JP2005066534A - Mercury removing method - Google Patents

Mercury removing method Download PDF

Info

Publication number
JP2005066534A
JP2005066534A JP2003302741A JP2003302741A JP2005066534A JP 2005066534 A JP2005066534 A JP 2005066534A JP 2003302741 A JP2003302741 A JP 2003302741A JP 2003302741 A JP2003302741 A JP 2003302741A JP 2005066534 A JP2005066534 A JP 2005066534A
Authority
JP
Japan
Prior art keywords
mercury
container
gas
processing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003302741A
Other languages
Japanese (ja)
Other versions
JP3796237B2 (en
Inventor
Akiko Miyake
明子 三宅
Hidemi Tanaka
英美 田中
Toshio Shibuya
敏生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2003302741A priority Critical patent/JP3796237B2/en
Publication of JP2005066534A publication Critical patent/JP2005066534A/en
Application granted granted Critical
Publication of JP3796237B2 publication Critical patent/JP3796237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mercury removing method capable of highly efficiently removing mercury from a pollutant with mercury from which the mercury is imperfectly removed by conventional technique. <P>SOLUTION: The pollutant with mercury is stored in a vessel and a treating gas is supplied into the vessel while heating the inside of the vessel at a predetermined temperature range to remove mercury from the pollutant with mercury. In this mercury removing method, gaseous hydrogen or a gaseous mixture composed of the gaseous hydrogen and an inert gas is used as a treating gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、廃蛍光灯等の水銀汚染物から水銀を除去する方法に関する。   The present invention relates to a method for removing mercury from mercury contaminants such as waste fluorescent lamps.

水銀は産業界にとって有用な物質であり、蛍光灯等の種々の用途に使用されているが、その一方、人体や環境にとっては有害な物質である。従って、水銀を利用した部材を廃棄する際には、該廃棄部材から水銀を除去する必要がある。特に、近年、環境保護の観点から資源の再利用化が図られているが、水銀を含む廃棄物を再利用する場合には、水銀を分離除去し、該水銀を再利用すると共に、水銀以外の部材の再利用化を図ることが望ましい。   Mercury is a useful substance for industry, and is used for various purposes such as fluorescent lamps. On the other hand, it is a harmful substance for the human body and the environment. Therefore, when a member using mercury is discarded, it is necessary to remove the mercury from the discarded member. In particular, in recent years, resources have been reused from the viewpoint of environmental protection. However, when waste containing mercury is reused, mercury is separated and removed, and the mercury is reused. It is desirable to recycle these members.

斯かる観点から、従来、種々の水銀除去方法が提案されている。例えば、水銀は、酸化すると酸化水銀となって蒸発温度が高くなり除去が困難になることから、水銀汚染物を容器内に収容後、窒素ガス等の不活性ガスを供給して水銀の酸化を防止しながら、前記容器内を負圧状態とすることにより水銀の蒸発温度を下げ、該容器を加熱して水銀ガスを吸引する方法が提案されている(例えば、特許文献1参照)。
特開2003−10829号公報
From this point of view, various mercury removal methods have been proposed. For example, when mercury is oxidized, it becomes mercury oxide and its evaporation temperature becomes high and difficult to remove. Therefore, after storing mercury contaminants in the container, an inert gas such as nitrogen gas is supplied to oxidize the mercury. A method has been proposed in which the inside of the container is brought into a negative pressure state while preventing the evaporation temperature of mercury, and the container is heated to suck mercury gas (for example, see Patent Document 1).
JP 2003-10829 A

しかしながら、上記従来技術によれば、例えば、消費電力の小さい(例:40W)廃蛍光灯のガラスカレット等の廃棄部材に含まれる水銀は、水銀溶出基準値を満たすように除去できるが、消費電力の大きい(例:110W)廃蛍光灯の場合は、前記基準値を満たさず、除去が不完全になる問題があった。   However, according to the above prior art, for example, mercury contained in a waste member such as a glass cullet of a waste fluorescent lamp with low power consumption (eg, 40 W) can be removed so as to satisfy the mercury elution standard value. In the case of a waste fluorescent lamp having a large (for example, 110 W), there is a problem that the above-mentioned reference value is not satisfied and the removal becomes incomplete.

本発明は、かかる問題点を解決するためになされたものであり、上記従来技術では除去が不完全な水銀汚染物からも水銀を高い効率で除去し得る水銀除去方法を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a mercury removal method capable of removing mercury with high efficiency even from mercury contaminants that are not completely removed by the above-described prior art. To do.

本発明は、前記目的を達成するために、水銀汚染物を容器内に収容し、該容器内を所定温度範囲に加熱するとともに前記容器内に処理用ガスを供給することによって水銀汚染物から水銀を除去する水銀除去方法において、前記処理用ガスとして、水素ガス、又は水素ガスと不活性ガスとの混合ガスを用いることを特徴とする。   In order to achieve the above object, the present invention contains mercury contaminants in a container, heats the container to a predetermined temperature range, and supplies a processing gas into the container, thereby supplying mercury from the mercury contaminants. In the method for removing mercury, hydrogen gas or a mixed gas of hydrogen gas and inert gas is used as the processing gas.

