and externally mixed. 上記混合部では一方の流体を流路周壁より流入させて他方の流体と衝突混合あるいは回転混合させる流体微粒化機構を設けている請求項1、請求項4乃至請求項9のいずれか1項に記載の三流体ノズル。   10. The fluid mixing mechanism according to claim 1, further comprising a fluid atomization mechanism that causes one fluid to flow in from a circumferential wall of the flow path and collide or rotationally mix with the other fluid. The three-fluid nozzle described. 上記中心流路に気体を流通させ、該気体と第1液体或いは第2液体のいずれか一方を混合させる上記混合部を設け、該混合部の下流で且つ上記噴口直前に混合流体と上記第1液体或いは第2液体のいずれか他方を混合させる混合部を設けている請求項3乃至請求項6のいずれか1項に記載の三流体ノズル。   A gas is circulated through the central flow path, and the mixing unit for mixing the gas and either the first liquid or the second liquid is provided, and the mixed fluid and the first liquid are provided downstream of the mixing unit and immediately before the nozzle. The three-fluid nozzle according to any one of claims 3 to 6, further comprising a mixing unit that mixes either the liquid or the second liquid. 上記中心流路、中間流路、外周流路のうち、少なくとも1つの流路には回転流を発生させて流体を微粒化するワーラを介在させている請求項6乃至請求項11のいずれか1項に記載の三流体ノズル。   The at least one flow path among the central flow path, the intermediate flow path, and the outer peripheral flow path is provided with a waller for generating a rotating flow and atomizing the fluid. The three-fluid nozzle according to item. 請求項1乃至請求項12のいずれか1項に記載の三流体ノズルを、ごみ焼却炉あるいは/および焼却灰の溶融炉から発生する排ガスの冷却塔に排ガス冷却用のノズルとして設置している三流体ノズルを備えたごみ処理装置。   A three-fluid nozzle according to any one of claims 1 to 12 is installed as a nozzle for exhaust gas cooling in a cooling tower for exhaust gas generated from a waste incinerator or / and a melting furnace for incinerated ash. Garbage disposal device with fluid nozzle. 上記第1液体としてごみ焼却炉あるいは/および溶融炉で発生する排水を用いる排水循環手段を備え、上記第2液体として苛性ソーダ水溶液を用いている請求項13に記載の三流体ノズルを備えたごみ処理装置。   14. Waste treatment with a three-fluid nozzle according to claim 13, comprising waste water circulation means using waste water generated in a waste incinerator and / or melting furnace as the first liquid, and using a caustic soda aqueous solution as the second liquid. apparatus.
JP2003304016A 2003-08-28 2003-08-28 Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle Expired - Fee Related JP4346380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304016A JP4346380B2 (en) 2003-08-28 2003-08-28 Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304016A JP4346380B2 (en) 2003-08-28 2003-08-28 Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle

Publications (2)

Publication Number Publication Date
JP2005066572A true JP2005066572A (en) 2005-03-17
JP4346380B2 JP4346380B2 (en) 2009-10-21

Family

ID=34407821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304016A Expired - Fee Related JP4346380B2 (en) 2003-08-28 2003-08-28 Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle

Country Status (1)

