JP2005060712A - Acrylic polymer fine particle - Google Patents

Acrylic polymer fine particle Download PDF

Info

Publication number
JP2005060712A
JP2005060712A JP2004291244A JP2004291244A JP2005060712A JP 2005060712 A JP2005060712 A JP 2005060712A JP 2004291244 A JP2004291244 A JP 2004291244A JP 2004291244 A JP2004291244 A JP 2004291244A JP 2005060712 A JP2005060712 A JP 2005060712A
Authority
JP
Japan
Prior art keywords
mol
polymer
meth
plasticizer
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004291244A
Other languages
Japanese (ja)
Other versions
JP3946215B2 (en
Inventor
Toshihiro Kasai
俊宏 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004291244A priority Critical patent/JP3946215B2/en
Publication of JP2005060712A publication Critical patent/JP2005060712A/en
Application granted granted Critical
Publication of JP3946215B2 publication Critical patent/JP3946215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plastisol applicable to an industrial use, wherein the plastisol is prepared by dispersing acrylic polymer fine particles, which contain no vinyl chloride polymer and have good storage stability and good retention of a plasticizer, in a plasticizer. <P>SOLUTION: The acrylic polymer fine particles comprise primary particles P having a core shell structure consisting of a core polymer C and a shell polymer S, wherein the primary particles P have an average particle diameter of 250 nm or larger; the core polymer C and the shell polymer S are copolymers of (meta)acrylic monomer mixtures Mc and Ms respectively; and the weight proportion of Mc to Ms is 10/90-90/10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アクリル系重合体微粒子に関する。さらに、本発明はアクリル系重合体微粒子を可塑剤に分散させてなるプラスチゾルに関する。さらに詳しくは、本発明は貯蔵安定性に優れ、かつ加熱成膜後の可塑剤保持性に優れたプラスチゾルに関する。   The present invention relates to acrylic polymer fine particles. Furthermore, the present invention relates to a plastisol obtained by dispersing acrylic polymer fine particles in a plasticizer. More specifically, the present invention relates to a plastisol having excellent storage stability and excellent plasticizer retention after heating film formation.

可塑剤を媒体とし重合体微粒子を分散させてなるプラスチゾルは、多岐にわたる工業分野において利用されており、その工業的価値は著大である。とくに塩化ビニル系重合体微粒子を用いたプラスチゾルは塩化ビニルゾル(以下、塩ビゾルと略す)として知られ、その優れた物性により、壁紙、自動車用アンダーコート、自動車用ボディーシーラー、カーペットバッキング材、床材、塗料などの広い分野で使用されている。
塩ビゾルは、塩化ビニル重合体微粒子が有する特異な性質により、プラスチゾルに要求される基本的な性質、すなわち
(i) プラスチゾルを貯蔵中に重合体微粒子が可塑剤により膨潤あるいは溶解しないこと(以下、この性質を貯蔵安定性と略す);
(ii) プラスチゾルを塗布し加熱処理によりゲル化物を形成し乾燥塗膜を得た後でも、該乾燥塗膜中に可塑剤が良好に保持され、経時的にブリードアウトしないこと(以下、この性質を可塑剤保持性と略す)
において非常に優れており、現在のように広く工業的に利用されるに至った。
A plastisol obtained by dispersing polymer fine particles using a plasticizer as a medium is used in various industrial fields, and its industrial value is remarkable. In particular, plastisol using vinyl chloride polymer fine particles is known as vinyl chloride sol (hereinafter abbreviated as vinyl chloride sol). Due to its excellent physical properties, wallpaper, automotive undercoat, automotive body sealer, carpet backing material, flooring Used in a wide range of fields such as paint.
Vinyl chloride sol is a basic property required for plastisol due to the unique properties of vinyl chloride polymer fine particles.
(i) The polymer fine particles are not swollen or dissolved by the plasticizer during storage of the plastisol (hereinafter, this property is abbreviated as storage stability);
(ii) Even after plastisol is applied and a gelled product is formed by heat treatment to obtain a dried coating film, the plasticizer is well retained in the dried coating film and does not bleed out over time (hereinafter referred to as this property). Is abbreviated as plasticizer retention)
It is very excellent in the industry and has been widely used industrially as it is now.

しかしながら塩ビゾルを用いた製品については、焼却した時に塩化水素ガスが発生し、これが焼却炉を著しく損傷させてしまうという問題がかねてから指摘されていた。また近年では、塩化水素ガスによる酸性雨の問題、さらには焼却時に発生する、毒性が極めて高いダイオキシンによる人体や地球環境への悪影響などが問題視されるようになり、塩ビゾルと同等の物性を有しながら環境問題の少ない代替材料の登場が期待されていた。
そこで、塩ビゾルを代替する材料の候補として、一液ウレタン系材料、エポキシ系材料、水系エマルジョン材料、シリコーン系材料などが提案されている。しかしながらこれらの材料の生産においては、いずれも既存の塩ビゾルの生産設備を利用することが不可能であり、工業的利用にあたっては膨大な設備投資を必要とする。さらに、一液ウレタン系材料は、増粘による貯蔵安定性の不良や、毒性の問題、高コストであることなど多くの問題点を有している。エポキシ系材料は、高コストであり、物性的にも塩ビゾルにはるかに及ばない等、多くの問題点を有している。水系エマルジョンの場合には、厚塗りが不可能であること、媒体である水の蒸発に伴って塗膜にふくれが発生すること、塗膜の耐水性が不良であること、などが問題として挙げられる。シリコーン系材料も、コストが高く、また物性の点からも、代替材料となることはできない。したがって、これらの材料では塩ビゾルを代替することが極めて困難であった。
However, products using PVC sol have been pointed out for a long time because hydrogen chloride gas is generated when incinerated, which causes serious damage to the incinerator. In recent years, the problem of acid rain caused by hydrogen chloride gas and the adverse effects on the human body and the global environment caused by dioxins, which are extremely toxic during incineration, have been regarded as problems. The appearance of alternative materials with less environmental problems was expected.
Thus, one-component urethane-based materials, epoxy-based materials, water-based emulsion materials, silicone-based materials, and the like have been proposed as candidates for materials that can substitute for vinyl chloride sols. However, in the production of these materials, it is impossible to use existing production facilities for vinyl chloride sol, and a huge investment in equipment is required for industrial use. Furthermore, one-component urethane-based materials have many problems such as poor storage stability due to thickening, toxicity problems, and high cost. Epoxy materials have many problems such as high cost and physical properties that are far below those of PVC. In the case of water-based emulsions, problems such as the inability to thickly coat, the occurrence of blistering in the coating as the medium water evaporates, and poor water resistance of the coating It is done. Silicone materials are also expensive and cannot be used as substitute materials from the viewpoint of physical properties. Therefore, it has been extremely difficult to replace PVC sol with these materials.

このような問題を解決するための代替材料として、近年アクリル系重合体微粒子からなるプラスチゾル、すなわちアクリルゾルが提案されている。
たとえば特許文献1、特許文献2、特許文献3には、塩化ビニル重合体とアクリル重合体を複合化することにより得られる新規なプラスチゾルが提案されている。しかしながらこのプラスチゾルは本質的に塩化ビニル重合体を含有するものであり、焼却時に有害なガスを発生することに関しては従来の塩ビゾルと何ら変わらないものであり、上記環境問題の解決には至っていない。
そこで塩化ビニル重合体及び他のハロゲン系重合体をまったく含有しないプラスチゾルとして、特許文献4にアクリル系重合体からなるプラスチゾルが提案されている。上記文献で用いられている重合体は均一構造粒子であるが、アクリル系重合体の場合、プラスチゾルの貯蔵安定性と塗膜の可塑剤保持性を均一構造粒子で実現することは不可能であり、上記公報によるプラスチゾルは実用レベルにおいては貯蔵安定性がきわめて悪いか、あるいは塗膜物性がきわめて悪くなる傾向にある。
これは、アクリル系重合体は、塩化ビニル重合体と異なり、分子間に働くファンデルワールス凝集力が弱いため、可塑剤に対して相溶性の高い組成を用いると、可塑剤が容易に分子間に侵入して、可塑化すなわちゲル化を引き起こしてしまい、貯蔵安定性が不良となることに起因する。
そのため、貯蔵安定性を良好にするためには、可塑剤との相溶性を低くする必要がある。しかしながら、可塑剤との相溶性が低い重合体は、貯蔵安定性は良好なものの、ゾルを塗布し加熱成膜した後に得られる塗膜(以下、ゲル化膜と略す)の可塑剤保持性が極めて低く、経時的に可塑剤がゲル化膜からブリードアウトしてきてしまう。
このように、アクリル系重合体微粒子を用いたアクリルゾルの場合、貯蔵安定性と成膜後の可塑剤保持性の関係は相反するものであり、均一構造の重合体微粒子ではこれを満足することは不可能であった。
As an alternative material for solving such problems, a plastisol composed of acrylic polymer fine particles, that is, an acrylic sol has been proposed in recent years.
For example, Patent Document 1, Patent Document 2, and Patent Document 3 propose a novel plastisol obtained by combining a vinyl chloride polymer and an acrylic polymer. However, this plastisol essentially contains a vinyl chloride polymer, and in terms of generating harmful gas during incineration, it is not different from conventional vinyl chloride sols, and has not yet solved the above environmental problems. .
Therefore, Patent Document 4 proposes a plastisol made of an acrylic polymer as a plastisol containing no vinyl chloride polymer and other halogen-based polymer. The polymer used in the above document is a uniform structure particle, but in the case of an acrylic polymer, it is impossible to realize the storage stability of plastisol and the plasticizer retention of the coating film with the uniform structure particle. The plastisol according to the above publication tends to have extremely poor storage stability or extremely poor physical properties at the practical level.
This is because, unlike a vinyl chloride polymer, an acrylic polymer has a weak van der Waals cohesive force acting between molecules, so if a composition that is highly compatible with a plasticizer is used, the plasticizer can be easily intermolecular. This is caused by intruding into the resin and causing plasticization, that is, gelation, resulting in poor storage stability.
Therefore, in order to improve the storage stability, it is necessary to lower the compatibility with the plasticizer. However, a polymer with low compatibility with a plasticizer has good storage stability, but has a plasticizer retention property of a coating film (hereinafter abbreviated as a gelled film) obtained after applying a sol and heating to form a film. It is very low, and the plasticizer bleeds out from the gelled film over time.
Thus, in the case of acrylic sols using acrylic polymer fine particles, the relationship between storage stability and plasticizer retention after film formation is contradictory, and polymer fine particles with a uniform structure satisfy this. Was impossible.

そこでコアシェル構造粒子を用いたアクリル系プラスチゾルとして、特許文献5が提案されている。ここではアクリル系重合体に酸又は酸無水物を含有させた重合体を用いている。しかしながら上記文献で提案されている重合体は、可塑剤に対する相溶性が低く、特にシェル部のメチルメタクリレートの共重合比率が高いために、フタル酸エステル系可塑剤のように極性の低い可塑剤を用いた場合には可塑化状態が不良となり、良好な塗膜を得ることができない。
他に特許文献6においては、同じくコアシェル構造粒子を用いたプラスチゾルが提案されている。ここではコアシェル構造粒子といっても、均一構造粒子を製造し、これを後にアルカリ加水分解処理を行うことによって、粒子のごく表層部のエステル基をカルボキシル基に変換するというものである。したがって、シェル部の厚みはきわめて薄く、実質的に粒子の体積の1%前後かそれ以下にすぎない。したがってシェル部の役割として期待される貯蔵安定性の改良効果はきわめて低い。またアルカリ加水分解により導入されたシェル部は酸価が非常に高くなっており、可塑剤に対する相溶性が非常に低く、成膜性を著しく低下させる。またこのような高酸価のシェル部は、プラスチゾル中で重合体粒子が構造粘性を作ることに寄与するため、プラスチゾルの粘度が高くなる等、作業性が低下するという弊害がある。
Therefore, Patent Document 5 has been proposed as an acrylic plastisol using core-shell structured particles. Here, a polymer obtained by adding an acid or an acid anhydride to an acrylic polymer is used. However, the polymers proposed in the above documents have low compatibility with plasticizers, and in particular, since the copolymerization ratio of methyl methacrylate in the shell portion is high, plasticizers with low polarity such as phthalate ester plasticizers are used. When used, the plasticized state becomes poor and a good coating film cannot be obtained.
In addition, Patent Document 6 proposes a plastisol using core-shell structured particles. Here, even if the core-shell structured particles are used, uniform structured particles are produced, and this is subsequently subjected to an alkali hydrolysis treatment to convert ester groups on the very surface layer of the particles into carboxyl groups. Therefore, the thickness of the shell portion is extremely thin, and is substantially only about 1% or less of the volume of the particles. Therefore, the improvement effect of the storage stability expected as the role of the shell portion is extremely low. In addition, the shell portion introduced by alkali hydrolysis has a very high acid value, has very low compatibility with the plasticizer, and remarkably deteriorates the film formability. In addition, such a high acid value shell part contributes to the polymer particles creating a structural viscosity in the plastisol, and thus has a detrimental effect such as an increase in the viscosity of the plastisol and a decrease in workability.

またコアシェル構造粒子を用いたプラスチゾルの他の例が特許文献7に提案されている。ここでは組成の異なるモノマーを段階的に重合することによりコアシェル構造を得るという手法を用いている。ここではプラスチゾルの貯蔵安定性を発現するために可塑剤に対して非相溶性のシェルを用いており、多くの可塑剤に対して低い相溶性を示すメチルメタクリレートを80重量%以上共重合したシェルを用いている。しかしながら相溶性がきわめて低いシェルは、貯蔵安定性においては有利であるが、ゾルの成膜性、得られる塗膜の強度、伸度、透明性、基材に対する密着性、防音性、制振性など各種性能において劣るという傾向を有し、特に可塑剤の保持性において劣るため、ブリードアウトを発生しやすく、実用的ではない。
コアシェル構造粒子を用いたプラスチゾルのさらなる例が特許文献8及び特許文献9に提案されている。ここでは基本的に可塑剤に対する相溶性を示すコア部と、可塑剤に対して非相溶性を示すシェル部とからなるコアシェル重合体を用いることにより、ごく基本的な性能を実現している。しかしながら、工業的に実用化するためにはきわめて高い物性が要求されることになり、その点においては上記公報により提案された重合体は、可塑剤との相溶性のバランスが最適化されておらず、貯蔵安定性及び塗膜の可塑剤保持性のいずれも低いレベルであり、工業的な実用化には不適当である。
このように、プラスチゾルの最も基本的な性質である貯蔵安定性と可塑剤保持性を両立させるためにアクリルゾルについて種々の検討がなされているものの、塩ビゾル代替材料としてはいずれも低レベルで工業的な実用レベルに達していないのが現状であった。
特開昭60−258241号公報 特開昭61−185518号公報 特開昭61−207418号公報 特開平5−255563号公報 特開平5−279539号公報 特開平6−322225号公報 特開昭53−144950号公報 特開平7−233299号公報 特開平8−295850号公報
Another example of plastisol using core-shell structured particles is proposed in Patent Document 7. Here, a technique of obtaining a core-shell structure by stepwise polymerizing monomers having different compositions is used. Here, in order to express the storage stability of plastisol, a shell that is incompatible with a plasticizer is used, and a shell obtained by copolymerizing 80% by weight or more of methyl methacrylate, which has low compatibility with many plasticizers. Is used. However, a shell with very low compatibility is advantageous in terms of storage stability, but the sol film formability, strength of the resulting coating film, elongation, transparency, adhesion to the substrate, soundproofing, vibration damping Such a tendency tends to be inferior in various performances, and in particular, inferior in plasticizer retention, bleed-out is likely to occur and is not practical.
Further examples of plastisol using core-shell structured particles are proposed in Patent Document 8 and Patent Document 9. Here, a very basic performance is realized by using a core-shell polymer consisting essentially of a core portion that is compatible with a plasticizer and a shell portion that is incompatible with a plasticizer. However, extremely high physical properties are required for industrial practical use. In that respect, the polymer proposed in the above publication is not optimized in the balance of compatibility with the plasticizer. In addition, both the storage stability and the plasticizer retention of the coating film are at a low level, which is not suitable for industrial practical use.
As described above, various studies have been made on acrylic sol in order to achieve both storage stability and plasticizer retention, which are the most basic properties of plastisol. The current situation is that the practical level has not been reached.
JP 60-258241 A JP-A 61-185518 JP 61-207418 A JP-A-5-255563 JP-A-5-279539 JP-A-6-322225 JP-A-53-144950 JP-A-7-233299 JP-A-8-295850

本発明は、塩化ビニル重合体を含有せず、貯蔵安定性が良好であり、可塑剤保持性が良好である新規なプラスチゾルを工業的に利用可能なレベルで提供することを課題とする。   An object of the present invention is to provide a new plastisol that does not contain a vinyl chloride polymer, has good storage stability, and good plasticizer retention at a level that can be industrially used.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、アクリル系重合体微粒子の粒子径を大きくすることにより、貯蔵安定性及び可塑剤保持性の両方に優れたアクリルゾルが得られ、また250nm以上の一次粒子径を有するコアシェル構造を有するアクリル系重合体を用い、シェル部のモノマー組成を特定し、重合体と可塑剤の相溶性をコントロールすることにより貯蔵安定性と可塑剤保持性のバランスを工業的に利用可能なレベルにまで改良できることを見出し、本発明を完成した。
すなわち本発明の主旨とするところは、以下のとおりである;
(i) コア重合体Cとシェル重合体Sからなるコアシェル構造を有する一次粒子Pからなるアクリル系重合体微粒子であり、該一次粒子Pの平均粒子径が250nm以上であり、コア重合体C及びシェル重合体Sはそれぞれ以下に示すモノマー混合物Mc及びMsの共重合体であり、かつMcとMsの重量比が10/90〜90/10である上記アクリル系重合体微粒子:
Mc:合計を100mol%とし、
メチルメタクリレート 20〜85mol%
C2〜C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア
クリル酸エステル
15〜80mol%、及び
その他の共重合可能なモノマー 30mol%以下
Ms:合計を100mol%とし、
メチルメタクリレート 20〜79.5mol%
C2〜C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア
クリル酸エステル
5〜40mol%
カルボキシル基又はスルホン酸基含有モノマー
0.5〜10mol%、及び
その他の共重合可能なモノマー 30mol%以下
(ii) (1)イ)水を主成分とする媒体中で、20℃において該媒体に対して0.02質量%以上の溶解度を有し、かつその重合体は該媒体に溶解しない単量体を、媒体中に乳化剤ミセルが存在しない状態において、水溶性ラジカル重合開始剤を用いて重合せしめ、重合体分散液を得る工程、
ロ)上記の重合体分散液に対して単量体混合物を滴下して被覆された重合体分散液を得る工程、
(2)上記の重合体分散液を噴霧乾燥することによって重合体微粒子を回収する工程、
を含むアクリル系重合体微粒子の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have obtained an acrylic sol excellent in both storage stability and plasticizer retention by increasing the particle diameter of the acrylic polymer fine particles. In addition, by using an acrylic polymer having a core-shell structure having a primary particle size of 250 nm or more, the monomer composition of the shell portion is specified, and the compatibility between the polymer and the plasticizer is controlled, so that the storage stability and the plasticizer The present inventors have found that the balance of retention can be improved to an industrially usable level, and the present invention has been completed.
That is, the gist of the present invention is as follows:
(i) acrylic polymer fine particles composed of primary particles P having a core-shell structure composed of a core polymer C and a shell polymer S, the average particle diameter of the primary particles P being 250 nm or more, and the core polymer C and The shell polymer S is a copolymer of the monomer mixture Mc and Ms shown below, respectively, and the acrylic polymer fine particles having a weight ratio of Mc and Ms of 10/90 to 90/10:
Mc: the total is 100 mol%,
Methyl methacrylate 20-85 mol%
(Meth) acrylic acid ester of C2-C8 aliphatic alcohol and / or aromatic alcohol
15 to 80 mol%, and other copolymerizable monomers 30 mol% or less Ms: the total is 100 mol%,
Methyl methacrylate 20-79.5 mol%
(Meth) acrylic acid ester of C2-C8 aliphatic alcohol and / or aromatic alcohol
5-40 mol%
Carboxyl group or sulfonic acid group-containing monomer
0.5 to 10 mol%, and other copolymerizable monomers 30 mol% or less
(ii) (1) A) A single amount which has a solubility of 0.02% by mass or more with respect to the medium at 20 ° C. in a medium mainly containing water, and the polymer does not dissolve in the medium. In a state where the emulsifier micelle is not present in the medium, and using a water-soluble radical polymerization initiator to obtain a polymer dispersion.
B) a step of obtaining a polymer dispersion coated by dropping the monomer mixture with respect to the polymer dispersion;
(2) a step of recovering polymer fine particles by spray drying the above polymer dispersion;
A method for producing acrylic polymer fine particles comprising:

本明細書において、(メタ)アクリル酸はアクリル酸及び/又はメタクリル酸を、(メタ)アクリレートはアクリレート及び/又はメタクリレートを表す。
本明細書において、また、「一次粒子」とは重合体微粒子を構成する最小単位の粒子を指す。
本発明のアクリル系重合体微粒子はコアシェル構造を有する一次粒子Pからなる。コアシェル構造を用いる理由は、アクリル系重合体の場合、均一構造では貯蔵安定性と可塑剤保持性が両立できないためである。これを詳しく説明すると、アクリル系重合体は塩化ビニル重合体と異なり、分子間に働くファンデルワールス凝集力が弱いため、可塑剤に対して相溶性の高い組成を用いると可塑剤が容易に分子間に侵入して可塑化すなわちゲル化を引き起こし、貯蔵安定性が不良となるからである。したがって貯蔵安定性を良好にするためには可塑剤との相溶性を低くする必要がある。しかしながら可塑剤に対する相溶性が低い重合体は、貯蔵安定性は良好なものの、加熱後のゲル化物の可塑剤保持性が極めて低く、経時的に可塑剤がブリードアウトしてきてしまう。つまりアクリル系重合体の場合、貯蔵安定性と可塑剤保持性の関係は相反するものであり、均一構造の重合体ではこれを満足することは不可能である。
これに対して、コアシェル構造を有する重合体において、コア重合体Cを可塑剤に対して相溶性の高い組成とし、シェル重合体Sを可塑剤に対して相溶性の低い組成とすれば、上記の相反する課題はある程度解決される。つまり、貯蔵時には重合体の周囲を完全に取り囲んでいるシェル重合体が可塑剤による膨潤・溶解を防ぐために貯蔵安定性が良好となり、逆に加熱後は活発な分子運動によりコアシェル構造が壊れているため、コアが持つ高い相溶性により可塑剤保持性が良好となる。
In this specification, (meth) acrylic acid represents acrylic acid and / or methacrylic acid, and (meth) acrylate represents acrylate and / or methacrylate.
In the present specification, “primary particles” refer to particles of a minimum unit constituting polymer fine particles.
The acrylic polymer fine particles of the present invention are composed of primary particles P having a core-shell structure. The reason for using the core-shell structure is that, in the case of an acrylic polymer, the storage stability and the plasticizer retention cannot be achieved in a uniform structure. Explaining this in detail, unlike vinyl chloride polymers, acrylic polymers have weak van der Waals cohesive forces acting between molecules, so if a composition that is highly compatible with plasticizers is used, the plasticizer can easily be It is because it penetrates in between and causes plasticization, that is, gelation, resulting in poor storage stability. Therefore, in order to improve the storage stability, it is necessary to lower the compatibility with the plasticizer. However, a polymer having low compatibility with a plasticizer has good storage stability, but the plasticizer retention of the gelled product after heating is extremely low, and the plasticizer bleeds out over time. That is, in the case of an acrylic polymer, the relationship between storage stability and plasticizer retention is contradictory, and it is impossible to satisfy this with a polymer having a uniform structure.
On the other hand, in the polymer having a core-shell structure, if the core polymer C has a composition highly compatible with the plasticizer and the shell polymer S has a composition low in compatibility with the plasticizer, the above These conflicting issues are solved to some extent. In other words, during storage, the shell polymer that completely surrounds the polymer has good storage stability to prevent swelling and dissolution by the plasticizer. Conversely, after heating, the core-shell structure is broken due to active molecular motion. For this reason, the plasticizer retainability is improved due to the high compatibility of the core.

本発明で言うコアシェル構造とは、異なる組成のモノマー混合物を数段階にわけてシード重合することによって得られるものを言う。なお、「シード重合」とは、あらかじめ調製された重合体粒子をシード(種)とし、これに単量体を吸収・重合させて粒子を成長させる重合方法を指す。したがって、乳化重合や微細懸濁重合などによってあらかじめ均一構造の粒子を製造し、これをアルカリ加水分解などの後処理によって表面修飾した重合体粒子とは明らかに技術的に区別されなければならない。
その第一の理由は、アルカリ加水分解などの後処理によって表面修飾する方法では、粒子のごく表層部のみに薄い修飾層が導入されるだけであり、その物理的な厚みにおいて本発明が意図する十分な厚みを有したシェルとは本質的に異なるからである。
具体的には、本発明の場合、シェル部の厚みは、特に限定はされないが、一次粒子径の約10%以上であることが好ましい。
たとえば粒子径が600nmでコア/シェル重量比が50/50の場合、理論的にはそのシェルの物理的な厚みは約62nmとなり、この値はポリメチルメタクリレート分子の大きさを0.5nmとした場合に120分子以上にも及ぶ厚みであり、この厚いシェルがプラスチゾルとした場合に重合体微粒子中に可塑剤が侵入するのを防ぎ、良好な貯蔵安定性を発現するのに寄与している。
これに対して、均一構造粒子をアルカリ加水分解処理して表面修飾層を導入する場合、粒子径が600nmの場合には10nm前後か、せいぜい20nm程度である。これはメチルメタクリレート分子の大きさにして数十分子程度の厚みしかなく、この程度の薄い表面修飾層によってプラスチゾルの貯蔵安定性を付与することは事実上不可能である。また、さらにアルカリ加水分解を行おうとしても、加水分解により生じた表面修飾層は極度に高酸価であり、水溶性を示し、重合体微粒子は粒子として固定されずに水相に溶解していくため、結局十分に厚みのあるシェルと言えるほどの表面修飾層を導入することができない。
The core-shell structure referred to in the present invention refers to a structure obtained by seed polymerization of monomer mixtures having different compositions in several stages. The “seed polymerization” refers to a polymerization method in which polymer particles prepared in advance are used as seeds, and the monomer is absorbed and polymerized to grow the particles. Therefore, it must be clearly technically distinguished from polymer particles in which particles having a uniform structure are produced in advance by emulsion polymerization, fine suspension polymerization or the like, and surface-modified by post-treatment such as alkali hydrolysis.
The first reason is that, in the method of surface modification by post-treatment such as alkaline hydrolysis, only a thin modification layer is introduced only in the surface layer portion of the particle, and the present invention is intended for its physical thickness. This is because a shell having a sufficient thickness is essentially different.
Specifically, in the present invention, the thickness of the shell portion is not particularly limited, but is preferably about 10% or more of the primary particle diameter.
For example, when the particle size is 600 nm and the core / shell weight ratio is 50/50, theoretically, the physical thickness of the shell is about 62 nm, and this value sets the size of the polymethyl methacrylate molecule to 0.5 nm. In some cases, the thickness is over 120 molecules, and when this thick shell is used as a plastisol, it prevents the plasticizer from entering the polymer fine particles and contributes to the development of good storage stability.
On the other hand, when the surface modification layer is introduced by subjecting the uniformly structured particles to an alkali hydrolysis treatment, when the particle diameter is 600 nm, it is about 10 nm or at most about 20 nm. This is only a few tens of centimeters in thickness of the methyl methacrylate molecule, and it is practically impossible to impart storage stability of the plastisol with such a thin surface modification layer. Further, even if further alkaline hydrolysis is performed, the surface modification layer produced by the hydrolysis has an extremely high acid value, exhibits water solubility, and the polymer fine particles dissolve in the aqueous phase without being fixed as particles. Therefore, it is impossible to introduce a surface modification layer that can be said to be a sufficiently thick shell.

第二の理由は、アルカリ加水分解などによって導入される表面修飾層は、その組成、特に酸価を自由にコントロールすることがきわめて困難であり、可塑剤との相溶性を重視される本用途には不適当だからである。
本発明においては、特に好ましくはシード重合によって表面修飾層を導入する場合、そのシェルの組成を任意にコントロールすることができるので、プラスチゾルで重要な、可塑剤との相溶性やガラス転移温度を最適化することが可能である。これに対して、均一構造粒子をアルカリ加水分解などの後処理することによって表面修飾層を導入する場合、その組成は重合体粒子の表層部のみが非常に高酸価になるだけで、ある程度の厚みをもって組成をコントロールすることができない。
コアシェル構造を有する一次粒子Pの平均粒子径は250nm以上であることが必要である。
前述したように、コアシェル構造を利用することによりある程度はプラスチゾルの貯蔵安定性と塗膜の可塑剤保持性のバランスを調整できるものの、これをさらに工業的に利用できるレベルにまで高めるためには、一次粒子の総表面積をより小さくすること、及びシェルが一定以上の厚みを有することが必要である。すなわち、コアシェル構造を有する一次粒子の粒子径を大きくすることが必要であり、その範囲は平均粒子径で250nm以上である。平均粒子径がこれより小さい場合には、均一構造の重合体に比べれば貯蔵安定性と可塑剤保持性のバランスに優れるものの、例えば35℃×2週間といった工業的に要求される厳しい貯蔵安定性の要求基準を満足することができず、増粘により作業性が低下してしまう。
The second reason is that the surface modification layer introduced by alkali hydrolysis or the like is extremely difficult to freely control the composition, particularly the acid value, and is used for this application where importance is attached to compatibility with the plasticizer. Is inappropriate.
In the present invention, particularly when the surface modification layer is introduced by seed polymerization, the composition of the shell can be arbitrarily controlled. Therefore, the compatibility with the plasticizer and the glass transition temperature, which are important for the plastisol, are optimized. It is possible to On the other hand, when the surface modification layer is introduced by post-treatment such as alkaline hydrolysis of the uniform structure particles, the composition is such that only the surface layer portion of the polymer particles has a very high acid value, The composition cannot be controlled with the thickness.
The average particle diameter of the primary particles P having a core-shell structure needs to be 250 nm or more.
As described above, although the balance between the storage stability of plastisol and the plasticizer retention of the coating film can be adjusted to some extent by using the core-shell structure, in order to further increase this to a level that can be used industrially, It is necessary to make the total surface area of the primary particles smaller and the shell to have a certain thickness or more. That is, it is necessary to increase the particle diameter of primary particles having a core-shell structure, and the range is 250 nm or more in terms of average particle diameter. When the average particle size is smaller than this, the storage stability and plasticizer retention balance are better than those of a polymer having a uniform structure, but the strict storage stability required industrially, for example, 35 ° C. × 2 weeks. The required standard cannot be satisfied, and workability deteriorates due to thickening.

コア重合体Cを与えるモノマー混合物Mcは、モノマーの合計を100mol%とした場合、メチルメタクリレートが20〜85mol%、C2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが15〜80mol%、及びその他の共重合可能なモノマーが30mol%以下から構成されることが必要である。
メチルメタクリレートが20mol%より少ない場合、あるいはC2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが80mol%より多い場合には、コア重合体(C)自体のTgが低くなることと、コア重合体(C)の可塑剤に対する相溶性が高くなりすぎることにより、加熱により得られるゲル化物が非常に低いTgを有して粘着性などの弊害を生ずる。またこの場合コアシェル比や一次粒子径を変更しても、プラスチゾルの貯蔵安定性が不良となってしまい、実用的には不適当である。
メチルメタクリレートが85mol%より多い場合、あるいはC2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが15mol%より少ない場合には、コア重合体の可塑剤に対する相溶性が低くなり、コア重合体の本来の目的である可塑剤保持性が低下してしまい、加熱後のゲル化物が経時的に可塑剤をブリードアウトするという問題を生ずるため不適当である。
コア重合体には、その他の共重合可能なモノマーを10mol%以下の範囲で任意に使用することができる。このような共重合可能なモノマーとしては、プラスチゾルの要求性能、例えば基材への密着性、反応性等の点で付加する性能を有するモノマーを適宜用いることが可能である。
The monomer mixture Mc which gives the core polymer C has a methyl methacrylate of 20 to 85 mol%, a C2 to C8 aliphatic alcohol and / or a (meth) acrylic ester of an aromatic alcohol when the total amount of monomers is 100 mol%. It is necessary that 15 to 80 mol% and other copolymerizable monomers are composed of 30 mol% or less.
When methyl methacrylate is less than 20 mol%, or when C2-C8 aliphatic alcohol and / or (meth) acrylic acid ester of aromatic alcohol is more than 80 mol%, the core polymer (C) itself has a low Tg. As a result, the compatibility of the core polymer (C) with the plasticizer becomes too high, so that the gelled product obtained by heating has a very low Tg and causes problems such as stickiness. In this case, even if the core-shell ratio and the primary particle size are changed, the storage stability of plastisol becomes poor, which is not suitable for practical use.
When the methyl methacrylate is more than 85 mol%, or when the C2-C8 aliphatic alcohol and / or the (meth) acrylic acid ester of the aromatic alcohol is less than 15 mol%, the compatibility of the core polymer with the plasticizer is low. Thus, the plasticizer retention, which is the original purpose of the core polymer, is lowered, and the gelled product after heating bleeds out the plasticizer over time.
For the core polymer, other copolymerizable monomers can be arbitrarily used within a range of 10 mol% or less. As such a copolymerizable monomer, a monomer having the performance required for plastisol, for example, the ability to be added in terms of adhesion to a substrate, reactivity, etc., can be used as appropriate.

モノマー混合物Mcの好ましい組成は、モノマーの合計を100mol%とした場合、メチルメタクリレートが20〜70mol%、 n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステルが30〜80mol%、及びその他の共重合可能なモノマーが20mol%以下である。
さらに好ましい組成は、モノマーの合計を100mol%とした場合、メチルメタクリレートが20〜70mol%、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステルが30〜80mol%及びその他の共重合可能なモノマーが10mol%以下である。
これらの好ましい組成の場合、貯蔵安定性と可塑剤保持性のバランスがさらに改良され、40℃×2週間といった非常に厳しい貯蔵安定性の要求をも満足するプラスチゾルが得られ、かつこれを成膜して得た塗膜の強度及び伸度が非常に優れている。
A preferable composition of the monomer mixture Mc is that when the total amount of monomers is 100 mol%, methyl methacrylate is 20 to 70 mol%, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth) acrylate. One or more (meth) acrylic acid esters selected from the group consisting of 30 to 80 mol% and other copolymerizable monomers are 20 mol% or less.
A more preferable composition is that when the total amount of monomers is 100 mol%, methyl methacrylate is 20 to 70 mol%, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth) acrylate. 30 to 80 mol% of one or more kinds of (meth) acrylic acid ester selected and 10 mol% or less of other copolymerizable monomers.
In the case of these preferred compositions, the balance between storage stability and plasticizer retention is further improved, and plastisol can be obtained that satisfies the very strict storage stability requirement of 40 ° C. × 2 weeks, and is formed into a film. The strength and elongation of the coating film thus obtained are very excellent.

さらにまた、工業的に入手しやすいC4アルコールの(メタ)アクリル酸エステルを利用することによるコストの低減も可能であり、工業的に有利である。
アクリルゾルに用いられるアクリル重合体微粒子は、一次粒子径が大きいので、同重量で粒子径の小さい粒子と比較した場合、可塑剤に対する接触面積が少ないため、その分シェル部のMMA量を減らしても貯蔵安定性を保持することができ、かつその減らした分だけMMA以外の成膜成分を補うことができ、成膜時の可塑剤保持性とゾル中でのアクリル重合体微粒子の貯蔵安定性の双方が向上する。
シェル重合体Sを与えるモノマー混合物Msは、モノマーの合計を100mol%とした場合、メチルメタクリレートが20〜79.5mol%、C2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが5〜40mol%、カルボキシル基又はスルホン酸基含有モノマーが0.5〜10mol%、及びその他の共重合可能なモノマーが30mol%以下から構成されることが必要である。
Furthermore, the cost can be reduced by using (meth) acrylic acid ester of C4 alcohol which is easily available industrially, which is industrially advantageous.
The acrylic polymer fine particles used in the acrylic sol have a large primary particle size, so when compared with particles of the same weight and a small particle size, the contact area with the plasticizer is small. Can maintain the storage stability, and can compensate for the film forming components other than MMA by the reduced amount. The plasticizer retention at the time of film formation and the storage stability of the acrylic polymer fine particles in the sol Both improve.
The monomer mixture Ms that gives the shell polymer S is a (meth) acrylic acid of 20 to 79.5 mol% of methyl methacrylate and a C2 to C8 aliphatic alcohol and / or aromatic alcohol when the total amount of monomers is 100 mol%. It is necessary that the ester is composed of 5 to 40 mol%, the carboxyl group or sulfonic acid group-containing monomer is 0.5 to 10 mol%, and the other copolymerizable monomer is composed of 30 mol% or less.

メチルメタクリレートが20mol%より少ない場合、あるいはC2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが40mol%より多い場合には、シェル重合体(S)の可塑剤に対する相溶性が高くなり、シェル重合体の本来の目的である貯蔵安定性の付与が不良となるため、プラスチゾルの製造作業中にゲル化してしまうなどのアクリルゾルの基本性能が不良となる傾向にある。
メチルメタクリレートが79.5mol%より多い場合、あるいはC2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが5mol%より少ない場合には、シェル重合体の相溶性が低下しすぎるため、貯蔵安定性こそ良好であるものの、加熱によりゲル化した後の塗膜の可塑剤保持性が不足し、可塑剤が経時的にブリードアウトしてくるという欠点を生じる傾向にある。
When the amount of methyl methacrylate is less than 20 mol%, or when the amount of (meth) acrylic acid ester of C2-C8 aliphatic alcohol and / or aromatic alcohol is more than 40 mol%, the phase of the shell polymer (S) with respect to the plasticizer Since the solubility is increased and the storage stability, which is the original purpose of the shell polymer, is poor, the basic performance of the acrylic sol, such as gelation during the plastisol manufacturing operation, tends to be poor.
When the methyl methacrylate is more than 79.5 mol%, or when the C2-C8 aliphatic alcohol and / or (meth) acrylic acid ester of the aromatic alcohol is less than 5 mol%, the compatibility of the shell polymer is lowered. Therefore, the storage stability is good, but the plasticizer retainability of the coating film after gelation by heating is insufficient, and the plasticizer tends to bleed out over time.