該水銀除去方法によれば、処理用ガスに含まれる水素ガスによって、水銀汚染物に付着している水銀の酸化が抑えられると共に、水銀汚染物に付着している水銀化合物や水銀汚染物に、吸着、浸透した水銀が水素により還元され、より低いエネルギーで水銀ガスとなる。   According to the mercury removal method, the hydrogen gas contained in the processing gas suppresses the oxidation of mercury adhering to the mercury pollutant, and the mercury compound or mercury pollutant adhering to the mercury pollutant The adsorbed and permeated mercury is reduced by hydrogen and becomes mercury gas with lower energy.

前記水銀除去方法にあっては、加熱により発生する水銀ガスを前記容器外から吸引するとともに、該容器内に処理用ガスを供給しながら、容器内を大気圧未満の所定負圧状態に維持することが好ましい。   In the mercury removal method, mercury gas generated by heating is sucked from outside the container, and the inside of the container is maintained at a predetermined negative pressure less than atmospheric pressure while supplying the processing gas into the container. It is preferable.

該好ましい構成によれば、容器内を大気圧未満の所定負圧状態に維持することで、水銀の蒸発温度が下がり、より低温で水銀を蒸発させてガス化することができる。   According to the preferable configuration, by maintaining the inside of the container at a predetermined negative pressure state below atmospheric pressure, the evaporation temperature of mercury is lowered, and mercury can be evaporated and gasified at a lower temperature.

更に好ましくは、前記容器内の圧力を133Pa以上として水銀を除去することが良く、更に好ましくは、前記所定温度範囲を150℃以上700℃以下とすることが良い。   More preferably, mercury is removed by setting the pressure in the container to 133 Pa or higher, and more preferably, the predetermined temperature range is 150 ° C. or higher and 700 ° C. or lower.

以上のように、本発明の水銀除去方法によれば、処理用ガスに含まれる水素ガスによって、水銀汚染物に付着している水銀の酸化が抑えられると共に、水素により水銀化合物等が還元され、水銀がより低いエネルギーで水銀ガスとなるため、従来は水銀の除去が不完全であった水銀汚染物からも水銀を高い効率で除去できるようになる。   As described above, according to the mercury removal method of the present invention, the hydrogen gas contained in the processing gas suppresses the oxidation of mercury adhering to the mercury pollutant, and the mercury compound and the like are reduced by the hydrogen, Since mercury becomes mercury gas at lower energy, mercury can be removed with high efficiency from mercury pollutants that were previously incompletely removed.

以下、本発明に係る水銀除去方法の好ましい実施の形態について図面を参照しつつ説明する。尚、本実施の形態においては、該水銀除去方法を廃蛍光灯のリサイクル工程に適用した態様について説明するが、本発明はかかる態様に限定されるものではなく、水銀を含んだランプ類や電池、さらには、水銀体温計等の測定器類を含む種々の部材のリサイクル工程に適用し得る。   Hereinafter, a preferred embodiment of a mercury removal method according to the present invention will be described with reference to the drawings. In the present embodiment, an embodiment in which the mercury removal method is applied to a recycling process of waste fluorescent lamps will be described. However, the present invention is not limited to such an embodiment, and lamps and batteries containing mercury. Furthermore, the present invention can be applied to a recycling process of various members including measuring instruments such as a mercury thermometer.

本実施の形態の水銀除去方法について説明する前に、まず、該水銀除去方法に用いる水銀除去装置について説明する。図1は、該水銀除去装置の概略図であり、図2は図1におけるII部の拡大断面図である。この水銀除去装置1は、水銀が付着した水銀汚染物から該水銀を除去する装置であって、特に廃蛍光灯のリサイクル工程において有用に利用される。   Before describing the mercury removal method of the present embodiment, first, a mercury removal apparatus used in the mercury removal method will be described. FIG. 1 is a schematic view of the mercury removing apparatus, and FIG. 2 is an enlarged cross-sectional view of a portion II in FIG. This mercury removing apparatus 1 is an apparatus for removing mercury from mercury contaminants to which mercury has adhered, and is particularly useful in the recycling process of waste fluorescent lamps.

蛍光灯は、ガラス本体と、該ガラス本体の両側に連結された口金部と、蛍光粉及び水銀とを含んでいる。かかる蛍光灯をリサイクルする際には、前記ガラス本体や口金部に付着している水銀、及び/又は蛍光粉と混ざり合っている水銀を分離除去する必要がある。該水銀を分離除去することにより、水銀自体の再利用化と共に、ガラス本体や口金部、及び蛍光粉の再利用化を図ることが可能となる。   The fluorescent lamp includes a glass main body, a base connected to both sides of the glass main body, fluorescent powder, and mercury. When recycling such a fluorescent lamp, it is necessary to separate and remove mercury adhering to the glass body and the base and / or mercury mixed with the fluorescent powder. By separating and removing the mercury, it is possible to reuse the mercury itself and the glass body, the base part, and the fluorescent powder.

本実施の形態では、前記水銀除去装置1を、このような蛍光灯から生じる廃蛍光灯の水銀除去処理に使用する。該水銀除去装置1は、水銀が付着したガラス本体(ガラスカレット)、口金部及び/又は蛍光粉(水銀汚染物)を収容する密閉可能な容器10と、該容器10内にガスを供給するガス供給機構20と、該容器10内のガスを容器10外から吸引する吸引機構30と、該容器10内を所定温度範囲に加熱し得る加熱機構40とを備えている。   In the present embodiment, the mercury removal device 1 is used for mercury removal treatment of waste fluorescent lamps generated from such fluorescent lamps. The mercury removing apparatus 1 includes a sealable container 10 that contains a glass body (glass cullet), a cap part and / or fluorescent powder (mercury contaminant) to which mercury has adhered, and a gas that supplies gas into the container 10. A supply mechanism 20, a suction mechanism 30 that sucks the gas in the container 10 from the outside of the container 10, and a heating mechanism 40 that can heat the inside of the container 10 to a predetermined temperature range are provided.

前記容器10は、水銀汚染物の供給口及び排出口を備えており、該供給口及び排出口を密閉し得るように構成されている。本実施の形態においては、前記容器10は回転軸11回りに回転可能に構成されており、単一の供給/排出口12のみが備えられている。即ち、該供給/排出口12が上方を向くように容器を位置させた場合には原料ホッパー100から該容器10内への水銀汚染物の供給が可能となり、且つ、該供給/排出口12が下方を向くように容器10を位置させた場合には該容器10内から回収ホッパー110への処理後の除染物の排出が可能となるように構成されている。   The container 10 includes a supply port and a discharge port for mercury contaminants, and is configured to be able to seal the supply port and the discharge port. In the present embodiment, the container 10 is configured to be rotatable around the rotation shaft 11 and is provided with only a single supply / discharge port 12. That is, when the container is positioned so that the supply / discharge port 12 faces upward, mercury contaminants can be supplied from the raw material hopper 100 into the container 10, and the supply / discharge port 12 When the container 10 is positioned so as to face downward, the decontaminated material after processing from the container 10 to the collection hopper 110 can be discharged.

前記ガス供給機構20は、処理用ガス、即ち、水素ガスや、水素ガスと不活性ガス(窒素ガス、ヘリウムガス、アルゴンガス等)との混合ガス等を前記容器10内に供給し得るように構成されている。本実施の形態においては、該ガス供給機構20は、先端部が容器10内に連通された供給配管21と、該供給配管21の基端部に接続されたガス供給源(図示せず)とを備えている。好ましくは、該ガス供給機構20は流量計を備え、該流量計からの信号に基づき前記容器10内へ供給する処理用ガスの流量を調整し得るように構成されていることが良い。また、好ましくは、該ガス供給機構20は、所定圧力(容器10内の圧力)を目標値として処理用ガスの流量を制御するパラレル制御機構(図示せず)に接続され、該機構によって処理用ガスの流量が制御されていることが良い。   The gas supply mechanism 20 can supply a processing gas, that is, hydrogen gas, a mixed gas of hydrogen gas and an inert gas (nitrogen gas, helium gas, argon gas, or the like) into the container 10. It is configured. In the present embodiment, the gas supply mechanism 20 includes a supply pipe 21 whose tip is communicated with the inside of the container 10, and a gas supply source (not shown) connected to the base end of the supply pipe 21. It has. Preferably, the gas supply mechanism 20 includes a flow meter, and is configured to be able to adjust the flow rate of the processing gas supplied into the container 10 based on a signal from the flow meter. Preferably, the gas supply mechanism 20 is connected to a parallel control mechanism (not shown) for controlling the flow rate of the processing gas with a predetermined pressure (pressure in the container 10) as a target value, and the mechanism is used for processing. The gas flow rate is preferably controlled.

前記吸引機構30は、前記容器10内の気体を吸引し、該容器10内を負圧状態とし得るように構成されている。本実施の形態においては、該吸引機構30は、先端部が容器10内に連通された吸気配管31と、該吸気配管31の基端部に接続された吸引ポンプ32とを備えている。好ましくは、前記吸引機構30は、容器10内の圧力を検出する圧力計を備え、該圧力計からの信号に基づき容器10内の圧力を所定圧力に維持し得るように構成されていることが良い。   The suction mechanism 30 is configured to suck the gas in the container 10 so that the inside of the container 10 can be in a negative pressure state. In the present embodiment, the suction mechanism 30 includes an intake pipe 31 having a distal end portion communicating with the inside of the container 10 and a suction pump 32 connected to a proximal end portion of the intake pipe 31. Preferably, the suction mechanism 30 includes a pressure gauge that detects the pressure in the container 10 and is configured to maintain the pressure in the container 10 at a predetermined pressure based on a signal from the pressure gauge. good.

より好ましくは、前記吸気配管31及び供給配管21の先端部を前記容器10の回転軸11に内挿することができ、これにより、容器10の回転軸11回りの回転を妨げることなく、吸気配管31及び供給配管21の先端部を該容器10内に連通させることができる。尚、本実施の形態においては、吸気配管31及び供給配管21の先端部を2重配管構造とし、これにより、省スペース化を図っている(図2参照)。   More preferably, the leading end portions of the intake pipe 31 and the supply pipe 21 can be inserted into the rotation shaft 11 of the container 10, and thereby the intake pipe can be prevented without preventing the rotation of the container 10 around the rotation axis 11. 31 and the tip of the supply pipe 21 can be communicated with the inside of the container 10. In the present embodiment, the leading ends of the intake pipe 31 and the supply pipe 21 have a double pipe structure, thereby saving space (see FIG. 2).

前記加熱機構40は、前記容器10の内部を所定温度まで昇温させ得るようになっている。該加熱機構40は、好ましくは、容器10内の温度を検出する温度センサー41を備え、該温度センサー41からの信号に基づき容器10内の温度を所定温度範囲に維持し得
るように構成される。本実施の形態においては、該加熱機構40は、容器10の外周面に加熱媒体を流通させる加熱配管42を備えているが(図1参照)、これに代えて、容器10の外周壁に電熱ヒータを備えることも可能である。
The heating mechanism 40 can raise the temperature of the inside of the container 10 to a predetermined temperature. The heating mechanism 40 preferably includes a temperature sensor 41 that detects the temperature in the container 10, and is configured to be able to maintain the temperature in the container 10 within a predetermined temperature range based on a signal from the temperature sensor 41. . In the present embodiment, the heating mechanism 40 includes a heating pipe 42 for circulating a heating medium on the outer peripheral surface of the container 10 (see FIG. 1). Instead, the heating mechanism 40 is electrically heated on the outer peripheral wall of the container 10. It is also possible to provide a heater.

次に、本実施形態の水銀除去方法について説明する。まず、前記供給/排出口12が上方を向くように容器10を回転軸11回りに回転させ、原料ホッパー100から水銀汚染物(ガラス本体〔ガラスカレット〕、口金部及び/又は蛍光粉)を容器10内に投入(収容)した後、該供給/排出口12を密閉手段で密閉する。次いで、前記吸引機構30を作動させて容器10内の空気を吸引して該容器10内を13.3Pa(0.1torr)以上1333.3Pa(10torr)以下の範囲に減圧した状態とする減圧工程を行う。その後も、前記吸引機構30を作動させつつ、該容器10内を1.013×105Pa〔大気圧〕未満の圧力とする状態を後の加熱工程と処理工程においても維持する。 Next, the mercury removal method of this embodiment will be described. First, the container 10 is rotated around the rotation shaft 11 so that the supply / discharge port 12 faces upward, and mercury contaminants (glass body [glass cullet], base part and / or fluorescent powder) are collected from the raw material hopper 100. After charging (accommodating) the inside 10, the supply / discharge port 12 is sealed with a sealing means. Next, the suction mechanism 30 is operated to suck the air in the container 10 to reduce the pressure in the container 10 to a range of 13.3 Pa (0.1 torr) to 1333.3 Pa (10 torr). I do. After that, the state in which the inside of the container 10 is set to a pressure of less than 1.013 × 10 5 Pa [atmospheric pressure] is maintained in the subsequent heating step and processing step while operating the suction mechanism 30.

このように、容器10内を所定負圧状態にすることにより、該空気中の酸素の絶対量が減り、水銀汚染物に付着した水銀の酸化が抑制されるとともに、水銀蒸発温度の上昇を防止できる。即ち、酸化水銀は水銀に比して蒸発温度が高いため、水銀が酸化して酸化水銀となると、後の加熱工程において容器10をより高温まで加熱する必要がある。これに対し、本実施の形態においては、後の加熱工程と処理工程において、容器10内が前記所定負圧状態に維持されており、また、後の処理工程で処理用ガスに含まれる水素ガスによって水銀汚染物に含まれる水銀化合物等が還元されるので、水銀がより低いエネルギーで水銀ガスとなるため、後の加熱工程における加熱温度を従来技術に比して下げることができる。尚、大気圧状態下では水銀の蒸発温度は約360℃である所、容器10内の圧力が、例えば、13×103Pa、1.3×103Pa及び133Paのときは、水銀の蒸発温度は、それぞれ、約260℃、約185℃及び約127℃となる。また、本実施形態では、このように容器10内を大気圧未満の状態とするが、後述する処理用ガスの供給量やガス組成を調整すること等によって、水銀汚染物に付着した水銀化合物や水銀汚染物に、吸着、浸透した水銀が還元されることで水銀の高い除去効果が得られる限り、後の加熱工程と処理工程は、容器10内を大気圧以上の圧力として行うことも可能である。 Thus, by making the inside of the container 10 into a predetermined negative pressure state, the absolute amount of oxygen in the air is reduced, oxidation of mercury adhering to mercury contaminants is suppressed, and an increase in mercury evaporation temperature is prevented. it can. That is, since the evaporation temperature of mercury oxide is higher than that of mercury, when mercury is oxidized to become mercury oxide, it is necessary to heat the container 10 to a higher temperature in a subsequent heating step. On the other hand, in the present embodiment, in the subsequent heating step and the processing step, the inside of the container 10 is maintained at the predetermined negative pressure state, and the hydrogen gas contained in the processing gas in the subsequent processing step Since mercury compounds contained in mercury pollutants are reduced by this, mercury becomes mercury gas with lower energy, so that the heating temperature in the subsequent heating step can be lowered as compared with the prior art. It should be noted that when the vaporization temperature of mercury is about 360 ° C. under atmospheric pressure and the pressure in the container 10 is, for example, 13 × 10 3 Pa, 1.3 × 10 3 Pa, and 133 Pa, the vaporization of mercury The temperatures will be about 260 ° C., about 185 ° C. and about 127 ° C., respectively. Further, in the present embodiment, the inside of the container 10 is in a state of less than atmospheric pressure in this way, but by adjusting the supply amount and gas composition of the processing gas described later, As long as mercury that has been adsorbed and permeated into the mercury contaminant is reduced and a high mercury removal effect is obtained, the subsequent heating and treatment steps can be performed at a pressure higher than atmospheric pressure in the container 10. is there.

