JP2000176414A - Method for detoxifying heavy metal in ash - Google Patents
Method for detoxifying heavy metal in ashInfo
- Publication number
- JP2000176414A JP2000176414A JP10377734A JP37773498A JP2000176414A JP 2000176414 A JP2000176414 A JP 2000176414A JP 10377734 A JP10377734 A JP 10377734A JP 37773498 A JP37773498 A JP 37773498A JP 2000176414 A JP2000176414 A JP 2000176414A
- Authority
- JP
- Japan
- Prior art keywords
- ash
- vacuum
- heating
- gas
- heavy metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は一般廃棄物である焼
却灰・飛灰等灰中の重金属無害化処理方法に関し、さら
に詳しくは真空加熱方法という物理的な方法のみによる
灰中の重金属無害化処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying heavy metals in ash, such as incinerated ash and fly ash, which are general wastes, and more particularly to detoxification of heavy metals in ash by a physical method such as a vacuum heating method. Regarding the processing method.
【0002】[0002]
【従来の技術】産業廃棄物及び都市生活から出てくる廃
棄物のうち、分別された可燃物は、回収後焼却炉で焼却
されて焼却灰の形態として投棄および埋め立て処分など
が行われている。一方、このような廃棄物を燃焼する
と、各種低沸点成分が揮発し、いわゆる飛灰となるが、
この飛灰は、前記焼却灰に比べて鉛、亜鉛、カドミウ
ム、クロム、亜鉛、砒素、水銀などの重金属類を多く含
有するので、一般廃棄物としてそのままでは埋め立てる
ことができないばかりか、燃焼排ガスとして外部環境に
拡散させないために消石灰などを担持させたバグフィル
タなどによりこれを捕集している。このような飛灰は、
前記したように重金属を多く含有するので環境衛生上厳
重な管理が必要とされ、重金属類を水に不溶化してその
溶出を防止した上でセメントなどとともにコンクリート
成形体として処分場に投棄するなどされている。2. Description of the Related Art Among industrial waste and waste generated from city life, separated combustible materials are incinerated in an incinerator after being collected, and are discarded and landfilled in the form of incinerated ash. . On the other hand, when such waste is burned, various low-boiling components are volatilized to form so-called fly ash,
Since this fly ash contains more heavy metals such as lead, zinc, cadmium, chromium, zinc, arsenic, and mercury than the incinerated ash, it cannot be landfilled as a general waste as it is, but also as flue gas. This is collected by a bag filter carrying slaked lime or the like so as not to diffuse into the external environment. Such fly ash,
As described above, since it contains a lot of heavy metals, strict management is required for environmental hygiene, and heavy metals are insolubilized in water to prevent their elution and then dumped as a concrete molded body with cement etc. at a disposal site. ing.
【0003】しかしながら、飛灰中には未反応の消石灰
が多量に残存し、飛灰のpHが高くなると飛灰中に含ま
れる重金属のうち両性金属である鉛や亜鉛が水中に溶出
し易くなり埋め立て処分する際特に問題となっている。
そこで、現状は有機キレートや結晶化反応を利用した無
機系薬剤等により無害化埋め立てしているが、 土壌菌により有機キレート処理物が分解する 土壌中のフミン酸により有機系処理物が溶解する 無機系薬剤処理物は長期安定性にすぐれているが処理
物量が増量し埋め立て処分場の寿命が短くなる という問題があった。また、コンクリート成形体に封じ
込められた重金属類は酸性雨などpHが低くなっても溶
出し易くなるので飛灰中より重金属を確実に除去する方
法が求められていた。However, a large amount of unreacted slaked lime remains in the fly ash, and when the pH of the fly ash increases, lead and zinc, which are amphoteric metals among heavy metals contained in the fly ash, are easily eluted into water. This is a particular problem when landfilling.
Therefore, at present, landfills are rendered harmless by using organic chelates or inorganic chemicals that utilize crystallization reactions, etc., but the organic chelates are decomposed by soil bacteria, and the organic lysates are dissolved by humic acid in the soil. Although the processed chemicals have excellent long-term stability, there is a problem that the amount of the processed chemicals increases and the life of the landfill disposal site is shortened. Further, heavy metals contained in the concrete molded body are easily eluted even when the pH is lowered, such as in acid rain. Therefore, there has been a demand for a method for reliably removing heavy metals from fly ash.
