JP2005060831A - Composite metal powder and its production method, and silver clay - Google Patents
Composite metal powder and its production method, and silver clay Download PDFInfo
- Publication number
- JP2005060831A JP2005060831A JP2004219987A JP2004219987A JP2005060831A JP 2005060831 A JP2005060831 A JP 2005060831A JP 2004219987 A JP2004219987 A JP 2004219987A JP 2004219987 A JP2004219987 A JP 2004219987A JP 2005060831 A JP2005060831 A JP 2005060831A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- powder
- silver
- metal powder
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は金属粉表面に金属微粒子を析出させた複合金属粉末とその製造方法に関する。本発明の複合金属粉末は導電性ペースト等の電子材料や金属粘土などの材料として好適であり、また本発明の製造方法によれば、相対的に粗粒な金属粉とナノレベルの金属微粒子とを含む複合金属粉末を容易に得ることができる。 The present invention relates to a composite metal powder in which metal fine particles are deposited on the surface of the metal powder and a method for producing the same. The composite metal powder of the present invention is suitable as an electronic material such as a conductive paste or a material such as metal clay, and according to the production method of the present invention, a relatively coarse metal powder and nano-level metal fine particles A composite metal powder containing can be easily obtained.
回路等の形成材料として導電性ペーストが従来から用いられている。この導電性ペーストには導電材料として銀粉末等の金属粉末が混合されており、ペーストの焼成温度の低下を図るために、通常の金属粉末と共にナノサイズ、例えば0.1μm以下の金属微粒子(以下、金属ナノ粒子と云う)を混合した混合金属粉末が用いられている。従来、この混合金属粉末は個別に製造した金属粉末と金属ナノ粒子とを混合したものが一般的である。また、電磁波シールド性を高めるためにブラウン管等の表面に透明導電膜が設けられているが、この透明導電膜を形成するコーテング材として銀微粒子のコロイド液が提案されている。 Conventionally, conductive paste has been used as a material for forming circuits and the like. In this conductive paste, metal powder such as silver powder is mixed as a conductive material, and in order to lower the firing temperature of the paste, together with ordinary metal powder, nano-sized metal fine particles (for example, 0.1 μm or less) Mixed metal powder mixed with metal nanoparticles). Conventionally, this mixed metal powder is generally a mixture of individually produced metal powder and metal nanoparticles. In order to improve electromagnetic wave shielding properties, a transparent conductive film is provided on the surface of a cathode ray tube or the like. As a coating material for forming the transparent conductive film, a colloidal solution of silver fine particles has been proposed.
このような金属粗粒子と金属微粒子が混合した金属粉末の製造方法としては、例えば、銀化合物溶液と還元材溶液とを一定の温度と攪拌速度下で反応させ、生成した粒径の異なる銀微粒子を遠心分離して回収し、所定の充填密度になるように混合したものを媒体中に分散させて銀コロイド溶液にする方法が知られている(特許文献1:特開平10−66861号公報)。また、透明導電膜の形成材等に用いられる銀微粒子のコロイド溶液を製造する方法として、塩化アミン銀溶液にゼラチン等の保護コロイドの存在下で還元剤を添加し、液相還元によって粒径0.1μm以下の銀微粒子を製造する方法が知られている(特許文献2:特開平10−265812号公報)。 As a method for producing a metal powder in which such metal coarse particles and metal fine particles are mixed, for example, silver fine particles having different particle diameters are produced by reacting a silver compound solution and a reducing material solution at a constant temperature and stirring speed. Is obtained by centrifuging and collecting the mixture so as to obtain a predetermined packing density and dispersing it in a medium to form a silver colloid solution (Patent Document 1: JP-A-10-66861). . In addition, as a method for producing a colloidal solution of silver fine particles used for a transparent conductive film forming material, a reducing agent is added to silver silver chloride solution in the presence of a protective colloid such as gelatin, and the particle size is reduced to 0 by liquid phase reduction. A method for producing silver fine particles of 0.1 μm or less is known (Patent Document 2: Japanese Patent Laid-Open No. 10-265812).
