JPH0636859A - Manufacture of ptc heating element - Google Patents

Manufacture of ptc heating element

Info

Publication number
JPH0636859A
JPH0636859A JP18711892A JP18711892A JPH0636859A JP H0636859 A JPH0636859 A JP H0636859A JP 18711892 A JP18711892 A JP 18711892A JP 18711892 A JP18711892 A JP 18711892A JP H0636859 A JPH0636859 A JP H0636859A
Authority
JP
Japan
Prior art keywords
polymer
heating element
melting point
ptc heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18711892A
Other languages
Japanese (ja)
Inventor
Hiroko Morita
裕子 森田
Shinobu Ikeno
忍 池野
Naohito Fukuya
直仁 福家
Masao Sumita
雅夫 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18711892A priority Critical patent/JPH0636859A/en
Publication of JPH0636859A publication Critical patent/JPH0636859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a PTC heating element in which the reduction in resistance value is minimized even if it is allowed to stand at a high temperature for a long time, and the danger of short-circuit is thus minimized. CONSTITUTION:A PTC heating element is manufactured by use of a molding material obtained by mutually kneading a first crystalline polymer, a second polymer which is never perfectly compatible with the first polymer and has a melting point or thermal deforming temperature higher than the melting point of the first polymer, and a conductive particle. After forming a molded product, it is subjected to electron beam cross-linking treatment and successively to thermal treatment at a temperature which is the melting point of the first polymer or more and lower than the melting point or thermal deforming temperature of the second polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱体の製法、特に正
の抵抗温度係数を有するPTC(Positive T
emperature Coefficient)発熱
体の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heating element, and in particular, a PTC (Positive T) having a positive temperature coefficient of resistance.
The present invention relates to a method for manufacturing an heating element.

【0002】[0002]

【従来の技術】通電により発熱する発熱体の一つに、温
度の上昇に伴い抵抗値が増加する(すなわち正の抵抗温
度係数を有する)PTC発熱体がある。このPTC発熱
体を利用した電気ヒータは温度が上昇すると抵抗値が上
がり、電流が減少し、発熱量が抑えられて一方的な温度
上昇が防止されるという自己温度制御機能が自然と備わ
っているため、有用で安全なヒータとして知られてい
る。このようなPTC発熱体を製造するための材料とし
て結晶性ポリマーに導電性粒子を分散させてなる導電性
粒子分散結晶性ポリマーが知られている。この結晶性ポ
リマーとしては、ポリエチレン、エチレン−酢酸ビニル
共重合体、アイオノマー、ポリフッ化ビニリデン等が例
示され、導電性粒子としては、カーボンブラック微粉末
やグラファイト微粉末等が例示される。
2. Description of the Related Art One of the heating elements that generate heat when energized is a PTC heating element whose resistance value increases with increasing temperature (that is, has a positive temperature coefficient of resistance). The electric heater using the PTC heating element naturally has a self-temperature control function that the resistance value increases as the temperature rises, the current decreases, the heat generation amount is suppressed, and the one-way temperature rise is prevented. Therefore, it is known as a useful and safe heater. As a material for manufacturing such a PTC heating element, a conductive particle-dispersed crystalline polymer obtained by dispersing conductive particles in a crystalline polymer is known. Examples of the crystalline polymer include polyethylene, ethylene-vinyl acetate copolymer, ionomer, polyvinylidene fluoride and the like, and examples of the conductive particles include carbon black fine powder and graphite fine powder.

【0003】この導電性粒子分散結晶性ポリマーがPT
C特性を発揮する理由は以下の通りである。導電性粒子
分散結晶性ポリマーの温度が、その結晶性ポリマーの融
点へ上昇していくと結晶の融解に伴って大きな体積増加
が生じる。この体積増加は分散した導電性粒子同士の接
触で生成された導電鎖の切断や導電性粒子間の間隔の拡
大を引き起こす。これら導電鎖の切断や導電性粒子間の
間隔の拡大は導電性粒子による導電作用の低下を招くの
で、その結果、抵抗値が急増するというわけである。
This conductive particle-dispersed crystalline polymer is PT
The reason why the C characteristic is exhibited is as follows. When the temperature of the conductive particle-dispersed crystalline polymer rises to the melting point of the crystalline polymer, a large volume increase occurs as the crystals melt. This increase in volume causes breakage of the conductive chains generated by the contact between the dispersed conductive particles and expansion of the spacing between the conductive particles. The cutting of the conductive chains and the expansion of the spacing between the conductive particles cause a decrease in the conductive action of the conductive particles, resulting in a sharp increase in the resistance value.

【0004】しかしながら、上記の導電性粒子分散結晶
性ポリマーには電導度(抵抗値)の経時変化が大きく、
電導度が初期の値からずれていくという問題点があっ
た。そこで、本発明者等はこの問題点を解決する手段と
して、特願平3−310804号により、結晶性の第1
のポリマーと、この第1のポリマーとは完全には相溶し
ない、融点又は熱変形温度が第1のポリマーの融点より
高い第2のポリマーと導電性粒子とを混練してなる成形
材料を用いてPTC発熱体を製造する方法において、成
形品とした後、第1のポリマーの融点以上であって、第
2のポリマーの融点又は熱変形温度以下の温度で熱処理
することを特徴とするPTC発熱体の製法を提案してい
る。
However, the above-mentioned conductive particle-dispersed crystalline polymer has a large change in conductivity (resistance value) with time,
There was a problem that the electric conductivity deviated from the initial value. Therefore, as a means for solving this problem, the inventors of the present invention disclosed in Japanese Patent Application No. 3-310804 the first crystallinity
And a second polymer that is not completely compatible with the first polymer and has a melting point or a heat distortion temperature higher than the melting point of the first polymer and a conductive material. In the method for producing a PTC heating element according to claim 1, after being formed into a molded product, heat treatment is performed at a temperature not lower than the melting point of the first polymer and not higher than the melting point or thermal deformation temperature of the second polymer. Proposing a body manufacturing method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
製法によるPTC発熱体では、第1のポリマーの融点以
上の温度に長時間放置すると抵抗値が低下し、そのため
にショート(短絡)する危険があり、PTC発熱体の安
全性が十分でないという問題があった。
However, in the PTC heating element produced by the above-mentioned manufacturing method, if the PTC heating element is left at a temperature higher than the melting point of the first polymer for a long time, the resistance value is lowered, and there is a danger of short circuit (short circuit). However, there is a problem that the safety of the PTC heating element is not sufficient.

【0006】上記の事情に鑑み、本発明は第1のポリマ
ーの融点以上の温度に長時間放置しても抵抗値の低下が
少なく、従ってショート(短絡)する危険の少ないPT
C発熱体の製法を提供することを目的とする。
In view of the above-mentioned circumstances, the present invention has a low resistance value reduction even if it is left at a temperature above the melting point of the first polymer for a long time, and therefore there is little risk of short circuit.
It is intended to provide a method for producing a C heating element.

【0007】[0007]

【課題を解決するための手段】本発明は、結晶性の第1
のポリマーと、この第1のポリマーとは完全には相溶し
ない、融点又は熱変形温度が第1のポリマーの融点より
高い第2のポリマーと導電性粒子とを混練してなる成形
材料を用いてPTC発熱体を製造する方法において、成
形品とした後、電子線架橋処理を施し、次いで第1のポ
リマーの融点以上であって、第2のポリマーの融点又は
熱変形温度以下の温度で熱処理することを特徴とするP
TC発熱体の製法である。
SUMMARY OF THE INVENTION The present invention is a crystalline first
And a second polymer that is not completely compatible with the first polymer and has a melting point or a heat distortion temperature higher than the melting point of the first polymer and a conductive material. In the method for producing a PTC heating element by using a molded article, a molded article is subjected to electron beam cross-linking treatment, and then heat-treated at a temperature not lower than the melting point of the first polymer and not higher than the melting point or heat distortion temperature of the second polymer. P which is characterized by
This is a method of manufacturing a TC heating element.

【0008】ここで、本発明に到った経過を説明する。
導電性粒子分散結晶性ポリマーでは電導度(抵抗値)の
経時変化が大きく、電導度が初期の値からずれていくと
いう問題点があり、本発明者等は、この問題を解決する
手段として、結晶性の第1のポリマーと、この第1のポ
リマーとは完全には相溶しない、融点又は熱変形温度が
第1のポリマーの融点より高い第2のポリマーと導電性
粒子とを含有するPTC発熱体成形材料を用いることが
有効なことを見出し、特願平3−88881号として出
願している。この手段を用いて得られるPTC発熱体
は、第1のポリマーと第2のポリマーとの溶融粘度をマ
ッチングさせることにより微細な相互連続構造が実現
し、また、第1のポリマーと第2のポリマーとの組合せ
と配合量から第1のポリマーの領域に導電性粒子が偏在
するアロイ材を構成しているものであり、導電性粒子が
第1のポリマーの領域に偏在し、且つ、第1のポリマー
の領域が耐熱性の高い第2のポリマーで隔離されている
ので、導電性粒子の移動が制限され、電導度が安定して
いるPTC発熱体となっている。さらに電導度の経時変
化を小さくする手段として、前記したように、特願平3
−310804号により、結晶性の第1のポリマーと、
この第1のポリマーとは完全には相溶しない、融点又は
熱変形温度が第1のポリマーの融点より高い第2のポリ
マーと導電性粒子とを混練してなる成形材料を用いてP
TC発熱体を製造する方法において、成形品とした後、
第1のポリマーの融点以上であって、第2のポリマーの
融点又は熱変形温度以下の温度で熱処理することを特徴
とするPTC発熱体の製法を提案している。そして、本
発明は上記の一連の研究を更に進めた結果到達したもの
である。
Now, the process of the present invention will be described.
In the conductive particle-dispersed crystalline polymer, there is a problem that the electrical conductivity (resistance value) changes greatly with time, and the electrical conductivity deviates from the initial value.The present inventors, as a means for solving this problem, A PTC containing a crystalline first polymer, a second polymer which is not completely compatible with the first polymer, and a second polymer having a melting point or a heat distortion temperature higher than that of the first polymer and conductive particles. It was found that it is effective to use a heating element molding material, and the application is filed as Japanese Patent Application No. 3-88881. The PTC heating element obtained using this means realizes a fine mutual continuous structure by matching the melt viscosities of the first polymer and the second polymer, and the first polymer and the second polymer. An alloy material in which conductive particles are unevenly distributed in the region of the first polymer, and the conductive particles are unevenly distributed in the region of the first polymer, and Since the polymer region is isolated by the second polymer having high heat resistance, the movement of the conductive particles is limited, and the PTC heating element has a stable electric conductivity. Further, as a means for reducing the change in conductivity over time, as described above, Japanese Patent Application No.
-310804, a crystalline first polymer;
Using a molding material obtained by kneading a conductive polymer and a second polymer that is not completely compatible with the first polymer and has a melting point or a heat distortion temperature higher than the melting point of the first polymer, P
In the method for producing a TC heating element, after forming a molded article,
It proposes a method for producing a PTC heating element, which is characterized in that heat treatment is performed at a temperature not lower than the melting point of the first polymer and not higher than the melting point or heat distortion temperature of the second polymer. The present invention has been reached as a result of further progress of the above series of studies.

【0009】なお、本発明において導電性粒子が第1の
ポリマーの領域に偏在するようになるのは、第1のポリ
マー、第2のポリマー及び導電性粒子の表面エネルギー
の差が主因であり、導電性粒子と第1のポリマーの表面
エネルギーの差が導電性粒子と第2のポリマーの表面エ
ネルギーの差よりも小さいことがドライビングフォース
となって導電性粒子が第1のポリマーの領域に混練中に
移行するのである。原料の表面張力を例示すれば表1の
ようになる。すなわち、例えば第1のポリマーにポリエ
チレン、第2のポリマーにポリプロピレン、導電性粒子
にカーボンブラックを用いた場合、表1の表面張力の数
値からカーボンブラックは表面張力差の小さいポリエチ
レン相に混練中に移行するのである。
In the present invention, the conductive particles are unevenly distributed in the region of the first polymer mainly because of the difference in surface energy between the first polymer, the second polymer and the conductive particles. The difference in the surface energy between the conductive particles and the first polymer is smaller than the difference in the surface energy between the conductive particles and the second polymer, which is a driving force, and the conductive particles are being kneaded into the region of the first polymer. To move to. Table 1 shows the surface tension of the raw material. That is, for example, when polyethylene is used as the first polymer, polypropylene is used as the second polymer, and carbon black is used as the conductive particles, from the surface tension values shown in Table 1, the carbon black is mixed in the polyethylene phase having a small difference in surface tension during kneading. It will shift.

【0010】[0010]

【表1】 [Table 1]

【0011】以下、本発明を具体的に説明する。本発明
で用いる結晶性の第1のポリマーとしては、ポリエチレ
ン、ポリプロピレン、ポリメチルペンテン、EVA(エ
チレン−酢酸ビニル樹脂)、EEA(エチレン−エチル
アクリレート樹脂)、EMA(エチレン−メチルアクリ
レート樹脂)等のエチレン共重合ポリマー、アイオノマ
ー、ポリフッ化ビニリデン、ポリアミド、ポリエステル
等が挙げられる。一方、第1のポリマーとは完全には相
溶しない第2のポリマーとしては、ポリエチレン、ポリ
プロピレン、ポリメチルペンテン、エチレン共重合ポリ
マー(EVA、EEA、EMA等)、アイオノマー、ポ
リフッ化ビニリデン、ポリアミド、ポリエステル等の結
晶性ポリマー、又は、PMMA(ポリメチルメタクリレ
ート)、ポリスチレン、ポリカーボネート、ポリスルホ
ン、ポリ塩化ビニルやこれらの共重合物等の無定型ポリ
マーが挙げられる。
The present invention will be specifically described below. Examples of the crystalline first polymer used in the present invention include polyethylene, polypropylene, polymethylpentene, EVA (ethylene-vinyl acetate resin), EEA (ethylene-ethyl acrylate resin), and EMA (ethylene-methyl acrylate resin). Examples thereof include ethylene copolymer polymers, ionomers, polyvinylidene fluoride, polyamides and polyesters. On the other hand, as the second polymer which is not completely compatible with the first polymer, polyethylene, polypropylene, polymethylpentene, ethylene copolymers (EVA, EEA, EMA, etc.), ionomer, polyvinylidene fluoride, polyamide, Examples thereof include crystalline polymers such as polyester, and amorphous polymers such as PMMA (polymethylmethacrylate), polystyrene, polycarbonate, polysulfone, polyvinyl chloride and copolymers thereof.