本発明においては、カルボキシル基又はスルホン酸基含有モノマーを、本発明のプラスチゾルの貯蔵安定性及びゾル中の重合体微粒子の分散性向上のために用いる。
カルボキシル基及び/又はスルホン酸基含有モノマーが0.5mol%より少ない場合、可塑剤に対するシェル重合体の相溶性が上がるため、貯蔵安定性が不良になる傾向にある。
また可塑剤中での重合体微粒子の分散状態が変化し、プラスチゾルの粘度が上がってしまい、作業性が不良となる傾向にあり好ましくない。
またカルボキシル基及び/又はスルホン酸基含有モノマーが10mol%より多い場合、可塑剤に対するシェル重合体の相溶性が下がりすぎるため、このようなゾルを用いて塗膜を形成するとゲル化物の可塑剤保持性が不良となり、ゲル化物より可塑剤が経時的にブリードアウトしてくるため不適当である。
さらにゲル化物が脆くなる傾向にあり、塗膜の強度が低下する傾向にある。さらにゲル化物の耐水性も低下する傾向にあるので好ましくない。
なお、シェル重合体には、その他の共重合可能なモノマーを30mol%以下の範囲で任意に使用することができる。このような共重合可能なモノマーとしては、プラスチゾルの要求性能、例えば基材への密着性、反応性等の点で付加する性能を有するモノマーを適宜用いることが可能である。
In the present invention, a carboxyl group- or sulfonic acid group-containing monomer is used to improve the storage stability of the plastisol of the present invention and the dispersibility of the polymer fine particles in the sol.
When the carboxyl group and / or sulfonic acid group-containing monomer is less than 0.5 mol%, the compatibility of the shell polymer with the plasticizer is increased, so that the storage stability tends to be poor.
Further, the dispersion state of the polymer fine particles in the plasticizer is changed, the viscosity of the plastisol is increased, and workability tends to be poor, which is not preferable.
In addition, when the carboxyl group and / or sulfonic acid group-containing monomer is more than 10 mol%, the compatibility of the shell polymer with the plasticizer is too low. The plasticity becomes poor and the plasticizer bleeds out over time from the gelled product, which is inappropriate.
Further, the gelled product tends to become brittle, and the strength of the coating film tends to decrease. Furthermore, the water resistance of the gelled product tends to decrease, which is not preferable.
In the shell polymer, other copolymerizable monomers can be arbitrarily used within a range of 30 mol% or less. As such a copolymerizable monomer, a monomer having the performance required for plastisol, for example, the ability to be added in terms of adhesion to the substrate, reactivity, etc., can be used as appropriate.

モノマー混合物Msの好ましい組成としては、モノマーの合計を100mol%とした場合、メチルメタクリレートが30〜79.5mol%、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステルが5〜40mol%、カルボキシル基含有アクリル系モノマーが0.5〜10mol%、及びその他の共重合可能なモノマーが20mol%以下である。
さらに好ましい組成は、モノマーの合計を100mol%とした場合、メチルメタクリレートが55〜79.5mol%、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステルが20〜40mol%、カルボキシル基含有アクリル系モノマーが0.5〜10mol%、及びその他の共重合可能なモノマーが10mol%以下である。
これらの好ましい組成の場合、プラスチゾルの貯蔵安定性と塗膜の可塑剤保持性のバランスがより改良され、40℃×2週間といった更に厳しい貯蔵安定性の要求をも満足するプラスチゾルが得られ、またこれを成膜して得た塗膜の強伸度が非常に優れている。
As a preferable composition of the monomer mixture Ms, when the total amount of monomers is 100 mol%, methyl methacrylate is 30 to 79.5 mol%, n-butyl (meth) acrylate, i-butyl (meth) acrylate and t-butyl (meta ) One or more (meth) acrylic acid ester selected from the group consisting of acrylate is 5 to 40 mol%, carboxyl group-containing acrylic monomer is 0.5 to 10 mol%, and other copolymerizable monomers are 20 mol% or less. It is.
A more preferable composition is that when the total amount of monomers is 100 mol%, methyl methacrylate is 55 to 79.5 mol%, and includes n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth) acrylate. One or more (meth) acrylic acid esters selected from the group are 20 to 40 mol%, carboxyl group-containing acrylic monomers are 0.5 to 10 mol%, and other copolymerizable monomers are 10 mol% or less.
In the case of these preferred compositions, the balance between the storage stability of plastisol and the plasticizer retention of the coating film is further improved, and a plastisol that satisfies even more stringent storage stability requirements such as 40 ° C. × 2 weeks is obtained. The strength and elongation of the coating film obtained by forming this film is very excellent.

さらにまた、工業的に入手しやすいC4アルコールの(メタ)アクリル酸エステルや、カルボキシル基含有アクリル系モノマーを利用することによるコストの低減も可能であり、工業的に有利である。
コア重合体Cを与えるモノマー混合物Mcとシェル重合体Sを与えるモノマー混合物Msの重量比は10/90〜90/10であることが必要である。
Furthermore, it is possible to reduce the cost by using (meth) acrylic acid ester of C4 alcohol which is easily available industrially or carboxyl group-containing acrylic monomer, which is industrially advantageous.
The weight ratio of the monomer mixture Mc giving the core polymer C and the monomer mixture Ms giving the shell polymer S needs to be 10/90 to 90/10.

コア重合体の比率が10重量%より低い場合、あるいはシェル重合体の比率が90重量%より高い場合には、可塑剤を保持する成分であるコア重合体が少なすぎるため、加熱してゲル化物を得た場合に可塑剤保持性が不足し、可塑剤が経時的にブリードアウトするという弊害を生じる。あるいはひどい場合には可塑剤に対する相溶性が低下しすぎるために、加熱してもゲル化すること自体が不可能となる。
コア重合体の比率が90重量%より多い場合、あるいはシェル重合体の比率が10重量%より少ない場合には、貯蔵安定性を付与する成分であるシェル重合体が少なすぎるため、室温においても重合体が可塑剤によって膨潤又は溶解され、プラスチゾルが増粘又はゲル化してしまうという深刻な弊害を生じる。
モノマー混合物Mcとモノマー混合物Msの重量比の好ましい範囲は30/70〜70/30である。この範囲内であれば、貯蔵安定性と可塑剤保持性のバランスが更に好適であり、40℃×2週間といった更に厳しい貯蔵安定性の要求を満足できるプラスチゾルが得られる。
When the ratio of the core polymer is lower than 10% by weight or when the ratio of the shell polymer is higher than 90% by weight, the amount of the core polymer which is a component for holding the plasticizer is too small. In this case, the plasticizer retention is insufficient and the plasticizer bleeds out over time. Alternatively, in a severe case, the compatibility with the plasticizer is too low, so that the gelation itself becomes impossible even when heated.
When the ratio of the core polymer is more than 90% by weight, or when the ratio of the shell polymer is less than 10% by weight, the amount of the shell polymer, which is a component that imparts storage stability, is too small. The coalescence is swollen or dissolved by the plasticizer, causing a serious problem that the plastisol is thickened or gelled.
A preferable range of the weight ratio of the monomer mixture Mc to the monomer mixture Ms is 30/70 to 70/30. Within this range, a balance between storage stability and plasticizer retention is further suitable, and a plastisol that can satisfy the more severe storage stability requirement of 40 ° C. × 2 weeks can be obtained.

本発明で用いるC2〜C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルは特に限定しないが、例えばエチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、tーブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の直鎖脂肪族アルコールの(メタ)アクリル酸エステル類、又はシクロヘキシル(メタ)アクリレート等の環式脂肪族アルコールの(メタ)アクリル酸エステル類、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等の芳香族アルコールの(メタ)アクリル酸エスエル類等が利用できる。中でも好ましくは、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレートが利用できる。これらのモノマーは容易に入手することができ、工業的な実用化の点で有意義である。
本発明で用いるカルボキシル基又はスルホン酸基含有モノマーとしては特に限定せず、例えばメタクリル酸、アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、メタクリル酸 2−サクシノロイルオキシエチル−2−メタクリロイルオキシエチルコハク酸、メタクリル酸 2−マレイノロイルオキシエチル−2−メタクリロイルオキシエチルマレイン酸、メタクリル酸 2−フタロイルオキシエチル−2−メタクリロイルオキシエチルフタル酸、メタクリル酸 2−ヘキサヒドロフタロイルオキシエチル−2−メタクリロイルオキシエチルヘキサヒドロフタル酸等のカルボキシル基含有モノマー、アリルスルホン酸等のスルホン酸基含有モノマー等が利用できる。好ましくはメタクリル酸、アクリル酸でありこれらは工業的に安価で容易に入手することができ、他のアクリル系モノマー成分との共重合性も良く生産性の点でも好ましい。
The (meth) acrylic acid ester of C2 to C8 aliphatic alcohol and / or aromatic alcohol used in the present invention is not particularly limited. For example, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meta ) Acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic acid esters of linear aliphatic alcohols such as octyl (meth) acrylate, or cyclohexyl (meth) (Meth) acrylic acid esters of cyclic aliphatic alcohols such as acrylates, (meth) acrylic acid esters of aromatic alcohols such as phenyl (meth) acrylates and benzyl (meth) acrylates can be used. Among these, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth) acrylate are preferably used. These monomers can be easily obtained and are significant in terms of industrial practical use.
The carboxyl group- or sulfonic acid group-containing monomer used in the present invention is not particularly limited. For example, methacrylic acid, acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, methacrylic acid 2-succinoloyloxyethyl-2- Methacryloyloxyethyl succinic acid, methacrylic acid 2-malenoyloxyethyl-2-methacryloyloxyethyl maleic acid, methacrylic acid 2-phthaloyloxyethyl-2-methacryloyloxyethyl phthalic acid, methacrylic acid 2-hexahydrophthaloyloxy A carboxyl group-containing monomer such as ethyl-2-methacryloyloxyethyl hexahydrophthalic acid, a sulfonic acid group-containing monomer such as allyl sulfonic acid, and the like can be used. Preferred are methacrylic acid and acrylic acid, which are industrially inexpensive and can be easily obtained, and have good copolymerizability with other acrylic monomer components and are also preferred from the viewpoint of productivity.

またこれらの酸基含有モノマーはアルカリ金属などの塩になっていることも可能であり、例えばカリウム塩、ナトリウム塩、カルシウム塩、亜鉛塩、アルミニウム塩等が挙げられる。これらは水媒体中で重合する際に塩の形になることも可能であり、また重合後に塩の形になることも可能である。
本発明のコア重合体及びシェル重合体で用いる、その他の共重合可能なモノマーとしては、例えばラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のC9以上のアルコールの(メタ)アクリレート類;アセトアセトキエチル(メタ)アクリレート等のカルボニル基含有(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、2ーヒドロキシプロピル(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート類;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート類;N−ジメチルアミノエチル(メタ)アクリレート、N−ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート類;(ポリ)エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の多官能(メタ)アクリレート類;ジアセトンアクリルアミド、N−メチロールアクリルアミド、N−メトキシメチルアクリルアミド、N−エトキシメチルアクリルアミド、N−ブトキシメチルアクリルアミド等のアクリルアミド及びその誘導体;スチレン及びその誘導体;酢酸ビニル;ウレタン変性アクリレート類;エポキシ変性アクリレート類;シリコーン変性アクリレート類等が広く利用可能であり、用途に応じて使い分けることができる。
These acid group-containing monomers may be in the form of a salt such as an alkali metal, and examples thereof include potassium salts, sodium salts, calcium salts, zinc salts, and aluminum salts. These can be in the form of a salt when polymerized in an aqueous medium, or can be in the form of a salt after polymerization.
Examples of other copolymerizable monomers used in the core polymer and shell polymer of the present invention include (meth) acrylates of C9 or higher alcohols such as lauryl (meth) acrylate and stearyl (meth) acrylate; Carbonyl group-containing (meth) acrylates such as chiethyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, hydroxyl group-containing (meth) acrylates such as 2-hydroxypropyl (meth) acrylate; glycidyl (meth) acrylate Epoxy group-containing (meth) acrylates such as: N-dimethylaminoethyl (meth) acrylate, amino group-containing (meth) acrylates such as N-diethylaminoethyl (meth) acrylate; (poly) ethylene glycol di (meth) acrylate , Polyfunctional (meth) acrylates such as pyrene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate; diacetone acrylamide, N-methylol acrylamide, N-methoxy Acrylamide and its derivatives such as methyl acrylamide, N-ethoxymethyl acrylamide and N-butoxymethyl acrylamide; styrene and its derivatives; vinyl acetate; urethane-modified acrylates; epoxy-modified acrylates; silicone-modified acrylates are widely available , Can be used properly according to the application.