Country Link
JP (1) JP4346380B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149220A (en) * 2006-12-14 2008-07-03 Terumo Corp Spray gun, spray system and spray method
JP2008259950A (en) * 2007-04-11 2008-10-30 Bio Media Co Ltd Nozzle and mixer using it
WO2013162171A1 (en) * 2012-04-25 2013-10-31 한국항공대학교 산학협력단 Shear coaxial atomization injector of the type which can separately inject three fluids
JP2015103647A (en) * 2013-11-25 2015-06-04 株式会社荏原製作所 Substrate cleaning device and substrate processing device
US10090189B2 (en) 2013-11-19 2018-10-02 Ebara Corporation Substrate cleaning apparatus comprising a second jet nozzle surrounding a first jet nozzle
WO2019065405A1 (en) * 2017-09-26 2019-04-04 国立研究開発法人産業技術総合研究所 Nozzle and spray
JP2019146500A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Liquid medicine spray system and operation method for the same
CN111629834A (en) * 2018-01-26 2020-09-04 公立大学法人大阪 Spray nozzle and spraying method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451800A (en) * 2010-10-20 2012-05-16 中国石油化工股份有限公司 Nozzle
JP6784386B2 (en) * 2016-07-25 2020-11-11 株式会社いけうち Three-fluid nozzle and spraying method using the three-fluid nozzle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149220A (en) * 2006-12-14 2008-07-03 Terumo Corp Spray gun, spray system and spray method
JP2008259950A (en) * 2007-04-11 2008-10-30 Bio Media Co Ltd Nozzle and mixer using it
WO2013162171A1 (en) * 2012-04-25 2013-10-31 한국항공대학교 산학협력단 Shear coaxial atomization injector of the type which can separately inject three fluids
US10090189B2 (en) 2013-11-19 2018-10-02 Ebara Corporation Substrate cleaning apparatus comprising a second jet nozzle surrounding a first jet nozzle
JP2015103647A (en) * 2013-11-25 2015-06-04 株式会社荏原製作所 Substrate cleaning device and substrate processing device
JPWO2019065405A1 (en) * 2017-09-26 2020-04-23 国立研究開発法人産業技術総合研究所 Nozzle and spray
WO2019065405A1 (en) * 2017-09-26 2019-04-04 国立研究開発法人産業技術総合研究所 Nozzle and spray
KR20200110753A (en) * 2018-01-26 2020-09-25 코우리츠 다이가꾸 호우진 오사카 Spray nozzle and spray method
CN111629834A (en) * 2018-01-26 2020-09-04 公立大学法人大阪 Spray nozzle and spraying method
CN111629834B (en) * 2018-01-26 2022-09-09 公立大学法人大阪 Spray nozzle and spraying method
KR102594992B1 (en) * 2018-01-26 2023-10-26 코우리츠 다이가꾸 호우진 오사카 Spray nozzle and spray method
JP2019146500A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Liquid medicine spray system and operation method for the same
JP7054879B2 (en) 2018-02-26 2022-04-15 パナソニックIpマネジメント株式会社 Chemical spray system and its operation method

Also Published As

Publication number Publication date
JP4346380B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4346380B2 (en) Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle
KR102232920B1 (en) Exhaust gas treatment method, and exhaust gas treatment device
KR102076856B1 (en) Micro Bubble Generator and Cleaning device for Chemical Material Using Micro Bubble
JP6784386B2 (en) Three-fluid nozzle and spraying method using the three-fluid nozzle
CN105854554A (en) Ozone low-temperature oxidation denitration technology and system
KR930019256A (en) Nitrogen oxide removal methods and apparatus for use in the practice
KR101648316B1 (en) Eco-friendly slurry atomization apparatus
JP2004216320A (en) Spray nozzle
JP4434690B2 (en) Spray nozzle and spray method
KR102094708B1 (en) Integrated Odor Removal System and Method
JP6885769B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
JP6393473B2 (en) Gas treatment apparatus and exhaust gas treatment method
KR100529857B1 (en) Apparatus for reduction of air pollution
WO2002002210A1 (en) Water-ammonia mixture sprayer and exhaust gas desulfurizer using the same
KR101928669B1 (en) Wet type flue-gas desulfurization facility for improving desulfurization reaction
CN208627647U (en) A kind of protection sleeve pipe of spray gun tail end
JP3340329B2 (en) Powder chemical supply nozzle for desulfurization and desalination
KR100407108B1 (en) gas scrubber device
JP7182197B2 (en) Spray nozzle and spray method
KR100475332B1 (en) Reductant injector for non-catalytic reaction facility (SNCR)
CN103406011A (en) Equipment for treating burning tail gas of pesticide package waste
KR102523670B1 (en) Incinerator with ammonia injection nozzle device with improved nitrogen oxide removal efficiency
KR101648315B1 (en) Apparatus for removing acid gas using rapid sprial flow atomization type
CN214075909U (en) Spraying rotational flow combined desulfurization device
CN218741208U (en) Binary deacidification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Ref document number: 4346380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees