JP2005064090A - Polymer ptc element and its producing process - Google Patents

Polymer ptc element and its producing process Download PDF

Info

Publication number
JP2005064090A
JP2005064090A JP2003289618A JP2003289618A JP2005064090A JP 2005064090 A JP2005064090 A JP 2005064090A JP 2003289618 A JP2003289618 A JP 2003289618A JP 2003289618 A JP2003289618 A JP 2003289618A JP 2005064090 A JP2005064090 A JP 2005064090A
Authority
JP
Japan
Prior art keywords
polymer
polymer ptc
carbon black
ptc element
conductive powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003289618A
Other languages
Japanese (ja)
Inventor
Yuichi Hosokawa
優一 細川
Katsumi Sawada
勝実 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003289618A priority Critical patent/JP2005064090A/en
Publication of JP2005064090A publication Critical patent/JP2005064090A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer PTC element capable of sustaining sufficient reliability for long term use, and to provide its producing process. <P>SOLUTION: Carbon black having conductivity enhanced through heat treatment, at least one kind of carbon black not subjected to heat treatment, and a crystalline polymer as a bonding material are kneaded and molded to produce a sheet-like polymer PTC composition 2. Crosslinked bonding material and an intermediate layer 3 of carbon black are arranged on the opposite sides of the polymer PTC composition 2 and an electrode 4 is fixed thereto. Reliability is enhanced for long term use through action of the intermediate layer 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特定の温度領域に達した際に、急激に抵抗が上昇する正温度特性、いわゆるPTC(Positive Temperature Coefficient)特性を有するPTC素子に関し、特に結晶性高分子に導電性粉末を充填したPTC組成物からなる成形体に、電極を設けた構造の高分子PTC素子及びその製造方法に関するものである。   The present invention relates to a PTC element having a positive temperature characteristic in which resistance rapidly increases when reaching a specific temperature range, that is, a so-called PTC (Positive Temperature Coefficient) characteristic, and in particular, a crystalline polymer is filled with conductive powder. The present invention relates to a polymer PTC element having a structure in which an electrode is provided on a molded body made of a PTC composition, and a method for producing the same.

特定の温度領域において、電気抵抗が急激に増大する正の温度特性を示すPTC素子は、自動的に温度を制御するヒータや、自己復帰型の過電流保護素子などとして多用されている。そして、PTC素子に用いる組成物としては、酸化イットリウム(Y23)を微量添加したチタン酸バリウム(BaTiO3)などのセラミックス系PTC組成物、カーボンブラックなどの導電性粒子を結晶性高分子中に分散した高分子PTC組成物が知られている。 PTC elements exhibiting positive temperature characteristics in which electrical resistance increases rapidly in a specific temperature range are frequently used as heaters that automatically control temperature, self-recovery overcurrent protection elements, and the like. As a composition used for the PTC element, ceramic-based PTC compositions such as barium titanate (BaTiO 3 ) to which a small amount of yttrium oxide (Y 2 O 3 ) is added, conductive particles such as carbon black are used as crystalline polymers. Polymer PTC compositions dispersed therein are known.

セラミックス系PTC組成物を用いたPTC素子では、キュリー点での急激な抵抗値上昇を利用しているが、定常状態における抵抗率が、約〜100Ω・mと高いために、数A程度の比較的大きな電流を流すことができない。このことはセラミック系PTC組成物を用いたPTC素子が、過電流保護素子として利用するのが困難であることを意味している。また、セラミック系PTC組成物は、所望の形状に成形、加工するのに多くの工程を要し、耐衝撃性に劣るという問題がある。   A PTC element using a ceramic PTC composition uses a sudden increase in resistance at the Curie point. However, since the resistivity in a steady state is as high as about 100 Ω · m, a comparison of several A is possible. Large current cannot flow. This means that a PTC element using a ceramic PTC composition is difficult to use as an overcurrent protection element. In addition, the ceramic PTC composition has a problem that many steps are required to form and process into a desired shape, and the impact resistance is poor.

これに対し、高分子PTC組成物を用いた高分子PTC素子では、室温における抵抗率が低いために、過電流保護素子に適していて、しかも耐衝撃性が優れ、成形、加工が容易である。   On the other hand, a polymer PTC element using a polymer PTC composition is suitable for an overcurrent protection element because of its low resistivity at room temperature, has excellent impact resistance, and is easy to mold and process. .

高分子PTC素子において、温度上昇に伴い抵抗率が急増するというスイッチング動作を起こす原理は、結晶性高分子の結晶融点での大きな熱膨張を利用して、室温でネットワークを形成している導電性粒子を切り離すことによるものである。このために、規定値以上の電流により過度に発熱した際に、結晶融点近傍の温度で、抵抗率が急激に上昇し、室温に戻ると、導電性粒子のネットワークが再形成され、抵抗率も低下する。   In a polymer PTC element, the principle of causing a switching operation in which the resistivity rapidly increases as the temperature rises is based on the conductivity that forms a network at room temperature by utilizing the large thermal expansion at the crystalline melting point of the crystalline polymer. This is by separating the particles. For this reason, when the heat is excessively generated by a current exceeding the specified value, the resistivity rapidly increases at a temperature near the crystalline melting point, and when the temperature returns to room temperature, the network of conductive particles is re-formed, and the resistivity is also increased. descend.

そして、高分子PTC素子の一般的な製造方法には、ロールなどを用いて結晶性高分子に導電性粒子を分散させて高分子PTC組成物を得、これを加熱プレスやロールなどでシート成形し、金属箔などからなる電極を圧着した後、所要の形状に打ち抜くという、乾式法がある。   A general method for producing a polymer PTC element is to use a roll or the like to disperse conductive particles in a crystalline polymer to obtain a polymer PTC composition, which is then formed into a sheet with a hot press or a roll. However, there is a dry method in which an electrode made of a metal foil or the like is pressure-bonded and then punched into a required shape.

また、高分子PTC組成物のシートを得る方法として、結晶性高分子の溶液に導電性粉末を分散させたペーストを用いて成膜する湿式法もあり、この場合は、電極を構成する金属箔の上に成膜して、成膜した側を対向させて一体化するという方法もある。   Further, as a method for obtaining a sheet of the polymer PTC composition, there is a wet method in which a film is formed using a paste in which conductive powder is dispersed in a crystalline polymer solution. In this case, a metal foil constituting the electrode is used. There is also a method in which a film is formed on the substrate and the film formation sides are opposed to be integrated.

前記のように、高分子PTC組成物には、結合材として結晶性高分子が用いられ、その代表的なものに、高密度ポリエチレン(以下、HDPEと記す)がある。HDPEは、価格や成形性の面で優れていて、高分子PTC組成物にも多用されているが、HDPEは水分子を透過するため、長期間に亘る使用により、電極と高分子PTC組成物との界面に剥離が生じ、抵抗率を高くしたり、特性を低下させたりするという問題がある。   As described above, in the polymer PTC composition, a crystalline polymer is used as a binder, and a typical one is high density polyethylene (hereinafter referred to as HDPE). HDPE is superior in terms of price and moldability, and is widely used in polymer PTC compositions. However, since HDPE permeates water molecules, the electrode and polymer PTC composition can be used over a long period of time. There is a problem that peeling occurs at the interface with the substrate, and the resistivity is increased or the characteristics are degraded.

このような問題に対処するための技術が、下記特許文献1に開示されている。特許文献1に開示されている技術は、高分子PTC素子表面における、高分子PTC組成物が露出している部分に、水蒸気バリア層を設けるというものである。しかしながら、この方法では、なお、信頼性が不十分である。   A technique for coping with such a problem is disclosed in Patent Document 1 below. The technique disclosed in Patent Document 1 is to provide a water vapor barrier layer on the surface of the polymer PTC element where the polymer PTC composition is exposed. However, this method still has insufficient reliability.

また、導電性粉末として、前記のようにカーボンブラックが用いられているが、導電性粉末の導電性が向上すると、充填量を減少しても高分子PTC組成物としての導電性が低下しないことに繋がるので、この点についても、なお検討の余地がある。   In addition, as described above, carbon black is used as the conductive powder. However, when the conductivity of the conductive powder is improved, the conductivity as the polymer PTC composition does not decrease even when the filling amount is reduced. There is still room for consideration in this regard.

特開2002−064004号公報JP 2002-064004 A

従って、本発明の課題は、結晶性高分子に導電性粉末を充填したPTC組成物からなるシート状成形体に、電極を設けた構造の高分子PTC素子において、簡便な方法で、高分子PTC組成物の導電性と、高分子PTC素子の耐熱性及び耐湿性とを向上することで、長期間使用に際して、十分な信頼性を発現する、高分子PTC素子及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a polymer PTC by a simple method in a polymer PTC element having a structure in which an electrode is provided on a sheet-like molded body made of a PTC composition in which a crystalline polymer is filled with conductive powder. To provide a polymer PTC element that exhibits sufficient reliability when used for a long period of time by improving the electrical conductivity of the composition and the heat resistance and moisture resistance of the polymer PTC element, and a method for producing the same. is there.

