JP2005061285A - 内燃機関の吸気装置 - Google Patents

内燃機関の吸気装置 Download PDF

Info

Publication number
JP2005061285A
JP2005061285A JP2003291016A JP2003291016A JP2005061285A JP 2005061285 A JP2005061285 A JP 2005061285A JP 2003291016 A JP2003291016 A JP 2003291016A JP 2003291016 A JP2003291016 A JP 2003291016A JP 2005061285 A JP2005061285 A JP 2005061285A
Authority
JP
Japan
Prior art keywords
intake
valve
control valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291016A
Other languages
English (en)
Inventor
Masayuki Yasuoka
正之 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003291016A priority Critical patent/JP2005061285A/ja
Publication of JP2005061285A publication Critical patent/JP2005061285A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

【課題】慣性過給効果を得るとともに、負荷制御の自由度を拡大する。
【解決手段】吸気通路5の吸気弁7上流側に、吸気行程の途中で吸気通路5を開閉可能な吸気制御弁12を備え、さらに上流側に、電子制御型のスロットル弁13が設けられている。要求負荷tTeが所定の負荷Te1より大きいときには、吸気制御弁12の開閉制御を行う。吸気弁7が開弁するときに吸気制御弁12を閉じておき、吸気行程の途中で開くことにより、吸気流が加速され、慣性過給効果が得られる。所定負荷Te1以下では、吸気制御弁12は、常時開状態に保持される。スロットル弁13の開度制御を組み合わせることにより、負荷制御の自由度が高くなる。
【選択図】図1

Description

この発明は、慣性過給効果を得るための吸気制御弁を備えた内燃機関の吸気装置に関する。
特許文献1には、各気筒に至る吸気通路の燃焼室側開口端を開閉する吸気弁の上流側に、慣性過給効果を得るための吸気制御弁を設けた内燃機関の吸気装置が開示されている。上記吸気弁は、周知のように、内燃機関の回転に同期して所定のクランク角度の間、開弁するが、上記吸気制御弁を、吸気弁が開弁するときには閉じておき、かつ負圧が発達した吸気弁の開弁期間の途中で開放することにより、吸気流が加速されてシリンダ内に流入し、慣性過給効果を得ることができる。
特開2000−248946号公報
特許文献1に記載の吸気装置においては、シリンダ内に入る空気量つまり機関吸入空気量を、吸気制御弁のみで調整しているため、負荷制御の自由度が低い。
この発明に係る内燃機関の吸気装置は、内燃機関の回転に同期して開閉する吸気弁の上流側において吸気通路を開閉する吸気制御弁を備えており、上記吸気弁の開弁期間の途中で上記吸気制御弁を開弁させることにより慣性過給効果を得るようになっている。そして、特に、上記吸気制御弁よりも上流側に、上記吸気通路の通路面積を任意に調整可能なスロットル弁が配設されている。
このようにスロットル弁と組み合わせることにより、内燃機関の要求負荷に応じて、上記スロットル弁の開度と上記吸気制御弁の開弁時期とを制御し、内燃機関の負荷を制御することが可能となり、負荷制御の自由度が拡大する。
この発明によれば、吸気弁の開弁期間の途中で開弁する吸気制御弁の作用によって高い慣性過給効果を得ることができるとともに、スロットル弁と吸気制御弁とを組み合わせたことにより負荷制御の自由度が拡大し、広い負荷範囲での運転が可能となる。
以下、この発明の一実施例を図面に基づいて詳細に説明する。
図1は、この発明を、内燃機関1として4サイクルガソリン機関の吸気装置に適用した一実施例を示している。内燃機関1は、シリンダ2内を摺動するピストン3によって画成された燃焼室4に対し、吸気通路5および排気通路6が接続されており、吸気通路5の燃焼室4側の開口端を、ポペット弁からなる吸気弁7が開閉し、かつ排気通路6の燃焼室4側の開口端を、同じくポペット弁からなる排気弁8が開閉している。これらの吸気弁7および排気弁8は、クランクシャフト10の回転に同期して回転する図示せぬカムシャフトによってそれぞれ開閉駆動され、従って、クランクシャフト10の回転に同期して開閉される。これらの開閉時期は、一般的な4サイクルガソリン機関と特に変わりはなく、吸気弁7は、吸気上死点の少し前に開弁し、吸気下死点の少し後に閉弁する。燃焼室4の中心部には、点火プラグ9が配置されている。また、上記クランクシャフト10のクランク角度を検出するクランク角センサ11が設けられている。このクランク角センサ11の検出信号に基づいて、機関回転速度Neが求められる。
上記吸気通路5の吸気弁7上流側には、慣性過給効果を得るために吸気通路5を開閉し得る吸気制御弁12が設けられている。この吸気制御弁12は、前述した特開2000−248946号公報に開示されているものと同様の構成であり、一対のフラップを電磁石により開閉する応答性に優れた構成となっている。なお、この吸気制御弁12は、各気筒毎に独立した吸気通路5の各々に設けられているものであり、吸気制御弁12の配設位置は、該吸気制御弁12と吸気弁7との間の距離が慣性過給効果を得る上で最適となるように設定されている。
各気筒毎に独立した吸気通路5は、上記吸気制御弁12の上流側において1本の吸気通路5として集合しており、かつこの1本に集合した部分に、吸気通路面積を任意に調整可能なバタフライバルブ型のスロットル弁13が配設されている。このスロットル弁13は、モータ等のアクチュエータ14により開度が制御されるいわゆる電子制御スロットル弁であり、実開度を検出するスロットル開度センサ15の検出信号に基づいて、目標開度TVOにフィードバック制御される。後述するように、このスロットル弁13の開度制御と吸気制御弁12の開閉制御とによって、各シリンダ2への吸入空気量が制御される。
また、燃料噴射弁16が各気筒毎に吸気通路5に配設されており、負荷つまり吸入空気量に応じた量の燃料が噴射される。なお、実際に流入する空気量を検出するように、適宜な吸入空気量センサ(例えばエアフロメータ等)をスロットル弁13上流側等に配設するようにしてもよい。上記燃料噴射弁16は、上記吸気制御弁12の下流側において、吸気弁7を指向するように配置されている。
上記吸気制御弁12の開閉やスロットル弁13の開度、さらには、上記燃料噴射弁16からの燃料噴射量、点火プラグ9の点火時期、等は、エンジンコントローラ17によって制御される。このエンジンコントローラ17には、クランク角センサ11の検出信号やスロットル開度センサ15の検出信号などが入力されるほか、運転者により操作されるアクセルペダルに設けられたアクセル開度センサ18からのアクセル開度信号(アクセル操作量)Apsが入力されている。
次に、上記構成における吸入空気量の制御について説明する。
図2は、上記吸気制御弁12の開弁時期を決定するための基本制御ルーチンを示すフローチャートである。このルーチンは、例えば10ms周期で繰り返し実行される。なお、フローチャート中では、吸気制御弁12を「遮断弁」と略記する。
まずステップ1で、アクセル操作量Apsと機関回転速度Neとを読み込み、ステップ2で、このアクセル操作量Apsと機関回転速度Neとをパラメータとして、図4に示すような特性の三次元のマップに基づき、要求負荷tTeを検索する。なお、要求負荷tTeが負となる領域は、いわゆるエンジンブレーキが必要な領域となる。上記スロットル弁13の開度TVOは、図示せぬ他のルーチンによって、上記要求負荷tTeに基づき制御される。具体的には、図6に示すような特性に沿って、要求負荷tTeに対応する目標開度TVOが与えられる。
一方、ステップ3では、アクセル操作量Apsと機関回転速度Neとをパラメータとして、図5に示すような特性のマップに基づき、遮断弁動作判定負荷Te1を検索する。この遮断弁動作判定負荷Te1は、遮断弁つまり吸気制御弁12による慣性過給効果の付与を行うか否かの閾値となる負荷の大きさを示す。基本的には、スロットル弁13を全開にしても達成できない負荷が要求されたときに慣性過給効果の付与を行えばよいので、吸気制御弁12常開かつスロットル弁13全開時の負荷を遮断弁動作判定負荷Te1にすればよいが、スロットル弁13の制御容易性(Te1前後におけるTVO段差の大きさ等)を考慮し、遮断弁動作判定負荷Te1を吸気制御弁12常開かつスロットル弁13全開時の負荷より小さい値に設定する場合がある(図6参照)。
ステップ4で、要求負荷tTeが上記遮断弁動作判定負荷Te1よりも大きいか否かを判定し、要求負荷tTeが遮断弁動作判定負荷Te1よりも大きければ、ステップ5へ分岐し、要求負荷tTeが遮断弁動作判定負荷Te1以下であれば、ステップ6へ分岐する。ステップ5では、遮断弁つまり吸気制御弁12の開閉制御を行うものとして、遮断弁制御フラグFを「1」にセットし、ステップ7へ進む。ステップ6では、遮断弁つまり吸気制御弁12を常時開状態に維持するものとして、遮断弁制御フラグFを「0」にクリアし、一連のルーチンを終了する。
ステップ7では、機関回転速度Neをパラメータとして、図7に示すような特性のマップに基づき、遮断弁開弁クランク位置P1を検索する。この遮断弁開弁クランク位置P1は、遮断弁つまり吸気制御弁12を開弁するタイミングを、吸気上死点(排気上死点)からのクランク角度でもって表したものであり、図示するように、機関回転速度Neが高いほど小さくなり、つまり、吸気上死点に近付くように進角する。ステップ8で、上記のように検索した遮断弁開弁クランク位置P1を出力し、一連のルーチンを終了する。
ここで示したルーチンでは、吸気制御弁12の開閉制御を行う場合の遮断弁開弁クランク位置P1を機関回転速度Neのみに基づいて決定しており、要求負荷tTeに対してはP1を固定している。遮断弁開弁クランク位置P1によって慣性過給の効果を変えることができるので、スロットル弁13を全開に固定しつつP1を調整することで負荷調整を行うことも可能であるが、ここでは、要求負荷tTeに対する吸気制御弁開閉制御をオン/オフ的なものとし、細かな負荷調整は常にスロットル弁13で行うようにしている。
次に、図3は、上記のように決定した遮断弁開弁クランク位置P1に基づく遮断弁つまり吸気制御弁12の開閉制御の処理を示すフローチャートである。
これは、例えばクランク角度に同期して繰り返し実行されるもので、ステップ11で、上記の遮断弁制御フラグFの状態と遮断弁開弁クランク位置P1の値とを読み込み、かつそのときのクランク位置(吸気上死点を0としたクランク角度)Pを読み込む。