【0004】一方、灰溶融法は、減容効果だけでなく重
金属類の溶出などがない無害な物質にできるため再資源
化率の向上というメリットも大きいので各自治体に注目
されている。しかしながら、既設の焼却炉に併用可能な
灰溶融炉には、プラズマ溶融炉、表面溶融炉、電気抵抗
溶融炉等があるがいずれも建設費が高価なこと等が自治
体の導入を妨げる一因となっている。[0004] On the other hand, the ash melting method has attracted attention of local governments because it has a great advantage of improving the recycling rate because it can be used as a harmless substance having no volume reduction effect and no elution of heavy metals. However, ash melting furnaces that can be used in combination with existing incinerators include plasma melting furnaces, surface melting furnaces, and electric resistance melting furnaces, all of which have high construction costs. Has become.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記問題を
解決するためになされたものであって、一般廃棄物であ
る焼却灰・飛灰等の灰中の重金属を、低コストで除去で
きる灰中の重金属無害化処理方法を提供することを課題
とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can remove heavy metals in ash such as incinerated ash and fly ash, which are general wastes, at low cost. It is an object to provide a method for detoxifying heavy metals in ash.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
の請求項1の要旨とするところは、灰を真空加熱する真
空加熱工程と、前記真空加熱工程から発生する発生ガス
を排気するための真空排気工程と、前記真空加熱終了後
に真空加熱装置を冷却するための不活性ガス供給工程と
から構成されるものである。Means for Solving the Problems The gist of the present invention for solving the above-mentioned problems is that a vacuum heating step for heating ash in vacuum and an exhaust gas generated from the vacuum heating step are exhausted. It comprises a vacuum evacuation step and an inert gas supply step for cooling the vacuum heating device after the completion of the vacuum heating.
【0007】また、請求項2の要旨とするところは、前
記真空加熱工程の加熱温度が1600℃乃至1800
℃、真空の圧力が4.8Pa乃至4.8×10−8Pa
の間で操業することを特徴とする請求項1に記載の灰中
の重金属無害化処理方法である。The gist of the present invention is that the heating temperature in the vacuum heating step is 1600 ° C. to 1800 ° C.
° C, vacuum pressure is 4.8 Pa to 4.8 × 10 −8 Pa
The method for detoxifying heavy metals in ash according to claim 1, wherein the method is operated between the above steps.
【0008】また、請求項3の要旨とするところは、前
記真空加熱工程が、前段が100℃乃至150℃で加熱
を行う脱ガス工程、後段が1600℃乃至1800℃で
加熱を行う無害化処理工程の二段階からなる真空加熱工
程で、真空の圧力が4.8Pa乃至4.8×10−8P
aの間で操業することを特徴とする請求項1に記載の灰
中の重金属無害化処理方法である。According to another aspect of the present invention, the vacuum heating step includes a degassing step in which heating is performed at 100 ° C. to 150 ° C. in the first stage, and a detoxification process in which heating is performed at 1600 ° C. to 1800 ° C. in the second stage. In a vacuum heating process consisting of two steps, the pressure of the vacuum is 4.8 Pa to 4.8 × 10 −8 P
2. The method for detoxifying heavy metals in ash according to claim 1, wherein the method is operated during a.
【0009】さらに、請求項4の要旨とするところは、
前記不活性ガス供給工程で供給されるガスがヘリウムガ
ス、アルゴンガス、窒素ガス、炭酸ガスよりなる群から
選択された1種以上のガスであることを特徴とする請求
項1乃至請求項3のいずれか1項に記載の灰中の重金属
無害化処理方法である。Further, the subject matter of claim 4 is that
The gas supplied in the inert gas supply step is at least one gas selected from the group consisting of helium gas, argon gas, nitrogen gas, and carbon dioxide gas. The method for detoxifying heavy metals in ash according to any one of the preceding claims.
【0010】[0010]
【発明の実施の形態】本発明の灰中の重金属を無害化処
理できる灰中の重金属無害化処理方法を図1に基づいて
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for detoxifying heavy metals in ash according to the present invention, which is capable of detoxifying heavy metals in ash, will be described with reference to FIG.
【0011】本発明の灰中の重金属無害化処理方法は、
真空加熱工程1と、真空排気工程2と、不活性ガス供給
工程3と、から主要部が構成される。The method for detoxifying heavy metals in ash of the present invention comprises:
The main part is composed of a vacuum heating step 1, a vacuum evacuation step 2, and an inert gas supply step 3.
【0012】灰はごみを焼却した時の焼却灰(または飛
灰)を水で不溶化処理した後、乾燥した灰である。例え
ば、焼却灰の粒径は3mm乃至6mm、飛灰の粒径は平
均100ミクロンである。Ash is incineration ash (or fly ash) from incineration of garbage, which has been insolubilized with water and then dried. For example, incinerated ash has a particle size of 3 mm to 6 mm, and fly ash has an average particle size of 100 microns.