本発明で用いる可塑剤として、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等のフタル酸ジアルキル系、フタル酸ブチルベンジル等のフタル酸アルキルベンジル系、フタル酸アルキルアリール系、フタル酸ジベンジル系、フタル酸ジアリール系、リン酸トリクレシル等のリン酸トリアリール系、リン酸トリアルキル系、リン酸アルキルアリール系、アジピン酸エステル系、エーテル系、ポリエステル系、エポキシ化大豆油等の大豆油系等が利用可能である。これらは、それぞれの可塑剤に応じた特色、すなわち耐寒性、難燃性、耐油性、低粘度、低チキソトロピー等の、プラスチゾルに要求される物性に応じて配合することができる。
このうち、工業的に安価で入手しやすいこと、また作業性、低毒性などの点から、フタル酸エステル系可塑剤が好ましい。
またこれらの可塑剤は1種を単独で用いるだけでなく、目的に応じて2種以上の可塑剤を混合して用いることも可能である。
As plasticizers used in the present invention, dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, diisononyl phthalate, diisodecyl phthalate, etc., alkyl benzyl phthalates such as butyl benzyl phthalate, alkyl aryl phthalates , Dibenzyl phthalate, diaryl phthalate, tricresyl phosphate, triaryl phosphate, trialkyl phosphate, alkylaryl phosphate, adipic acid ester, ether, polyester, epoxidized soybean oil Soybean oil-based and the like can be used. These can be blended according to the physical properties required for the plastisol, such as characteristics according to each plasticizer, that is, cold resistance, flame resistance, oil resistance, low viscosity, low thixotropy and the like.
Of these, phthalate plasticizers are preferred from the viewpoints of being inexpensive and easy to obtain industrially, workability, low toxicity, and the like.
These plasticizers can be used alone or in combination of two or more plasticizers depending on the purpose.

本発明のアクリル系重合体微粒子の製造方法は、上述した組成と構造が得られる限り特に限定せず、たとえばシード重合によりコアシェル型粒子を調製し、これをスプレードライ法(噴霧乾燥法)又は凝固法により固形分を回収する方法などが挙げられる。
250nm以上のコアシェル粒子を得るためには、シード重合を何回も繰り返すことにより粒子を成長させる方法、ソープフリー重合によって得る方法、乳化剤の量を制限する方法、乳化力の弱い乳化剤又は保護コロイド等を用いる方法などが広く利用可能である。
このうち、好ましくは、ソープフリー重合により比較的大きな粒子径を有するシード粒子を調製しておき、これに対して任意の組成のモノマー混合物を逐次滴下していくシード重合を用いることが、工業的に簡便な方法である。
さらに好ましくは、水を主成分とする媒体中で、20℃において該媒体に対して0.02質量%以上の溶解度を有し、かつその重合体は該媒体に溶解しない単量体を、媒体中に乳化剤ミセルが存在しない状態において水溶性ラジカル重合開始剤を用いて重合せしめ、重合体分散液を調製し、さらに上記の重合体分散液に対して単量体混合物を滴下して被覆された重合体分散液を得る方法が好適である。
The method for producing the acrylic polymer fine particles of the present invention is not particularly limited as long as the composition and structure described above can be obtained. For example, core-shell type particles are prepared by seed polymerization, and this is spray-dried (spray-drying) or coagulated. Examples thereof include a method of recovering solid content by a method.
In order to obtain core-shell particles of 250 nm or more, a method of growing particles by repeating seed polymerization many times, a method of obtaining by soap-free polymerization, a method of limiting the amount of emulsifier, an emulsifier with weak emulsifying power, or a protective colloid, etc. The method of using can be widely used.
Among these, it is preferable to use seed polymerization in which seed particles having a relatively large particle diameter are prepared by soap-free polymerization, and a monomer mixture having an arbitrary composition is successively added thereto. It is a simple method.
More preferably, in a medium containing water as a main component, a monomer having a solubility of not less than 0.02% by mass with respect to the medium at 20 ° C. and the polymer does not dissolve in the medium, Polymerization was carried out using a water-soluble radical polymerization initiator in the absence of emulsifier micelles to prepare a polymer dispersion, and the monomer mixture was added dropwise to the above polymer dispersion and coated. A method for obtaining a polymer dispersion is preferred.

この理由は、媒体に対して0.02質量%未満の溶解度しか有さない単量体の場合はソープフリー重合自体がきわめて進行しにくいからである。また単量体から得られる重合体が該媒体に溶解してしまう場合、粒子の形成が行われないことになるから、そもそも重合体粒子を得ることができない。また媒体中に乳化剤ミセルが存在する場合、当然のことながらソープフリー重合の定義から外れるため、不適当であることは言うまでもない。この手法を用いることにより、工業的に簡便で、かつスケールの発生や新粒子の発生などが抑制され、安定に目的とする粒子を得ることができるため有利である。
本発明のアクリル系重合体微粒子は、コアシェル構造を有した一次粒子Pからなっていれば二次以上の高次構造は特に限定されず、例えば一次粒子が弱い凝集力で凝集した粒子、強い凝集力で凝集した粒子、熱により相互に融着した粒子といった二次構造をとることが可能であり、さらにはこれらの二次粒子を顆粒化などの処理によってより高次の構造を持たせることも可能である。これらの高次構造は、たとえば微粒子の粉立ちを抑制したり流動性を高める等、作業性を改善する目的で行うこともできるし、微粒子の可塑剤に対する分散状態を改質する等、物性の改善のために行うこともでき、用途と要求に応じて設計することが可能である。
This is because soap-free polymerization itself is extremely difficult to proceed in the case of a monomer having a solubility of less than 0.02% by mass with respect to the medium. Further, when the polymer obtained from the monomer is dissolved in the medium, the particles are not formed, so that the polymer particles cannot be obtained in the first place. Needless to say, the presence of emulsifier micelles in the medium is of course inappropriate because it deviates from the definition of soap-free polymerization. Use of this method is advantageous because it is industrially simple, suppresses the generation of scales and the generation of new particles, and stably obtains the intended particles.
The acrylic polymer fine particles of the present invention are not particularly limited as long as the secondary or higher order structure is composed of the primary particles P having a core-shell structure. For example, the primary particles are agglomerated with a weak cohesive force, strong agglomeration It is possible to take secondary structures such as particles aggregated by force and particles fused to each other by heat. Furthermore, these secondary particles can have a higher order structure by processing such as granulation. Is possible. These higher order structures can be carried out for the purpose of improving workability, for example, by suppressing the dusting of fine particles or increasing fluidity, or by improving the dispersion state of fine particles with respect to the plasticizer. It can also be done for improvement and can be designed according to application and requirements.

本発明で用いるコアシェル構造を有する一次粒子Pにおいて、コア重合体Cとシェル重合体Sがグラフト交叉剤によってグラフト結合させることも可能である。この場合のグラフト交叉剤としてはアリルメタクリレート等が利用できる。
本発明で用いるコアシェル構造を有する一次粒子Pにおいて、コア重合体C及び/又はシェル重合体Sが架橋されていることも可能である。この場合の架橋性モノマーとしては、前述した多官能モノマーを利用することができる。また多官能モノマー以外にも、二価以上のアルカリ金属又は多官能アミン類などを添加することによりカルボキシル基又はスルホン酸基とのイオン架橋を用いることも可能である。
本発明のプラスチゾルには、用途に応じて各種の添加剤(材)を配合することが可能である。例えば炭酸カルシウム、水酸化アルミニウム、パライタ、クレー、コロイダルシリカ、マイカ粉、珪砂、珪藻土、カオリン、タルク、ペンナイト、ガラス粉末、酸化アルミニウム等の充填材、酸化チタン、カーボンブラック等の顔料、ミネラルターペン、ミネラルスピリット等の希釈剤、消泡剤、防黴剤、防臭剤、抗菌剤、界面活性剤、滑剤、紫外線吸収剤、香料、発泡剤、レベリング剤、接着剤等を自由に配合することが可能である。
In the primary particles P having a core-shell structure used in the present invention, the core polymer C and the shell polymer S can be grafted together by a graft crossing agent. In this case, allyl methacrylate or the like can be used as the graft crossing agent.
In the primary particles P having a core-shell structure used in the present invention, the core polymer C and / or the shell polymer S may be crosslinked. As the crosslinkable monomer in this case, the above-described polyfunctional monomer can be used. In addition to the polyfunctional monomer, it is also possible to use ionic crosslinking with a carboxyl group or a sulfonic acid group by adding a bivalent or higher-valent alkali metal or a polyfunctional amine.
Various additives (materials) can be blended in the plastisol of the present invention depending on the application. For example, calcium carbonate, aluminum hydroxide, palita, clay, colloidal silica, mica powder, silica sand, diatomaceous earth, kaolin, talc, pennite, glass powder, fillers such as aluminum oxide, pigments such as titanium oxide and carbon black, mineral terpenes, Diluting agents such as mineral spirits, antifoaming agents, antifungal agents, deodorants, antibacterial agents, surfactants, lubricants, UV absorbers, fragrances, foaming agents, leveling agents, adhesives, etc. can be freely blended It is.

本発明のプラスチゾルは、浸漬、噴射、刷毛塗り、又はドクター塗り等の公知の方法で金属又は被金属基体上に5μm〜5mm厚で塗布し、温度90℃〜200℃でゲル化することができる。また、適当な型中でゲル化することによって、成形体を製造することもできる。   The plastisol of the present invention can be applied to a metal or metal substrate with a thickness of 5 μm to 5 mm by a known method such as dipping, spraying, brushing, or doctoring, and gelled at a temperature of 90 ° C. to 200 ° C. . Moreover, a molded object can also be manufactured by gelatinizing in a suitable type | mold.

以下に、本発明を実施例を用いて説明する。実施例中の評価方法は以下のとおりである。なお、以下「部」は「重量部」を表す。
プラスチゾル粘度
得られたプラスチゾルを恒温水槽にて25℃に保温した後、E型粘度計を用いて、回転数5rpmにおいて1分後の粘度(単位:Pa・S)を測定し、以下のように評価した。
○:30未満
△:30以上50未満
×:50以上
貯蔵安定性
プラスチゾルを40℃の恒温槽にて保温し、1週間後に取り出して再び粘度を測定した。プラスチゾルの増粘率は以下のようにして計算し(単位:%)、評価した。
(貯蔵後の粘度/初期の粘度)×100(%)
◎:20未満
○:20以上40未満
△:40以上100未満
×:100以上
Hereinafter, the present invention will be described with reference to examples. The evaluation methods in the examples are as follows. Hereinafter, “part” represents “part by weight”.
Plastisol viscosity After the obtained plastisol was kept at 25 ° C. in a thermostatic water bath, the viscosity (unit: Pa · S) after 1 minute at a rotational speed of 5 rpm was measured using an E-type viscometer, as follows: evaluated.
○: Less than 30 Δ: 30 or more and less than 50 ×: 50 or more Storage stability The plastisol was kept warm in a constant temperature bath of 40 ° C., taken out after one week, and the viscosity was measured again. The viscosity increase rate of plastisol was calculated as follows (unit:%) and evaluated.
(Viscosity after storage / initial viscosity) x 100 (%)
◎: Less than 20 ○: 20 or more and less than 40 Δ: 40 or more and less than 100 ×: 100 or more