本発明は、前記課題の解決のため、高分子PTC組成物と電極の界面の構造と、導電性粉末として用いるカーボンブラックの特性向上を検討した結果、なされたものである。   In order to solve the above-mentioned problems, the present invention has been made as a result of studying the structure of the interface between the polymer PTC composition and the electrode and improving the characteristics of carbon black used as the conductive powder.

即ち、本発明は、5〜50重量%の、熱処理を施したカーボンブラック及び熱処理を施していないカーボンブラックをそれぞれ少なくとも1種類含む第1の導電性粉末と、95〜50重量%の、結晶性高分子を含む第1の結合材からなる高分子PTC組成物のシート状成形体と、該シート状成形体の両面に配置され、50〜90重量%の、熱処理を施していないカーボンブラックを少なくとも1種類含む第2の導電性粉末と、10〜50重量%の、結晶性高分子を含む第2の結合材からなる中間層と、該中間層の外側に対向して配置された一対の電極を有することを特徴とする高分子PTC素子である。   That is, the present invention provides 5 to 50% by weight of a first conductive powder containing at least one kind of heat-treated carbon black and non-heat-treated carbon black, and 95 to 50% by weight of crystallinity. A sheet-like molded body of a polymer PTC composition comprising a first binder containing a polymer and at least 50 to 90% by weight of carbon black not subjected to heat treatment disposed on both sides of the sheet-shaped molded body A second conductive powder containing one type, an intermediate layer made of 10 to 50% by weight of a second binder containing a crystalline polymer, and a pair of electrodes arranged facing the outside of the intermediate layer It is a polymer PTC element characterized by having.

また、本発明は、前記第1の導電性粉末と前記第2の導電性粉末が、平均粒径が5〜300nmであることを特徴とする、前記の高分子PTC素子である。   In addition, the present invention provides the polymer PTC element, wherein the first conductive powder and the second conductive powder have an average particle diameter of 5 to 300 nm.

また、本発明は、前記第1の導電性粉末に含まれるカーボンブラックの少なくとも一部に、500〜1500℃の温度範囲で、2〜20時間、熱処理を施すことを特徴とする、前記の高分子PTC素子の製造方法である。   Further, the present invention is characterized in that at least a part of the carbon black contained in the first conductive powder is heat-treated at a temperature range of 500 to 1500 ° C. for 2 to 20 hours. It is a manufacturing method of a molecular PTC element.

また、本発明は、前記第2の結合材に架橋処理を施すことを特徴とする、前記の高分子PTC素子の製造方法である。   The present invention also provides the method for producing the polymer PTC element, wherein the second binding material is subjected to a crosslinking treatment.

また、本発明は、前記架橋処理が、前記第2の結合材に架橋剤を添加し、85〜200℃の温度範囲で、1〜240時間熱処理を施して行うことを特徴とする、前記の高分子PTC素子の製造方法である。   Further, the present invention is characterized in that the crosslinking treatment is performed by adding a crosslinking agent to the second binder and performing a heat treatment at a temperature range of 85 to 200 ° C. for 1 to 240 hours. It is a manufacturing method of a polymer PTC element.

カーボンブラックのような炭素材料の導電性は、π電子に由来する。また、カーボンブラックは、製法によって、チャネルブラック、ファーネスブラック、ランプブラック、サーマルブラックに分類され、その中には、導電性の発現に寄与しない炭素−炭素単結合や水酸基など、水分、その他の低分子量の不純物が含まれる。従って、熱処理により、低分子量成分の除去や、脱水素反応の進行によるπ電子の増加が起こり、導電性を向上し得る。   The conductivity of a carbon material such as carbon black is derived from π electrons. Carbon black is classified into channel black, furnace black, lamp black, and thermal black depending on the production method. Among them, carbon black, carbon single bond and hydroxyl groups that do not contribute to the development of conductivity, moisture, and other low Contains molecular weight impurities. Accordingly, the heat treatment can remove low molecular weight components and increase π electrons due to the progress of the dehydrogenation reaction, thereby improving the conductivity.

前記の理由により、本発明においては、導電性粉末として使用するカーボンブラックに熱処置を施すが、熱処理温度を500〜1500℃の範囲、熱処理の時間を2〜20時間としたのは、上記以下の温度と時間では、熱処理の効果が不十分であり、上記以上の温度と時間では、上記の温度範囲及び時間範囲で熱処理した場合に比較して、効果の差が表れず、処理に要するコストが増加するからである。   For the above reasons, in the present invention, the carbon black used as the conductive powder is subjected to heat treatment. The heat treatment temperature is in the range of 500 to 1500 ° C. and the heat treatment time is 2 to 20 hours. The temperature and time of the heat treatment are insufficient, and the above temperature and time do not show a difference in effect compared to the heat treatment in the above temperature range and time range, and the cost required for the treatment. This is because of the increase.

また、水分を透過する高分子化合物に架橋処理を施すと、水分の透過量が減少することがあり、本発明においては、これを利用するために、高分子PTC組成物における電極との界面の近傍の部分に架橋処理を施して中間層を形成する。高分子材料の架橋方法としては、電子線などの放射線を照射する方法や、有機過酸化物のような架橋剤を加えて加熱する方法などがあるが、大規模な設備を必要としないこと、成形体における一定部分のみの架橋処理に適していることから、本発明の場合は、後者が適している。   In addition, when the polymer compound that permeates moisture is subjected to a crosslinking treatment, the amount of moisture permeation may be reduced. In the present invention, in order to utilize this, the interface of the polymer PTC composition with the electrode is reduced. An intermediate layer is formed by subjecting a nearby portion to a crosslinking treatment. Examples of the crosslinking method of the polymer material include a method of irradiating radiation such as an electron beam and a method of heating by adding a crosslinking agent such as an organic peroxide, but does not require a large-scale facility. In the case of the present invention, the latter is suitable because it is suitable for the crosslinking treatment of only a certain part of the molded body.

その場合、架橋処理の条件は、用いる架橋剤の分解速度により適正に設定する必要があり、本発明においては、温度を85〜200℃の範囲に、時間を1〜240時間に設定する。その理由は、一般的に用いられる架橋剤の分解速度から、上記以下の温度と時間では、架橋が不十分であり、上記以上の温度と時間では、高分子化合物自体の熱分解など反応の影響が顕著になり、高分子PTC素子としての特性が劣化するからである。   In that case, it is necessary to appropriately set the conditions for the crosslinking treatment depending on the decomposition rate of the crosslinking agent used. In the present invention, the temperature is set in the range of 85 to 200 ° C., and the time is set in the range of 1 to 240 hours. The reason for this is that, from the decomposition rate of a commonly used crosslinking agent, crosslinking is insufficient at the following temperature and time, and at the above temperature and time, the influence of the reaction such as thermal decomposition of the polymer compound itself. This is because the characteristics of the polymer PTC element deteriorate.

次に、本発明を実施するための最良の形態について説明する。   Next, the best mode for carrying out the present invention will be described.

本発明では、前記のように導電性粉末として、熱処理を施したカーボンブラックを用いる。熱処理条件の好ましい範囲は、前記のように、温度が500〜1500℃であり、時間が2〜20時間である。当然のことながら、処理温度が高いほど処理時間は短くて済み、これを検証するために、400℃、500℃、1000℃、1500℃の温度で、2〜20時間熱処理を施した場合の、カーボンブラックの抵抗の変化を求めた。なお、用いたカーボンは、平均粒径が、300nmのサーマルブラックと平均粒径が10nmのチャネルブラックを重量比で50%ずつ混合したものである。   In the present invention, as described above, heat-treated carbon black is used as the conductive powder. As described above, the preferable range of the heat treatment condition is that the temperature is 500 to 1500 ° C. and the time is 2 to 20 hours. As a matter of course, the higher the processing temperature, the shorter the processing time, and in order to verify this, when heat treatment was performed at temperatures of 400 ° C., 500 ° C., 1000 ° C., 1500 ° C. for 2-20 hours, The change in resistance of carbon black was determined. The carbon used was a mixture of thermal black having an average particle diameter of 300 nm and channel black having an average particle diameter of 10 nm by 50% by weight.

実際の抵抗の測定は、カーボンブラック40重量%と、HDPE60重量%の組成の高分子PTC組成物を調製し、厚さ1mmにシート成形後、5mm×10mmの大きさに切断して電極を貼り付けた試料を用いて行い、固有抵抗を算出した。図2は、この結果をまとめたもので、熱処理時間と固有抵抗の関係を示したグラフである。   The actual resistance was measured by preparing a polymer PTC composition having a composition of 40% by weight of carbon black and 60% by weight of HDPE, forming a sheet to a thickness of 1 mm, cutting it to a size of 5 mm × 10 mm, and attaching an electrode. The specific resistance was calculated using the attached sample. FIG. 2 summarizes the results and is a graph showing the relationship between the heat treatment time and the specific resistance.

図2に示した結果によると、処理温度が500℃以上の条件では、処理時間が2時間以上になると、急激な抵抗の変化が認められ、15時間以上経過すると、抵抗に顕著な低下が見られなくことが分かる。これに対し、400℃の条件では、処理時間が20時間に達したところでも、抵抗の低下率は約5%であり、熱処理の効果が殆ど見られないことが分かる。   According to the results shown in FIG. 2, when the processing temperature is 500 ° C. or higher, a sudden change in resistance is observed when the processing time is 2 hours or longer, and a significant decrease in resistance is observed after 15 hours or longer. I can't understand. On the other hand, under the condition of 400 ° C., it can be seen that even when the treatment time reaches 20 hours, the rate of decrease in resistance is about 5%, and the effect of heat treatment is hardly seen.

前記の結果から、熱処理の条件は温度について言えば、500℃以上が好ましい。しかし、特にデータを示さないが、1500℃の温度では、平均粒径の変化など、性状の変化が顕在化し好ましくない。従って温度の好ましい範囲は、500〜1500℃である。   From the above results, the heat treatment condition is preferably 500 ° C. or higher in terms of temperature. However, although no particular data is shown, a change in properties such as a change in average particle diameter becomes obvious at a temperature of 1500 ° C., which is not preferable. Therefore, the preferable range of temperature is 500-1500 degreeC.

また、時間について言えば、前記のように、2時間以上で熱処理の効果が明確に表れ、15時間以上経過しても、効果の増加が望めないことから、好ましい範囲は2〜20時間となる。   In terms of time, as described above, the effect of the heat treatment clearly appears in 2 hours or more, and even if 15 hours or more have elapsed, an increase in the effect cannot be expected, so the preferred range is 2 to 20 hours. .

また、本発明で、導電性粉末として用いるカーボンブラックの平均粒径は、5〜300nmである。カーボンブラックの平均粒径の好ましい範囲について、検証するために、1000℃で10時間熱処理したチャネルブラックを用いた高分子PTC組成物を調製して、平均粒径と固有抵抗の関係を求めた。測定には、この場合も、カーボンブラックとHDPEを重量比で40/60で混合した高分子PTC組成物を、厚さ1mmにシート成形後5mm×10mmの大きさに切断して電極を貼り付けた試料を用いた。   In the present invention, the average particle size of carbon black used as the conductive powder is 5 to 300 nm. In order to verify the preferable range of the average particle diameter of carbon black, a polymer PTC composition using channel black heat-treated at 1000 ° C. for 10 hours was prepared, and the relationship between the average particle diameter and specific resistance was determined. In this case, too, a polymer PTC composition in which carbon black and HDPE are mixed at a weight ratio of 40/60 is cut into a thickness of 1 mm, molded into a sheet of 5 mm × 10 mm, and an electrode is attached. Samples were used.

図3は、その結果をまとめたもので、カーボンブラックの平均粒径と固有抵抗の関係を示すグラフである。このグラフから明らかなように、カーボンブラックの平均粒径が前記範囲以外の領域では、固有抵抗に著しい上昇が見られ、高分子PTC素子として、実用に堪えないものになってしまう。従ってカーボンブラック粉末の平均粒径は、5〜20nmにする必要がある。   FIG. 3 summarizes the results and is a graph showing the relationship between the average particle diameter of carbon black and the specific resistance. As is apparent from this graph, when the average particle size of the carbon black is outside the above range, the specific resistance is remarkably increased, which makes it unpractical as a polymer PTC element. Therefore, the average particle size of the carbon black powder needs to be 5 to 20 nm.

また、本発明においては、中間層を構成する第2の結合材に対し、架橋剤を用いて化学的に架橋処理を施す。ここでは、架橋剤として一般的な、有機過酸化物を用いるのが好ましい。有機過酸化物としては、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイドなどが挙げられる。   In the present invention, the second binder constituting the intermediate layer is chemically cross-linked using a cross-linking agent. Here, it is preferable to use a general organic peroxide as a crosslinking agent. Examples of the organic peroxide include hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide and the like.

ここで結合材に用いる主な高分子化合物は、HDPEであり、混練や成形を行う温度が120〜140℃であることを考慮すると、この温度範囲で適度な分解速度を有する架橋剤が望ましく、この温度範囲での半減期が10時間前後となる架橋剤の選択が望ましい。このような条件に合致する過酸化物は、ジアルキルパーオキサイドであり、特にジクミルパーオキサイドなどが好適である   Here, the main polymer compound used for the binder is HDPE, and considering that the temperature for kneading and molding is 120 to 140 ° C., a crosslinking agent having an appropriate decomposition rate in this temperature range is desirable, It is desirable to select a cross-linking agent that has a half-life of about 10 hours in this temperature range. A peroxide that meets such conditions is a dialkyl peroxide, particularly dicumyl peroxide.

なお、混練温度や成形温度がHDPEよりも高い高分子化合物であれば、半減期が10時間となる温度が140℃以上の領域にある架橋剤を用いればよいし、その逆の場合は、半減期が10時間となる温度が120℃以下の領域にある架橋剤を用いればよい。つまり、結合材として用いる高分子化合物によって、適宜選択することができる。   If the kneading temperature and molding temperature are higher than that of HDPE, a crosslinking agent having a half-life of 10 hours may be used in the region of 140 ° C. or higher, and vice versa. What is necessary is just to use the crosslinking agent in the area | region whose temperature which becomes a period for 10 hours is 120 degrees C or less. That is, it can be appropriately selected depending on the polymer compound used as the binder.

次に、具体的な実施例に基づいて、本発明をさらに詳しく説明する。   Next, the present invention will be described in more detail based on specific examples.

まず、ファーネスブラックとサーマルブラックを混合して、平均粒径を85nmとし、1100℃で12時間の熱処理を施し、高分子PTC組成物用の導電性粉末を調製した。この導電性粉末とHDPEを重量比で40/60となるように秤量、混練し、高分子PTC組成物を得た。   First, furnace black and thermal black were mixed to have an average particle size of 85 nm and heat-treated at 1100 ° C. for 12 hours to prepare a conductive powder for a polymer PTC composition. The conductive powder and HDPE were weighed and kneaded so as to have a weight ratio of 40/60 to obtain a polymer PTC composition.

次に、高分子PTC組成物に用いたものと導電性粉末と、HPDEを重量比で60/40となるように秤量して混合し、さらに導電性粉末とHDPEの混合物100重量部に対して、1.6重量部のジクミルパーオキサイドを加えた。なお、ここで用いた導電性粉末には熱処理を施さなかった。この混合物を、ロールを用いて、130℃で、15分間混練し、中間層用の組成物を得た。   Next, the polymer PTC composition, the conductive powder, and HPDE were weighed and mixed to a weight ratio of 60/40, and further, 100 parts by weight of the mixture of the conductive powder and HDPE. 1.6 parts by weight of dicumyl peroxide was added. Note that the conductive powder used here was not heat-treated. This mixture was kneaded at 130 ° C. for 15 minutes using a roll to obtain a composition for an intermediate layer.

次に、高分子PTC組成物を予備成形し、厚さが850μmのシートとした。また、中間層用の組成物を予備成形し、厚さが110μmのシートとした。そして、高分子PTC組成物の予備成形シートの両面に、中間層用の組成物を配置し、さらに中間層の外側の両面に、厚さが100μmの銅箔からなる電極を配置し、160℃、50分間の条件で、熱プレスを行った。この際、プレス後の高分子PTC素子の厚さを調整するため、厚さが120μmのスペーサーを介在させた。   Next, the polymer PTC composition was preformed to obtain a sheet having a thickness of 850 μm. Moreover, the composition for intermediate | middle layers was preformed and it was set as the sheet | seat with a thickness of 110 micrometers. And the composition for intermediate | middle layer is arrange | positioned on both surfaces of the preformed sheet | seat of a polymeric PTC composition, Furthermore, the electrode which consists of copper foil with a thickness of 100 micrometers is arrange | positioned on both surfaces of the outer side of an intermediate | middle layer, 160 degreeC The hot pressing was performed under the condition of 50 minutes. At this time, in order to adjust the thickness of the polymer PTC element after pressing, a spacer having a thickness of 120 μm was interposed.

その後、高分子PTC組成物、中間層、電極が一体化したシートを、5mm×10mmの大きさに切断し、リード線を取り付けて、実施例の高分子PTC素子を得た。さらに、この高分子PTC素子を120℃に温度を維持した恒温槽で7日間保持して、架橋反応を促進させた。   Then, the sheet | seat with which the polymer PTC composition, the intermediate | middle layer, and the electrode were integrated was cut | disconnected to the magnitude | size of 5 mm x 10 mm, the lead wire was attached, and the polymer PTC element of the Example was obtained. Further, this polymer PTC element was held in a thermostatic bath maintained at 120 ° C. for 7 days to promote the crosslinking reaction.

図1は、本実施例の高分子PTC素子1の断面図である。ただしリード線は省略してある。図1において、2は高分子PTC組成物、3は中間層、4は電極である。また、比較に供するために、図1における中間層3を高分子PTC組成物2で置換した、比較例の高分子PTC素子も調製した。   FIG. 1 is a cross-sectional view of a polymer PTC element 1 of this example. However, the lead wire is omitted. In FIG. 1, 2 is a polymer PTC composition, 3 is an intermediate layer, and 4 is an electrode. For comparison, a polymer PTC element of a comparative example in which the intermediate layer 3 in FIG. 1 was replaced with the polymer PTC composition 2 was also prepared.

これらの高分子PTC素子を、温度が85℃、相対湿度が85%の恒温恒湿槽内に、100時間保持し、高温高湿試験を行った。その後、実施例と比較例の高分子PTC素子について、抵抗の温度依存性を評価した。図4は、実施例と比較例の高分子PTC素子における、抵抗の温度依存性を示したグラフである。図4において、実線は実施例の結果、破線は比較例の結果である。   These polymer PTC elements were kept in a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 85% for 100 hours to perform a high temperature and high humidity test. Then, the temperature dependence of resistance was evaluated about the polymer PTC element of the Example and the comparative example. FIG. 4 is a graph showing the temperature dependence of resistance in the polymer PTC elements of Examples and Comparative Examples. In FIG. 4, the solid line is the result of the example, and the broken line is the result of the comparative example.

図4に示した結果において、実施例と比較例を対照すると、比較例の方は、温度上昇に伴う抵抗の立ち上がりが、実施例よりも急峻であるが、110℃以上の高温領域、即ち、スイッチング動作後の抵抗に上下が見られ、安定性を欠く状態が見られる。これに対して実施例はスイッチング動作後の抵抗が極めて安定していて、高分子PTC素子として、優れた特性を発現している。   In the results shown in FIG. 4, when the example and the comparative example are contrasted, in the comparative example, the rise of the resistance accompanying the temperature rise is steeper than the example, but the high temperature region of 110 ° C. or higher, that is, The resistance after the switching operation is seen to be up and down, and a state of lack of stability is seen. On the other hand, the example has extremely stable resistance after the switching operation, and exhibits excellent characteristics as a polymer PTC element.

以上に、説明したように、本発明によれば、電極と高分子PTC組成物との間に、架橋処理を施した中間層を有する高分子PTC素子が得られ、長期間の使用における高分子PTC素子の信頼性を向上することができる。これによって、高分子PTC素子のさらなる用途展開が可能となる。   As described above, according to the present invention, a polymer PTC element having an intermediate layer subjected to a crosslinking treatment between the electrode and the polymer PTC composition can be obtained, and the polymer for long-term use can be obtained. The reliability of the PTC element can be improved. Thereby, further application development of the polymer PTC element becomes possible.

本実施例の高分子PTC素子の断面図。Sectional drawing of the polymer PTC element of a present Example. 熱処理時間と固有抵抗の関係を示したグラフ。The graph which showed the relationship between heat processing time and a specific resistance. カーボンブラックの平均粒径と固有抵抗の関係を示すグラフ。The graph which shows the relationship between the average particle diameter of carbon black, and a specific resistance. 実施例と比較例の高分子PTC素子における抵抗の温度依存性を示すグラフ。The graph which shows the temperature dependence of resistance in the polymer PTC element of an Example and a comparative example.

符号の説明Explanation of symbols

1 高分子PTC素子
2 高分子PTC組成物
3 中間層
4 電極
1 Polymer PTC Device 2 Polymer PTC Composition 3 Intermediate Layer 4 Electrode

Claims (5)

5〜50重量%の、熱処理を施したカーボンブラック及び熱処理を施していないカーボンブラックをそれぞれ少なくとも1種類含む第1の導電性粉末と、95〜50重量%の、結晶性高分子を含む第1の結合材からなる高分子PTC組成物のシート状成形体と、該シート状成形体の両面に配置され、50〜90重量%の、熱処理を施していないカーボンブラックを少なくとも1種類含む第2の導電性粉末と、10〜50重量%の、結晶性高分子を含む第2の結合材からなる中間層と、該中間層の外側に対向して配置された一対の電極を有することを特徴とする高分子PTC素子。 5 to 50% by weight of a first conductive powder containing at least one kind of heat-treated carbon black and non-heat-treated carbon black, and 95 to 50% by weight of a first polymer containing a crystalline polymer A sheet-like molded body of a polymer PTC composition comprising the above-mentioned binder, and a second one containing at least one carbon black of 50 to 90% by weight that has not been subjected to heat treatment, disposed on both sides of the sheet-shaped molded body It has a conductive powder, an intermediate layer made of a second binder containing 10 to 50% by weight of a crystalline polymer, and a pair of electrodes arranged to face the outside of the intermediate layer. Polymer PTC element. 前記第1の導電性粉末と前記第2の導電性粉末は、平均粒径が5〜300nmであることを特徴とする、請求項1に記載の高分子PTC素子。 2. The polymer PTC device according to claim 1, wherein the first conductive powder and the second conductive powder have an average particle diameter of 5 to 300 nm. 前記第1の導電性粉末に含まれるカーボンブラックの少なくとも一部に、500〜1500℃の温度範囲で、2〜20時間、熱処理を施すことを特徴とする、請求項1または請求項2に記載の高分子PTC素子の製造方法。 3. The heat treatment is performed on at least a part of the carbon black contained in the first conductive powder at a temperature range of 500 to 1500 ° C. for 2 to 20 hours. 4. Manufacturing method of polymer PTC element. 前記第2の結合材に架橋処理を施すことを特徴とする、請求項1または請求項2に記載の高分子PTC素子の製造方法。 The method for producing a polymer PTC element according to claim 1, wherein the second binding material is subjected to a crosslinking treatment. 前記架橋処理は、前記第2の結合材に架橋剤を添加し、85〜200℃の温度範囲で、1〜240時間熱処理を施して行うことを特徴とする、請求項4に記載の高分子PTC素子の製造方法。 5. The polymer according to claim 4, wherein the crosslinking treatment is performed by adding a crosslinking agent to the second binder and performing a heat treatment in a temperature range of 85 to 200 ° C. for 1 to 240 hours. A method for manufacturing a PTC element.
JP2003289618A 2003-08-08 2003-08-08 Polymer ptc element and its producing process Pending JP2005064090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289618A JP2005064090A (en) 2003-08-08 2003-08-08 Polymer ptc element and its producing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289618A JP2005064090A (en) 2003-08-08 2003-08-08 Polymer ptc element and its producing process

Publications (1)

Publication Number Publication Date
JP2005064090A true JP2005064090A (en) 2005-03-10

Family

ID=34367879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289618A Pending JP2005064090A (en) 2003-08-08 2003-08-08 Polymer ptc element and its producing process

Country Status (1)

Country Link
JP (1) JP2005064090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507247A (en) * 2006-10-17 2010-03-04 コンフラックス・アーベー Heating element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507247A (en) * 2006-10-17 2010-03-04 コンフラックス・アーベー Heating element
US8367986B2 (en) 2006-10-17 2013-02-05 Conflux Ab Heating element
KR101414200B1 (en) 2006-10-17 2014-07-18 콘플룩스 에이비 Heating element

Similar Documents

Publication Publication Date Title
RU2344574C2 (en) Carbon flexible heating structure
GB1561355A (en) Voltage stable positive temperature coefficient of resistance compositions
CN103797548A (en) Macromolecule-based conductive composite material and ptc element
JPH0819174A (en) Protective circuit with ptc device
JPH0777161B2 (en) PTC composition, method for producing the same and PTC element
JP2000188206A (en) Polymer ptc composition and ptc device
US4318881A (en) Method for annealing PTC compositions
CN102522173B (en) Resistance positive temperature degree effect conducing composite material and over-current protecting element
JP2009194168A (en) Thermistor, and manufacturing method thereof
JP4247208B2 (en) Organic polymer resistor cross-linked product, thermistor element, thermistor element, and thermistor element manufacturing method
JP2005064090A (en) Polymer ptc element and its producing process
KR100767058B1 (en) Manufacturing method of ptc polymer sheet-electrode assembly
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
CN113826174A (en) PPTC compositions and devices with low thermal deration and low process jump
KR100453681B1 (en) Method for preparing conductive polymer for overcurrent protection
JP3957580B2 (en) Self-temperature control type surface heater
TWI842778B (en) Pptc composition and device having low thermal derating and low process jump
JPH10223406A (en) Ptc composition and ptc element employing it
JP4170980B2 (en) POLYMER PTC ELEMENT AND POLYMER PTC ELEMENT
JPH0636859A (en) Manufacture of ptc heating element
JP2531277B2 (en) Self temperature control heater
KR100679742B1 (en) Polymer composition having ptc-characteristics and ptc polymer thermistor prepared thereof
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JP2002134303A (en) Conductive polymer, its manufacturing method, overcurrent protection device and its manufacturing method
KR100341115B1 (en) Controlling method ptc characteristic of ptc composition using silane crosslinking method