次に、前記加熱機構40を作動させて、容器10内を水銀汚染物に付着した水銀が蒸発する所定温度(以下、水銀の蒸発温度という。)以上に加熱する加熱工程を行う。具体的には、水素の除去処理に要するエネルギーコストを低減させる点及び水銀溶出基準値を満たすべく水銀汚染物からの水銀の除去を完全ならしめる点を両立させる観点から、該容器10内を150℃以上700℃以下、好ましくは200℃以上650℃以下の所定温度範囲に加熱する。   Next, the heating mechanism 40 is operated to perform a heating process in which the inside of the container 10 is heated to a predetermined temperature (hereinafter referred to as mercury evaporation temperature) at which mercury attached to mercury contaminants evaporates. Specifically, from the viewpoint of reducing both the energy cost required for the hydrogen removal process and the point of complete removal of mercury from mercury contaminants to satisfy the mercury elution standard value, the inside of the container 10 is set to 150. It is heated to a predetermined temperature range of not lower than 700 ° C. and preferably not lower than 200 ° C. and not higher than 650 ° C.

その後、前記ガス供給機構20を作動させて容器10内に、処理用ガス(水素ガス、又は水素ガスと不活性ガスとの混合ガス)を供給する処理を行う処理工程を行う。ここでは、加熱開始後、該ガス供給機構20により、処理用ガスを供給するが、水素ガスによる水銀の還元作用を高める観点から、容器10内の圧力を133Pa以上とすることが好ましい。尚、処理用ガスとして水素ガスと窒素ガスとの混合ガス(フォーミングガス)を使用する場合は、水素濃度を適宜調整することができる。このように、加熱開始後、できるだけ速やかに処理用ガスを供給して容器10内を水素還元雰囲気とするのが、水銀の酸化を防ぐ観点から好ましいが、所定温度及び/又は所定圧力に到達後に供給することもできる。   Then, the process which performs the process which operates the said gas supply mechanism 20 and supplies the processing gas (hydrogen gas or mixed gas of hydrogen gas and an inert gas) in the container 10 is performed. Here, the processing gas is supplied by the gas supply mechanism 20 after the start of heating, but the pressure in the container 10 is preferably set to 133 Pa or more from the viewpoint of enhancing the mercury reducing action by the hydrogen gas. When a mixed gas (forming gas) of hydrogen gas and nitrogen gas is used as the processing gas, the hydrogen concentration can be adjusted as appropriate. As described above, it is preferable from the viewpoint of preventing mercury oxidation that the processing gas is supplied as soon as possible after the start of heating to make the inside of the container 10 into a hydrogen reducing atmosphere, but after reaching a predetermined temperature and / or a predetermined pressure. It can also be supplied.

かかる処理用ガスに含まれる水素ガスによって、水銀汚染物に付着している水銀の酸化が抑えられ、水銀に比して蒸発温度が高い酸化水銀の生成が効果的に抑制される。その結果、従来技術の不活性ガスのみを用いた処理では、400℃以上600℃以下の温度範囲での処理が必要となっていた所、処理用ガスにおける水素の含有率(%)及び前記所定負圧状態の容器10内の圧力に依存して変化し得るが、例えば、容器10内の温度(処理温度)が260℃以上400℃未満といった低温温度範囲でも水銀汚染物の処理が可能となり、これにより、水銀の除去処理に要するエネルギーコストの削減にも寄与することができる。   The hydrogen gas contained in the processing gas suppresses the oxidation of mercury adhering to the mercury contaminant, and effectively suppresses the generation of mercury oxide having a higher evaporation temperature than mercury. As a result, in the treatment using only the inert gas of the prior art, treatment in a temperature range of 400 ° C. or more and 600 ° C. or less is required, the hydrogen content (%) in the treatment gas, and the predetermined value Although it can change depending on the pressure in the container 10 in a negative pressure state, for example, it becomes possible to treat mercury contaminants even in a low temperature range where the temperature (treatment temperature) in the container 10 is 260 ° C. or more and less than 400 ° C., Thereby, it can also contribute to the reduction of the energy cost required for the mercury removal process.

