JP2006314887A - Method and apparatus for heat treatment of contaminated matter - Google Patents

Method and apparatus for heat treatment of contaminated matter Download PDF

Info

Publication number
JP2006314887A
JP2006314887A JP2005138596A JP2005138596A JP2006314887A JP 2006314887 A JP2006314887 A JP 2006314887A JP 2005138596 A JP2005138596 A JP 2005138596A JP 2005138596 A JP2005138596 A JP 2005138596A JP 2006314887 A JP2006314887 A JP 2006314887A
Authority
JP
Japan
Prior art keywords
heat treatment
exhaust gas
furnace
contaminant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138596A
Other languages
Japanese (ja)
Inventor
Yutaka Ishii
豊 石井
Masahiro Ogura
正裕 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005138596A priority Critical patent/JP2006314887A/en
Publication of JP2006314887A publication Critical patent/JP2006314887A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detoxify contaminated matter contaminated with a contaminant such as an organohalogen compound or a heavy metal by heating while making it possible to stably perform the detoxification of the contaminated matter and to prevent the contaminant from leaking from the heat treatment process without fail even when the water content of the contaminated matter fluctuates markedly. <P>SOLUTION: The method for heat-treating the contaminated matter comprises the heat treatment step of heat-treating the contaminated matter containing moisture and the exhaust gas treatment step of cleaning exhaust gas produced in the heat treatment step, wherein the flow rate of the exhaust gas sucked from the heat treatment step to the exhaust gas treatment step is controlled according to the measured water content value of the contaminated matter before being fed into the heat treatment step and the pressure value measured in the heat treatment step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、PCBなどの有機ハロゲン化合物や重金属等の汚染物質に汚染された汚染物の加熱処理方法および加熱処理装置に関する。   The present invention relates to a heat treatment method and a heat treatment apparatus for contaminants contaminated with organic halogen compounds such as PCB and contaminants such as heavy metals.

従来、ダイオキシンやポリ塩化ビフェニル(PCB)類などの有機ハロゲン化合物や重金属等の汚染物質に汚染された汚染物の処理方法としては、該汚染物を還元雰囲気下で加熱処理するとともに、該還元雰囲気下における加熱処理が負圧下において行なわれるように制御しながら排ガスを吸引し、吸引した排ガスを油洗浄式ガス洗浄設備等にて浄化処理する方法が知られている(特許文献1)。   Conventionally, as a method for treating contaminants contaminated with organic halogen compounds such as dioxins and polychlorinated biphenyls (PCBs) and contaminants such as heavy metals, the contaminants are heated in a reducing atmosphere and the reducing atmosphere is used. A method is known in which exhaust gas is sucked in such a manner that the lower heat treatment is performed under a negative pressure, and the sucked exhaust gas is purified by an oil cleaning gas cleaning facility or the like (Patent Document 1).

斯かる従来の方法においては、汚染物中に含まれる有機ハロゲン化合物等の汚染物質は、還元雰囲気下における加熱によって分解又は蒸発され、排ガスとともに吸引された後に油洗浄式ガス洗浄装置へと送られて無害化処理され、一方、汚染物質の除去された被処理物は、清浄な状態となって該還元加熱処理工程から排出されることとなる。
また、斯かる従来の方法によれば、汚染物の還元加熱処理を負圧下において行なうため、汚染物質が外部へ漏出し難いという利点もある。
In such a conventional method, pollutants such as organic halogen compounds contained in the pollutants are decomposed or evaporated by heating in a reducing atmosphere, sucked together with the exhaust gas, and then sent to the oil cleaning type gas cleaning device. On the other hand, the object to be treated that has been detoxified and from which the contaminants have been removed is in a clean state and discharged from the reduction heat treatment step.
In addition, according to such a conventional method, since the reduction heat treatment of the contaminant is performed under a negative pressure, there is an advantage that the contaminant is hardly leaked to the outside.

特開2003−95990号公報JP 2003-95990 A

しかしながら、上記のような従来の処理方法においては、汚染物に含まれる水分量が大きく変動したような場合に、安定した処理運転が阻害されやすく、汚染物質が拡散する虞もある。即ち、汚染物に含まれる水分量が急に増加した場合、還元加熱炉に供給された汚染物からは多量の水蒸気が発生し、炉内圧力を不安定にする。また、発生した水蒸気の量が更に多い場合には、該炉内圧力が大気圧以上にまで上昇し、汚染物質が炉外へ漏出することとなる。   However, in the conventional treatment method as described above, when the amount of water contained in the contaminant is greatly fluctuated, the stable treatment operation is likely to be hindered, and the contaminant may be diffused. That is, when the amount of water contained in the contaminants suddenly increases, a large amount of water vapor is generated from the contaminants supplied to the reduction heating furnace, and the furnace pressure becomes unstable. Further, when the amount of generated water vapor is larger, the pressure in the furnace rises to atmospheric pressure or higher, and contaminants leak out of the furnace.

尚、従来の処理方法においても、炉内圧力を測定する圧力計を備えており、該圧力計によって測定された圧力値に基づいて該炉内圧力を一定に保つように排ガス吸引量が調整されているが、還元加熱炉の温度は極めて高い(例えば、400〜600℃)ため、水蒸気の発生による炉内圧力の急激な増加には十分に対応しきれない。   The conventional processing method also includes a pressure gauge for measuring the pressure in the furnace, and the exhaust gas suction amount is adjusted so as to keep the pressure in the furnace constant based on the pressure value measured by the pressure gauge. However, since the temperature of the reduction heating furnace is extremely high (for example, 400 to 600 ° C.), it cannot sufficiently cope with the rapid increase in the furnace pressure due to the generation of water vapor.

また、圧力変動があっても正圧とならないように、十分な負圧で運転する方法も考えられるが、
(1)農薬等の汚染物質が十分に熱分解される前に蒸発する虞がある、
(2)還元雰囲気下で熱処理しようとしても、炉のシール部分から空気が流入し、炉内の酸素濃度が上昇する虞がある、
(3)排気ファンの容量が増大し、ダスト量も増大する虞がある、
などの種々の問題を生じることとなってしまう。
In addition, a method of operating at a sufficient negative pressure so that it does not become a positive pressure even if there is a pressure fluctuation can be considered,
(1) Contaminants such as agricultural chemicals may evaporate before they are sufficiently pyrolyzed,
(2) Even if heat treatment is attempted in a reducing atmosphere, air may flow from the sealed portion of the furnace, and the oxygen concentration in the furnace may increase.
(3) The capacity of the exhaust fan increases and the amount of dust may increase.
It will cause various problems such as.

さらに、含水量の高い汚染物を予め脱水又は乾燥することにより、その含水量を下げる方法も考えられるが、脱水または乾燥のための装置やそこから発生する排ガスを処理するための装置などが別途必要となってしまい、汚染物の処理コストを増大させるという問題がある。   Furthermore, it is conceivable to reduce the water content by dehydrating or drying pollutants with a high water content in advance. However, a device for dehydration or drying or a device for treating exhaust gas generated therefrom is separately provided. There is a problem that it becomes necessary and increases the processing cost of contaminants.

そこで本発明は、有機ハロゲン化合物や重金属等の汚染物質に汚染された汚染物を加熱により無害化処理するに際し、汚染物の含水率が大幅に変動した場合であっても、該汚染物の無害化処理を安定して行なうことができ、該加熱処理工程から汚染物質が漏出することをより確実に防止することを一の課題とする。   Therefore, the present invention provides a non-hazardous material for pollutants contaminated with organic halogen compounds and heavy metals, even when the moisture content of the contaminated material fluctuates greatly. It is an object to be able to stably perform the crystallization treatment and more reliably prevent the leakage of contaminants from the heat treatment step.

上記課題を解決すべく、本発明の汚染物の加熱処理方法は、水分を含有した汚染物を加熱処理する加熱処理工程と、該加熱処理工程より生じた排ガスを浄化処理する排ガス処理工程とを備え、前記加熱処理工程から前記排ガス処理工程へと吸引する排ガスの吸引流量を、前記加熱処理工程に供給される前の汚染物の含水率測定値と、前記加熱処理工程において測定した圧力測定値とに基づいて調整することを特徴とする。   In order to solve the above-mentioned problems, the heat treatment method for contaminants according to the present invention includes a heat treatment step for heat treating a contaminant containing moisture, and an exhaust gas treatment step for purifying exhaust gas generated from the heat treatment step. Provided, the suction flow rate of exhaust gas sucked from the heat treatment step to the exhaust gas treatment step, the moisture content measurement value of contaminants before being supplied to the heat treatment step, and the pressure measurement value measured in the heat treatment step It adjusts based on these.

本発明においては、好ましくは、前記加熱処理工程の圧力を−0.1〜0kPa(ゲージ圧、以下同じ)となるように制御する。   In the present invention, preferably, the pressure in the heat treatment step is controlled to be −0.1 to 0 kPa (gauge pressure, hereinafter the same).