【0013】真空加熱工程1は、ヒータの材料としてモ
リブデンを使用して、灰を1600℃乃至1800℃、
真空の圧力が4.8Pa乃至4.8×10−8Paの間
で加熱することを特徴とする間接加熱工程である。高温
度加熱用のヒータの材料としてモリブデンの他にもタン
グステン、タンタル等の材料が考えられる。このうちモ
リブデンは、灰中の鉄分と反応して断線するようなこと
もなく、また、灰に吸着された可燃性ガスが分解して生
成する水素ガスを吸着することがないので爆発の危険性
が低くヒータの材料として適している。1600℃は、
通常の真空系の設備で作り出し易い真空の圧力から逆に
決めた加熱温度、1800℃は、モリブデンの物性から
決まる上限許容加熱温度である。The vacuum heating step 1 uses molybdenum as a heater material, and converts ash to 1600 ° C. to 1800 ° C.
This is an indirect heating step characterized in that heating is performed at a vacuum pressure of 4.8 Pa to 4.8 × 10 −8 Pa. As a material for the heater for high-temperature heating, materials such as tungsten and tantalum can be considered in addition to molybdenum. Of these, molybdenum does not react with the iron in the ash and does not break, nor does it absorb hydrogen gas generated by the decomposition of flammable gas adsorbed on the ash, which may cause an explosion hazard. And is suitable as a heater material. 1600 ° C is
The heating temperature of 1800 ° C., which is inversely determined from the vacuum pressure that is easily created by ordinary vacuum equipment, is the upper limit allowable heating temperature determined by the physical properties of molybdenum.
【0014】真空排気工程2は、単一の真空ポンプより
構成しても異なる種類の真空ポンプを組み合わせて構成
してもよい。例えば油回転ポンプと油拡散ポンプとの組
み合わせからなり、最初に油回転ポンプで真空加熱装置
を粗引きして、系内の圧力が大気圧から13Paになっ
たら油拡散ポンプに切り替えてさらに排気を行う。圧力
計はピラニ真空計を使用し、真空計の接点出力を利用し
て油ポンプと油拡散ポンプの切り替え運転を行う。The evacuation step 2 may be constituted by a single vacuum pump or by combining different types of vacuum pumps. For example, it consists of a combination of an oil rotary pump and an oil diffusion pump. First, the vacuum heating device is roughly roughened by the oil rotary pump, and when the pressure in the system becomes 13 Pa from the atmospheric pressure, the system is switched to the oil diffusion pump to further exhaust the gas. Do. A Pirani vacuum gauge is used as the pressure gauge, and the switching operation between the oil pump and the oil diffusion pump is performed using the contact output of the vacuum gauge.
【0015】不活性ガス供給工程3は、例えば液化アル
ゴンまたは液体窒素を温水または電気ヒータで加熱蒸発
させ装置冷却用のガスを供給する工程である。蒸発した
アルゴンガスまたは窒素ガスは真空加熱装置を冷却する
ために導入される。真空加熱装置を出てきたアルゴンガ
スまたは窒素ガスはコンデンサで冷却・除湿された後に
除塵されて大気に放出される。冷却用ガスの使用量が多
い場合は循環使用するとよい。なお、ヘリウムガスや炭
酸ガスを使用することもできる。The inert gas supply step 3 is a step of heating and evaporating, for example, liquefied argon or liquid nitrogen with hot water or an electric heater to supply a gas for cooling the apparatus. The evaporated argon gas or nitrogen gas is introduced to cool the vacuum heating device. Argon gas or nitrogen gas coming out of the vacuum heating device is cooled and dehumidified by a condenser, then is dust-removed and released to the atmosphere. If a large amount of cooling gas is used, it may be circulated. Note that helium gas or carbon dioxide gas can also be used.
【0016】以上の工程からなる本発明である灰中の重
金属無害化方法の作用について説明する。前段で重金属
の不溶化処理を受け脱水・乾燥された灰が真空加熱工程
1に導入される。最初に真空排気工程2の油回転ポンプ
と油拡散ポンプで真空加熱装置内の空気を排気し、圧力
が4.8Pa以下になったら灰の加熱を開始する。最初
に脱ガス処理を行うため灰の加熱温度は100℃乃至1
50℃で行う。ここで100℃は、大気中の水分蒸発温
度であり、150℃は、最初から高温にすると一挙にガ
スを放出して灰が舞い上がるなどして好ましくないの
で、未脱水・未乾燥水分を除去し灰に物理吸着したガス
の脱ガス速度を早めるための予備加熱温度である。次に
ガスの発生量が少なくなったら1600℃に昇温する。
真空の圧力が4.8Pa〜4.8×10−8Paの間で
あれば珪素の酸化物およびアルミニウムの酸化物が真空
還元されることがないので灰中に多量に含有される両性
金属である鉛、亜鉛等の酸化物を真空還元して好適に蒸
発除去することができる。重金属の無害化処理が終了す
ると真空加熱装置内の発生ガス量が減って真空の圧力が
一定となるので真空計の読みから無害化処理の終点を判
断できる。The operation of the method for detoxifying heavy metals in ash according to the present invention comprising the above steps will be described. The ash that has been dehydrated and dried by insolubilizing heavy metals in the preceding stage is introduced into the vacuum heating step 1. First, the air in the vacuum heating device is exhausted by the oil rotary pump and the oil diffusion pump in the vacuum evacuation step 2, and when the pressure becomes 4.8 Pa or less, the heating of the ash is started. The heating temperature of the ash is 100 ° C to 1 to perform degassing first.
Perform at 50 ° C. Here, 100 ° C. is a temperature at which moisture in the atmosphere evaporates, and 150 ° C. is not preferable because if the temperature is raised from the beginning, the gas is released at once and the ash soars. This is the preheating temperature for increasing the degassing rate of the gas physically adsorbed on the ash. Next, when the amount of generated gas decreases, the temperature is raised to 1600 ° C.
If the vacuum pressure is between 4.8 Pa and 4.8 × 10 −8 Pa, the oxide of silicon and the oxide of aluminum will not be reduced in vacuum, so Certain oxides such as lead and zinc can be reduced by vacuum and suitably removed by evaporation. When the detoxification processing of heavy metals is completed, the amount of gas generated in the vacuum heating device is reduced and the vacuum pressure becomes constant, so that the end point of the detoxification processing can be determined from the reading of the vacuum gauge.
【0017】無害化処理が終了したら、粉体が舞い上が
らないように不活性ガスを真空加熱装置に徐々に導入し
て真空加熱装置を冷却する。不活性ガス供給工程3で使
用するガスは、真空加熱工程1で1600℃以上に加熱
した真空加熱装置を冷却するためのガスであるが、窒素
を冷却ガスとして1400℃以上の温度で通気冷却する
と窒化珪素等窒化物が生成する領域なのでアルゴンガス
単独で冷却するのがよい。また、窒素を冷却ガスとして
使用する場合は、最初にアルゴンガスで約1200℃ま
で冷却するか1200℃まで自然放冷し、それ以下の冷
却に窒素ガスを冷却ガスとして使用するのがよい。After the detoxification treatment is completed, an inert gas is gradually introduced into the vacuum heating device so as to prevent the powder from rising, and the vacuum heating device is cooled. The gas used in the inert gas supply step 3 is a gas for cooling the vacuum heating device heated to 1600 ° C. or more in the vacuum heating step 1. Since it is a region where a nitride such as silicon nitride is generated, it is preferable to cool with argon gas alone. When nitrogen is used as a cooling gas, it is preferable to first cool to about 1200 ° C. with an argon gas or to naturally cool to 1200 ° C., and then use a nitrogen gas as a cooling gas for cooling below that.
【0018】真空排気工程3から出た排気ガスは、例え
ばオイルミストトラップ、液体窒素トラップ、活性炭ト
ラップ等の排ガス設備4を通って大気中に放出される。The exhaust gas discharged from the vacuum exhaust step 3 is discharged into the atmosphere through an exhaust gas facility 4 such as an oil mist trap, a liquid nitrogen trap, an activated carbon trap and the like.
【0019】不活性ガスで冷却終了後、真空加熱工程1
で重金属を除去された灰を取り出し回収する。前記無害
化処理された灰はブロックタイル等の骨材や路盤材等の
土木用資材として利用される。After cooling with an inert gas, a vacuum heating step 1
The ash from which heavy metals have been removed is taken out and collected. The harmlessly treated ash is used as an aggregate such as a block tile or a civil engineering material such as a roadbed material.
【0020】このように無害化処理された灰は、重金属
を塩化物にするための塩素ガスや重金属固定化剤で重金
属を固定する時のpH調整用の酸、アルカリ等の化学薬
品を添加する必要がないので灰中に多量に含まれる両性
金属である鉛、亜鉛が残存薬剤の影響により水中に溶出
する等の環境二次汚染の恐れがなくなる。The ash thus detoxified is added with a chemical such as chlorine gas for converting heavy metals into chloride or acid or alkali for adjusting pH when fixing heavy metals with a heavy metal fixing agent. Since there is no need, there is no danger of environmental secondary pollution such as lead and zinc, which are a large amount of amphoteric metals contained in the ash, being eluted into water due to the effects of residual chemicals.