【0012】なお、本発明で用いる、第1のポリマーと
は完全には相溶しない第2のポリマーとは、第1のポリ
マーに対して殆ど相溶性のないポリマー又は第1のポリ
マーに対して少量ないし部分的に相溶するポリマーであ
って、第1及び第2のポリマーとでいわゆる相溶系でな
いポリマーアロイを形成するポリマーである。このよう
なポリマーアロイに関しては、(「ポリマーアロイ−基
礎と応用−」;(社)高分子学会編,1981年)、
(「ポリマーアロイ」;(社)高分子学会編,井上 隆
西 敏夫 著,1988年)、(「ポリマーブレン
ド」;シーエムシー発行,1979年)に詳しく記載さ
れている。なお、結晶性ポリマーとは全域が結晶状態で
ある必要はなく、非結晶質部分が併存していてもよいこ
とは言うまでもない。また、実際に市販されている結晶
性ポリマーは通常の成形条件下では結晶化度はそれ程高
くないことが知られている。例示すればナイロン6−6
で30〜35%、ポリプロピレンで50〜70%、ポリ
エチレンで65〜90%、PBT(ポリブチレンテレフ
タレート)で25〜35%、PET(ポリエチレンテレ
フタレート)で15〜20%程度である。
The second polymer used in the present invention, which is not completely compatible with the first polymer, means the polymer which is almost incompatible with the first polymer or the first polymer. It is a polymer that is compatible with a small amount or partially and forms a polymer alloy that is not a compatible system with the first and second polymers. Regarding such a polymer alloy, (“Polymer alloy-basics and applications-”; edited by Japan Society of Polymer Science, 1981),
("Polymer Alloy"; edited by The Society of Polymer Science, Japan, Takashi Inoue, Toshio Nishinishi, 1988), ("Polymer Blend"; published by CMC, 1979). Needless to say, the crystalline polymer does not have to be in a crystalline state over the entire region, and an amorphous portion may coexist. Further, it is known that the crystalline polymer that is actually commercially available does not have such high crystallinity under ordinary molding conditions. For example, nylon 6-6
Is 30 to 35%, polypropylene is 50 to 70%, polyethylene is 65 to 90%, PBT (polybutylene terephthalate) is 25 to 35%, and PET (polyethylene terephthalate) is about 15 to 20%.

【0013】そして、本発明で用いる上記の第2のポリ
マーとしては融点又は熱変形温度が第1のポリマーの融
点より高いことが重要であり、第1のポリマーと第2の
ポリマーの組合せの具体例としては、表2に示す組合せ
が挙げられる。
It is important that the second polymer used in the present invention has a melting point or heat distortion temperature higher than the melting point of the first polymer, and a specific combination of the first polymer and the second polymer is used. Examples include the combinations shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】これらの第1のポリマーと第2のポリマー
の配合割合は、特に限定はないが、ポリマー全体を10
0重量部とすると、第1のポリマーの量は20重量部以
上80重量部以下の範囲にあることが第1のポリマーと
第2のポリマーとの相互連続構造を実現するには好まし
い。また、本発明においては、本発明の目的を阻害しな
い範囲内であれば、高分子の相溶化剤等の第3ポリマー
成分を添加してもよい。
The blending ratio of the first polymer and the second polymer is not particularly limited, but 10 parts by weight of the entire polymer is used.
When the amount is 0 part by weight, the amount of the first polymer is preferably in the range of 20 parts by weight or more and 80 parts by weight or less in order to realize the mutual continuous structure of the first polymer and the second polymer. Further, in the present invention, a third polymer component such as a high-molecular compatibilizing agent may be added as long as it does not impair the object of the present invention.

【0016】また、本発明で用いる導電性粒子として
は、粉末状又はファイバー状のものでカーボン、グラフ
ァイト、金属からなるものが挙げられ、通常はカーボン
ブラック微粉末が用いられる。そして、導電性粒子の添
加量は、特に限定はないが、ポリマー100重量部に対
して1〜40重量部であることが好ましい。この理由と
しては、1重量部未満であると狙いの電流が流れず、ま
た、40重量部を越えると狙いの自己温度制御機能が得
られないという不都合が生じるためである。
The conductive particles used in the present invention include powdery or fiber-like particles made of carbon, graphite and metal, and fine carbon black powder is usually used. The amount of conductive particles added is not particularly limited, but is preferably 1 to 40 parts by weight with respect to 100 parts by weight of the polymer. This is because if the amount is less than 1 part by weight, the intended current does not flow, and if it exceeds 40 parts by weight, the intended self-temperature control function cannot be obtained.