また、本発明の汚染物の加熱処理装置は、水分を含有した汚染物を加熱処理する加熱処理炉と、該加熱処理炉より生じた排ガスを浄化処理する排ガス処理装置と、前記加熱処理炉から前記排ガス処理装置へと排ガスを吸引する排気ファンと、前記加熱処理炉に供給される前の汚染物の含水率を測定する水分計と、前記加熱処理炉内の圧力を測定する圧力計とを備え、前記排気ファンは、前記水分計による含水率測定値と前記圧力計による圧力測定値とに基づいて前記排ガス吸引流量を調整しうるように構成されてなることを特徴とする。   Further, the heat treatment apparatus for contaminants of the present invention includes a heat treatment furnace for heat-treating contaminants containing moisture, an exhaust gas treatment apparatus for purifying exhaust gas generated from the heat treatment furnace, and the heat treatment furnace. An exhaust fan for sucking exhaust gas into the exhaust gas treatment device, a moisture meter for measuring the moisture content of contaminants before being supplied to the heat treatment furnace, and a pressure gauge for measuring the pressure in the heat treatment furnace And the exhaust fan is configured to be capable of adjusting the exhaust gas suction flow rate based on a moisture content measurement value obtained by the moisture meter and a pressure measurement value obtained by the pressure gauge.

尚、本発明において、汚染物質とは、PCBやダイオキシン類等の有機ハロゲン化合物、農薬、重金属などの汚染物質そのものをいい、汚染物とは、該汚染物質が含まれた処理対象物、例えば、土壌、汚泥、廃棄物などをいう。   In the present invention, the contaminant means an organic halogen compound such as PCB or dioxins, an agrochemical, a heavy metal or other contaminant itself, and the contaminant is a treatment object containing the contaminant, for example, Soil, sludge, waste, etc.

本発明に係る汚染物の処理方法および処理装置によれば、排ガス吸引流量を調整するに際し、加熱処理工程の圧力のみならず、そこに供給される汚染物の含水率もが考慮され、双方の値が排ガス吸引流量に反映されることとなるため、含水量の多い汚染物が供給された場合であっても、それによる突発的な水蒸気の大量発生を事前に予測でき、急激な圧力上昇が起こらないよう炉内圧力の安定化を図ることができる。   According to the contaminant treatment method and treatment apparatus of the present invention, when adjusting the exhaust gas suction flow rate, not only the pressure of the heat treatment step but also the moisture content of the contaminants supplied thereto are taken into account. Because the value is reflected in the exhaust gas suction flow rate, even if contaminants with a high water content are supplied, it is possible to predict a large amount of sudden generation of water vapor in advance, and a sudden pressure increase will occur. The furnace pressure can be stabilized so that it does not occur.

よって、本発明に係る汚染物の加熱処理方法および加熱処理装置によれば、有機ハロゲン化合物や重金属等の汚染物質に汚染された汚染物を加熱により無害化処理するに際し、汚染物の含水率が大幅に変動した場合であっても、該汚染物の加熱処理における圧力を安定させることができ、該加熱処理工程から汚染物質が漏出することをより確実に防止することができる。   Therefore, according to the heat treatment method and heat treatment apparatus for contaminants according to the present invention, when the contaminants contaminated with contaminants such as organic halogen compounds and heavy metals are detoxified by heating, the moisture content of the contaminants is increased. Even if it fluctuates significantly, the pressure in the heat treatment of the contaminant can be stabilized, and the leakage of the contaminant from the heat treatment step can be more reliably prevented.

以下、本発明について、図面を参照しつつ詳細に説明する。
図1は、本発明に係る汚染物の処理装置の一実施形態を示した概略フロー図である。図1に示すように、本実施形態の汚染物の処理装置10は、汚染物1(例えば、土壌)を加熱処理するための加熱処理炉11と、該加熱処理炉11へ汚染物を供給する供給装置12とを備え、さらに該加熱処理炉11から発生する排ガスを浄化処理するための排ガス処理装置として、順に集塵装置14、ガス洗浄装置15及び活性炭フィルタ17を備える。また、該処理装置10は、前記加熱処理炉11の炉内圧力が負圧となるように排ガス3を吸引し、吸引した排ガス3を前記排ガス処理装置へと誘導する排気ファン16を備え、さらに、前記供給装置12内の汚染物1の含水率を測定する水分計21と、前記加熱処理炉11内の炉内圧力を測定する圧力計22とを備える。そして、水分計21による汚染物1の水分測定値4および圧力計22による炉内の圧力測定値5は、それぞれ制御装置23へと送られ、制御装置23によって所定の演算が行われた後、排気ファン16の回転数6として出力され、該回転数6によって排気ファン16が運転されるように構成されている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic flow diagram showing an embodiment of a contaminant treatment apparatus according to the present invention. As shown in FIG. 1, the contaminant treatment apparatus 10 of the present embodiment supplies a contaminant to the heat treatment furnace 11 for heat treating the contaminant 1 (for example, soil) and the heat treatment furnace 11. A dust collecting device 14, a gas cleaning device 15, and an activated carbon filter 17 are sequentially provided as an exhaust gas processing device for purifying exhaust gas generated from the heat treatment furnace 11, and a supply device 12. Further, the processing apparatus 10 includes an exhaust fan 16 that sucks the exhaust gas 3 so that the furnace pressure of the heat treatment furnace 11 becomes a negative pressure, and guides the sucked exhaust gas 3 to the exhaust gas processing apparatus. The moisture meter 21 for measuring the moisture content of the contaminant 1 in the supply device 12 and the pressure gauge 22 for measuring the furnace pressure in the heat treatment furnace 11 are provided. Then, the moisture measurement value 4 of the contaminant 1 by the moisture meter 21 and the pressure measurement value 5 in the furnace by the pressure gauge 22 are respectively sent to the control device 23, and after a predetermined calculation is performed by the control device 23, The exhaust fan 16 is output as the rotational speed 6, and the exhaust fan 16 is operated at the rotational speed 6.