また、かかる処理の処理時間(処理用ガスの供給開始時から供給停止時までの時間)は、前記容器10内の加熱温度等に依存して変化し得るが、水銀溶出基準値を満たすべく水銀汚染物からの水銀の除去を完全ならしめる観点から、5分以上6時間以下行うことが好ましい。   Further, the processing time of this processing (the time from the start of supply of the processing gas to the stop of supply) can be changed depending on the heating temperature in the container 10, etc., but mercury to satisfy the mercury elution standard value. From the viewpoint of complete removal of mercury from contaminants, it is preferably performed for 5 minutes to 6 hours.

本実施の形態において、前記処理用ガスは、容器10内で発生したガス等揮発物を運搬する役割を果たすキャリアガスとしても機能するので、処理用ガスを供給しながら、水銀ガスを吸引することにより、容器10に水銀ガスの気流を生じさせることができ、水銀ガスを効率良く吸引することができる。より好ましくは、図2に示すように、処理用ガスの供給口21aと水銀ガスの吸引口31aとを回転軸11を挟んで互いに反対側に位置させることができる。これにより、容器10内に水銀ガスの気流を効率的に発生させることができ、該水銀ガスをより効率的に吸引することができる。尚、処理用ガスは、容器10内の圧力が前記所定負圧状態に維持されるよう所定流量で供給する。   In the present embodiment, the processing gas also functions as a carrier gas that plays a role of transporting volatiles such as gas generated in the container 10, so that mercury gas is sucked in while supplying the processing gas. As a result, an air current of mercury gas can be generated in the container 10, and the mercury gas can be efficiently sucked. More preferably, as shown in FIG. 2, the processing gas supply port 21 a and the mercury gas suction port 31 a can be positioned on opposite sides of the rotating shaft 11. Thereby, the gas flow of mercury gas can be efficiently generated in the container 10, and the mercury gas can be sucked more efficiently. The processing gas is supplied at a predetermined flow rate so that the pressure in the container 10 is maintained in the predetermined negative pressure state.

本実施の形態では、図1に示すように、前記吸気配管31に水銀ガスを凝縮させるコンデンサ50を備えることができ、これにより、水銀ガスの飛散を防止し、水銀自体の有効利用を図ることができる。本実施の形態においては、該コンデンサ50は、前記吸気配管31に介挿された中空本体部51と、該中空本体部51を冷却する為の冷却配管52と、前記中空本体部内において凝縮された水銀を取り出す為のドレイン配管53とを備えている。更に、該コンデンサ50によって凝縮しきれなかった水銀ガスが大気中に放出されることを防止する為に、前記吸引ポンプ32の後段にフィルター60を備えることもできる。   In the present embodiment, as shown in FIG. 1, the intake pipe 31 can be provided with a condenser 50 for condensing mercury gas, thereby preventing the mercury gas from being scattered and effectively utilizing the mercury itself. Can do. In the present embodiment, the condenser 50 is condensed in the hollow main body 51 inserted in the intake pipe 31, the cooling pipe 52 for cooling the hollow main body 51, and the hollow main body. And a drain pipe 53 for taking out mercury. Further, in order to prevent mercury gas that could not be condensed by the condenser 50 from being released into the atmosphere, a filter 60 may be provided at the subsequent stage of the suction pump 32.

尚、本実施形態では、上述した水銀除去装置1を用いたが、本発明の水銀除去方法に用いる装置はこれに限定されず、その他の形態の水銀除去装置を用いることができることは言うまでもない。   In the present embodiment, the above-described mercury removing apparatus 1 is used, but the apparatus used in the mercury removing method of the present invention is not limited to this, and it goes without saying that other forms of mercury removing apparatus can be used.

以下、実施例等により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples and the like.

本実施例1では、前述した水銀除去装置1(図1参照)を用い、水銀汚染物である110Wの廃蛍光灯のガラスカレットから水銀の除去処理を行った。また、上記実施の形態において、処理用ガスとして純水素ガス(H2)を用い、容器10内の温度(処理温度)を400℃、容器10内の圧力を1333Pa(10torr)以上2666Pa(20torr)以下、処理工程における処理時間を30分として処理を行った。 In the present Example 1, the mercury removal apparatus 1 (refer FIG. 1) mentioned above was used, and the mercury removal process was performed from the glass cullet of the 110 W waste fluorescent lamp which is a mercury contaminant. In the above embodiment, pure hydrogen gas (H 2 ) is used as the processing gas, the temperature (processing temperature) in the container 10 is 400 ° C., and the pressure in the container 10 is 1333 Pa (10 torr) or more and 2666 Pa (20 torr). Hereinafter, the treatment was performed with a treatment time in the treatment step of 30 minutes.

比較例1Comparative Example 1

本比較例1では、処理用ガスとして窒素ガス(N2)を用い、処理温度を500℃、処理工程における処理時間を2時間とした以外は、前記実施例1と同様にして廃蛍光灯のガラスカレットから水銀の除去処理を行った。 In this Comparative Example 1, the waste fluorescent lamp was used in the same manner as in Example 1 except that nitrogen gas (N 2 ) was used as the processing gas, the processing temperature was 500 ° C., and the processing time in the processing step was 2 hours. Mercury was removed from the glass cullet.

以上の結果を表1にまとめて示す。   The above results are summarized in Table 1.

注1)処理前の110Wの廃蛍光灯のガラスカレットの水銀溶出量:0.236mg/リットル
注2)水銀溶出試験は、JIS K0102に準じた。
Note 1) Mercury elution amount of glass cullet of 110 W waste fluorescent lamp before treatment: 0.236 mg / liter Note 2) Mercury elution test conformed to JIS K0102.

以上より、前記実施例では、400℃で30分の処理を行ったにもかかわらず、水銀溶出基準値(0.005mg/リットル以下)を満たして満足な結果となったが、前記比較例では、500℃で2時間の処理を行ったにもかかわらず、該基準値を満たさず、不満足な結果となった。   As mentioned above, in the said Example, although the process for 30 minutes was performed at 400 degreeC, the mercury elution reference value (0.005 mg / liter or less) was satisfied, and it became a satisfactory result, but in the said comparative example, In spite of the treatment at 500 ° C. for 2 hours, the reference value was not satisfied and the result was unsatisfactory.

本実施例2では、前述した水銀除去装置1を用い、水銀汚染物である110Wの廃蛍光灯のガラスカレットから水銀の除去処理を行った。また、上記実施の形態において、処理用ガスとして純水素ガス(H2)を用い、容器10内の温度(処理温度)を200℃以上640℃以下の範囲内の所定温度とし、容器10内の圧力を3732Pa(28torr)、処理工程における処理時間を2時間として処理を行った。 In Example 2, the mercury removal apparatus 1 described above was used to remove mercury from the glass cullet of a 110 W waste fluorescent lamp, which is a mercury contaminant. In the above embodiment, pure hydrogen gas (H 2 ) is used as the processing gas, and the temperature (processing temperature) in the container 10 is set to a predetermined temperature in the range of 200 ° C. to 640 ° C. The treatment was performed at a pressure of 3732 Pa (28 torr) and a treatment time in the treatment step of 2 hours.

比較例2Comparative Example 2

本比較例2では、処理用ガスとして窒素ガス(N2)を用い、処理温度を450℃以上680℃以下の範囲内の所定温度とした以外は、前記実施例2と同様にして廃蛍光灯のガラスカレットから水銀の除去処理を行った。 In this comparative example 2, a waste fluorescent lamp was used in the same manner as in the example 2 except that nitrogen gas (N 2 ) was used as the processing gas and the processing temperature was set to a predetermined temperature in the range of 450 ° C. to 680 ° C. The mercury was removed from the glass cullet.

以上の結果を表2及び図3にまとめて示す。   The above results are summarized in Table 2 and FIG.

注1)処理前の110Wの廃蛍光灯のガラスカレットの水銀溶出量:0.10mg/リットル以上0.2mg/リットル以下
注2)水銀溶出試験は、JIS K0102に準じた。
Note 1) Mercury elution amount of glass cullet of 110 W waste fluorescent lamp before treatment: 0.10 mg / L or more and 0.2 mg / L or less Note 2) Mercury elution test conformed to JIS K0102.

表2及び図3より、容器10内の圧力と処理時間を同条件としている状態で、実施例2では、例えば、300℃といった低温温度範囲でも水銀溶出基準値(0.005mg/リットル以下)を満たして満足な結果となったが、比較例2では、640℃といった高温で処理を行った場合においても、該基準値を満たさず、不満足な結果となった。   From Table 2 and FIG. 3, in the state where the pressure in the container 10 and the treatment time are the same, in Example 2, the mercury elution standard value (0.005 mg / liter or less) is obtained even in a low temperature range such as 300 ° C. Satisfactory results were achieved, but in Comparative Example 2, even when the treatment was performed at a high temperature of 640 ° C., the reference value was not satisfied and the results were unsatisfactory.

図1は、本発明に係る水銀除去装置の一実施の形態の模式図である。FIG. 1 is a schematic view of an embodiment of a mercury removing apparatus according to the present invention. 図2は、図1におけるII部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion II in FIG. 図3は、表2の結果をグラフ化したものである。FIG. 3 is a graph of the results in Table 2.