【0017】本発明では、上記の原料を混練してなるP
TC発熱体成形材料を用いるが、このPTC発熱体成形
材料の製造方法としては、例えば、次の方法が例示され
る。まず、第1のポリマーに第2のポリマーを加え混練
する。このとき、相分離構造の制御や安定化のために相
溶化剤を添加してもよい。次いで、導電性粒子を加えさ
らに混練することにより、PTC発熱体成形材料が得ら
れる。これらの原料の投入順序は上記に限定されるもの
でなく、第1のポリマーと導電性粒子を混練したのちに
第2のポリマーを加えて混練してもよいし、これら3成
分を同時に投入して混練してもよい。また、PTC発熱
体成形材料の製造の際、必要に応じて安定剤、酸化防止
剤、滑剤、界面活性剤、難燃剤、無機フィラー(水酸化
アルミニウム、シリカ等)、造核剤等を適切な段階で添
加するようにしてもよい。
In the present invention, P prepared by kneading the above raw materials
A TC heating element molding material is used, and as a method for producing this PTC heating element molding material, for example, the following method is exemplified. First, the second polymer is added to the first polymer and kneaded. At this time, a compatibilizer may be added to control or stabilize the phase separation structure. Next, conductive particles are added and further kneaded to obtain a PTC heating element molding material. The order of adding these raw materials is not limited to the above, and the second polymer may be added and then kneaded after the first polymer and the conductive particles are kneaded. You may knead. In the production of the PTC heating element molding material, if necessary, a stabilizer, an antioxidant, a lubricant, a surfactant, a flame retardant, an inorganic filler (aluminum hydroxide, silica, etc.), a nucleating agent, etc. may be appropriately added. It may be added in stages.

【0018】本発明では、上記のようにして作製したP
TC発熱体成形材料を用いて成形によりPTC発熱体を
作製するが、この成形する方法については、特に限定は
なく、例えばシート状またはワイヤー状等の所望の形状
に、直圧成形または押し出し成形等の方法で行って成形
品とすればよい。
In the present invention, P produced as described above
A PTC heating element is produced by molding using a TC heating element molding material, but the method of molding is not particularly limited, and for example, direct pressure molding or extrusion molding into a desired shape such as a sheet shape or a wire shape. The method may be used to obtain a molded product.

【0019】本発明の特徴は、成形品とした後、電子線
架橋処理を施し、次いで第1のポリマーの融点以上であ
って、第2のポリマーの融点又は熱変形温度以下の温度
で熱処理する点にある。この電子線架橋処理での電子線
の照射量は数Mrad〜数十Mradの範囲が適当であ
る。具体的には、電子線の照射量が5Mrad以上であ
り、第1のポリマーのゲル化率が50%以上となる電子
線架橋処理であることが好ましい。なお、化学架橋処理
を用いずに電子線架橋処理を用いる理由は、化学架橋処
理では架橋反応の程度が一定となり難く、処理のバラツ
キが大きいのに対し、電子線架橋処理では架橋反応の程
度が一定し、処理のバラツキが小さく、歩留りよく特性
の揃ったものが得られるからである。
The feature of the present invention is that after the molded product is subjected to electron beam cross-linking treatment, it is then heat-treated at a temperature not lower than the melting point of the first polymer and not higher than the melting point or heat distortion temperature of the second polymer. In point. The electron beam irradiation amount in this electron beam crosslinking treatment is appropriately in the range of several Mrad to several tens of Mrad. Specifically, it is preferable that the irradiation amount of the electron beam is 5 Mrad or more, and the electron beam crosslinking treatment is such that the gelation rate of the first polymer is 50% or more. The reason for using the electron beam cross-linking treatment instead of the chemical cross-linking treatment is that the degree of the cross-linking reaction is difficult to be constant in the chemical cross-linking treatment and the treatment varies widely, whereas the degree of the cross-linking reaction in the electron beam cross-linking treatment is large. This is because it is possible to obtain a product that is uniform, has a small variation in processing, and has a good yield and uniform characteristics.

【0020】そして、上記の電子線架橋処理を行なった
後で、さらに第1のポリマーの融点以上であって、第2
のポリマーの融点もしくは熱変形温度以下で熱処理する
ことによって、得られるPTC発熱体の電導度の経時変
化が小さくなり、電導度の安定性が改善されたものとな
るのである。なお、熱処理する時間については、特に限
定はないが、電導度の安定性の改善効果を確実なものと
するには30秒以上熱処理をすることが好ましい。
After the electron beam cross-linking treatment as described above, the melting point of the first polymer is not lower than the second melting point.
By heat-treating the polymer at a temperature not higher than the melting point or the heat distortion temperature of the polymer, the temporal change of the electric conductivity of the obtained PTC heating element is reduced, and the stability of the electric conductivity is improved. The heat treatment time is not particularly limited, but it is preferable to perform the heat treatment for 30 seconds or more in order to ensure the effect of improving the stability of the electric conductivity.

【0021】[0021]

【作用】本発明で、成形品とした後電子線架橋処理を施
すことは、導電性粒子が分散した第1のポリマーを架橋
させる作用をする。そして、第1のポリマーを架橋させ
ることにより、第1のポリマーの粘度が増大し、導電性
粒子が移行しにくくなるために、得られるPTC発熱体
を第1のポリマーの融点以上の温度に放置した際に、抵
抗値の低下が少なくなり、従って、ショート(短絡)す
る危険が少なくなるという効果を達成するものと考え
る。
In the present invention, the electron beam cross-linking treatment after forming a molded article has the function of cross-linking the first polymer in which the conductive particles are dispersed. Then, by crosslinking the first polymer, the viscosity of the first polymer increases and the conductive particles become difficult to migrate. Therefore, the obtained PTC heating element is left at a temperature equal to or higher than the melting point of the first polymer. In this case, it is considered that the effect of reducing the resistance value is reduced and the risk of short circuit is reduced.

【0022】[0022]

【実施例】以下、本発明を実施例により説明する。本発
明は下記の実施例に限らないことはいうまでもない。 (実施例1、2及び比較例1、2)結晶性の第1のポリ
マーとしてMFR=0.23、融点122℃の低密度ポ
リエチレンを、第2のポリマーとしてMFR=1.2、
融点166℃のポリプロピレンを、そして、導電性粒子
として粒径62nmのカーボンブラックを用いた。な
お、MFRはメルトフローレートを示している。混練機
として1.8(l)T型インテンシブミキサー(バンバ
リーミキサー)を用い、前記原料を表3に示す配合割合
(重量%)で配合した約1kgの原料を、下記の混練条
件で混練し成形材料を得た。 混練条件:回転数120rpm ミキサージャケットの加熱温度120〜130℃ 混練時間6分 次いで、得られた成形材料を用いて170℃×2分、加
圧10秒の成形条件で成形しシート状の成形品を得た。
EXAMPLES The present invention will be described below with reference to examples. It goes without saying that the present invention is not limited to the following examples. (Examples 1 and 2 and Comparative Examples 1 and 2) As the crystalline first polymer, MFR = 0.23, low-density polyethylene having a melting point of 122 ° C., and as the second polymer MFR = 1.2,
Polypropylene having a melting point of 166 ° C. and carbon black having a particle diameter of 62 nm were used as conductive particles. In addition, MFR has shown the melt flow rate. A 1.8 (l) T-type intensive mixer (Banbury mixer) was used as a kneading machine, and about 1 kg of the raw material was mixed at the mixing ratio (% by weight) shown in Table 3 and kneaded under the following kneading conditions. Got the material. Kneading conditions: rotation speed 120 rpm, heating temperature of mixer jacket 120 to 130 ° C., kneading time 6 minutes, and then molding using the molding material obtained under molding conditions of 170 ° C. × 2 minutes and pressure of 10 seconds to form a sheet-like molded article. Got

【0023】[0023]

【表3】 [Table 3]

【0024】次いで実施例1及び2では上記で得られた
シート状の成形品を30Mradの照射量で電子線架橋
処理をした。得られれた成型品中の第1のポリマーのゲ
ル化率は約95%であった。次いで、実施例1及び2に
ついては、得られた電子線架橋処理をした成形品を用
い、比較例1及び2については、電子線架橋処理をして
いない成形品を用い、150℃、5分の熱処理を行い、
PTC発熱体を得た。こうして得られたPTC発熱体を
用いて、電気特性の試験を行った。
Next, in Examples 1 and 2, the sheet-shaped molded product obtained above was subjected to electron beam crosslinking treatment at an irradiation dose of 30 Mrad. The gelation rate of the first polymer in the obtained molded product was about 95%. Next, for Examples 1 and 2, the obtained electron beam cross-linked molded articles were used, and for Comparative Examples 1 and 2, molded articles not subjected to electron beam cross-linking treatment were used at 150 ° C. for 5 minutes. Heat treatment of
A PTC heating element was obtained. Using the PTC heating element thus obtained, the electrical characteristics were tested.

【0025】この電気試験は上記のシート状の成形品の
両側に電極として導電性粘着材付きのアルミ箔をはりつ
けて作製したテストピースを用いて、PTC発熱体の電
導度として、厚み方向のインピーダンス(100Hz)
を測定して行った。まず、各テストピースのインピーダ
ンスを雰囲気温度を変化させて測定した。この結果を図
1及び図2にグラフとして示す。また、この試験で得ら
れた140℃の雰囲気中でのインピーダンスを140℃
雰囲気に放置直後のインピーダンス(Z140-と表す)
として、得られた数値を表4に示した。そして、次に1
40℃雰囲気に1時間放置後のインピーダンス(Z140-
と表す)を測定し、得られた数値を表4に示した。ま
た、140℃雰囲気に放置直後のインピーダンスを基準
とする、140℃雰囲気に1時間放置後のインピーダン
スの変化率を下式で算出し、併せて表4に示した。
In this electrical test, a test piece prepared by sticking aluminum foil with a conductive adhesive material as electrodes on both sides of the above-mentioned sheet-shaped molded product was used to measure the impedance of the PTC heating element in the thickness direction. (100Hz)
Was measured. First, the impedance of each test piece was measured by changing the ambient temperature. The results are shown as graphs in FIGS. 1 and 2. In addition, the impedance in the atmosphere of 140 ℃ obtained in this test is 140 ℃
Impedance immediately after being left in the atmosphere (denoted as Z140-)
The obtained numerical values are shown in Table 4. And then 1
Impedance (Z140-
Is expressed) and the obtained numerical values are shown in Table 4. Further, the rate of change in impedance after leaving for 1 hour in a 140 ° C. atmosphere was calculated by the following formula, based on the impedance immediately after leaving in a 140 ° C. atmosphere, and is also shown in Table 4.

【0026】140℃雰囲気に1時間放置後のインピー
ダンスの変化率(%)= 100×(Z140-−Z140-)
/Z140-
Impedance change rate (%) after standing in 140 ° C. atmosphere for 1 hour = 100 × (Z140 --- Z140-)
/ Z140-

【0027】[0027]

【表4】 [Table 4]

【0028】以上の結果から、比較例1及び2では第1
のポリマーの融点以上である140℃で1時間放置た場
合に、インピーダンスが大きく低下するが、実施例1及
び2ではその低下の割合が小さいことが確認された。す
なわち、電子線架橋を行なったことにより第1のポリマ
ーの融点以上の温度に放置した際の抵抗値の低下が少な
くなり、従って、ショート(短絡)する危険が少なくな
るということが確認された。
From the above results, in Comparative Examples 1 and 2, the first
It was confirmed that when left at 140 ° C., which is higher than the melting point of the polymer of 1., for 1 hour, the impedance was significantly reduced, but in Examples 1 and 2, the reduction rate was small. That is, it was confirmed that the electron beam crosslinking reduced the decrease in the resistance value when left at a temperature equal to or higher than the melting point of the first polymer, and therefore reduced the risk of short circuit.

【0029】[0029]

【発明の効果】本発明の製法によるPTC発熱体は、結
晶性の第1のポリマーと、この第1のポリマーとは完全
には相溶しない、融点又は熱変形温度が第1のポリマー
の融点より高い第2のポリマーと導電性粒子とを混練し
てなる成形材料を用いてPTC発熱体を製造する方法に
おいて、成形品とした後、電子線架橋処理を施し、次い
で第1のポリマーの融点以上であって、第2のポリマー
の融点又は熱変形温度以下の温度で熱処理を行って得ら
れるので、導電性粒子の移行が制限されたPTC発熱体
となる。従って本発明は、第1のポリマーの融点以上の
温度に長時間放置したときの抵抗値の低下が少ない、す
なわち、ショート(短絡)する危険の少ないPTC発熱
体を製造するのに有用な方法である。
The PTC heating element produced by the method of the present invention has a melting point or a melting point of the first polymer which is not completely compatible with the crystalline first polymer and the first polymer. In a method for producing a PTC heating element using a molding material obtained by kneading a higher second polymer and conductive particles, a molded article is subjected to electron beam crosslinking treatment, and then the melting point of the first polymer. As described above, since the heat treatment is performed at a temperature equal to or lower than the melting point or the heat distortion temperature of the second polymer, the PTC heating element has a restricted migration of the conductive particles. Therefore, the present invention is a method useful for producing a PTC heating element in which there is little decrease in resistance value when left at a temperature above the melting point of the first polymer for a long time, that is, there is little risk of short circuit. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例1及び比較例1におけ
る、厚み方向のインピーダンス(100Hz)と雰囲気
温度との関係をあらわすグラフである。
FIG. 1 is a graph showing a relationship between an impedance (100 Hz) in a thickness direction and an ambient temperature in Example 1 of the present invention and Comparative Example 1.