【0021】次に本発明である重金属の無害化処理方法
の原理を図4に基づいて説明する。図4は、金属酸化物
の標準自由エネルギーΔG0=RTlnpo2対温度線
図である。すなわち、熱力学上の化学平衡論で、金属酸
化反応が酸素の分圧po2がどのくらい多ければ酸化物
生成側にいくのか、また、反対に酸素の分圧po2がど
のくらい少なければ酸化物が還元され金属生成側に行く
のかを示した線図である。直線はちょうど化学反応平衡
の状態を示し実線は固体状態、破線は溶融した液体状態
を示す。(但しSiOは全部破線で示してあるが気体状
態のΔG0を示す)。温度座標から垂線を立てて各元素
の酸化反応ごとの直線と交わった交点とO点を結んで直
線を引き酸素の分圧po2座標線との交点が化学反応平
衡時の酸素分圧値である。図4からわかるように、加熱
温度が1600℃の場合、1Pa乃至1×10−8Pa
の間であれば灰主成分であり複雑な化合物を生成し易い
珪素(Si)、アルミニウム(Al)が酸化物のまま安
定しているので灰中に多量に含有される重金属である鉛
(Pb)、亜鉛(Zn)等を好適に金属蒸気にして除去
できる。Next, the principle of the method for detoxifying heavy metals according to the present invention will be described with reference to FIG. FIG. 4 is a diagram of the standard free energy ΔG 0 = RTlnpo 2 of a metal oxide versus temperature. That is, the chemical equilibrium theory on thermodynamics, or go to the oxide producer The more metal oxidation reaction How partial pressure po 2 oxygen, also, the oxides the less how much the partial pressure po 2 oxygen on the opposite FIG. 4 is a diagram showing whether the material is reduced and goes to the metal generation side. The straight line indicates the state of chemical reaction equilibrium, the solid line indicates the solid state, and the broken line indicates the molten liquid state. (However, SiO is shown by a broken line, but shows ΔG 0 in a gaseous state). A perpendicular line is drawn from the temperature coordinates, an intersection point intersecting with a straight line for each oxidation reaction of each element is connected to point O, and a straight line is drawn. The intersection with the oxygen partial pressure po 2 coordinate line is the oxygen partial pressure value at the time of chemical reaction equilibrium. is there. As can be seen from FIG. 4, when the heating temperature is 1600 ° C., 1 Pa to 1 × 10 −8 Pa
In the case of ash, since silicon (Si) and aluminum (Al), which are the main components of the ash and easily produce complex compounds, are stable as oxides, lead (Pb) which is a heavy metal contained in the ash in a large amount ), Zinc (Zn) and the like can be suitably converted into metal vapor and removed.
【0022】[0022]
【実施例】次に実施例によって本発明をさらに具体的に
説明する。Next, the present invention will be described more specifically with reference to examples.
【0023】実施例 実施例に使用した装置は図2に示すように、ガラス製の
ベルの形状をした真空容器であるベルジャ5と、図3に
示すような、灰を分取して間接加熱するためのモリブデ
ン製の細長い箱であり、長辺方向の両端に通電用の端子
を付けた粉体分取用容器であるボート10と、前記ボー
ト10に電気を通電するための電極6と、ベルジャ5を
真空にするための油回転ポンプ9および油拡散ポンプ8
と、ベルジャ5から出てくる排気ガス中の水分・揮発成
分を除去するための液体窒素トラップ7とから構成され
ている。EXAMPLE The apparatus used in the example is a bell jar 5 which is a vacuum vessel in the form of a glass bell as shown in FIG. 2, and a ash is separated as shown in FIG. A boat 10 which is an elongated box made of molybdenum for carrying out, and is a container for powder separation with terminals for energization provided at both ends in the long side direction, and an electrode 6 for energizing the boat 10 with electricity. Oil rotary pump 9 and oil diffusion pump 8 for evacuating bell jar 5
And a liquid nitrogen trap 7 for removing moisture and volatile components in the exhaust gas coming out of the bell jar 5.
【0024】焼却灰または飛灰の脱ガス処理方法(前処
理方法) 容積1Lのガラス製集気瓶に焼却灰(または飛灰)を
0.6L入れ、集気瓶の口をペーパータオルで塞ぎベル
ジャ5内にいれる。ベルジャ5内を油回転ポンプ9にて
大気圧から13Paまで約10分で排気する。集気瓶を
100℃に加熱しながら灰の脱ガス処理を行う。この時
ベルジャ5内の圧力が800Paから100Paにかけ
て目視で確認できる多量のガスが発生する。その間、灰
に含有される低沸点成分がガス化するため蒸発潜熱で冷
却されて集気瓶が凍結してしまわないように集気瓶全体
を電気抵抗加熱して凍結を防ぐ必要がある。真空の圧力
が13Paになったら油回転ポンプ9から油拡散ポンプ
8に真空ポンプを切り替えて運転し、約20分で10
−3Paまで排気する。脱ガス処理の終点は到達圧力が
一定となった時を終点とする。Degassing method of incinerated ash or fly ash (pretreatment method) 0.6 L of incinerated ash (or fly ash) is put into a 1 L-volume glass air-collecting bottle, the mouth of the air-collecting bottle is closed with a paper towel, and a bell jar is used. Put in 5. The inside of the bell jar 5 is evacuated from atmospheric pressure to 13 Pa by the oil rotary pump 9 in about 10 minutes. The ash is degassed while heating the air collection bottle to 100 ° C. At this time, when the pressure in the bell jar 5 becomes 800 Pa to 100 Pa, a large amount of gas that can be visually confirmed is generated. In the meantime, since the low-boiling components contained in the ash are gasified, it is necessary to prevent the freezing by heating the entire gas collecting bottle with electric resistance so as to prevent the gas collecting bottle from being cooled by latent heat of vaporization and frozen. When the vacuum pressure reaches 13 Pa, the vacuum pump is switched from the oil rotary pump 9 to the oil diffusion pump 8 for operation, and the operation is started in about 20 minutes.