ステップ12では、遮断弁制御フラグFが「0」であるか否かを判断し、遮断弁制御フラグFが「0」の場合は、吸気制御弁12を常時開状態とする負荷条件であるので、ステップ16に進み、遮断弁つまり吸気制御弁12を「開」として、終了する。遮断弁制御フラグFが「1」の場合は、慣性過給のために吸気制御弁12を開閉制御することになり、ステップ13へ進む。
ステップ13では、そのときのクランク位置Pが、遮断弁開弁クランク位置P1を越えたか、つまりP>P1であるか否かを判定する。クランク位置Pが遮断弁開弁クランク位置P1を越えていなければ、ステップ15へ分岐し、遮断弁つまり吸気制御弁12を閉状態として、終了する。クランク位置Pが遮断弁開弁クランク位置P1を越えていれば、遮断弁つまり吸気制御弁12を開弁するものとして、ステップ14へ進む。
ステップ14では、そのときのクランク位置Pが吸気下死点前か否かを判断する。吸気下死点前であれば、ステップ16へ進み、遮断弁つまり吸気制御弁12を「開」として、終了する。クランク位置Pが吸気下死点に達していれば、ステップ15へ進み、吸気制御弁12を閉状態として終了する。
つまり、遮断弁制御フラグFが「1」の場合、クランク位置Pが遮断弁開弁クランク位置P1に達するまでは吸気制御弁12が閉じており、遮断弁開弁クランク位置P1から吸気下死点までの間、開状態となる。上記遮断弁開弁クランク位置P1は、吸気弁7の開弁期間の途中に設定されている。従って、吸気行程の作用を説明すると、吸気上死点の少し前に吸気弁7が開弁するが、この段階では、吸気制御弁12は閉じている。そのため、ピストン3が下降するに伴って、燃焼室4および吸気制御弁12下流の吸気通路5内で負圧が発達する。そして、ピストン3の下降中に遮断弁開弁クランク位置P1に達したときに、吸気制御弁12が開弁するため、上流側から吸気が加速されてシリンダ2内へと流入し、高い慣性過給効果が得られる。ピストン3が下死点に達すると、吸気弁7が閉じる前に、吸気制御弁12が閉じられ、吸気流の逆流による体積効率の低下が回避される。
図8は、ある1つの気筒について、吸気制御弁(遮断弁)12の開閉のタイミングを示したものであり、クランク位置(クランク角度)の「0°」および「720°」が、吸気上死点(排気上死点)となり、「180°」が吸気下死点に相当する。図示するように、クランク位置がP1から吸気下死点までの間、吸気制御弁12が開状態となり、それ以外の期間では、吸気制御弁12が閉状態に保たれる。
このように、上記実施例においては、要求負荷tTeが所定の負荷Te1よりも大きい場合には、吸気制御弁12の開閉制御により慣性過給効果が得られ、体積効率の増大つまりトルクの増大を図ることができる。また、スロットル弁13の開度によって負荷制御が可能であり、広い負荷範囲において、慣性過給効果を利用した運転が可能である。なお、慣性過給効果によって体積効率が高くなるので、目標のスロットル開度TVOは、図6に示すように、閾値となる負荷Te1において、不連続な特性となる。
ここで、上記のように吸気制御弁12を用いて慣性過給を行うと、吸気流速が高くなることから、吸気騒音の点では不利となる。しかしながら、このように負荷が高い条件下では、燃焼騒音等により機関騒音全体が低負荷時に比較して大きくなっているので、吸気騒音の増加が機関騒音の悪化に与える影響は相対的に小さい。
一方、要求負荷tTeが所定の負荷Te1以下のときには、吸気制御弁12は常時開状態となり、スロットル弁13によって負荷制御されるので、吸気騒音は低く、機関騒音全体が低い中で吸気騒音が目立つようなことがない。
以上、この発明を4サイクルガソリン機関に適用した一実施例を説明したが、この発明は、これに限定されず、ディーゼル機関や2サイクル機関など、種々の内燃機関の吸気装置に適用することが可能である。
この発明に係る内燃機関の吸気装置の一実施例を示す構成説明図。 この実施例における基本制御ルーチンを示すフローチャート。 吸気制御弁の開閉制御の処理の流れを示すフローチャート。 機関回転速度Neとアクセル操作量Apsとに対する要求負荷tTeの特性を示す特性図。 慣性過給制御の閾値となる負荷Te1の特性を示す特性図。 要求負荷tTeに対するスロットル開度TVOの特性を示す特性図。 機関回転速度Neに対する遮断弁開弁クランク位置P1の特性を示す特性図。 クランク位置P1の変化に対する吸気制御弁の開閉を示すタイムチャート。
符号の説明
1…内燃機関
5…吸気通路
7…吸気弁
12…吸気制御弁
13…スロットル弁