前記加熱処理炉11は、処理対象である汚染物1を、所定の温度で加熱しうる構成のものであれば特に限定されない。該加熱処理炉11としては、例えば、円筒状の加熱装置本体と、該加熱装置本体内部に配された回転軸および該回転軸に取り付けられたパドル翼と、該加熱装置本体の外側を覆うように形成されたジャケットとを備え、ジャケットには高温の間接加熱ガスが供給されるように構成されたものを使用することができる。また、加熱装置本体が回転する構成としてもよく、加熱処理炉11内を還元雰囲気とするべく、加熱装置本体に不活性ガスが供給されるように構成されていてもよい。また、重金属汚染土壌のような汚染物を処理する場合には、該加熱処理炉11は、上記のような間接加熱炉ではなく、炉内にバーナーが設けられてなる、いわゆる直接加熱炉であってもよい。   The heat treatment furnace 11 is not particularly limited as long as the contaminant 1 to be treated can be heated at a predetermined temperature. As the heat treatment furnace 11, for example, a cylindrical heating device main body, a rotating shaft disposed inside the heating device main body, paddle blades attached to the rotating shaft, and the outside of the heating device main body are covered. And a jacket configured to be supplied with a high-temperature indirectly heated gas can be used. Moreover, it is good also as a structure which a heating apparatus main body rotates, and it may be comprised so that an inert gas may be supplied to a heating apparatus main body so that the inside of the heat processing furnace 11 may be made into a reducing atmosphere. When processing contaminants such as heavy metal contaminated soil, the heat treatment furnace 11 is not an indirect heating furnace as described above, but a so-called direct heating furnace in which a burner is provided in the furnace. May be.

尚、前記還元雰囲気とは、正確には低酸素雰囲気であることを意味し、好ましくは酸素濃度が3vol%以下(以下単に%と記載する)、より好ましくは1%以下である雰囲気とする。
汚染物質がPCB等の有機ハロゲン化合物である場合には、前記不活性ガスとして窒素ガスを供給し、加熱処理炉11内の酸素濃度を3%以下、好ましくは1%以下となるように構成される。
汚染物1が該加熱処理炉11において加熱処理されると、該汚染物1中に含まれるPCB等の有機ハロゲン化合物は、分解あるいは蒸発され、被処理物から除去されることとなる。
The reducing atmosphere means that it is a low oxygen atmosphere, and preferably has an oxygen concentration of 3 vol% or less (hereinafter simply referred to as%), more preferably 1% or less.
When the pollutant is an organic halogen compound such as PCB, nitrogen gas is supplied as the inert gas, and the oxygen concentration in the heat treatment furnace 11 is 3% or less, preferably 1% or less. The
When the contaminant 1 is heat-treated in the heat treatment furnace 11, the organic halogen compound such as PCB contained in the contaminant 1 is decomposed or evaporated and removed from the object to be processed.

該加熱処理炉11の炉内圧力は、−0.1〜0kPaとなるように制御することが好ましく、−0.01〜−0.001kPaとなるように制御することがより好ましい。
炉内の圧力が0kPa以上であると、バッファ効果が小さく、被処理物やそれに含まれる様々な物質の膨張等による圧力変化に対応できないおそれがある。また、−0.1kPa以下であると、炉内を吸引しすぎることとなり、粉塵(ダスト)が飛散し、後段のバグフィルター等の排ガス処理設備に多大な負担がかかるおそれがある。さらに、可動部のシール性が不十分なところから炉内に空気が混入し、低酸素雰囲気下に保つことができなくなり、逆に可動部からの空気の混入を防止すべくシール性を高めようとすると多大なコストがかかるおそれがある。
The furnace pressure of the heat treatment furnace 11 is preferably controlled to be −0.1 to 0 kPa, and more preferably −0.01 to −0.001 kPa.
When the pressure in the furnace is 0 kPa or more, the buffer effect is small, and there is a possibility that the pressure change due to expansion of the object to be processed and various substances contained therein may not be supported. On the other hand, if the pressure is -0.1 kPa or less, the inside of the furnace is excessively sucked, dust (dust) is scattered, and there is a possibility that a great burden is imposed on exhaust gas treatment equipment such as a bag filter in the subsequent stage. Furthermore, air will enter the furnace because the sealing performance of the moving parts is insufficient, and it will not be possible to maintain a low oxygen atmosphere, and conversely, to improve the sealing performance to prevent air from entering the moving parts. If so, there is a risk of enormous costs.