ゲル化塗膜の作成及び強伸度の測定
プラスチゾルを剥離紙を敷いたガラス板の上に2mm厚に塗布し、140℃×20分加熱してゲル化させ、均一な塗膜を得た。これをガラス板から剥離した後、15mm幅×80mm長に切り出し、両端から15mmずつをつかみ部分とし、テンシロン測定器により強伸度の測定を行った。試験速度は200mm/分であった(単位:強度MPa、伸度%)。評価は以下のように行った。
強度 ◎:1.0以上
○:0.8以上1.0未満
△:0.4以上0.8未満
×:0.4未満
伸度 ◎:300以上
○:250以上300未満
△:100以上250未満
×:100未満
可塑剤保持性
アクリル重合体微粒子2部、フタル酸ジオクチル(DOP)4部を均一に混合し、アルミ皿に流し込んで140℃×20分の加熱によりゲル化させた。これをいったん室温まで放冷した後、40℃の恒温槽にて2週間保存し、ゲル化物からの可塑剤のブリードアウトの有無を目視及び触覚にて判断した。
○:ブリードアウトなし
×:ブリードアウトあり
Preparation of gelled coating film and measurement of strong elongation Plastisol was applied to a glass plate with release paper on a thickness of 2 mm and gelled by heating at 140 ° C. for 20 minutes to obtain a uniform coating film. After peeling this from the glass plate, it was cut into 15 mm width × 80 mm length, and 15 mm from each end was used as the gripping part, and the tensile strength was measured with a Tensilon measuring instrument. The test speed was 200 mm / min (unit: strength MPa, elongation%). Evaluation was performed as follows.
Strength ◎: 1.0 or more ○: 0.8 or more and less than 1.0 Δ: 0.4 or more and less than 0.8 ×: Less than 0.4 Elongation ◎: 300 or more ○: 250 or more and less than 300 Δ: 100 or more and 250 Less than x: Less than 100 Plasticizer retention 2 parts of acrylic polymer fine particles and 4 parts of dioctyl phthalate (DOP) were uniformly mixed, poured into an aluminum dish, and gelled by heating at 140 ° C. for 20 minutes. This was once allowed to cool to room temperature, and then stored in a constant temperature bath at 40 ° C. for 2 weeks, and the presence or absence of bleed out of the plasticizer from the gelled product was judged visually and by touch.
○: No bleed out ×: With bleed out

実施例1〜13
重合体微粒子A1〜A12の製造
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した5リットルの4つ口フラスコに、純水1414gを入れ、30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。窒素ガス通気を停止した後、メチルメタクリレート45.6g、n−ブチルメタクリレート34.9gを入れ、150rpmで攪拌しながら80℃に昇温した。内温が80℃に達した時点で、28gの純水に溶解した過硫酸カリウム0.70gを一度に添加し、ソープフリー重合を開始した。そのまま80℃にて攪拌を60分継続し、シード粒子分散液を得た。
引き続きこのシード粒子分散液に対して、モノマー乳化液(メチルメタクリレート420.8g、n−ブチルメタクリレート348.16g、ジアルキルスルホコハク酸ナトリウム(花王(株)製、商品名:ペレックスO−TP)7.00g、純水350.0gを混合攪拌して乳化したもの)を2.5時間かけて滴下し、引き続き80℃にて1時間攪拌を継続して、重合体分散液を得た。
引き続きこの重合体分散液に対して、モノマー乳化液(メチルメタクリレート533.1g、n−ブチルメタクリレート199.1g、メタクリル酸24.08g、ジアルキルスルホコハク酸ナトリウム(花王(株)製、商品名:ペレックスO−TP)7.00g、純水350.0gを混合攪拌して乳化したもの)を2.5時間かけて滴下し、引き続き80℃にて1時間攪拌を継続して、重合体分散液を得た。
得られた重合体分散液を室温まで冷却した後、スプレードライヤー(大川原化工機(株)製、L−8型)を用いて、入口温度170℃、出口温度75℃、アトマイザ回転数25000rpmにて噴霧乾燥し、重合体微粒子A1を得た。
同様にして、表1に示した組成のアクリル系重合体粒子A2〜A12を製造した。
Examples 1-13
Production of polymer fine particles A1 to A12 1414 g of pure water was put into a 5 liter four-necked flask equipped with a thermometer, nitrogen gas introduction tube, stirring rod, dropping funnel, and cooling tube, and nitrogen gas was thoroughly bubbled for 30 minutes. Then, the dissolved oxygen in the pure water was replaced. After stopping nitrogen gas ventilation, 45.6 g of methyl methacrylate and 34.9 g of n-butyl methacrylate were added, and the temperature was raised to 80 ° C. while stirring at 150 rpm. When the internal temperature reached 80 ° C., 0.70 g of potassium persulfate dissolved in 28 g of pure water was added all at once, and soap-free polymerization was started. Stirring was continued for 60 minutes at 80 ° C. to obtain a seed particle dispersion.
Subsequently, a monomer emulsion (methyl methacrylate 420.8 g, n-butyl methacrylate 348.16 g, sodium dialkylsulfosuccinate (trade name: Perex O-TP) 7.00 g) was added to the seed particle dispersion. Then, 350.0 g of pure water mixed and emulsified with emulsification) was added dropwise over 2.5 hours, and stirring was continued at 80 ° C. for 1 hour to obtain a polymer dispersion.
Subsequently, a monomer emulsion (methyl methacrylate 533.1 g, n-butyl methacrylate 199.1 g, methacrylic acid 24.08 g, sodium dialkylsulfosuccinate (trade name: Perex O, manufactured by Kao Corporation) was added to this polymer dispersion. -TP) 7.00 g and 350.0 g of pure water mixed and stirred for emulsification) were added dropwise over 2.5 hours, followed by continued stirring at 80 ° C. for 1 hour to obtain a polymer dispersion. It was.
After cooling the obtained polymer dispersion to room temperature, using a spray dryer (L-8 type, manufactured by Okawahara Kako Co., Ltd.), the inlet temperature is 170 ° C., the outlet temperature is 75 ° C., and the atomizer speed is 25000 rpm. Spray drying was performed to obtain polymer fine particles A1.
Similarly, acrylic polymer particles A2 to A12 having the composition shown in Table 1 were produced.

プラスチゾルの調製
得られたアクリル系重合体微粒子A1−A12の各々100部に対し、フタル酸ジオクチル(DOP)140部、炭酸カルシウム100部を計量し、ディスパーミキサーにて攪拌(約2000rpm×2分)し、さらに減圧脱泡して均一な各プラスチゾルを得た。
これらのアクリル系重合体粒子A1〜A12を表2の配合処方にしたがって配合してプラスチゾルを得た。得られたプラスチゾルの評価を行った。その結果を表2に併記する。
Preparation of plastisol Weigh 140 parts of dioctyl phthalate (DOP) and 100 parts of calcium carbonate to 100 parts of each of the obtained acrylic polymer fine particles A1-A12 and stir with a disper mixer (about 2000 rpm × 2 minutes) And degassing under reduced pressure to obtain uniform plastisols.
These acrylic polymer particles A1 to A12 were blended according to the blending recipe in Table 2 to obtain plastisols. The obtained plastisol was evaluated. The results are also shown in Table 2.

実施例1〜13はC4脂肪族アルコールのメタクリル酸エステルとしてn−ブチルメタクリレート又はi−ブチルメタクリレートを用いた例である。いずれの場合もフタル酸ジアルキルエステル系可塑剤として、ジ−2−エチルヘキシルフタレート又はジ−i−ノニルフタレートを用いている。いずれの場合も、最も好ましい範囲で各モノマーの組成を変更した場合である。実施例5はシェル重合体にその他のモノマーとして2ーヒドロキシエチルメタクリレートを用いた場合である。実施例6〜8は粒子径が1000nmを上回るコアシェル構造粒子を用いた例である。実施例9はその他のモノマーとしてスチレンを用いた場合である。実施例10はその他のモノマーとして二官能モノマーであるエチレングリコールジメタクリレートを用いた場合である。実施例11はその他のモノマーとして反応性モノマーであるN−ブトキシメチルアクリルアミドを用いた場合である。実施例12はその他のモノマーとしてアリルメタクリレートを用いた場合である。実施例13は実施例1と同じ重合体A1を用いて、添加剤としてブロックイソシアネートを配合した場合である。
いずれの場合も物性は良好であり、とくにプラスチゾルの貯蔵安定性、塗膜の強度及び伸度がたいへん優れていた。
Examples 1 to 13 are examples using n-butyl methacrylate or i-butyl methacrylate as a methacrylic acid ester of a C4 aliphatic alcohol. In either case, di-2-ethylhexyl phthalate or di-i-nonyl phthalate is used as the dialkyl phthalate plasticizer. In any case, the composition of each monomer is changed within the most preferable range. Example 5 is a case where 2-hydroxyethyl methacrylate is used as the other monomer in the shell polymer. Examples 6 to 8 are examples using core-shell structured particles having a particle diameter exceeding 1000 nm. Example 9 is a case where styrene is used as another monomer. In Example 10, ethylene glycol dimethacrylate, which is a bifunctional monomer, was used as the other monomer. Example 11 is a case where N-butoxymethylacrylamide which is a reactive monomer is used as another monomer. In Example 12, allyl methacrylate was used as the other monomer. Example 13 is a case where the same polymer A1 as in Example 1 is used and a blocked isocyanate is blended as an additive.
In any case, the physical properties were good, and in particular, the storage stability of plastisol, the strength and elongation of the coating film were very excellent.

比較例1〜9
実施例1と同様の手法により表1に示した組成の重合体微粒子A'1〜A'9を製造し、同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例1はシェル重合体の比率を95%にまで上げた例(A'1)であるが、この場合には可塑剤に対して良好な相溶性を有するコア重合体が少なすぎるため、可塑剤が経時的にブリードアウトし、可塑剤保持性は不良であった。比較例2はコア重合体の比率を95%にまで上げた例(A'2)であるが、この場合には可塑剤に配合した途端にゲル化が進行し、貯蔵安定性はきわめて不良であり、ゲル化塗膜として評価するに至らなかった。比較例3はコア重合体のC4脂肪族アルコールのメタクリル酸エステルであるnBMAを10mol%に低減した例(A'3)であるが、この場合はコア重合体の可塑剤に対する相溶性が著しく低下するため、ゲル化物から可塑剤が経時的にブリードアウトし、可塑剤保持性は不良であった。比較例4はシェル重合体のC4脂肪族アルコールのメタクリル酸エステルであるnBMAを2mol%にまで低減した場合(A'4)であるが、この場合にも可塑剤のブリードアウトが生じ、可塑剤保持性は不良であった。比較例5はコア重合体のC4脂肪族アルコールのメタクリル酸エステルであるnBMAを85mol%に増加した例(A'5)であるが、この場合はコア重合体の可塑剤に対する相溶性が著しく上昇し、好適な範囲を超えてしまうため、貯蔵安定性は極めて不良であった。比較例6はシェル重合体のC4脂肪族アルコールのメタクリル酸エステルであるnBMAを45mol%にまで増加した場合(A'6)であるが、この場合には本来可塑剤に対して低相溶性であるべきシェルが高相溶性となるため、可塑剤を配合した直後からゲル化が進行し、貯蔵安定性は極めて不良であり、ゲル化塗膜として評価するに至らなかった。比較例7はシェル重合体のカルボキシル基含有モノマーであるメタクリル酸を0.2mol%にまで低減した例(A'7)であるが、この場合には可塑剤中における重合体微粒子の分散状態が変化し、プラスチゾルの粘度が高く、不良となった。比較例8はシェル重合体のカルボキシル基含有モノマーであるメタクリル酸を12mol%にまで増加した例(A'8)であるが、この場合には可塑剤に対する相溶性が著しく低下し、ゲル化状態が不良となり、強度が低下した。またブリードアウトを発生し、可塑剤保持性が不良であった。比較例9はコアシェル構造を有する一次粒子の粒子径を80nmにした場合(A'9)である(この場合には乳化剤としてフレークマルセルではなく花王(株)製 商品名:ペレックスSS−Hを用いた)。この場合には一次粒子の総表面積が非常に増加することと、コア重合体を可塑剤による溶解から保護しているシェル重合体の厚みが不足するため、貯蔵安定性は低下し、実用に耐えられなかった。
Comparative Examples 1-9
Polymer fine particles A′1 to A′9 having the composition shown in Table 1 were produced in the same manner as in Example 1, and plastisol was similarly prepared according to the formulation shown in Table 2. The evaluation results of the plastisol are also shown in Table 2.
Comparative Example 1 is an example (A′1) in which the ratio of the shell polymer is increased to 95%. In this case, since there are too few core polymers having good compatibility with the plasticizer, The agent bleeded out over time, and the plasticizer retention was poor. Comparative Example 2 is an example (A'2) in which the ratio of the core polymer is increased to 95%. In this case, gelation proceeds as soon as it is blended with the plasticizer, and the storage stability is extremely poor. It was not able to be evaluated as a gelled coating film. Comparative Example 3 is an example (A′3) in which nBMA, which is a methacrylic ester of C4 aliphatic alcohol of the core polymer, is reduced to 10 mol%. In this case, the compatibility of the core polymer with the plasticizer is significantly reduced. Therefore, the plasticizer bleeded out from the gelled material over time, and the plasticizer retention was poor. Comparative Example 4 is a case where nBMA, which is a methacrylic ester of C4 aliphatic alcohol of the shell polymer, is reduced to 2 mol% (A′4). In this case as well, the plasticizer bleeds out, and the plasticizer Retention was poor. Comparative Example 5 is an example (A′5) in which nBMA, which is a methacrylic ester of C4 aliphatic alcohol of the core polymer, is increased to 85 mol%. In this case, the compatibility of the core polymer with the plasticizer is remarkably increased. However, the storage stability is extremely poor because it exceeds the preferred range. Comparative Example 6 is the case where nBMA, which is a methacrylic ester of C4 aliphatic alcohol of the shell polymer, is increased to 45 mol% (A'6). Since the shell should be highly compatible, gelation proceeded immediately after blending the plasticizer, storage stability was extremely poor, and it was not possible to evaluate as a gelled coating film. Comparative Example 7 is an example (A′7) in which methacrylic acid, which is a carboxyl group-containing monomer of the shell polymer, is reduced to 0.2 mol%. In this case, the dispersion state of the polymer fine particles in the plasticizer is The viscosity of the plastisol was high and became defective. Comparative Example 8 is an example (A′8) in which the methacrylic acid, which is a carboxyl group-containing monomer of the shell polymer, is increased to 12 mol%. In this case, the compatibility with the plasticizer is significantly reduced, and the gelation state Became defective and the strength decreased. Moreover, bleed out occurred and plasticizer retention was poor. Comparative Example 9 is a case where the primary particle having a core-shell structure has a particle size of 80 nm (A'9) (in this case, the product name: PELEX SS-H is used as an emulsifier instead of Flakes Marcel) ) In this case, the total surface area of the primary particles is greatly increased and the thickness of the shell polymer that protects the core polymer from being dissolved by the plasticizer is insufficient, so that the storage stability is lowered and it can withstand practical use. I couldn't.