【図2】図2は本発明の実施例2及び比較例2におけ
る、厚み方向のインピーダンス(100Hz)と雰囲気
温度との関係をあらわすグラフである。
FIG. 2 is a graph showing the relationship between the impedance (100 Hz) in the thickness direction and the ambient temperature in Example 2 and Comparative Example 2 of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月20日[Submission date] January 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】[0027]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住田 雅夫 神奈川県綾瀬市寺尾2丁目4番地13号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Sumita 2-4 Terao 2-3, Terao, Ayase City, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶性の第1のポリマーと、この第1の
ポリマーとは完全には相溶しない、融点又は熱変形温度
が第1のポリマーの融点より高い第2のポリマーと導電
性粒子とを混練してなる成形材料を用いてPTC発熱体
を製造する方法において、成形品とした後、電子線架橋
処理を施し、次いで第1のポリマーの融点以上であっ
て、第2のポリマーの融点又は熱変形温度以下の温度で
熱処理することを特徴とするPTC発熱体の製法。
1. A crystalline first polymer and a second polymer and conductive particles which are not completely compatible with the first polymer and have a melting point or heat distortion temperature higher than that of the first polymer. In a method for producing a PTC heating element using a molding material obtained by kneading and, a molded product is subjected to electron beam cross-linking treatment, and then the melting point of the first polymer is higher than that of the second polymer. A method for producing a PTC heating element, which comprises performing heat treatment at a temperature equal to or lower than a melting point or a heat distortion temperature.
【請求項2】 電子線架橋処理を5Mrad以上の照射
量で行う請求項1記載のPTC発熱体の製法。
2. The method for producing a PTC heating element according to claim 1, wherein the electron beam crosslinking treatment is carried out at an irradiation dose of 5 Mrad or more.
【請求項3】 第1のポリマーがポリエチレン、第2の
ポリマーがポリプロピレン、導電性粒子がカーボンブラ
ックである請求項1又は2記載のPTC発熱体の製法。
3. The method for producing a PTC heating element according to claim 1, wherein the first polymer is polyethylene, the second polymer is polypropylene, and the conductive particles are carbon black.
JP18711892A 1992-07-14 1992-07-14 Manufacture of ptc heating element Pending JPH0636859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18711892A JPH0636859A (en) 1992-07-14 1992-07-14 Manufacture of ptc heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18711892A JPH0636859A (en) 1992-07-14 1992-07-14 Manufacture of ptc heating element

Publications (1)

Publication Number Publication Date
JPH0636859A true JPH0636859A (en) 1994-02-10

Family

ID=16200426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18711892A Pending JPH0636859A (en) 1992-07-14 1992-07-14 Manufacture of ptc heating element

Country Status (1)

Country Link
JP (1) JPH0636859A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728100A1 (en) * 1994-12-07 1996-06-14 Schneider Electric Sa Conductor material with positive temp. coefft. for use in electric current limiting component
WO2001021713A1 (en) * 1999-09-24 2001-03-29 The Yokohama Rubber Co., Ltd. Thermoplastic resin composition and method for producing the same
JP2010506723A (en) * 2006-10-16 2010-03-04 ヴァルスパー・ソーシング・インコーポレーテッド Coating process and article
GB2569532A (en) * 2017-12-15 2019-06-26 Henkel Ag & Co Kgaa Improved positive temperature coefficient ink composition without negative temperature coefficient effect
US10919273B2 (en) 2006-10-16 2021-02-16 Swimc Llc Multilayer thermoplastic film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728100A1 (en) * 1994-12-07 1996-06-14 Schneider Electric Sa Conductor material with positive temp. coefft. for use in electric current limiting component
WO2001021713A1 (en) * 1999-09-24 2001-03-29 The Yokohama Rubber Co., Ltd. Thermoplastic resin composition and method for producing the same
JP2010506723A (en) * 2006-10-16 2010-03-04 ヴァルスパー・ソーシング・インコーポレーテッド Coating process and article
US8790787B2 (en) 2006-10-16 2014-07-29 Valspar Sourcing, Inc. Coating process
US10919273B2 (en) 2006-10-16 2021-02-16 Swimc Llc Multilayer thermoplastic film
GB2569532A (en) * 2017-12-15 2019-06-26 Henkel Ag & Co Kgaa Improved positive temperature coefficient ink composition without negative temperature coefficient effect

Similar Documents

Publication Publication Date Title
JP2509926B2 (en) Conductive composite polymer material and method for producing the same
US5164133A (en) Process for the production of molded article having positive temperature coefficient characteristics
JPS643322B2 (en)
GB1604735A (en) Ptc compositions and devices comprising them
EP0038718A1 (en) Conductive polymer compositions containing fillers
GB1595198A (en) Ptc compositions and devices comprising them
JPH0636859A (en) Manufacture of ptc heating element
JPH0369163B2 (en)
KR20000029763A (en) Method of Making a Laminate Comprising a Conductive Polymer Composition
JPH05152056A (en) Manufacture of ptc heating body
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
JPH02140902A (en) Organic positive characteristics resistor
JPH04306582A (en) Material to ptc heat emitting element
JP2000109615A (en) Conductive polymer composition having positive temperature coefficient characteristic
JP3408623B2 (en) Forming method of conductive sheet
JPH05175008A (en) Manufacture of ptc resistor
JPS63184303A (en) Manufacture of ptc compound
JP2002134303A (en) Conductive polymer, its manufacturing method, overcurrent protection device and its manufacturing method
KR100551322B1 (en) Conductive polymer composition containing ozone-treated carbon black and ptc device prepared therefrom
JPH04339846A (en) Resin composition having positive temperature characteristic and preparation thereof
JPH0374002B2 (en)
JPH06251863A (en) Temperature self-control type heating wire
JPH03426B2 (en)
JPH0369164B2 (en)
JPS6165402A (en) Heat sensitive resistive conductive material and method of producing same