また、汚染物質が有機ハロゲン化合物である場合、前記加熱処理炉11の炉内温度は200〜700℃とすることが好ましく、400〜600℃とすることがより好ましい。炉内温度が200℃よりも低温であれば、汚染物1中に含まれる有機ハロゲン化合物が除去されずに残存するおそれがあり、700℃よりも高温であれば、除去効率が変わらずに加熱に要するエネルギーが無駄になるおそれがある。
また、該加熱処理炉11における汚染物1の滞留時間は、通常20〜180分とし、好ましくは、30〜120分とする。
When the pollutant is an organic halogen compound, the furnace temperature of the heat treatment furnace 11 is preferably 200 to 700 ° C, and more preferably 400 to 600 ° C. If the temperature in the furnace is lower than 200 ° C, the organic halogen compound contained in the contaminant 1 may remain without being removed. If the temperature in the furnace is higher than 700 ° C, the removal efficiency is not changed. Energy may be wasted.
The residence time of the contaminant 1 in the heat treatment furnace 11 is usually 20 to 180 minutes, preferably 30 to 120 minutes.

また、汚染物質が重金属である場合、前記加熱処理炉11の炉内温度は400〜1100℃とすることが好ましく、500〜1000℃とすることがより好ましい。炉内温度が400℃よりも低温であれば、汚染物1中に含まれる重金属が除去されずに残存するおそれがあり、1100℃よりも高温であれば、除去効率が変わらずに加熱に要するエネルギーが無駄になるおそれがあり、被処理物である土壌等がスラグ化するおそれもある。
また、該加熱処理炉11における汚染物1の滞留時間は、通常5〜120分とし、好ましくは、10〜90分とする。
Moreover, when a contaminant is a heavy metal, it is preferable that the furnace temperature of the said heat processing furnace 11 shall be 400-1100 degreeC, and it is more preferable to set it as 500-1000 degreeC. If the furnace temperature is lower than 400 ° C, the heavy metal contained in the contaminant 1 may remain without being removed. If the temperature is higher than 1100 ° C, the removal efficiency does not change and heating is required. There is a possibility that energy may be wasted, and there is a possibility that soil or the like to be processed may be slag.
The residence time of the contaminant 1 in the heat treatment furnace 11 is usually 5 to 120 minutes, and preferably 10 to 90 minutes.

前記不活性ガスとして窒素ガスを供給する場合には、窒素発生装置(図示せず)として膜分離方式のものやPSA方式のものを使用することができる。PSA方式の窒素発生装置は、空気を高圧下で吸着材に接触させることにより、空気中の酸素を該吸着材に吸着させ、吸着材に吸着されにくい窒素を高濃度で得るものである。PSA方式の窒素発生装置を採用することにより、99.99%の高純度窒素を発生させることができる。また、PSA方式の窒素発生装置では、吸着処理後に減圧することによって吸着した気体(主に酸素)を吸着材から分離離脱させ、副生成物として濃度が30〜35%の高濃度酸素を発生させることができる。尚、前記PSA方式の窒素発生装置においては、吸着材の充填された吸着塔を、2又は3塔以上配し、上述のような高圧下での吸着と減圧下での分離離脱とをそれぞれの塔で切り替えながら行なうことにより、高濃度の窒素ガスおよび酸素ガスを連続して得ることができる。また、該窒素発生装置にて副生した高濃度酸素は前記間接加熱ガスの燃焼用空気として使用するように構成してもよい。   When supplying nitrogen gas as the inert gas, a membrane separation type or PSA type can be used as a nitrogen generator (not shown). The PSA-type nitrogen generator is configured to adsorb oxygen in the air to the adsorbent by bringing air into contact with the adsorbent under high pressure to obtain nitrogen that is difficult to be adsorbed by the adsorbent at a high concentration. By adopting a PSA-type nitrogen generator, 99.99% high-purity nitrogen can be generated. In the PSA system nitrogen generator, the adsorbed gas (mainly oxygen) is separated and separated from the adsorbent by reducing the pressure after the adsorption treatment, and high concentration oxygen having a concentration of 30 to 35% is generated as a by-product. be able to. In the PSA-type nitrogen generator, two or more adsorption towers filled with an adsorbent are arranged, and the above-described adsorption under high pressure and separation and separation under reduced pressure are performed respectively. By performing switching while using a tower, high-concentration nitrogen gas and oxygen gas can be obtained continuously. Moreover, you may comprise so that the high concentration oxygen byproduced by this nitrogen generator may be used as the combustion air of the said indirect heating gas.