符号の説明Explanation of symbols

1…水銀除去装置、10…容器、11…回転軸、20…ガス供給機構、30…吸引機構、40…加熱機構、50…コンデンサ   DESCRIPTION OF SYMBOLS 1 ... Mercury removal apparatus, 10 ... Container, 11 ... Rotating shaft, 20 ... Gas supply mechanism, 30 ... Suction mechanism, 40 ... Heating mechanism, 50 ... Condenser

Claims (4)

水銀汚染物を容器内に収容し、該容器内を所定温度範囲に加熱するとともに前記容器内に処理用ガスを供給することによって水銀汚染物から水銀を除去する水銀除去方法において、前記処理用ガスとして、水素ガス、又は水素ガスと不活性ガスとの混合ガスを用いることを特徴とする水銀除去方法。 In the mercury removal method for storing mercury contaminants in a container, heating the interior of the container to a predetermined temperature range, and removing mercury from the mercury contaminants by supplying a treatment gas into the container, the processing gas As a method for removing mercury, hydrogen gas or a mixed gas of hydrogen gas and inert gas is used. 加熱により発生する水銀ガスを前記容器外から吸引すると共に、該容器内に処理用ガスを供給しながら、容器内を大気圧未満の所定負圧状態に維持する請求項1に記載の水銀除去方法。 The mercury removal method according to claim 1, wherein mercury gas generated by heating is sucked from the outside of the container, and the inside of the container is maintained at a predetermined negative pressure less than atmospheric pressure while supplying the processing gas into the container. . 前記容器内の圧力を133Pa以上として水銀を除去する請求項1又は2に記載の水銀除去方法。 The mercury removal method according to claim 1 or 2, wherein mercury is removed by setting the pressure in the container to 133 Pa or more. 前記所定温度範囲を150℃以上700℃以下とする請求項1から3のいずれかに記載の水銀除去方法。





















The mercury removal method according to any one of claims 1 to 3, wherein the predetermined temperature range is 150 ° C or higher and 700 ° C or lower.





















JP2003302741A 2003-08-27 2003-08-27 Mercury removal method Expired - Lifetime JP3796237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302741A JP3796237B2 (en) 2003-08-27 2003-08-27 Mercury removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302741A JP3796237B2 (en) 2003-08-27 2003-08-27 Mercury removal method

Publications (2)

Publication Number Publication Date
JP2005066534A true JP2005066534A (en) 2005-03-17
JP3796237B2 JP3796237B2 (en) 2006-07-12

Family

ID=34406943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302741A Expired - Lifetime JP3796237B2 (en) 2003-08-27 2003-08-27 Mercury removal method

Country Status (1)

Country Link
JP (1) JP3796237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545435A (en) * 2006-08-03 2009-12-24 ロンゴーニ,ファビオ Method for improving soil contaminated with hexavalent chromium
WO2010026712A1 (en) * 2008-09-08 2010-03-11 株式会社セフティランド Device and method for distilling mercury from waste fluorescent powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545435A (en) * 2006-08-03 2009-12-24 ロンゴーニ,ファビオ Method for improving soil contaminated with hexavalent chromium
WO2010026712A1 (en) * 2008-09-08 2010-03-11 株式会社セフティランド Device and method for distilling mercury from waste fluorescent powder
JP2010058099A (en) * 2008-09-08 2010-03-18 Safety Land:Kk Device for distilling mercury from waste fluorescence powder in waste fluorescence tube and method for recovering mercury

Also Published As

Publication number Publication date
JP3796237B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
CN1280863C (en) Method and device for separating and recovering mercury
US9142424B2 (en) Cleaning system and cleaning method
JP3796237B2 (en) Mercury removal method
JP2008272536A (en) Treatment device for solid containing harmful substance such as organic halogen compound
KR101660469B1 (en) An Waste Treating Apparatus Containing Mercury and a Mercury Recovery Method Therewith
FI945560A0 (en) Process and apparatus for handling mercury-containing waste
JP2010058099A (en) Device for distilling mercury from waste fluorescence powder in waste fluorescence tube and method for recovering mercury
JP2008178791A (en) Method of and apparatus for treating waste fluorescent tube
JP2004230372A (en) Mercury removal method from mercury-containing waste such as fluorescent tube, and apparatus therefor
JP2003010829A (en) Mercury removing apparatus and method
JP4777854B2 (en) Reactive oxygen species generator and method for producing active oxygen species-containing liquid
JPH08337867A (en) Surface treatment of stainless steel member
CN220715828U (en) Liquid sample aeration strong oxidation device
JP2014117675A (en) Method and apparatus for treating exhaust gas
JP6301796B2 (en) Organic compound removal equipment
JP4210633B2 (en) Method for purifying phosphoric acid and method for producing phosphoric acid
CN117358179A (en) Liquid sample aeration strong oxidation device and use method
WO2009110071A1 (en) Treating apparatus for solid containing hazardous substance such as organohalogen compound
JP2003168370A (en) Mercury recovery method of waste fluorescent lamp and its device
JP2009274004A (en) Treating method of soil
JP2001153996A (en) Removal method for contamination material and its device
JPH10173025A (en) Load lock chamber of semiconductor manufacturing device
JP2001162240A (en) Method and apparatus for dry washing of substrate
JP2000176414A (en) Method for detoxifying heavy metal in ash
JP2006314887A (en) Method and apparatus for heat treatment of contaminated matter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Ref document number: 3796237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250