比較例10〜12
特開平7−233299号公報に示された実施例に従い、表1に示す組成の重合体粒子A'10〜A'12を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例10〜12は特開平7−233299号公報により提案された重合体(A'10〜A'12)を用いた場合である。比較例10及び11は初期状態としては良好なプラスチゾルを与えたが、メチルメタクリレートの比率が高すぎるため、フタル酸ジアルキルエステル系可塑剤を用いた場合には塗膜と可塑剤の相溶性が低すぎ、伸度及び可塑剤保持性が十分ではなかった。比較例12ではコア重合体のメチルメタクリレート比率が高すぎることと、シェル重合体にカルボン酸又はスルホン酸基含有モノマーが用いられていないため、プラスチゾルの貯蔵安定性が低く、塗膜物性の評価には至らなかった。
比較例13〜14
特開平8−295850号公報に示された実施例に従い、表1に示す組成の重合体粒子A'13〜A'14を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例13〜14は特開平8−295850号公報により提案された重合体を用いた場合(A'13〜A'14)である。比較例13ではシェル重合体のメチルメタクリレート比率が高すぎるため、貯蔵安定性は良好なものの、塗膜の伸度と可塑剤保持性が不良であった。比較例14ではコアのメチルメタクリレート比率が低すぎるため、貯蔵安定性が不良であり、塗膜物性の評価には至らなかった。
比較例15〜16
特開平5−279539号公報に示された実施例に従い、表1に示す組成の重合体粒子A'15〜A'16を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例15〜16は特開平5−279539号公報により提案された重合体を用いた場合(A'15〜A'16)である。いずれもシェル重合体のメチルメタクリレート比率が高すぎるため、ジ−2−エチルヘキシルフタレートでは可塑化できず、ここではジオクチルフタレートを用いて配合している。いずれも初期粘度は良好であるが、貯蔵安定性が不良であった。また塗膜の強度がやや低く不良であった。
Comparative Examples 10-12
According to the examples shown in JP-A-7-233299, polymer particles A′10 to A′12 having the composition shown in Table 1 were produced, and plastisol was prepared according to the formulation shown in Table 2 as in Example 1. Was prepared. The evaluation results of the plastisol are also shown in Table 2.
Comparative Examples 10 to 12 are cases where the polymers (A′10 to A′12) proposed by JP-A-7-233299 were used. Comparative Examples 10 and 11 gave a good plastisol in the initial state, but the ratio of methyl methacrylate was too high, so when a dialkyl phthalate plasticizer was used, the compatibility between the coating film and the plasticizer was low. The elongation and the plasticizer retention were not sufficient. In Comparative Example 12, since the methyl methacrylate ratio of the core polymer is too high, and the carboxylic acid or sulfonic acid group-containing monomer is not used in the shell polymer, the storage stability of the plastisol is low, and the coating film physical properties are evaluated. Did not come.
Comparative Examples 13-14
According to the examples shown in JP-A-8-295850, polymer particles A′13 to A′14 having the compositions shown in Table 1 were produced, and plastisol was prepared according to the formulation shown in Table 2 as in Example 1. Was prepared. The evaluation results of the plastisol are also shown in Table 2.
Comparative Examples 13 to 14 are cases (A′13 to A′14) in which the polymers proposed by JP-A-8-295850 are used. In Comparative Example 13, since the methyl methacrylate ratio of the shell polymer was too high, the storage stability was good, but the film elongation and plasticizer retention were poor. In Comparative Example 14, since the methyl methacrylate ratio of the core was too low, the storage stability was poor, and the physical properties of the coating film were not evaluated.
Comparative Examples 15-16
According to the examples shown in JP-A-5-279539, polymer particles A′15 to A′16 having the compositions shown in Table 1 were produced, and plastisol was prepared according to the formulation shown in Table 2 in the same manner as in Example 1. Was prepared. The evaluation results of the plastisol are also shown in Table 2.
Comparative Examples 15 to 16 are cases (A′15 to A′16) in which the polymers proposed by JP-A-5-279539 are used. In either case, since the methyl methacrylate ratio of the shell polymer is too high, it cannot be plasticized with di-2-ethylhexyl phthalate, and here it is blended with dioctyl phthalate. In all cases, the initial viscosity was good, but the storage stability was poor. Moreover, the intensity | strength of the coating film was a little low and it was defect.

比較例17〜20
特開平5−255563号公報に示された実施例に従い、表1に示す組成の重合体粒子A'17〜A'20を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例17〜20は特開平5−255563号公報により提案された重合体を用いた場合(A'17〜A'20)である。この公報で提案されている重合体はコアシェル構造粒子ではなく均一構造粒子であり、本発明が目的とするものとは粒子構造において異なる。プラスチゾルを配合する時の可塑剤は、上記公報により示されたものを用いた。比較例17では貯蔵安定性が不良であり、塗膜強度もやや不良であった。比較例18では貯蔵安定性が不良であった。比較例19では重合体と可塑剤の相溶性が高すぎて、貯蔵安定性が不良であり、塗膜の強度も低いものとなった。
Comparative Examples 17-20
According to the examples shown in JP-A-5-255563, polymer particles A′17 to A′20 having the compositions shown in Table 1 were produced, and plastisol was prepared according to the formulation shown in Table 2 in the same manner as in Example 1. Was prepared. The evaluation results of the plastisol are also shown in Table 2.
Comparative Examples 17 to 20 are cases (A′17 to A′20) in which the polymer proposed by JP-A-5-255563 is used. The polymer proposed in this publication is not a core-shell structured particle but a uniform structured particle, which differs in particle structure from that intended by the present invention. The plasticizer used when blending plastisol was the one shown in the above publication. In Comparative Example 17, the storage stability was poor, and the coating film strength was slightly poor. In Comparative Example 18, the storage stability was poor. In Comparative Example 19, the compatibility between the polymer and the plasticizer was too high, the storage stability was poor, and the strength of the coating film was low.

比較例21〜24
特開平6−322225号公報に示された実施例に従い、表1に示す組成の重合体粒子A'21〜A'24を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例21〜24は特開平6−322225号公報により提案された重合体を用いた場合(A'21〜A'24)である。本公報ではコアシェル構造粒子を用いると書いてあるが、ここで言うコアシェル構造粒子とははじめにアクリル樹脂からなる均一構造粒子を製造し、この粒子の表面のエステル結合を加水分解することにより粒子表面にのみカルボキシル基を導入するというものである。上記公報の条件で重合体粒子をアルカリ処理した場合、加水分解されるエステル結合は粒子表面から数nm程度の範囲である。したがって本発明で言うコアシェル構造粒子と較べるとシェル重合体の比率が大きく異なり、本発明の場合、重合体粒子の30〜70mol%であるが、上記公報の場合には多く見積もっても5mol%以下である。とくに上記公報で用いている重合体粒子の平均粒子径が2ミクロン程度であることを考慮すると、粒子体積に対する粒子表面積は非常にわずかであり、したがって実際にはシェル重合体の比率は1mol%以下であると計算される。したがって表1ではコアシェル比を99/1と記載してある。
比較例21〜22の場合、メチルメタクリレート主体の組成であるため、これを良好に可塑化するためには極性の高い可塑剤を用いる必要があり、アルキル鎖の短いフタル酸ジアルキルエステル系可塑剤を用いている。したがってプラスチゾルの貯蔵安定性が不良であり、塗膜もやや低強度である。比較例23では貯蔵安定性及び塗膜強度がやや不足している。比較例24では貯蔵安定性がやや不足し、塗膜強度が大幅に低下した。
Comparative Examples 21-24
According to the examples disclosed in JP-A-6-322225, polymer particles A′21 to A′24 having the compositions shown in Table 1 were produced, and plastisol was prepared according to the formulation shown in Table 2 in the same manner as in Example 1. Was prepared. The evaluation results of the plastisol are also shown in Table 2.
Comparative Examples 21 to 24 are cases (A′21 to A′24) in which the polymer proposed by JP-A-6-322225 is used. In this publication, it is stated that the core-shell structured particles are used. However, the core-shell structured particles referred to here are produced by first producing uniform structured particles made of an acrylic resin, and hydrolyzing the ester bonds on the surface of the particles, thereby bringing the particles to the particle surface. Only the carboxyl group is introduced. When polymer particles are alkali-treated under the conditions of the above publication, the ester bond to be hydrolyzed is in the range of about several nm from the particle surface. Therefore, the ratio of the shell polymer is greatly different from the core-shell structure particles referred to in the present invention, and in the case of the present invention, it is 30 to 70 mol% of the polymer particles. It is. In particular, considering that the average particle size of the polymer particles used in the above publication is about 2 microns, the particle surface area with respect to the particle volume is very small, so the actual ratio of the shell polymer is 1 mol% or less. Is calculated to be Therefore, in Table 1, the core-shell ratio is described as 99/1.
In the case of Comparative Examples 21 to 22, since the composition is mainly composed of methyl methacrylate, it is necessary to use a plasticizer with high polarity in order to plasticize it well, and a dialkyl phthalate plasticizer with a short alkyl chain is used. Used. Therefore, the storage stability of plastisol is poor, and the coating film has a slightly low strength. In Comparative Example 23, storage stability and coating strength are slightly insufficient. In Comparative Example 24, the storage stability was slightly insufficient, and the coating film strength was greatly reduced.

比較例25〜26
特開昭53−144950号公報に示された実施例に従い、表1に示す組成の重合体粒子A'25〜A'26を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。
比較例25〜26は特開昭53−144950号公報により提案された重合体を用いた場合(A'25〜A'26)である。比較例25の場合、重合体の可塑剤に対する相溶性が低いため、貯蔵安定性としては十分であるが、可塑剤保持性が低く、ブリードアウトが発生し、伸度が低い。比較例26の場合、コア部の相溶性が改良されたが、シェル部のメチルメタクリレート共重合比率が高すぎ、全体としては相溶性が低すぎるため可塑剤保持性が低くブリードアウトが発生する。
以上詳述したように、本発明のアクリル系重合体微粒子を用いたプラスチゾルは、塩化ビニル重合体を用いた塩ビゾルと同等の優れた貯蔵安定性と優れた可塑剤保持性を有しながら、かつ塩ビゾルの有する環境への悪影響の無いプラスチゾルを提供することができ、その工業的意義及び地球環境保全にもたらす効果は著大である。
Comparative Examples 25-26
According to the examples shown in JP-A-53-144950, polymer particles A′25 to A′26 having the compositions shown in Table 1 were produced, and in the same manner as in Example 1, the composition shown in Table 2 was used. A plastisol was prepared. The evaluation results of the plastisol are also shown in Table 2.
Comparative Examples 25 to 26 are cases where the polymer proposed by JP-A-53-144950 is used (A′25 to A′26). In the case of Comparative Example 25, since the compatibility of the polymer with the plasticizer is low, the storage stability is sufficient, but the plasticizer retention is low, bleed out occurs, and the elongation is low. In the case of Comparative Example 26, the compatibility of the core portion was improved, but the methyl methacrylate copolymerization ratio of the shell portion was too high, and the overall compatibility was too low, so the plasticizer retention was low and bleed out occurred.
As described in detail above, the plastisol using the acrylic polymer fine particles of the present invention has excellent storage stability equivalent to a vinyl chloride sol using a vinyl chloride polymer and excellent plasticizer retention, In addition, it is possible to provide a plastisol that does not adversely affect the environment of the vinyl chloride sol, and its industrial significance and the effect on the global environment conservation are remarkable.