また、集塵装置14としては特に限定されないが、排ガスを高温に維持しつつ集塵することのできる、いわゆる高温バグフィルターを採用することが好ましく、これによってダストのみを捕集することができる。   Moreover, although it does not specifically limit as the dust collector 14, It is preferable to employ | adopt what is called a high temperature bag filter which can collect dust, maintaining exhaust gas at high temperature, and can collect only dust by this.

ガス洗浄装置15は、排ガス3を、例えば炭化水素油と気液接触させ、排ガス3中の有機ハロゲン化合物等を該炭化水素油中に分散又は溶解させることにより、前記加熱処理炉11で発生した排ガス3を洗浄するものである。ガス洗浄装置15において利用できる炭化水素油としては特に限定されず、排ガス中の有機ハロゲン化合物よりも沸点の低い油(例えば、炭素数8〜15、好ましくは炭素数10〜12の炭化水素油等)が好ましく、中でも、有機ハロゲン化合物を溶解させやすく且つ低価格であるノルマルパラフィンが特に好ましい。   The gas cleaning device 15 is generated in the heat treatment furnace 11 by bringing the exhaust gas 3 into gas-liquid contact with, for example, hydrocarbon oil, and dispersing or dissolving the organic halogen compound or the like in the exhaust gas 3 in the hydrocarbon oil. The exhaust gas 3 is washed. The hydrocarbon oil that can be used in the gas scrubber 15 is not particularly limited, and is an oil having a boiling point lower than that of the organic halogen compound in the exhaust gas (for example, a hydrocarbon oil having 8 to 15 carbon atoms, preferably 10 to 12 carbon atoms) Among these, normal paraffin is preferable because it easily dissolves the organic halogen compound and is inexpensive.

該ガス洗浄装置15の下部から回収された油と水は、これらを処理するための排水処理設備(図示せず)へと送られ、清浄化された後、ガス洗浄装置15において再利用されるか又は清浄な排水として放出されるように構成されている。   The oil and water collected from the lower part of the gas cleaning device 15 are sent to a wastewater treatment facility (not shown) for processing them, and after being cleaned, are reused in the gas cleaning device 15. Or is configured to be discharged as clean wastewater.

また、前記供給装置12に備えられた水分計21としては、高周波計測法、誘電率測定法などの原理を用いた各種水分計を使用することができる。   In addition, as the moisture meter 21 provided in the supply device 12, various moisture meters using principles such as a high-frequency measurement method and a dielectric constant measurement method can be used.

さらに、前記制御装置23は、水分計21によって測定された水分測定値4と、圧力計22によって測定された炉内圧力の測定値5とに基づき、加熱処理炉11の炉内圧力を前記のような所定の範囲内に制御するべく、前記排気ファン16の回転数を調整するものである。   Further, the control device 23 determines the furnace pressure of the heat treatment furnace 11 based on the moisture measurement value 4 measured by the moisture meter 21 and the furnace pressure measurement value 5 measured by the pressure gauge 22. The rotational speed of the exhaust fan 16 is adjusted in order to control within such a predetermined range.

具体的には、水分測定値から単位体積あたりの被処理物内の水分量を計算し、それらの水分が全て気体に変化した際の体積を計算し、さらに、その計算結果に基づき、上記のような炉内圧力に保つための排気ファンの排気量を求め、排気ファンの回転数を変化させる。また、水分が炉内に供給されるタイミングについては、被処理物の供給流量を予め測定または設定しておくことにより計算できる。   Specifically, the amount of moisture in the object to be processed per unit volume is calculated from the moisture measurement value, the volume when all of the moisture has changed to gas is calculated, and based on the calculation result, The exhaust amount of the exhaust fan for maintaining the pressure in the furnace is obtained, and the rotational speed of the exhaust fan is changed. The timing at which moisture is supplied into the furnace can be calculated by measuring or setting the supply flow rate of the object to be processed in advance.

尚、被処理物内の水分量が変動しないような定常状態である場合にも炉内は常時圧力計によって圧力が監視されており、予め設定された圧力値となるように制御されている。しかし、上記のごとく、例えば被処理物の水分量が大幅に変化した場合には、その被処理物が投入される前に予め排気ファンの回転数を上げて炉内を減圧し、炉内は正圧にならないように調整されるのである。   Even in a steady state in which the amount of moisture in the object to be processed does not vary, the pressure in the furnace is constantly monitored by a pressure gauge and is controlled to have a preset pressure value. However, as described above, for example, when the amount of water in the object to be processed has changed significantly, the number of revolutions of the exhaust fan is increased in advance and the inside of the furnace is depressurized before the object to be processed is charged. It is adjusted so that it does not become positive pressure.

このように、本実施形態の処理装置10によれば、加熱処理炉11の炉内圧力5と、加熱処理炉11に供給される汚染物1の水分測定値4によって排気ファン16の回転数、即ち排ガス3の吸引流量が調整されることとなる。
従って、含水率の高い予期せぬ汚染物1が供給された場合であっても、加熱処理炉11の前段において該汚染物1の含水率が水分計21によって水分測定値4として検知され、予め排ガス3の吸引流量として反映されることとなる。即ち、含水率の高い汚染物1が加熱処理炉11に供給される前の適切な時期に排気ファンの回転数を上げることができ、汚染物1が炉内に供給されて水蒸気が大量に発生したときには、既に排気ファン16によって炉内圧力が事前に十分に低下された状態にあるため、炉内が正圧となることを防止できる。
また、逆に、汚染物1の含水率が大きく低下した場合においても同様であり、極度に含水率の低い汚染物1が加熱処理炉11に供給されて水蒸気の発生量が大幅に減少した場合にも、炉内の急激な圧力低下を防止することができる。
Thus, according to the processing apparatus 10 of the present embodiment, the rotational speed of the exhaust fan 16 is determined by the furnace pressure 5 of the heat treatment furnace 11 and the moisture measurement value 4 of the contaminant 1 supplied to the heat treatment furnace 11. That is, the suction flow rate of the exhaust gas 3 is adjusted.
Accordingly, even when an unexpected contaminant 1 having a high moisture content is supplied, the moisture content of the contaminant 1 is detected as a moisture measurement value 4 by the moisture meter 21 in the previous stage of the heat treatment furnace 11, and This is reflected as the suction flow rate of the exhaust gas 3. That is, the rotational speed of the exhaust fan can be increased at an appropriate time before the contaminant 1 having a high water content is supplied to the heat treatment furnace 11, and the contaminant 1 is supplied into the furnace to generate a large amount of water vapor. In this case, since the pressure inside the furnace has already been sufficiently lowered by the exhaust fan 16, it is possible to prevent the inside of the furnace from becoming a positive pressure.
Conversely, when the moisture content of the pollutant 1 is greatly reduced, the same is true. When the pollutant 1 having an extremely low moisture content is supplied to the heat treatment furnace 11, the amount of water vapor generated is greatly reduced. In addition, a rapid pressure drop in the furnace can be prevented.

さらに、排気ファンの回転数は水分の投入のタイミングに合わせて変更されるため、排気ファンの回転数上昇により炉内が所定の範囲を超えて減圧されることはほとんど無く、炉内に空気が混入するおそれもない。   Furthermore, since the rotation speed of the exhaust fan is changed in accordance with the timing of the addition of moisture, the inside of the furnace is hardly depressurized beyond a predetermined range due to the increase in the rotation speed of the exhaust fan, and air is not contained in the furnace. There is no risk of mixing.

このように、本実施形態に係る汚染物の加熱処理装置によれば、汚染物質に汚染された汚染物の含水率が大幅に変動した場合であっても、該汚染物の加熱処理における圧力を安定化し、汚染物質の漏出を確実に防止することができる。   Thus, according to the contaminant heat treatment apparatus according to the present embodiment, even when the moisture content of the contaminant contaminated with the contaminant varies significantly, the pressure in the contaminant heat treatment is reduced. Stabilize and reliably prevent leakage of contaminants.

また、前記加熱処理炉を還元雰囲気とする場合においても、常時、大きな負圧で運転する必要がなく、加熱処理炉のシール部分から流入する酸素量も最小限に抑えることができるため、安定して還元雰囲気(低酸素状態)を保つことができる。   Further, even when the heat treatment furnace is in a reducing atmosphere, it is not necessary to always operate at a large negative pressure, and the amount of oxygen flowing from the seal portion of the heat treatment furnace can be minimized, so that the heat treatment furnace is stable. Thus, a reducing atmosphere (low oxygen state) can be maintained.

本発明に係る汚染物の処理装置の一実施形態を示した概略フロー図。The schematic flowchart which showed one Embodiment of the processing apparatus of the contaminant which concerns on this invention.

符号の説明Explanation of symbols

1 汚染物
3 排ガス
4 水分測定値
5 圧力測定値
6 排気ファンの回転数
10 廃棄物の処理装置
11 加熱処理炉
12 供給装置
16 排気ファン
21 水分計
22 圧力計
23 制御装置
DESCRIPTION OF SYMBOLS 1 Contaminant 3 Exhaust gas 4 Moisture measurement value 5 Pressure measurement value 6 Exhaust fan rotation speed 10 Waste processing device 11 Heat processing furnace 12 Supply device 16 Exhaust fan 21

Claims (3)