しかし、金属粉と金属微粒子を個別に製造して混合する場合、金属ナノ粒子は極めて微細な粉末であるため、ペースト等の溶液中に分散した状態で取り扱う必要があり、処理が煩雑でコストも高くなる。一方、湿式法によれば液相反応によって金属ナノ粒子が形成されるので溶液の状態で得ることができるが、ペースト等に使用する場合には、反応溶液を分離除去しなければならず、金属ナノ粒子は通常の濾過法では分離できないので遠心分離によって反応溶液を除去し、金属ナノ粒子を濃縮した金属ナノ粒子の分散溶液を回収しており、工程が多くなる問題があった。
本発明は、従来の製造方法における上記問題を解決したものであり、金属粉と金属ナノ粒子が混在した従来の混合金属粉末とは異なり、金属粉表面に金属微粒子を析出させた複合金属粉末を提供するものであり、さらに、この複合金属粉末を容易に製造する方法を提供することを目的とする。 The present invention solves the above problems in the conventional production method, and unlike the conventional mixed metal powder in which the metal powder and the metal nanoparticles are mixed, the composite metal powder in which the metal fine particles are deposited on the surface of the metal powder is provided. Furthermore, it aims at providing the method of manufacturing this composite metal powder easily.
本発明によれば以下の複合金属粉末とその製造方法、および銀粘土が提供される。
(1)平均粒径がミクロンサイズ以上の金属粉表面に、平均粒径がミクロンサイズ未満の金属微粒子が析出してなることを特徴とする複合金属粉末。
(2)平均粒径0.1〜10μmの金属粉の表面に、平均粒径20nm以下の金属微粒子が析出してなる上記(1)の複合金属粉末。
(3)平均粒径0.1〜10μmの銀粉の表面に、平均粒径20nm以下の銀微粒子が析出してなる複合銀粉末。
(4)金属イオン溶液または還元剤溶液の少なくとも何れかに金属粉を懸濁させ、両溶液を混合して金属イオンを還元することによって、平均粒径がミクロンサイズの金属粉表面に平均粒径がナノサイズの金属微粒子が析出してなる複合金属粉末を製造すること特徴とする複合金属粉末の製造方法。
(5)硝酸銀水溶液または還元剤溶液に0.1〜10μmの銀粉を懸濁させ、両溶液を混合して銀イオンを還元し、上記銀粉表面に平均粒径20nm以下の銀ナノ粒子を析出さた銀粉末を製造する上記(4)の製造方法。
(6)上記(3)の複合銀粉末を用いた低温焼成用銀粘土。
According to the present invention, the following composite metal powder, a method for producing the same, and silver clay are provided.
(1) A composite metal powder, wherein metal fine particles having an average particle size of less than a micron size are deposited on the surface of a metal powder having an average particle size of a micron size or more.
(2) The composite metal powder according to (1) above, wherein metal fine particles having an average particle size of 20 nm or less are deposited on the surface of metal powder having an average particle size of 0.1 to 10 μm.
(3) Composite silver powder obtained by depositing silver fine particles having an average particle size of 20 nm or less on the surface of silver powder having an average particle size of 0.1 to 10 μm.
(4) The metal powder is suspended in at least one of the metal ion solution and the reducing agent solution, and both solutions are mixed to reduce the metal ions, thereby reducing the average particle diameter on the surface of the metal powder having a micron size. A method for producing a composite metal powder, comprising producing a composite metal powder in which nano-sized metal fine particles are deposited.
(5) 0.1 to 10 μm silver powder is suspended in an aqueous silver nitrate solution or a reducing agent solution, both solutions are mixed to reduce silver ions, and silver nanoparticles having an average particle size of 20 nm or less are deposited on the surface of the silver powder. (4) The manufacturing method of said (4) which manufactures silver powder.
(6) A silver clay for low-temperature firing using the composite silver powder of (3) above.
〔複合金属粉末〕
本発明の複合金属粉末は、平均粒径がミクロンサイズ以上の金属粉表面に、平均粒径がミクロンサイズ未満の金属微粒子が析出してなることを特徴とする。ここで、平均粒径がミクロンサイズ以上の金属粉とは、例えば、平均粒径が0.1μm以上の金属粉であり、平均粒径がミクロンサイズ未満の金属微粒子とは平均粒径が0.1μm未満の金属微粒子である。金属種は限定されない。
[Composite metal powder]
The composite metal powder of the present invention is characterized in that metal fine particles having an average particle size of less than a micron size are deposited on the surface of a metal powder having an average particle size of a micron size or more. Here, the metal powder having an average particle size of micron size or more is, for example, a metal powder having an average particle size of 0.1 μm or more, and the metal particle having an average particle size of less than micron size has an average particle size of 0.5. Metal fine particles of less than 1 μm. The metal species is not limited.