Claims (7)

  1. 内燃機関の回転に同期して開閉する吸気弁の上流側において吸気通路を開閉する吸気制御弁を備え、上記吸気弁の開弁期間の途中で上記吸気制御弁を開弁させることにより慣性過給効果を得る内燃機関の吸気装置において、
    上記吸気制御弁よりも上流側に、上記吸気通路の通路面積を任意に調整可能なスロットル弁を配設したことを特徴とする内燃機関の吸気装置。
  2. 内燃機関の負荷に応じて、上記スロットル弁の開度と上記吸気制御弁の開弁時期とを制御することを特徴とする請求項1に記載の内燃機関の吸気装置。
  3. 内燃機関の負荷が所定値以下の場合には、少なくとも吸気弁の開弁中は上記吸気制御弁を開状態とし、かつ負荷に応じてスロットル弁開度を制御することを特徴とする請求項2に記載の内燃機関の吸気装置。
  4. 内燃機関の負荷が所定値より大きい場合には、少なくとも吸気弁の開弁時期には上記吸気制御弁を閉状態とし、かつ吸気弁の開弁期間の途中で上記吸気制御弁を開弁するとともに、負荷に応じてスロットル弁開度を制御することを特徴とする請求項2または3に記載の内燃機関の吸気装置。
  5. 上記吸気制御弁の開弁時期は、負荷によっては変化しないことを特徴とする請求項4に記載の内燃機関の吸気装置。
  6. 上記吸気制御弁の開弁時期は、内燃機関の回転速度が高いほど上死点に近付くように進角することを特徴とする請求項4または5に記載の内燃機関の吸気装置。
  7. 上記吸気制御弁は、各気筒毎に独立した吸気通路の各々に設けられていることを特徴とする請求項1〜6のいずれかに記載の内燃機関の吸気装置。
JP2003291016A 2003-08-11 2003-08-11 内燃機関の吸気装置 Pending JP2005061285A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291016A JP2005061285A (ja) 2003-08-11 2003-08-11 内燃機関の吸気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291016A JP2005061285A (ja) 2003-08-11 2003-08-11 内燃機関の吸気装置

Publications (1)

Publication Number Publication Date
JP2005061285A true JP2005061285A (ja) 2005-03-10

Family

ID=34368836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291016A Pending JP2005061285A (ja) 2003-08-11 2003-08-11 内燃機関の吸気装置

Country Status (1)

Country Link
JP (1) JP2005061285A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001644T5 (de) 2006-07-10 2009-05-28 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fehlerbestimmungsvorrichtung und Sicherheitsvorrichtung für ein Verbrennungsmaschinensystem
JP2009293602A (ja) * 2008-06-09 2009-12-17 Toyota Motor Corp 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001644T5 (de) 2006-07-10 2009-05-28 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fehlerbestimmungsvorrichtung und Sicherheitsvorrichtung für ein Verbrennungsmaschinensystem
JP4715923B2 (ja) * 2006-07-10 2011-07-06 トヨタ自動車株式会社 内燃機関システムの故障判定装置及び安全装置
JP2009293602A (ja) * 2008-06-09 2009-12-17 Toyota Motor Corp 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
US7066136B2 (en) Output control system for internal combustion engine
RU129174U1 (ru) Система для предупреждения помпажа компрессора турбонагнетателя (варианты)
US6502543B1 (en) Intake-air quantity control apparatus for internal combustion engines
WO2005085618A8 (de) Verfahren und vorrichtung zum steuern des luftmengenstromes von verbrennungskraftmaschinen
JPH1037787A (ja) 車両用エンジンのアイドル回転数制御装置
JP2006046293A (ja) 内燃機関の吸気制御装置
US6553964B2 (en) Coordinated valve timing and throttle control for controlling intake air
JPH09170462A (ja) 内燃機関の出力制御装置
JPS59162312A (ja) 電子制御エンジン
JP2004245104A (ja) 過給式エンジン
JP3627601B2 (ja) エンジンの吸入空気量制御装置
US8042513B2 (en) Internal combustion engine camshaft scheduling strategy for maximum pumping loss reduction
JP3601386B2 (ja) エンジンの吸入空気量制御装置
CN109555616B (zh) 发动机的控制设备
RU2633298C2 (ru) Способ работы турбонагнетателя (варианты)
JP4609279B2 (ja) 内燃機関の制御装置
JP5920176B2 (ja) 内燃機関の制御装置
JP2005061285A (ja) 内燃機関の吸気装置
JP2005090330A (ja) 内燃機関の吸気装置
JP2006046285A (ja) 内燃機関の吸気制御装置
WO2022064237A1 (ja) 内燃機関の制御方法および制御装置
JP2010229911A (ja) 可変動弁機構の制御装置
JP2007127100A (ja) 内燃機関の制御装置
JP2001271665A (ja) 可変動弁エンジンの制御装置
JP2008286149A (ja) 内燃機関の制御装置