水分を含有した汚染物を加熱処理する加熱処理工程と、該加熱処理工程より生じた排ガスを浄化処理する排ガス処理工程とを備え、前記加熱処理工程から前記排ガス処理工程へと吸引する排ガスの吸引流量を、前記加熱処理工程に供給される前の汚染物の含水率測定値と、前記加熱処理工程において測定された圧力測定値とに基づいて制御することを特徴とする汚染物の加熱処理方法。   A heat treatment process for heat-treating contaminants containing moisture, and an exhaust gas treatment process for purifying the exhaust gas generated from the heat treatment process, and suctioning exhaust gas to be sucked from the heat treatment process to the exhaust gas treatment process Contaminant heat treatment method, characterized in that the flow rate is controlled based on the moisture content measurement value of the contaminant before being supplied to the heat treatment step and the pressure measurement value measured in the heat treatment step. . 前記加熱処理工程の圧力を−0.1〜0kPaとなるように制御することを特徴とする請求項1記載の汚染物の加熱処理方法。   2. The contaminant heat treatment method according to claim 1, wherein the pressure in the heat treatment step is controlled to be −0.1 to 0 kPa. 水分を含有した汚染物を加熱処理する加熱処理炉と、該加熱処理炉より生じた排ガスを浄化処理する排ガス処理装置と、前記加熱処理炉から前記排ガス処理装置へと排ガスを吸引する排気ファンと、前記加熱処理炉に供給される前の汚染物の含水率を測定する水分計と、前記加熱処理炉内の圧力を測定する圧力計とを備え、前記排気ファンは、前記水分計による含水率測定値と前記圧力計による圧力測定値とに基づいて前記排ガス吸引流量を調整しうるように構成されてなることを特徴とする汚染物の加熱処理装置。   A heat treatment furnace for heat-treating contaminants containing moisture, an exhaust gas treatment device for purifying exhaust gas generated from the heat treatment furnace, an exhaust fan for sucking exhaust gas from the heat treatment furnace to the exhaust gas treatment device, A moisture meter for measuring the moisture content of the contaminant before being supplied to the heat treatment furnace, and a pressure gauge for measuring the pressure in the heat treatment furnace, wherein the exhaust fan has a moisture content by the moisture meter. A contaminant heat treatment apparatus characterized in that the exhaust gas suction flow rate can be adjusted based on a measured value and a pressure measured value by the pressure gauge.
JP2005138596A 2005-05-11 2005-05-11 Method and apparatus for heat treatment of contaminated matter Pending JP2006314887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138596A JP2006314887A (en) 2005-05-11 2005-05-11 Method and apparatus for heat treatment of contaminated matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138596A JP2006314887A (en) 2005-05-11 2005-05-11 Method and apparatus for heat treatment of contaminated matter

Publications (1)

Publication Number Publication Date
JP2006314887A true JP2006314887A (en) 2006-11-24

Family

ID=37536019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138596A Pending JP2006314887A (en) 2005-05-11 2005-05-11 Method and apparatus for heat treatment of contaminated matter

Country Status (1)

Country Link
JP (1) JP2006314887A (en)

Similar Documents

Publication Publication Date Title
JP2008272534A (en) Heat treatment method and heat treatment apparatus of waste containing organic halogen compound utilizing psa type nitrogen gas generator
JP6490972B2 (en) Low temperature pyrolysis furnace, low temperature pyrolysis treatment system, and low temperature pyrolysis treatment method
JP2011072896A (en) System for treating gas containing organic solvent
JP2007203290A (en) Method for treating exhaust gas
JP4702715B2 (en) Complex waste incineration treatment system and method
JP2006130216A (en) Method and apparatus for decomposing organic chlorine compound
JP2007181784A (en) Waste treatment apparatus
JP2011016075A (en) Method and apparatus for heating and purifying contaminated soil
CN102553907A (en) Remediation equipment for volatile polluted soil
CN102580994A (en) Remediation equipment for non-volatile organic polluted soil
JP2008272536A (en) Treatment device for solid containing harmful substance such as organic halogen compound
JP2012040479A (en) Wastewater treatment system
KR101660469B1 (en) An Waste Treating Apparatus Containing Mercury and a Mercury Recovery Method Therewith
JP2003225643A (en) Apparatus and method for treating organic contaminant
JP4746798B2 (en) Contaminant purification method and purification device
JP2006314887A (en) Method and apparatus for heat treatment of contaminated matter
JP2013150981A (en) Heat-cleaning apparatus for contaminated soil
JP2000061443A (en) Device for separating and removing harmful material
JP2009066492A (en) System for making contaminated soil harmless
JP2007014919A (en) Exhaust gas treatment device and exhaust gas treatment system
CN109420669A (en) Method for recovering polluted soil containing mercury and dioxin and treatment equipment
JP4734649B2 (en) Decomposition processing apparatus and decomposition processing method of hardly decomposable organic compound
JP2013088401A (en) Waste treatment apparatus and waste treatment method
JP2009066491A (en) System for making contaminated soil harmless
JP3526012B2 (en) Toxic substance separation and removal equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090731