金属粉の粒径は具体的には用途等に応じて定められる。例えば、平均粒径0.1〜10μmの金属粉の表面に、平均粒径が20nm以下の金属ナノ粒子が析出してなる複合金属粉末は導電性ペースト等の導電材、金属粘土、あるいは透明導電膜などの材料として好適である。 Specifically, the particle size of the metal powder is determined according to the application. For example, a composite metal powder formed by depositing metal nanoparticles having an average particle size of 20 nm or less on the surface of metal powder having an average particle size of 0.1 to 10 μm is a conductive material such as a conductive paste, metal clay, or transparent conductive material. It is suitable as a material such as a film.
本発明の複合金属粉末は、例えばミクロンサイズの金属粉とナノサイズの金属微粒子とが同時に存在しているので、各粒径の金属粒子を個々に製造して混合する必要がない。従って、粗粒の金属粉と金属微粒子とを含む導電材や金属粘土などの材料、あるいはその他の材料として好適である。また、金属粉を基体とした複合金属粉であるために金属微粒子を含んでいても固体として取り扱うことができる。従って、保存する場合にもコロイド分散液にする必要がない。 In the composite metal powder of the present invention, for example, micron-sized metal powder and nano-sized metal fine particles are present at the same time, so that it is not necessary to individually manufacture and mix metal particles of each particle size. Therefore, it is suitable as a material such as a conductive material or metal clay containing coarse metal powder and metal fine particles, or other materials. Further, since it is a composite metal powder based on a metal powder, it can be handled as a solid even if it contains metal fine particles. Therefore, it is not necessary to make a colloidal dispersion even when stored.
〔製造方法〕
本発明の複合金属粉末は、金属イオン溶液または還元剤溶液の少なくとも何れかに金属粉を懸濁させ、両溶液を混合して金属イオンを還元し、金属粉表面に金属ナノ粒子を析出させることによって製造することができる。金属種や反応条件などは制限されず、金属イオンの還元によって金属微粒子が析出する条件および金属種であれば良い。なお、金属イオン溶液とは硝酸銀水溶液や塩化銀水溶液などの金属イオンを含む溶液である。金属イオンの濃度や還元剤の種類は限定されず、金属粉表面に金属ナノ粒子が析出すればよい。なお、この析出量は金属イオン溶液の濃度等によって制御することができる。金属粉の種類は金属イオンと同種でも良く、異なった金属種でも良い。
〔Production method〕
The composite metal powder of the present invention is obtained by suspending metal powder in at least one of a metal ion solution and a reducing agent solution, mixing both solutions to reduce metal ions, and depositing metal nanoparticles on the metal powder surface. Can be manufactured by. The metal species, reaction conditions, and the like are not limited, and may be any conditions and metal species in which metal fine particles are precipitated by reduction of metal ions. The metal ion solution is a solution containing metal ions such as an aqueous silver nitrate solution or an aqueous silver chloride solution. The concentration of metal ions and the type of reducing agent are not limited, and metal nanoparticles may be deposited on the surface of the metal powder. The amount of precipitation can be controlled by the concentration of the metal ion solution. The kind of metal powder may be the same as the metal ion or a different metal kind.
本製造方法によれば溶液中で金属粉を基体とした複合金属粉末が形成されるので濾過性が良く、遠心分離の必要がなく、通常の濾過手段によって複合金属粉末を容易に回収することができる。 According to this production method, a composite metal powder based on a metal powder is formed in a solution, so that the filterability is good, centrifugation is not necessary, and the composite metal powder can be easily recovered by ordinary filtration means. it can.
例えば、複合銀粉末を製造するには、硝酸銀水溶液またはクエン酸第一鉄溶液などの還元剤溶液の何れかに銀粉を懸濁させ、両溶液を混合して銀イオンを還元し、銀粉表面に銀ナノ粒子を析出さることによって得ることができる。因みに、pH1.5に調整した濃度8.0wt%の硝酸銀水溶液10mL、および濃度18wt%のクエン酸第一鉄溶液50mLを用い、何れかの溶液に平均粒径0.5〜1.0μmの銀粉1.0gを懸濁させた状態で、両溶液を混合して銀イオンを還元すると、銀粉表面に平均粒径20nm以下の銀ナノ粒子が析出し複合銀粉末が生じる。この溶液を吸引濾過して固形分を分離回収し、これを洗浄乾燥することによって、表面に平均粒径20nm以下の銀ナノ粒子を析出さた銀粉末を容易に得ることができる。 For example, to produce composite silver powder, silver powder is suspended in either a silver nitrate aqueous solution or a reducing agent solution such as ferrous citrate solution, and both solutions are mixed to reduce silver ions. It can be obtained by depositing silver nanoparticles. Incidentally, 10 mL of a silver nitrate aqueous solution with a concentration of 8.0 wt% adjusted to pH 1.5 and 50 mL of a ferrous citrate solution with a concentration of 18 wt% were used, and silver powder with an average particle diameter of 0.5 to 1.0 μm was used in any of the solutions. When 1.0 g is suspended and both solutions are mixed to reduce silver ions, silver nanoparticles having an average particle size of 20 nm or less are deposited on the surface of the silver powder to produce a composite silver powder. The solution is suction filtered to separate and recover the solid content, and this is washed and dried, whereby a silver powder having silver nanoparticles having an average particle size of 20 nm or less deposited on the surface can be easily obtained.
本発明の複合金属粉末は、平均粒径がミクロンサイズ以上の金属粉表面に、平均粒径がミクロンサイズ未満の金属微粒子が析出してなるものであり、例えばミクロンサイズの金属粉とナノサイズの金属粒子(金属ナノ粒子)とが同時に存在しているので、ミクロンサイズの金属粉の間にナノサイズの金属微粒が介在した状態となり、金属粉および金属微粒子どうしが十分に接触した状態であるので、導電性に優れた材料を得ることができる。また、熱伝導性が良いので、比較的低温で焼結できる金属粘土を得ることができる。 The composite metal powder of the present invention is obtained by depositing metal fine particles having an average particle size of less than micron size on the surface of metal powder having an average particle size of micron or larger. Since metal particles (metal nanoparticles) are present at the same time, nano-sized metal particles are interposed between micron-sized metal powders, and the metal powder and metal particles are in sufficient contact with each other. A material having excellent conductivity can be obtained. Moreover, since the thermal conductivity is good, a metal clay that can be sintered at a relatively low temperature can be obtained.
また、これを導電性ペーストなどの電子材料や透明導電膜などの導電材、あるいは金属粘土などに利用する場合、ミクロンサイズの金属粉に金属ナノ粒子を混合する必要がない。また、金属粉を基体とした複合粉であるために微粒子を含んでいても固体として取り扱うことができる。 Further, when this is used for an electronic material such as a conductive paste, a conductive material such as a transparent conductive film, or metal clay, it is not necessary to mix metal nanoparticles with micron-sized metal powder. Moreover, since it is a composite powder based on a metal powder, it can be handled as a solid even if it contains fine particles.
具体的には、例えば平均粒径0.1〜10μmの銀粉の表面に平均粒径20nm(ナノメータ)以下の銀ナノ粒子が析出してなる複合銀粉末は導電性ペースト等の導電材として好適であり、また、比較的低温で焼結することができる銀粘土として利用することができる。因みに、表面に銀ナノ粒子が存在しない平均粒径0.8μmの銀粉末をペーストに混合してなる銀粘土の焼結温度は650℃程度であるが、本発明の上記複合銀粉末を用いた銀粘土の焼結温度は300〜40℃であり、従来のものより低温で焼結する。 Specifically, for example, a composite silver powder obtained by depositing silver nanoparticles having an average particle diameter of 20 nm (nanometer) or less on the surface of silver powder having an average particle diameter of 0.1 to 10 μm is suitable as a conductive material such as a conductive paste. In addition, it can be used as silver clay that can be sintered at a relatively low temperature. Incidentally, the sintering temperature of silver clay obtained by mixing silver powder having an average particle diameter of 0.8 μm with no silver nanoparticles on the surface into the paste is about 650 ° C. The composite silver powder of the present invention was used. The sintering temperature of silver clay is 300 to 40 ° C., and it is sintered at a lower temperature than the conventional one.
以上のように、本発明の複合金属粉末は、ナノサイズの金属粒子が例えばミクロンサイズの金属粉表面に存在しており、これらを同時に含むので、粒径の異なる金属粒子混合物を得る場合に、これらを個別に製造する必要がない。また、微粒子を含んでいても固体として取り扱うことができる。本複合金属粉末は導電性ペースト等の導電材、あるいは金属粘土などの材料として広く用いることができる。 As described above, in the composite metal powder of the present invention, nano-sized metal particles are present, for example, on the surface of micron-sized metal powder, and since these are included at the same time, when obtaining a mixture of metal particles having different particle sizes, There is no need to manufacture them individually. Moreover, even if it contains fine particles, it can be handled as a solid. The composite metal powder can be widely used as a conductive material such as a conductive paste, or a material such as metal clay.
また、本発明の製造方法によれば、溶液中で金属粉の表面に金属ナノ粒子を析出させることによって上記複合金属粉末を製造することができ、しかも、この複合金属粉末は濾過性が良く、通常の濾過手段によって容易に回収することができるので、金属ナノ粒子を含む複合金属粉末を安価に製造することができる。 Further, according to the production method of the present invention, the composite metal powder can be produced by depositing metal nanoparticles on the surface of the metal powder in a solution, and the composite metal powder has good filterability, Since it can be easily recovered by ordinary filtration means, a composite metal powder containing metal nanoparticles can be produced at low cost.
以下、本発明を実施例によって具体的に示す。
〔実施例1〕
濃度10wt%の硫酸第一鉄水溶液30mLに濃度27wt%のクエン酸ナトリウム水溶液20mLを混合して濃度18wt%のクエン酸第一鉄溶液50mLを調製した。この溶液に平均粒径0.5μmの球状銀粉1.0gを投入して攪拌し懸濁させた。この懸濁液に水酸化ナトリウム水溶液でpHl.5に調整した濃度8.0wt%の硝酸銀水溶液10mLを毎分10mLづつビュレット添加し、温度を20℃付近に維持し、回転数300rpmで攪拌しながら反応させ、球状銀粉表面に銀ナノ粒子を析出させた複合粉含有液を得た。次いで、この銀複合粉含有液を吸引濾過して固形部と溶液部に分離し、得られた固形部に水を加えて鉄分を洗い流した。洗浄後の固形部を乾燥して球状銀粉表面に銀ナノ粒子が析出した複合粉を回収した。この銀複合粉表面の銀ナノ粒子の平均粒径は20nm、析出量は0.9gであり、銀ナノ粒子が粉末表面をほぼ均一に覆っていることが確認された。
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
50 mL of a ferrous citrate solution having a concentration of 18 wt% was prepared by mixing 30 mL of a 10 wt% ferrous sulfate aqueous solution with 20 mL of a 27 wt% sodium citrate aqueous solution. To this solution, 1.0 g of spherical silver powder having an average particle diameter of 0.5 μm was added and stirred to be suspended. To this suspension was added 10 mL of a silver nitrate aqueous solution having a concentration of 8.0 wt% adjusted to pH 1.5 with an aqueous sodium hydroxide solution at a rate of 10 mL per minute, and the temperature was maintained at around 20 ° C. while stirring at a rotation speed of 300 rpm. The composite powder containing liquid which made it react and made silver nanoparticle precipitate on the spherical silver powder surface was obtained. Next, this silver composite powder-containing liquid was suction filtered to separate it into a solid part and a solution part, and water was added to the resulting solid part to wash away iron. The solid part after washing was dried to recover the composite powder in which silver nanoparticles were deposited on the surface of the spherical silver powder. The average particle diameter of the silver nanoparticles on the surface of the silver composite powder was 20 nm and the amount of precipitation was 0.9 g. It was confirmed that the silver nanoparticles covered the powder surface almost uniformly.
〔実施例2〕
水酸化ナトリウム水溶液でpHl.5に調整した濃度8.0wt%の硝酸銀水溶液10mLを用い、これに平均粒径0.5μmの球状銀粉1.0gを投入して攪拌し懸濁させた。この懸濁溶液を、濃度10wt%の硫酸第一鉄水溶液30mLと濃度27wt%のクエン酸ナトリウム水溶液20mLの混合液に添加し、温度を20℃付近に維持し、回転数300rpmで攪拌しながら反応させて球状銀粉表面に銀ナノ粒子を析出させた複合粉含有液を得た。次いで、この銀複合粉含有液を吸引濾過して固形部と溶液部に分離し、得られた固形部に水を加えて鉄分を洗い流した。洗浄後の固形部を乾燥して球状銀粉表面に銀ナノ粒子を析出させた複合粉を回収した。この銀複合粉表面の銀ナノ粒子の平均粒径は20nm、析出量は0.9gであり、銀ナノ粒子が粉末表面をほぼ均一に覆っていることが確認された。
[Example 2]
Using 10 mL of an aqueous silver nitrate solution having a concentration of 8.0 wt% adjusted to pH 1.5 with an aqueous sodium hydroxide solution, 1.0 g of spherical silver powder having an average particle size of 0.5 μm was added and stirred and suspended. This suspension solution is added to a mixed solution of 30 mL of a 10 wt% ferrous sulfate aqueous solution and 20 mL of a 27 wt% sodium citrate aqueous solution, and the temperature is maintained at around 20 ° C. while stirring at a rotation speed of 300 rpm. Thus, a composite powder-containing liquid in which silver nanoparticles were deposited on the surface of the spherical silver powder was obtained. Next, this silver composite powder-containing liquid was suction filtered to separate it into a solid part and a solution part, and water was added to the resulting solid part to wash away iron. The solid part after washing was dried to recover the composite powder in which silver nanoparticles were precipitated on the surface of the spherical silver powder. The average particle diameter of the silver nanoparticles on the surface of the silver composite powder was 20 nm and the amount of precipitation was 0.9 g. It was confirmed that the silver nanoparticles covered the powder surface almost uniformly.
Claims (6)
A composite metal powder, wherein metal fine particles having an average particle size of less than a micron size are deposited on the surface of a metal powder having an average particle size of a micron size or more.
The composite metal powder according to claim 1, wherein metal fine particles having an average particle diameter of 20 nm or less are deposited on the surface of a metal powder having an average particle diameter of 0.1 to 10 µm.
A composite silver powder obtained by depositing silver fine particles having an average particle diameter of 20 nm or less on the surface of silver powder having an average particle diameter of 0.1 to 10 μm.
The metal powder is suspended in at least one of the metal ion solution and the reducing agent solution, and both solutions are mixed to reduce the metal ions. A method for producing a composite metal powder, comprising producing a composite metal powder in which metal fine particles are deposited.
Silver powder in which 0.1 to 10 μm silver powder is suspended in a silver nitrate aqueous solution or a reducing agent solution, both solutions are mixed to reduce silver ions, and silver nanoparticles having an average particle size of 20 nm or less are deposited on the surface of the silver powder. The manufacturing method of Claim 4 which manufactures.
A silver clay for low-temperature firing using the composite silver powder of claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004219987A JP2005060831A (en) | 2003-07-29 | 2004-07-28 | Composite metal powder and its production method, and silver clay |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003203128 | 2003-07-29 | ||
JP2004219987A JP2005060831A (en) | 2003-07-29 | 2004-07-28 | Composite metal powder and its production method, and silver clay |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005060831A true JP2005060831A (en) | 2005-03-10 |
Family
ID=34379865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004219987A Withdrawn JP2005060831A (en) | 2003-07-29 | 2004-07-28 | Composite metal powder and its production method, and silver clay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005060831A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006126527A1 (en) * | 2005-05-27 | 2006-11-30 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
WO2007040195A1 (en) * | 2005-10-03 | 2007-04-12 | Mitsui Mining & Smelting Co., Ltd. | Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder |
TWI483797B (en) * | 2012-07-13 | 2015-05-11 | Univ Nat Taiwan | A composite of size-controllable metal nanoparticles and its preparation method |
CN111804931A (en) * | 2019-04-11 | 2020-10-23 | 香港大学 | Antibacterial stainless steel prepared by powder metallurgy method assisted by in-situ decomposition |
CN113118436A (en) * | 2020-01-14 | 2021-07-16 | 丰田自动车株式会社 | Composite particle and method for producing composite particle |
-
2004
- 2004-07-28 JP JP2004219987A patent/JP2005060831A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5042017B2 (en) * | 2005-05-27 | 2012-10-03 | 株式会社Neomaxマテリアル | Silver-coated ball and method for producing the same |
WO2006126527A1 (en) * | 2005-05-27 | 2006-11-30 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
KR101244396B1 (en) | 2005-05-27 | 2013-03-25 | 가부시키가이샤 네오맥스 마테리아르 | Silver-coated ball and method for manufacturing same |
EP1900471A1 (en) * | 2005-05-27 | 2008-03-19 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
EP1900471A4 (en) * | 2005-05-27 | 2010-06-02 | Neomax Materials Co Ltd | Silver-coated ball and method for manufacturing same |
US8039107B2 (en) | 2005-05-27 | 2011-10-18 | Neomax Materials Co., Ltd. | Silver-coated ball and method for manufacturing same |
WO2007040195A1 (en) * | 2005-10-03 | 2007-04-12 | Mitsui Mining & Smelting Co., Ltd. | Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder |
JP2007100155A (en) * | 2005-10-03 | 2007-04-19 | Mitsui Mining & Smelting Co Ltd | Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder |
KR101301634B1 (en) * | 2005-10-03 | 2013-08-29 | 미쓰이 긴조꾸 고교 가부시키가이샤 | Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder |
TWI483797B (en) * | 2012-07-13 | 2015-05-11 | Univ Nat Taiwan | A composite of size-controllable metal nanoparticles and its preparation method |
CN111804931A (en) * | 2019-04-11 | 2020-10-23 | 香港大学 | Antibacterial stainless steel prepared by powder metallurgy method assisted by in-situ decomposition |
CN113118436A (en) * | 2020-01-14 | 2021-07-16 | 丰田自动车株式会社 | Composite particle and method for producing composite particle |
US11628501B2 (en) | 2020-01-14 | 2023-04-18 | Toyota Jidosha Kabushiki Kaisha | Composite particles and method for producing composite particles |
CN113118436B (en) * | 2020-01-14 | 2023-08-08 | 丰田自动车株式会社 | Composite particle and method for producing composite particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101193762B1 (en) | Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom | |
KR101004553B1 (en) | Micro Silver Particle-Containing Composition, Method for Producing It, Method for Producing Micro Silver Particle | |
US5945158A (en) | Process for the production of silver coated particles | |
KR101045186B1 (en) | Method For Manufacturing Cupper Nanoparticles and Cupper Nanoparticles Using The Same | |
CN113369491B (en) | Spherical and flaky mixed silver powder and manufacturing method thereof | |
JP2013541640A (en) | Silver particles and method for producing the same | |
JP3570591B2 (en) | Production method of copper powder | |
JP2012525506A (en) | Silver particles and method for producing the same | |
KR20150028970A (en) | Silver powder | |
JP2006045655A (en) | Silver nanoparticle and production method therefor | |
JPH09241709A (en) | Production of copper powder | |
JP2006118010A (en) | Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE | |
Mourdikoudis et al. | Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights | |
JP2004217952A (en) | Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder | |
JP2004043892A (en) | Fine particle of noble metal and manufacturing method therefor | |
KR101335493B1 (en) | Flake silver paste with excellent electrical property and method of manufacturing the same | |
JP2005060831A (en) | Composite metal powder and its production method, and silver clay | |
CN107759464B (en) | Controllable preparation method of monodisperse copper oxalate powder | |
JP4577515B2 (en) | Highly dispersible silver fine particles, production method thereof, and use | |
JP5769228B2 (en) | Method for producing silver / magnetite composite wire | |
JPH05221637A (en) | Production of cuprous oxide powder and copper powder | |
JP2004084069A (en) | Inorganic oxide coated metal powder and its manufacturing method | |
CN112091233B (en) | Synthesis method of silver nanoparticles | |
KR101351913B1 (en) | Manufacturing method of iron nano particles using slurry reduction process | |
US7041151B2 (en) | Electrochemical displacement-deposition method for making composite metal powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071002 |