Exhaust to -3 Pa. The end point of the degassing process is the end point when the ultimate pressure becomes constant.
【0025】焼却灰からの重金属除去方法 図3のモリブデン製のボート10のみを使い、前記脱ガ
ス処理した焼却灰を7〜10g分取する。大気圧から1
0−3Paまで排気後、10V×100Aの電流で約2
分加熱、約400℃で少量のガスを発生し10−2Pa
まで圧力が上昇する。さらに10V×(150A〜18
0A)の電流を流し1600℃の温度で加熱する。加熱
開始後圧力ゲージポート11に取り付けた真空計の圧力
値は15Paまで上昇し、その後約5分で10−2Pa
まで下がる。真空の圧力が8×10−2Pa〜10×1
0−2Paから鉛が蒸発するのが確認できる。その後6
×10−2Paからは亜鉛が蒸発するのが確認できる。
亜鉛は鉛に比べて非常に緩やかに蒸発する。運転はベル
ジャの到達圧力である6.5×10−3Paになるまで
連続運転する。尚、焼却灰の溶融は圧力が1Paから開
始する。到達圧力が一定となったら運転を終了し、液体
窒素トラップ7の液体窒素の一部を蒸発してベルジャ内
5に導入し冷却用ガスとして使用する。冷却後、ベルジ
ャ5を開放して無害化処理した焼却灰を分析に供した。Method for Removing Heavy Metals from Incinerated Ash Using only the molybdenum boat 10 shown in FIG. 3, 7 to 10 g of the degassed incinerated ash is collected. 1 from atmospheric pressure
0 After evacuated to -3 Pa, approximately at a current of 10V × 100A 2
Minute heating, a small amount of gas is generated at about 400 ° C. and 10 −2 Pa
Until the pressure rises. 10 V x (150 A to 18
Heating is carried out at a temperature of 1600 ° C. by passing a current of 0 A). After the start of heating, the pressure value of the vacuum gauge attached to the pressure gauge port 11 rises to 15 Pa, and then 10 −2 Pa in about 5 minutes.
Down to. Vacuum pressure is 8 × 10 −2 Pa to 10 × 1
It can be confirmed that lead evaporates from 0 -2 Pa. Then 6
It can be confirmed that zinc evaporates from × 10 −2 Pa.
Zinc evaporates much more slowly than lead. The operation is continuously performed until the pressure reaches 6.5 × 10 −3 Pa, which is the ultimate pressure of the bell jar. The melting of the incinerated ash starts at a pressure of 1 Pa. When the ultimate pressure becomes constant, the operation is terminated, and a part of the liquid nitrogen in the liquid nitrogen trap 7 is evaporated and introduced into the bell jar 5 to be used as a cooling gas. After cooling, the bell jar 5 was opened and the incinerated ash detoxified was subjected to analysis.
【0026】飛灰の重金属除去方法 前記脱ガス処理した飛灰をボート10に2g入れ、図3
に示すような円形孔を穿設した蓋12をモリブデン製の
ボート10にかぶせて5×10−2Paより10V×1
25Aの電流で加熱し前記脱ガス処理に続いて二度目の
脱ガス処理を行う。飛灰は焼却灰と異なり吸着ガスの量
が多いため、円形孔を穿設した蓋12で粉体を押さえつ
けないと粉体がベルジャ5内で飛散してしまう。ガスが
発生すると圧力は当初10Paまで上がり、その後10
分程度で5×10−2Paに戻る。二度目の脱ガス処理
が終わったサンプルは、そのまま焼却灰と同じ方法で円
形孔を穿設した蓋12を外して1600℃で加熱処理を
行う。運転は、ベルジャ5の到達圧力である6.5×1
0−3Paになるまで連続運転する。到達圧力が一定と
なったら運転を終了し、液体窒素トラップ7の液体窒素
の一部を蒸発してベルジャ内5に導入し冷却用ガスとし
て使用する。冷却後、ベルジャ5を開放して無害化処理
した飛灰を分析に供した。Method for removing heavy metals from fly ash 2 g of the above-mentioned degassed fly ash was put into a boat 10 and FIG.
The cover 12 having a circular hole as shown in FIG. 1 is covered with a boat 10 made of molybdenum, and 10 V × 1 from 5 × 10 −2 Pa.
After heating at a current of 25 A, a second degassing process is performed following the degassing process. Fly ash has a large amount of adsorbed gas, unlike incinerated ash. Therefore, unless the powder is pressed down by the lid 12 having a circular hole, the powder scatters in the bell jar 5. When gas is generated, the pressure initially rises to 10 Pa, and then 10
It returns to 5 × 10 −2 Pa in about a minute. The sample which has been subjected to the second degassing treatment is subjected to a heat treatment at 1600 ° C. by removing the lid 12 having the circular hole formed in the same manner as in the incineration ash. The operation is 6.5 × 1 which is the ultimate pressure of the bell jar 5.
Operate continuously until it becomes 0 -3 Pa. When the ultimate pressure becomes constant, the operation is terminated, a part of the liquid nitrogen in the liquid nitrogen trap 7 is evaporated and introduced into the bell jar 5, and used as a cooling gas. After cooling, the bell jar 5 was opened and the fly ash detoxified was subjected to analysis.
【0027】以上のように処理された焼却灰および飛灰
の無害化処理の結果を表1、表2に示す。結果からわか
るように、全ての重金属成分が自治体の目標値をクリア
した。Tables 1 and 2 show the results of the detoxification treatment of the incinerated ash and fly ash treated as described above. As can be seen from the results, all heavy metal components cleared the municipal target.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【発明の効果】以上の構成と作用による本発明によれ
ば、 1)物理的な操作だけを行い薬剤を灰に添加する必要の
ない処理方法なので、残存薬剤による重金属の溶出等2
次環境汚染の恐れがなくなる。 2)プラズマ溶融法と比較して、灰を溶融させなくても
無害化ができるので加熱処理温度が低くなり省エネとな
る。According to the present invention having the above configuration and operation, 1) Since it is a treatment method in which only physical operation is performed and a chemical does not need to be added to ash, elution of heavy metals by residual chemicals and the like are performed.
The risk of secondary environmental pollution is eliminated. 2) Compared with the plasma melting method, the ash can be rendered harmless without melting, so that the heat treatment temperature is lowered and energy is saved.
【図1】本発明である灰中の重金属無害化処理方法の全
体フロー図である。FIG. 1 is an overall flowchart of a method for detoxifying heavy metals in ash according to the present invention.
【図2】本発明の実施例に使用した設備の装置全体図で
ある。FIG. 2 is an overall view of equipment of equipment used in an embodiment of the present invention.
【図3】(a)本発明の実施例に使用した真空加熱用モ
リブデン製ボートに円形孔を穿設した蓋をかぶせる前の
状態を示した斜視図である。 (b)本発明の実施例に使用した真空加熱用モリブデン
製ボートに円形孔を穿設した蓋をかぶせた時の状態を示
した斜視図である。FIG. 3 (a) is a perspective view showing a state in which a molybdenum boat for vacuum heating used in an embodiment of the present invention is not covered with a lid having a circular hole. (B) It is the perspective view which showed the state at the time of covering with the lid | cover which provided the circular hole in the boat made of molybdenum for vacuum heating used for the Example of this invention.
【図4】本発明である灰中の重金属無害化処理方法の原
理説明図である。FIG. 4 is a diagram illustrating the principle of the method for detoxifying heavy metals in ash according to the present invention.
1 真空加熱工程 2 真空排気工程 3 不活性ガス供給工程 4 排ガス処理設備 5 ベルジャ 6 電極 7 液体窒素トラップ 8 油拡散ポンプ 9 油回転ポンプ 10 ボート 11 圧力ゲージポート 12 円形孔を穿設した蓋 DESCRIPTION OF SYMBOLS 1 Vacuum heating process 2 Vacuum exhaust process 3 Inert gas supply process 4 Exhaust gas treatment equipment 5 Bell jar 6 Electrode 7 Liquid nitrogen trap 8 Oil diffusion pump 9 Oil rotary pump 10 Boat 11 Pressure gauge port 12 Lid with a circular hole
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D004 AA36 AA37 AB03 BA02 CA27 CA32 CA50 CB04 CB31 CC01 DA02 DA03 DA06 DA07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D004 AA36 AA37 AB03 BA02 CA27 CA32 CA50 CB04 CB31 CC01 DA02 DA03 DA06 DA07
Claims (4)
真空加熱工程から発生する発生ガスを排気するための真
空排気工程と、前記真空加熱終了後に真空加熱装置を冷
却するための不活性ガス供給工程とから構成される灰中
の重金属無害化処理方法。A vacuum heating step of vacuum-heating the ash; a vacuum evacuation step for exhausting gas generated from the vacuum heating step; and an inert gas for cooling a vacuum heating apparatus after the vacuum heating is completed. A method for detoxifying heavy metals in ash, comprising a supply step.
℃乃至1800℃、真空の圧力が4.8Pa乃至4.8
×10−8Paの間で操業することを特徴とする請求項
1に記載の灰中の重金属無害化処理方法。2. A heating temperature in the vacuum heating step is 1600.
° C to 1800 ° C, vacuum pressure is 4.8 Pa to 4.8
The method for detoxifying heavy metals in ash according to claim 1, wherein the method is operated at a pressure of 10-8 Pa.
至150℃で加熱を行う脱ガス工程、後段が1600℃
乃至1800℃で加熱を行う無害化処理工程の二段階か
らなる真空加熱工程で、真空の圧力が4.8Pa乃至
4.8×10−8Paの間で操業することを特徴とする
請求項1に記載の灰中の重金属無害化処理方法。3. The vacuum heating step is a degassing step in which heating is performed at 100 ° C. to 150 ° C. in the first stage, and 1600 ° C. in the second stage.
2. A vacuum heating step comprising two stages of a detoxification treatment step of heating at a temperature of from 1 to 1800 [deg.] C., wherein the operation is performed at a vacuum pressure of 4.8 Pa to 4.8 * 10 < -8 > Pa. 3. The method for detoxifying heavy metals in ash described in 4. above.
スがヘリウムガス、アルゴンガス、窒素ガス、炭酸ガス
よりなる群から選択された1種類以上のガスであること
を特徴とする請求項1乃至請求項3のいずれか1項に記
載の灰中の重金属無害化処理方法。4. The gas supplied in the inert gas supply step is at least one gas selected from the group consisting of helium gas, argon gas, nitrogen gas, and carbon dioxide gas. The method for detoxifying heavy metals in ash according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10377734A JP2000176414A (en) | 1998-12-10 | 1998-12-10 | Method for detoxifying heavy metal in ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10377734A JP2000176414A (en) | 1998-12-10 | 1998-12-10 | Method for detoxifying heavy metal in ash |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000176414A true JP2000176414A (en) | 2000-06-27 |
Family
ID=18509114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10377734A Pending JP2000176414A (en) | 1998-12-10 | 1998-12-10 | Method for detoxifying heavy metal in ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000176414A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2483814C1 (en) * | 2012-05-15 | 2013-06-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии" (ФГБОУ ВПО "МГУИЭ") | Method of disposal of solid toxic ashy wastes from incinerator plant filters |
JP2014117675A (en) * | 2012-12-18 | 2014-06-30 | Sumitomo Osaka Cement Co Ltd | Method and apparatus for treating exhaust gas |
-
1998
- 1998-12-10 JP JP10377734A patent/JP2000176414A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2483814C1 (en) * | 2012-05-15 | 2013-06-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии" (ФГБОУ ВПО "МГУИЭ") | Method of disposal of solid toxic ashy wastes from incinerator plant filters |
JP2014117675A (en) * | 2012-12-18 | 2014-06-30 | Sumitomo Osaka Cement Co Ltd | Method and apparatus for treating exhaust gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100294398B1 (en) | How to Dispose of Solid Waste in the City | |
CA1284470C (en) | Process and apparatus for fixing, encapsulating, stabilizing and detoxifying heavy metals and the like in metal-containing sludges, soils, ashand similar materials | |
NZ256240A (en) | Recovery of mercury from contaminated soils and industrial wastes | |
CN1388764A (en) | Plasma process for removing hydrocarbons from sludge in petroleum storage cylinder and adaptative apparatus | |
JP2008272536A (en) | Treatment device for solid containing harmful substance such as organic halogen compound | |
JP2000176414A (en) | Method for detoxifying heavy metal in ash | |
JP2008200544A (en) | Melt treatment method of waste | |
JPH05264024A (en) | Method of incinerating waste | |
JP2000061443A (en) | Device for separating and removing harmful material | |
JP3366246B2 (en) | Method and apparatus for treating incinerated fly ash | |
JP2009036469A (en) | Melting facility of incineration ash and its melting method | |
JP3409203B2 (en) | How to clean mercury contaminated soil | |
KR100697535B1 (en) | Vitrification method of radioactive wastes by using organic sludges as energy source and glass matrix | |
JPH10151430A (en) | Treatment for detoxifying harmful substance contained in ash discharged from incinerator | |
JPH10216670A (en) | Treatment to change incineration ash or fly ash into harmless | |
JPH11244653A (en) | Device for treating waste gas of ash melting furnace | |
JP3440246B2 (en) | Waste residue treatment method | |
JP3926290B2 (en) | Processing apparatus and processing method | |
JPH0979559A (en) | Melt disposal method of pcb polluted object | |
JPH10202221A (en) | Treatment of incineration ash or fly ash making harmless | |
JP3062250U (en) | Decomposition device for any substance by ion | |
JP2002059145A (en) | Method of decomposing hardly decomposable organic compound | |
KR200274337Y1 (en) | Sludge Disposal Device of Incinerator | |
Bernard et al. | TRANSFERRED ARC TREATMENT OF FLY ASHES FROM DOMESTIC WASTES | |
WO2009110071A1 (en) | Treating apparatus for solid containing hazardous substance such as organohalogen compound |