表1中の略号は以下の通りである。
MMA:メチルメタクリレート
nBMA:n−ブチルメタクリレート
iBMA:i−ブチルメタクリレート
MAA:メタクリル酸
2EHA:2−エチルヘキシルアクリレート
St:スチレン
EDMA:エチレングリコールジメタクリレート
NBMA:N−ブトキシメチルアクリルアミド
AMA:アリルメタクリレート
BzMA:ベンジルメタクリレート
CHMA:シクロヘキシルメタクリレート
EMA:エチルメタクリレート
AA:アクリル酸
nBA:nブチルアクリレート
表2中の略号は以下の通りである。
DOP:ジ−2−エチルヘキシルフタレート
DINP:ジイソノニルフタレート
DOPh:ジオクチルフォスフェート
DBP:ブチルベンジルフタレート
DEP:ジエチルフタレート
CaCO:炭酸カルシウム
表中の単位は以下の通りである。
配合:重量部
粘度:Pa・S
貯蔵安定性:%
強度:MPa
伸度:%
Abbreviations in Table 1 are as follows.
MMA: methyl methacrylate nBMA: n-butyl methacrylate iBMA: i-butyl methacrylate MAA: methacrylic acid 2EHA: 2-ethylhexyl acrylate St: styrene EDMA: ethylene glycol dimethacrylate NBMA: N-butoxymethylacrylamide AMA: allyl methacrylate BzMA: benzyl methacrylate CHMA: cyclohexyl methacrylate EMA: ethyl methacrylate AA: acrylic acid nBA: n-butyl acrylate Abbreviations in Table 2 are as follows.
DOP: di-2-ethylhexyl phthalate DINP: diisononyl phthalate DOPh: dioctyl phosphate DBP: butyl benzyl phthalate DEP: diethyl phthalate CaCO 3 : calcium carbonate The units in the table are as follows.
Formulation: parts by weight Viscosity: Pa · S
Storage stability:%
Strength: MPa
Elongation:%

Figure 2005060712
Figure 2005060712

Figure 2005060712
Figure 2005060712

Figure 2005060712
Figure 2005060712

Figure 2005060712
Figure 2005060712

本発明のプラスチゾルは、優れた貯蔵安定性を有し、かつゲル化性能にも優れており、さらに得られる塗膜の強度、伸度ともに優れていることから、塩ビゾルが従来広く使用されている各種用途、例えばパッキング、ガスケット、壁紙等の内装品、玩具、日用品、雑貨、鋼(スチロール)製基材の摩耗及び腐食防止塗料、例えば自動車、トラック、及びバスの底部の抗チップ塗膜用などの各種コーティング、フィルム、シート等の成形やコーティングに広く使用することができる。   The plastisol of the present invention has excellent storage stability, excellent gelation performance, and excellent strength and elongation of the resulting coating film. Various applications such as packing, gaskets, wallpaper and other interior parts, toys, daily necessities, sundries, steel substrate wear and corrosion protection paints, for example, anti-chip coatings on the bottom of automobiles, trucks and buses It can be widely used for forming and coating various coatings such as films, sheets and the like.

Claims (3)

コア重合体Cとシェル重合体Sからなるコアシェル構造を有する一次粒子Pからなるアクリル系重合体微粒子であり、該一次粒子Pの平均粒子径が250nm以上であり、コア重合体C及びシェル重合体Sはそれぞれ以下に示すモノマー混合物Mc及びMsの共重合体であり、かつMcとMsの重量比が10/90〜90/10である上記アクリル系重合体微粒子;
Mc:合計を100mol%とし、
メチルメタクリレート 20〜85mol%
C2〜C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア
クリル酸エステル 15〜80mol%、及び
その他の共重合可能なモノマー 30mol%以下
Ms:合計を100mol%とし、
メチルメタクリレート 20〜79.5mol%
C2〜C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア
クリル酸エステル 5〜40mol%
カルボキシル基又はスルホン酸基含有モノマー
0.5〜10mol%、及び
その他の共重合可能なモノマー 30mol%以下。
Acrylic polymer fine particles comprising primary particles P having a core-shell structure consisting of a core polymer C and a shell polymer S, wherein the average particle diameter of the primary particles P is 250 nm or more, and the core polymer C and the shell polymer S is a copolymer of the monomer mixture Mc and Ms shown below, respectively, and the acrylic polymer fine particles having a weight ratio of Mc to Ms of 10/90 to 90/10;
Mc: the total is 100 mol%,
Methyl methacrylate 20-85 mol%
(Meth) acrylic acid ester of C2-C8 aliphatic alcohol and / or aromatic alcohol 15-80 mol%, and other copolymerizable monomer 30 mol% or less Ms: the total is 100 mol%,
Methyl methacrylate 20-79.5 mol%
(Meth) acrylic acid ester of C2-C8 aliphatic alcohol and / or aromatic alcohol 5-40 mol%
Carboxyl group or sulfonic acid group-containing monomer
0.5 to 10 mol%, and other copolymerizable monomers 30 mol% or less.
コア重合体C及びシェル重合体Sがそれぞれ以下に示すモノマー混合物Mc及びMsの共重合体であり、かつMcとMsの重量比が30/70〜70/30である請求項1記載のアクリル系重合体微粒子;
Mc:合計を100mol%とし、
メチルメタクリレート 20〜70mol%
n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステル 30〜80mol%、及び
その他の共重合可能なモノマー 20mol%以下
Ms:合計を100mol%とし、
メチルメタクリレート 30〜79.5mol%
n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステル 5〜40mol%
カルボキシル基含有アクリル系モノマー
0.5〜10mol%、及び
その他の共重合可能なモノマー 20mol%以下。
The acrylic polymer according to claim 1, wherein the core polymer C and the shell polymer S are copolymers of the monomer mixtures Mc and Ms shown below, respectively, and the weight ratio of Mc and Ms is 30/70 to 70/30. Polymer fine particles;
Mc: the total is 100 mol%,
Methyl methacrylate 20-70 mol%
30 to 80 mol% of one or more (meth) acrylic acid esters selected from the group consisting of n-butyl (meth) acrylate, i-butyl (meth) acrylate and t-butyl (meth) acrylate, and other copolymerizable Monomers 20 mol% or less Ms: the total is 100 mol%,
Methyl methacrylate 30-79.5 mol%
One or more (meth) acrylic acid esters selected from the group consisting of n-butyl (meth) acrylate, i-butyl (meth) acrylate and t-butyl (meth) acrylate 5 to 40 mol%
Carboxyl group-containing acrylic monomer
0.5 to 10 mol%, and other copolymerizable monomers 20 mol% or less.
コア重合体C及びシェル重合体Sがそれぞれ以下に示すモノマー混合物Mc及びMsの共重合体であり、かつMcとMsの重量比が30/70〜70/30である請求項1記載のアクリル系重合体微粒子;
Mc:合計を100mol%とし、
メチルメタクリレート 20〜70mol%
n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステル 30〜80mol%、及び
その他の共重合可能なモノマー 10mol%以下
Ms:合計を100mol%とし、
メチルメタクリレート 55〜79.5mol%
n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート及びt−ブチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステル 20〜40mol%
カルボキシル基含有アクリル系モノマー
0.5〜5mol%、及び
その他の共重合可能なモノマー 10mol%以下。
The acrylic polymer according to claim 1, wherein the core polymer C and the shell polymer S are copolymers of the monomer mixtures Mc and Ms shown below, respectively, and the weight ratio of Mc and Ms is 30/70 to 70/30. Polymer fine particles;
Mc: the total is 100 mol%,
Methyl methacrylate 20-70 mol%
30 to 80 mol% of one or more (meth) acrylic acid esters selected from the group consisting of n-butyl (meth) acrylate, i-butyl (meth) acrylate and t-butyl (meth) acrylate, and other copolymerizable Monomers 10 mol% or less Ms: the total is 100 mol%,
Methyl methacrylate 55-79.5 mol%
One or more (meth) acrylic acid esters selected from the group consisting of n-butyl (meth) acrylate, i-butyl (meth) acrylate and t-butyl (meth) acrylate 20 to 40 mol%
Carboxyl group-containing acrylic monomer
0.5-5 mol%, and other copolymerizable monomers 10 mol% or less.
JP2004291244A 1998-07-01 2004-10-04 Acrylic polymer fine particles Expired - Fee Related JP3946215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291244A JP3946215B2 (en) 1998-07-01 2004-10-04 Acrylic polymer fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19947398 1998-07-01
JP2004291244A JP3946215B2 (en) 1998-07-01 2004-10-04 Acrylic polymer fine particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000558146A Division JP3621885B2 (en) 1998-07-01 1999-06-29 Acrylic polymer fine particles and plastisol using the same

Publications (2)

Publication Number Publication Date
JP2005060712A true JP2005060712A (en) 2005-03-10
JP3946215B2 JP3946215B2 (en) 2007-07-18

Family

ID=34379573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291244A Expired - Fee Related JP3946215B2 (en) 1998-07-01 2004-10-04 Acrylic polymer fine particles

Country Status (1)

Country Link
JP (1) JP3946215B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023821A1 (en) * 2005-08-22 2007-03-01 Nippon Shokubai Co., Ltd. Emulsion for vibration damper
JP2009508972A (en) * 2005-09-20 2009-03-05 日本特殊塗料株式会社 Damping material compound
JP2009091540A (en) * 2007-06-29 2009-04-30 Mitsubishi Rayon Co Ltd Graft copolymer, resin composition, and molded product thereof
WO2011155566A1 (en) * 2010-06-10 2011-12-15 三菱レイヨン株式会社 Process for production of acrylic polymer, acrylic polymer obtained by the process, and plastisol composition using same
JP2014167131A (en) * 2007-01-23 2014-09-11 Mitsubishi Rayon Co Ltd (meth)acrylic polymer particles and production method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023821A1 (en) * 2005-08-22 2007-03-01 Nippon Shokubai Co., Ltd. Emulsion for vibration damper
JP5030780B2 (en) * 2005-08-22 2012-09-19 株式会社日本触媒 Damping emulsion
JP2009508972A (en) * 2005-09-20 2009-03-05 日本特殊塗料株式会社 Damping material compound
US8664286B2 (en) 2005-09-20 2014-03-04 Nippon Shokubai Co., Ltd. Vibration damping composition
JP2014167131A (en) * 2007-01-23 2014-09-11 Mitsubishi Rayon Co Ltd (meth)acrylic polymer particles and production method of the same
JP2009091540A (en) * 2007-06-29 2009-04-30 Mitsubishi Rayon Co Ltd Graft copolymer, resin composition, and molded product thereof
WO2011155566A1 (en) * 2010-06-10 2011-12-15 三菱レイヨン株式会社 Process for production of acrylic polymer, acrylic polymer obtained by the process, and plastisol composition using same
US9056933B2 (en) 2010-06-10 2015-06-16 Mitsubishi Rayon Co., Ltd. Production method of acrylic polymer, acrylic polymer obtained by this production method and plastisol composition using the same

Also Published As

Publication number Publication date
JP3946215B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3621885B2 (en) Acrylic polymer fine particles and plastisol using the same
JP5958499B2 (en) (Meth) acrylic polymer particles and method for producing the same
JP3684198B2 (en) Polymer fine particles for acrylic plastisol, method for producing the same, non-halogen plastisol composition and article using the same
JP3621918B2 (en) Method for producing acrylic polymer fine particles
JP5161566B2 (en) (Meth) acrylic polymer particles, production method thereof, plastisol and article
JP3946215B2 (en) Acrylic polymer fine particles
WO2005012425A1 (en) Resin composition for molding material and molded article made therefrom
JPH07233299A (en) Acrylic sol
JP3524805B2 (en) Acrylic plastisol composition
JP5770432B2 (en) Emulsion composition for heat drying, method for producing the same, and damping material composition
JP4077323B2 (en) Plastisol composition and molded article and article using the same
JP3839880B2 (en) Acrylic sol
JP4588915B2 (en) Acrylic resin plastisol and acrylic resin molded products
JP4866554B2 (en) Method for producing (meth) acrylic polymer aggregated particles for acrylic sol
WO2005017031A1 (en) Acrylic plastisol composition
JP4031309B2 (en) Plastisol composition, gelled film, and article
JP2005232297A (en) Acrylic polymer fine particle and plastisol composition
JP2005263846A (en) Acrylic plastisol composition
JP2005232411A (en) Acrylic plastisol composition
JPH09216984A (en) Acrylic sol
JPH10298391A (en) Plastisol composition, molding material and molding article
JP2008075006A (en) Acrylic polymer microparticles, method for producing the same, and acrylic sol composition
JP2008063369A (en) Acrylic polymer fine particle, method for producing the same and plastisol composition
JP2005239766A (en) Trilaminar-structured acrylic polymer particle, preparation method therefor and plastisol
JP2008075005A (en) Method for producing acrylic polymer microparticle, polymer microparticle, plastisol composition, and molding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R151 Written notification of patent or utility model registration

Ref document number: 3946215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees