JP2005060550A - 被膜形成組成物 - Google Patents

被膜形成組成物 Download PDF

Info

Publication number
JP2005060550A
JP2005060550A JP2003293046A JP2003293046A JP2005060550A JP 2005060550 A JP2005060550 A JP 2005060550A JP 2003293046 A JP2003293046 A JP 2003293046A JP 2003293046 A JP2003293046 A JP 2003293046A JP 2005060550 A JP2005060550 A JP 2005060550A
Authority
JP
Japan
Prior art keywords
polypeptide
peptide
pro
gly
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003293046A
Other languages
English (en)
Inventor
Masao Tanihara
正夫 谷原
Chikara Otsuki
主税 大槻
Hiroshi Mikami
博 三上
Hisao Kinoshita
久雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003293046A priority Critical patent/JP2005060550A/ja
Publication of JP2005060550A publication Critical patent/JP2005060550A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】 コラーゲン様特性を有するポリペプチドを含有するとともに、病原体や病原性因子に感染する危険性がなく、安全性が高い被膜形成組成物を提供する。
【解決手段】 ポリペプチドを含み、かつ基材に適用するための被膜形成組成物であって、前記ポリペプチドが少なくとも式Pro-Y-Gly(式中、YはProまたはHypを表す)で表されるアミノ酸配列を有し、かつコラーゲン様の合成ポリペプチドで構成され被膜形成組成物を調製する。このポリペプチドは、円二色性スペクトルにおいて、波長220〜230nmに正のコットン効果を示し、波長195〜205nmに負のコットン効果を示す。また、このポリペプチドの少なくとも一部が3重らせん構造を形成可能である。このような被覆形成組成物としては、例えば、被覆剤や接着剤などが挙げられる。
【選択図】 なし

Description

本発明は新規なポリペプチドを含む被膜形成組成物(例えば、塗料、コーティング剤、糊剤、表面処理剤又は加工剤などの被覆剤、接着剤など)に関する。
コラーゲンは、あらゆる多細胞動物にみられる繊維状蛋白質であり、皮膚や骨の主成分として哺乳類では全蛋白質の25%を占める。典型的なコラーゲン分子は、3本のコラーゲンポリペプチド鎖が三重らせん構造と呼ばれるロープ状の超らせん構造をとる。上記3重らせん構造を形成したポリペプチド鎖が自己集合して、直径が数nm〜数十nmの原線維を形成し、さらにこれらの原線維が配列して直径が数μm〜数十μmの繊維構造を形成することができる。コラーゲンには、プロリン(Pro)とグリシン(Gly)とが特に多く含まれ、両アミノ酸残基とも安定な3重らせん構造の形成に重要である。コラーゲンは、このような天然繊維質材料であるとともに、温度などの外的な物理的又は化学的条件に対する応答性を有している。このようなコラーゲンの性質を利用して、コラーゲンやその熱変性体であるゼラチンは、種々の工業材料として利用されている。
例えば、特開2003−176472号公報(特許文献1)には、ポリオレフィン類やガラスなどの非孔性基材と紙類との接着に適した接着剤として、にかわやゼラチンなどのタンパク質系接着剤に、ロジン、ロジン誘導体、テルペン及びテルペン誘導体の少なくとも一つを配合した接着剤組成物が開示されている。また、特開平11−171521号公報(特許文献2)には、界面活性剤の脱色脱臭に用いる活性炭において、コラーゲンで処理することによって活性炭を凝集連結させることにより、ろ過漏れを抑制する方法が開示されている。
また、コラーゲンを用いる被覆組成物に関して、人肌や皮革などの天然素材の風合い、外観、感触、機能などを付与するために、例えば、特開平8−60546号公報(特許文献3)には、天然繊維や合成又は半合成繊維からなる織布及び不織布などの繊維製品の糊剤であって、コラーゲンと糊剤用高分子基剤とを必須とするコラーゲン含有糊剤が開示され、特開平5−59400号公報(特許文献4)には、コラーゲン、水、及び塗膜形成成分を含む塗料組成物が開示され、特開平7−304960号公報(特許文献5)には、水系繊維処理剤、水系表面処理剤、水系塗料に添加するためのコラーゲン粉末水分散物が開示され、特開平7−70600号公報(特許文献6)には、塗料、人工又は合成皮革の処理剤、繊維処理剤に混合して使用するコラーゲン粉末が開示されている。
このように、コラーゲンは、種々の工業材料として用いられているが、一般に、哺乳動物(ウシやブタ)由来のコラーゲンを原料として用いることが多いため、工業材料といえども、用途によっては安全性が充分でない。
特開平8−041425号公報(特許文献7)には、動物又は人間由来のコラーゲン中のプリオンを除去するために、コラーゲン溶液中の細胞および組織の断片を除去し、アルカリ処理する方法およびこの方法により得られるコラーゲンが記載されている。しかし、この文献に記載されているように、ヒツジの振戦病やウシの海綿状脳症の原因物質がプリオンと呼ばれる伝染性蛋白質であり、この伝染性タンパク質がヒトのクロイツフェルドーヤコブ病伝染の原因の一つと言われている。プリオンは、蛋白質であり、通常の滅菌、殺菌方法では失活し難く、しかも種を越えて感染することが指摘されている(「Nature Review, Vol.2」(非特許文献1)、 pp.118-126, 2001)。
一方、人工的に合成されたコラーゲン類似物に関して、Pro-Ser-Glyのp-ニトロフェニルエステル、あるいはPro-Ala-Glyのp-ニトロフェニルエステルをジメチルホルムアミドに溶解し、トリエチルアミンを加えて24時間静置することにより、分子量が16,000〜21,000の可溶性ポリアミドが得られることが報告されている(「J. Mol. Biol., Vol.63」(非特許文献2)、pp.85-99, 1972)。これらの可溶性ポリアミドは円二色性スペクトルから3重らせん構造をとることが推定されているが、得られたポリマーの性質に関する記述はない。
また、エラスチン由来のVal-Pro-Gly-Val-Gly配列を含む50量体のペプチドをジメチルスルホキシドに溶解し、2当量の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミドと1当量の1−ヒドロキシベンゾトリアゾール、および1.6当量のN−メチルモルフォリンを加えて14日間静置した後、分子量カットオフが5万の透析膜で透析してポリアミドを得る方法も報告されている(「Int. J. Peptide Protein Res., Vol.46」(非特許文献3), pp.453-463, 1995)。
特開2003−176472号公報(請求項1、段落番号[0010]) 特開平11−171521号公報(請求項1、段落番号[0008]) 特開平8−60546号公報(請求項1、段落番号[0001]) 特開平5−59400号公報(請求項8、段落番号[0001]) 特開平7−304960号公報(請求項1、段落番号[0005]) 特開平7−70600号公報(請求項1、段落番号[0001]) 特開平8−041425号公報(請求項1、段落番号[0007]) 「Nature Review, Vol.2」、 pp.118-126, 2001 「J. Mol. Biol., Vol.63」、pp.85-99, 1972 「Int. J. Peptide Protein Res., Vol.46」, pp.453-463, 1995。
従って、本発明の目的は、コラーゲン様特性を有するポリペプチドを含有するとともに、病原体や病原性因子に感染する危険性がなく、安全性が高い被膜形成組成物を提供することにある。
本発明の他の目的は、基材に対する密着性が高く、生分解性に優れ、環境的に負荷が少ない被膜形成組成物を提供することにある。
本発明者は前記課題を解決するため鋭意検討の結果、特定のコラーゲン様ポリペプチドが、コラーゲン様特性を有するとともに、病原体や病原性因子に感染する危険性がないこと、基材に対する密着性が高いことを見出し、本発明を完成した。
すなわち、本発明の被膜形成組成物は、ポリペプチドを含み、かつ基材に適用するための被膜形成組成物であって、前記ポリペプチドが少なくとも式Pro-Y-Gly(式中、YはPro又はHypを表す)で表されるアミノ酸配列を有し、かつコラーゲン様の構造を形成できる合成ポリペプチドで構成されている。前記ポリペプチドは、下記式(1)〜(3)で表されるペプチドユニットで構成されているポリペプチド(I)、及び下記式(4)で表されるアミノ酸配列を有するペプチドユニットと、下記式(5)で表されるアミノ酸配列を有するペプチドユニットとを含むポリペプチド(II)から選択された少なくとも一種のポリペプチドであってもよい。
[-(OC-(CH2)m-CO)p-(Pro-Y-Gly)n-]a (1)
[-(OC-(CH2)m-CO)q-(Z)r-]b (2)
[-HN-R-NH-]c (3)
(式中、mは1〜18の整数、p及びqは同一又は異なって0又は1、YはPro又はHypを表し、nは1〜20の整数を表す。Zは1〜10個のアミノ酸残基からなるペプチド鎖を表し、rは1〜20の整数を表し、Rは直鎖状又は分岐鎖状アルキレン基を表す。aとbとの割合(モル比)はa/b=100/0〜30/70であり、p=1及びq=0であるときc=a、p=0及びq=1であるときc=bであり、p=1及びq=1であるときc=a+bであり、p=0及びq=0であるときc=0である)。
-Pro-Y-Gly- (4)
(式中、Yは前記に同じ。)
-Pro-V-Gly-W-Ala-Gly- (5)
(式中、VはGln、Asn、Leu、Ile、Val又はAla、WはIle又はLeuを表す)。
前記ポリペプチド(I)において、mは2〜12の整数、nは2〜15の整数、Zは、Gly, Sar, Ser, Glu, Asp, Lys, His, Ala,Val、Leu、Arg、Pro、Tyr、Ileから選択された1〜10個のアミノ酸残基からなるペプチド鎖、rは1〜10の整数、RはC2-12アルキレン基であってもよい。
さらに、前記ポリペプチド(II)において、ペプチドユニット(4)とペプチドユニット(5)との割合(モル比)は、(4)/(5)=99/1〜30/70程度である。
前記ポリペプチドは、通常、円二色性スペクトルにおいて、波長220〜230nmに正のコットン効果を示し、波長195〜205nmに負のコットン効果を示す。このことは、ポリペプチドの少なくとも一部(一部又は全部)は、通常、3重らせん構造を形成することを示している。本発明のポリペプチドは、分子量5×103〜500×104の範囲にピークを示してもよい。
本発明の被膜形成組成物は、被覆剤や接着剤などであってもよい。
本発明の被膜形成組成物は、コラーゲン様特性を有するポリペプチドを含有しているにもかかわらず、病原体や病原性因子に感染する危険性がなく、安全性が高い。さらに、基材に対する密着性が高く、生分解性に優れているため、環境に対する負荷が少ない。
本発明においては各種アミノ酸残基を次の略号で記述する。
Ala :L−アラニン残基
Arg :L−アルギニン残基
Asn :L−アスパラギン残基
Asp :L−アスパラギン酸残基
Cys :L−システイン残基
Gln :L−グルタミン残基
Glu :L−グルタミン酸残基
Gly :グリシン残基
His :L−ヒスチジン残基
Hyp :L−ヒドロキシプロリン残基
Ile :L−イソロイシン残基
Leu :L−ロイシン残基
Lys :L−リジン残基
Met :L−メチオニン残基
Phe :L−フェニルアラニン残基
Pro :L−プロリン残基
Sar :サルコシン残基
Ser :L−セリン残基
Thr :L−トレオニン残基
Trp :L−トリプトファン残基
Tyr :L−チロシン残基
Val :L−バリン残基
また、本明細書においては、常法に従って、N末端のアミノ酸残基を左側に位置させ、C末端のアミノ酸残基を右側に位置させて、ペプチド鎖のアミノ酸配列を記述する。
本発明の被膜形成組成物は、コラーゲン様の構造を形成する前記特定の合成ポリペプチドで構成されている。このポリペプチドは、少なくとも式Pro-Y-Gly(式中、YはPro又はHypを表す)で表されるアミノ酸配列を有している。このアミノ酸配列は、3重らせん構造の安定性に寄与するため、このポリペプチドは、コラーゲン組織(コラーゲン状の組織)又はコラーゲン様の構造を形成する限り種々のポリペプチドを使用できる。このようなポリペプチドには、前記ポリペプチド(I)と前記ポリペプチド(II)が含まれる。
前記ポリペプチド(I)において、構成するペプチドユニット(1) [-(OC-(CH2)m-CO)p-(Pro-Y-Gly)n-]は、Pro-Y-Glyの繰返し配列を含むことが必要である。Pro-Y-Glyの繰返し数が、少ないと3重らせん構造の安定性が減少し、繰返し数が多すぎるとペプチドの合成が困難になる。従って、繰返し数nは、1〜20、好ましくは2〜15(例えば、3〜15)、さらに好ましくは5〜15程度である。
前記式(1)において、Yは、Pro又はHypいずれであってもよいが、3重らせん構造の安定性からHypであるのがより好ましい。なお、Hypは、通常、4Hyp(例えば、trans−4−ヒドロキシ−L−プロリン)残基である。
さらに、メチレン鎖(CH2)の繰り返し数を示すmは、ポリペプチドの物理的及び生物学的性質を損なわない範囲であればよいが、通常、1〜18、好ましくは2〜12、さらに好ましくは2〜10(特に2〜6)程度である。pは0又は1である。
前記ペプチドユニット(2)[-(OC-(CH2)m-CO)q-(Z)r-]において、Zは1〜10個のアミノ酸残基で構成された任意の配列のペプチド鎖を表す。Zは、得られるポリペプチドの物理的及び生物学的性質を損なわない限り、どのような配列でもよい。ポリペプチドが有用な物理的及び生物学的性質を発揮するためには、例えば、ペプチド鎖Zは、通常、Gly、Sar、Ser、Glu、Asp、Lys、His、Ala、Val、Leu、Arg、Pro、Tyr、Ileから選択された1〜10個のアミノ酸残基からなるペプチド鎖(すなわち、これらのアミノ酸から選択されたアミノ酸残基、又はこれらのアミノ酸から選択された2〜10個のアミノ酸残基からなるペプチド鎖)、特に、Gly、Sar、Ser、Glu、Asp、Lys、Arg、Pro、Valから選択された1〜10個のアミノ酸残基からなるペプチド鎖を有している場合が多い。ペプチド鎖Zは、Gly、Sar、Ser、Glu、Asp、Lys、Arg-Gly-Asp、Tyr-Ile-Gly-Ser-Arg、Ile-Lys-Val-Ala-Val、Val-Pro-Gly-Val-Gly、Asp-Gly-Glu-Ala、Gly-Ile-Ala-Gly、His-Ala-Val、Glu-Arg-Leu-Glu、Lys-Asp-Pro-Lys-Arg-Leu、Arg-Ser-Arg-Lysで示される配列を含むのが好ましい。
ペプチド鎖Zの繰り返し数を示すrは、得られるポリペプチドが物理的及び生物学的性質を発揮する範囲であればよい。繰返し数rが多すぎると合成が困難になり、また得られるポリペプチドの物理的性質が変化しやすい。従って、繰返し数rは、通常、1〜20、好ましくは1〜10、さらに好ましくは1〜5程度である。
メチレン鎖(CH2)の繰り返し数を示すmは、前記式(1)と同様に、1〜18、好ましくは2〜12、さらに好ましくは2〜10(特に2〜6)程度である。qは0又は1である。
前記式(1)及び(2)において、p及びqのうち少なくとも一方が0であるとき、ポリペプチドは、前記式(3)で表されるユニット[-HN-R-NH-]を含んでいる。この前記式(3)で表されるユニットにおいて、Rで表される直鎖状又は分岐鎖状アルキレン基は、ポリペプチドの物理的及び生物学的性質を損なわない範囲であればよく、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレンなどのC1-18アルキレン基が例示できる。前記アルキレン基Rは、直鎖状のメチレン鎖(CH2)s(sは1〜18の整数を表す)であってもよい。好ましいRは、C2-12アルキレン基(さらに好ましくはC2-10アルキレン基,特にC2-6アルキレン基)である。
前記式(1)で表されるペプチドユニットと前記式(2)で表されるペプチドユニットとの割合(a/b)は、100/0〜30/70(モル比)、好ましくは100/0〜40/60(モル比)、さらに好ましくは100/0〜50/50(モル比)程度である。
さらに、前記式(3)で表されるユニットの割合は、前記式(1)のpの値、前記式(2)のqの値に応じて選択でき、p=1及びq=0であるとき、c=aであり、p=0及びq=1であるとき、c=bである。また、p=1及びq=1であるときc=a+bであり、p=0及びq=0であるときc=0である。
すなわち、前記ポリペプチド(I)には、(a)前記式(1)でp=0であるペプチドユニット[-(Pro-Y-Gly)n-]の繰り返し単位で構成されたポリペプチド、(b)前記式(1)でp=0であるペプチドユニット[-(Pro-Y-Gly)n-]と前記式(2)でq=0であるペプチドユニット[-(Z)r-]とをa:bの割合(モル%)で含む繰り返し単位で構成されたポリペプチド、(c)前記式(1)でp=1であるペプチドユニット[-(OC-(CH2)m-CO)-(Pro-Y-Gly)n-]と前記式(3)で表されるユニット[-HN-R-NH-]とを1:1の割合(モル%)で含む繰り返し単位で構成されたポリペプチド、(d)前記式(1)でp=1であるペプチドユニット[-(OC-(CH2)m-CO)-(Pro-Y-Gly)n-]と前記式(2)でq=1であるペプチドユニット[-(OC-(CH2)m-CO)-(Z)r-]と前記式(3)で表されるユニット[-HN-R-NH-]とをa:b:a+bの割合(モル%)で含む繰り返し単位で構成されたポリペプチドが含まれる。
一方、前記ポリペプチド(II)は、-Pro-Y-Gly-で表されるアミノ酸配列を有するペプチドユニット(4)を含むことが必要である。-Pro-Y-Gly-で表される配列は、3重らせん構造の安定性に寄与するため、この配列の割合が少ないと3重らせん構造の安定性が減少する。
さらに、このユニット(4)は、3重らせん構造の安定性の点から、ポリペプチド中において、-(Pro-Y-Gly)d-で表される繰返し構造(オリゴ又はポリペブチドユニット構造)を形成してもよい。この配列の繰返し数dは、例えば、2〜5000、好ましくは2〜4000、さらに好ましくは3〜3000程度である。Yは、Pro又はHypのいずれであってもよいが、前記と同様に、3重らせん構造の安定性からHyp[通常、4Hyp(例えば、trans−4−ヒドロキシ−L−プロリン)残基]であるのがより好ましい。
また、本発明におけるポリペプチド(II)は、-Pro-S-Gly-T-Ala-Gly-で表されるアミノ酸配列を有するペプチドユニット(5)を含むのが有用である。この配列を含まない場合や少なすぎる場合には、コラゲナーゼによる分解性が低下する。一方、この配列が多すぎると3重らせん構造の安定性が低下する。
VはGln、Asn、Leu、Ile、Val又はAlaのいずれであってもよいが、Gln、Asn、Leu、Val、Ala、特にGln、Leuがより好ましい。WはIle又はLeuのいずれでもよいが、Ileがより好ましい。
VとWとの組み合わせは、例えば、VがGln、Asn、Leu、Ile、Val及びAlaから選択された一種(例えば、Gln又はLeu)であり、WがIleであるペプチドや、VがGln、Asn、Leu、Ile、Val及びAlaから選択された一種(例えば、Gln又はLeu)であり、WがLeuであるペプチドなどが挙げられる。
YとVとWとの組み合わせは、YがHyp、VがGln、Asn、Leu、Ile、Val及びAlaから選択された一種(例えば、Gln又はLeu)、WがIle又はLeuであるペプチドや、YがPro、VがGln、Asn、Leu、Ile、Val及びAlaから選択された一種(例えば、Gln又はLeu)、WがIle又はLeuであるペプチドなどが挙げられる。
さらに、得られるポリペプチドの物理的及び生物学的性質を損なわない限り、このポリペプチド(II)は他のアミノ酸残基やペプチド鎖(ユニット)を含んでいてもよい。他のアミノ酸残基又はペプチド鎖としては、前記ペプチドユニット(2)の-(Z)r-で表されるペプチド鎖などが挙げられる。すなわち、このポリペプチドが有用な物理的及び生物学的性質を発揮するためには、例えば、Gly、Sar、Ser、Glu、Asp、Lys、His、Ala、Val、Leu、Arg、Pro、Tyr、Ileから選択された1〜10個のアミノ酸残基からなるペプチド鎖(すなわち、これらのアミノ酸から選択されたアミノ酸残基、又はこれらのアミノ酸から選択された2〜10個のアミノ酸残基からなるペプチド鎖)、特に、Gly、Sar、Ser、Glu、Asp、Lys、Arg、Pro、Valから選択された1〜10個のアミノ酸残基からなるペプチド鎖を有している場合が多い。具体的には、例えば、Gly、Sar、Ser、Glu、Asp、Lys、Arg-Gly-Asp、Tyr-Ile-Gly-Ser-Arg、Ile-Lys-Val-Ala-Val、Val-Pro-Gly-Val-Gly、Asp-Gly-Glu-Ala、Gly-Ile-Ala-Gly、His-Ala-Val、Glu-Arg-Leu-Glu、Lys-Asp-Pro-Lys-Arg-Leu、Arg-Ser-Arg-Lysで示されるアミノ酸残基やペプチド鎖を含むのが好ましい。
前記ポリペプチド(II)において、前記ペプチドユニット(4)と前記ペプチドユニット(5)との割合(モル比)は、(4)/(5)=99/1〜30/70、好ましくは98/2〜40/60、さらに好ましくは95/5〜50/50程度である。
前記ペプチドユニット(4)及び前記ペプチドユニット(5)の合計量と、他のペプチドユニットとの割合(モル比)は、前者/後者=100/0〜50/50、好ましくは100/0〜60/40、さらに好ましくは100/0〜70/30程度である。
このようなポリペプチド(I)及び(II)は、環化により6員環を形成することなく、鎖状のポリペプチドを形成しており、溶媒(水、エタノール、プロパノールなどのアルコール類、アセトンなどのケトン類、ジオキサン、テトラヒドロフランなどの環状エーテル、ジメチルスルホキシドなどのスルホキシド類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの親水性溶媒又はそれらの混合溶媒)に可溶である。前記ポリペプチドは、水系ゲルパーミエーションクロマトグラフィー(GPC)において、球状蛋白質換算で、例えば、分子量5×103〜500×104、好ましくは分子量1×104〜300×104、好ましくは3×104〜200×104、さらに好ましくは5×104〜100×104程度の範囲にピークを示す。
さらに、これらのポリペプチドは、円二色性スペクトルにおいて、波長220〜230nmに正のコットン効果を示し、波長195〜205nmに負のコットン効果を示す。そのため、ポリペプチドの少なくとも一部(すなわち、一部又は全部)が3重らせん構造を形成可能であり、コラーゲン様ポリペプチドを形成する。なお、コットン効果とは、旋光性物質において特定の波長で左右の円偏光に対する吸収係数が異なるために起こる現象をいう。
これらのポリペプチドは、コラーゲン組織(コラーゲン状の組織)を形成可能である。上記3重らせん構造を形成したポリペプチド鎖が自己集合して、数nm〜数十nmの原線維を形成し、さらにこれらの原線維が配列して数nm〜数十nmの繊維構造を形成することができる。これらは、透過型電子顕微鏡、走査型電子顕微鏡、あるいは原子間力顕微鏡により観察することができる。
これらのポリペプチドは、生理学的又は薬理学的に許容される塩であってもよく、例えば、無機酸(塩酸、硫酸、リン酸など)、有機酸(酢酸、トリフルオロ酢酸、乳酸、酒石酸、マレイン酸、フマル酸、シュウ酸、リンゴ酸、クエン酸、オレイン酸、パルミチン酸など)、金属(ナトリウム、カリウムなどのアルカリ金属、カルシウムなどのアルカリ土類金属、アルミニウムなど)、有機塩基(トリメチルアミン、トリエチルアミン、t−ブチルアミン、ベンジルアミン、ジエタノールアミン、ジシクロヘキシルアミン、アルギニンなど)との塩であってもよい。これらの塩形成化合物は、単独で又は二種以上組み合わせて使用できる。これらの塩は、通常の塩形成反応によって得ることができる。
これらのポリペプチド(I)(II)は、アミノ酸やペプチドフラグメント(又はセグメント)を縮合反応に供する慣用の方法により得ることができ、最終的に前記ユニットがポリペプチド中に含まれている限り特に制限されず、例えば、アミノ酸を縮合反応する方法や、ペプチドセグメントとアミノ酸を縮合する方法により得てもよいが、予め、前記アミノ酸配列を有するペプチド又はその誘導体などのペプチド成分を調製し、このペプチド成分を縮合する方法により得るのが好ましい。
予め調製したペプチド成分を縮合する方法において、ペプチド成分のペプチド鎖の合成は、通常のペプチド合成方法に従って行うことができる。ペプチドは、例えば、固相合成法または液相合成法によって調製できるが、固相合成法が操作上簡便である〔例えば、日本生化学会編「続生化学実験講座2 タンパク質の化学(下)」(昭和62年5月20日 株式会社東京化学同人発行)、第641−694頁参照〕。ペプチド合成には、慣用の方法、例えば、縮合剤を用いるカップリング方法、活性エステル法(p−ニトロフェニルエステル(ONp)、ペンタフルオロフェニルエステル(Opfp)などのフェニルエステル、N−ヒドロキシスクシンイミドエステル(ONSu)などのN−ヒドロキシジカルボン酸イミドエステル、1−ヒドロキシベンゾトリアゾールエステル(Obt)など)、混合酸無水物法、アジド法などが利用できる。好ましい方法では、少なくとも縮合剤(好ましくは後述する縮合剤、特に後述する縮合剤と縮合助剤との組合せ)を用いる場合が多い。
さらに、ペプチドの合成では、アミノ酸又はペプチドフラグメントの種類に応じて、アミノ基、カルボキシル基、他の官能基(グアニジノ基、イミダゾリル基、メルカプト基、ヒドロキシル基、ω−カルボキシル基など)の保護基による保護と、接触還元や強酸処理(無水フッ化水素、トリフルオロメタンスルホン酸、トリフルオロ酢酸など)による保護基の脱離・除去とが繰り返し行われる。例えば、アミノ基の保護基には、ベンジルオキシカルボニル基(Z)、p−メトキシベンジルオキシカルボニル基(Z(OMe))、9−フルオレニルメトキシカルボニル基(Fmoc)、t−ブトキシカルボニル基(Boc)、3−ニトロ−2−ピリジンスルフェニル基(Npys)などが利用でき、カルボキシル基の保護基には、ベンジルオキシ基(OBzl),フェナシルオキシ基(OPac)、t−ブトキシ基(OBu)、メトキシ基(OMe)、エトキシ基(OEt)などが利用できる。なお、ペプチド合成には自動合成装置を利用してもよい。
より具体的には、前記ペプチド鎖の固相合成法による調製は、慣用の方法で行うことができる。固相樹脂(又は担体)としては、反応溶媒に不溶性の重合体、例えば、スチレン−ジビニルベンゼン共重合体、例えば、クロロメチル化樹脂、ヒドロキシメチル樹脂、ヒドロキシメチルフェニルアセトアミドメチル樹脂、4−メチルベンズヒドリルアミン樹脂などが利用できる。
固相合成法では、通常、(i)前記重合体(樹脂)に対して、目的とするペプチドのC末端からN末端の方向に向かって、遊離のα−COOH基を有するとともに官能基(少なくともN末端のα−アミノ基など)が保護基で保護されたアミノ酸又はペプチド断片を結合させる操作と、(ii)結合したアミノ酸又はペプチド断片のうちペプチド結合を形成するα−アミノ基の保護基を除去する操作と、(iii)上記結合操作と除去操作とを順次繰り返すことにより、ペプチド鎖を伸長させて目的ペプチドに対応するペプチド鎖を形成する工程と、(iv)ペプチド鎖を重合体(樹脂)から脱離させ、かつ保護されている官能基から保護基を除去することにより、目的とするペプチドを生成させ、生成したペプチドを精製することにより、ペプチドを製造できる。前記アミノ酸又はペプチド断片を結合させる操作(i)では、前記ペプチド鎖のC末端に対応し、かつ遊離のα−COOH基を有するとともに少なくともN末端が保護基で保護されたアミノ酸(例えば、Fmoc−アミノ酸、Boc−アミノ酸など)が使用される。なお、ペプチド鎖の重合体からの脱離及び保護基の除去は、トリフルオロ酢酸を用いて同時に行うのが副反応を抑制する観点から好ましい。また、生成したペプチドの精製は、逆相液体クロマトグラフィーやゲルパーミエイションクロマトグラフィーなどの分離精製手段を利用して行うことができる。
ポリペプチド(I)は、例えば、少なくとも下記式(1a)で表されるペプチド又はその誘導体(A)を縮合し、ポリペプチドを調製する。
X-(Pro-Y-Gly)n-OH (1a)
(式中、XはH又はHOOC-(CH2)m-CO-(mは前記に同じ)を表し、Y及びnは前記に同じ)。
前記式(1a)で表されるペプチド又はその誘導体(A)は、下記式(2a)で示されるペプチド又はその誘導体(B)と共縮合させて、ポリペプチドを調製してもよい。
X-(Z)r-OH (2a)
(式中、XはH又はHOOC-(CH2)m-CO-(mは前記に同じ)を表し、Z及びrは前記に同じ)。
なお、前記X=HOOC-(CH2)m-CO-に対応する化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などのC3-20の脂肪族ジカルボン酸又はそれらの酸無水物などが例示できる。これらの化合物は、単独で又は二種以上組み合わせて使用できる。これらの化合物も慣用のアミド結合生成法(例えば、後述する第三級アミンなどを触媒とする反応など)反応や前記ペプチド合成法に従って反応させることにより、前記(1a)及び(2a)で示される化合物を得ることができる。
ペプチド又はその誘導体(A)とペプチド又その誘導体(B)との使用割合は、例えば、前者(A)/後者(B)=100/0〜30/70(モル%)、好ましくは100/0〜40/60(モル%)、さらに好ましくは100/0〜50/50(モル%)程度である。
さらに、前記式(1a)及び/又は式(2a)においてXがHである場合には必要ではないが、XがHOOC-(CH2)m-CO-(mは前記に同じ)であるとき、前記ペプチド又はその誘導体(A)及び/又はペプチド又はその誘導体(B)は、アミド基を形成するため、下記式(3a)で表される化合物(C)との共縮合反応に供される。
H2N-R-NH2 (3a)
(式中、Rは前記に同じ)。
前記式(3a)で表される化合物としては、前記式(3)に対応するジアミン類、例えば、エチレンジアミン、トリメチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなどのC1-18アルキレンジアミン、ジエチレントリアミン、ヘキサメチレンテトラミンなどのポリアルキレンポリアミン類などが例示できる。これらの化合物は、単独で又は二種以上組み合わせて使用できる。
前記ジアミン化合物(C)の使用量は、例えば、前記ペプチド又はその誘導体(A)(B)のうち一方のペプチド又はその誘導体がX=HOOC-(CH2)m-CO-(mは前記に同じ)を有する場合、このような基を有するペプチド又はその誘導体1モルに対して、前記ジアミン化合物(C)の使用量は、実質的に1モル(例えば、0.95〜1.05モル程度)用いる必要がある。
ポリペプチド(II)の調製において、前記アミノ酸配列を有するペプチドを少なくとも含むペプチド成分を反応させる方法には、(a)式(4)及び(5)で表される双方のアミノ酸配列を有するペプチド(すなわち、式(4)で表されるアミノ酸配列を有するペプチドユニットと、式(5)で表されるアミノ酸配列を有するペプチドユニットとの双方のユニットを有するペプチド)を少なくとも含むペプチド成分を縮合する方法と、(b)式(4)で表されるアミノ酸配列を有するペプチドと、式(5)で表されるアミノ酸配列を有するペプチドとを少なくとも含むペプチド成分を縮合する方法とが含まれる。
前者の方法(a)において、式(1)及び(2)で表される双方のアミノ酸配列を有するペプチドは、単独で又は二種以上組み合わせて使用できる。また、この方法において、ペプチド成分としては、前記双方のユニットを含むペプチドに加え、目的のポリペプチドに応じて他のペプチドを用いてもよい。他のペプチドとしては、例えば、式(1)で表されるアミノ酸配列を有するペプチド、式(2)で表されるアミノ酸配列を有するペプチドの他、前述の他のアミノ酸残基やペプチド鎖を含むペプチドなどが挙げられる。これらの他のペプチドも、単独で又は二種以上組み合わせて使用できる。なお、この方法において、式(1)又は(2)で表されるアミノ酸配列を有するペプチドを共縮合することにより、容易にユニット(1)又は(2)の割合を調整することができる。
後者の方法(b)においても、式(1)で表されるアミノ酸配列を有するペプチド(オリゴ又はポリペプチドユニット)、式(2)で表されるアミノ酸配列を有するペプチドは、それぞれ、単独で又は二種以上組み合わせて使用できる。また、この方法においても、ペプチド成分として、これらのペプチド(1)及びペプチド(2)に加え、目的のポリペプチドに応じて他のペプチド、例えば、前述の他のアミノ酸残基やペプチド鎖を含むペプチドなどを用いてもよい。これらの他のペプチドも、単独で又は二種以上組み合わせて使用できる。
これらのペプチド成分の縮合反応は、通常、溶媒中で行われる。溶媒は、上記ペプチド成分を溶解又は懸濁(一部又は全部を溶解)可能であればよく、通常、水及び/又は有機溶剤が使用できる。溶媒としては、例えば、水、アミド類(ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホロアミドなど)、スルホキシド類(ジメチルスルホキシドなど)、窒素含有環状化合物(N−メチルピロリドン、ピリジンなど)、ニトリル類(アセトニトリルなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、アルコール類(メチルアルコール、エチルアルコール、プロピルアルコールなど)、及びこれらの混合溶媒が例示できる。これらの溶媒のうち、水、ジメチルホルムアミド、ジメチルスルホキシドが繁用される。
これらのペプチド成分の反応は、通常、少なくとも脱水剤(脱水縮合剤)又は縮合剤の存在下で行うことができ、脱水縮合剤と縮合助剤との存在下で反応させると、二量化や環化を抑制しつつ、円滑にポリペプチドを生成できる。
脱水縮合剤は、前記溶媒中で脱水縮合を効率よく行える限り特に制限されず、例えば、カルボジイミド系縮合剤[ジイソプロピルカルボジイミド(DIPC)、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド(EDC=WSCI)、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩(WSCI・HCl)、ジシクロヘキシルカルボジイミド(DCC)など]、フルオロホスフェート系縮合剤[O−(7−アザベンゾトリアゾール−1−イル)−1,1,3,3−テトラメチルウロニウムヘキサフルオロホスフェート、O−ベンゾトリアゾール−1−イル−N,N,N′,N′−テトラメチルウロニウムヘキサフルオロホスフェート、ベンゾトリアゾール−1−イル−オキシ−トリス−ピロリジノホスホニウムヘキサフルオロホスフェート、ベンゾトリアゾール−1−イル−トリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩(BOP)など]、ジフェニルホスホリルアジド(DPPA)などが例示できる。これらの脱水縮合剤は単独で又は二種以上組み合わせて混合物として使用できる。好ましい脱水縮合剤は、カルボジイミド系縮合剤[例えば、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩]である。
縮合助剤は、上記縮合剤の反応を促進する限り特に制限されず、例えば、N−ヒドロキシ多価カルボン酸イミド類[例えば、N−ヒドロキシコハク酸イミド(HONSu)、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボン酸イミド(HONB)などのN−ヒドロキシジカルボン酸イミド類]、N−ヒドロキシトリアゾール類[例えば、1−ヒドロキシベンゾトリアゾール(HOBt)などのN−ヒドロキシベンゾトリアゾール類]、3−ヒドロキシ−4−オキソ−3,4−ジヒドロ−1,2,3−ベンゾトリアジン(HOObt)などのトリアジン類、2−ヒドロキシイミノ−2−シアノ酢酸エチルエステルなどが例示できる。これらの縮合助剤も単独で又は二種以上組み合わせて使用できる。好ましい縮合助剤は、N−ヒドロキシジカルボン酸イミド類[HONSuなど]、N−ヒドロキシベンゾトリアゾール又はN−ヒドロキシベンゾトリアジン類[HOBtなど]である。
前記脱水縮合剤と縮合助剤とは適当に組み合わせて使用できる。前記脱水縮合剤と縮合助剤との組合せとしては、例えば、DCC-HONSu(HOBt又はHOObt)、WSCI-HONSu(HOBt又はHOObt)などが例示できる。
脱水縮合剤の使用量は、前記ペプチド成分(前記ジアミン化合物も含む)の総量1モルに対して、通常、水を含まない非水系溶媒を用いる場合0.7〜5モル、好ましくは0.8〜2.5モル、さらに好ましくは0.9〜2.3モル(例えば1〜2モル)程度である。水を含む溶媒(水系溶媒)においては、水による脱水縮合剤の失活があるので、脱水縮合剤の使用量は、前記ペプチド成分の総量1モルに対して、通常、2〜500モル(例えば、2〜50モル)、好ましくは5〜250モル(例えば、5〜25モル)、さらに好ましくは10〜125モル(例えば、10〜20モル)程度である。縮合助剤の使用量は、溶媒の種類に関係なく、前記ペプチド成分の総量1モルに対して、例えば、0.5〜5モル、好ましくは0.7〜2モル、さらに好ましくは0.8〜1.5モル程度である。
前記縮合反応において、反応系のpHを調節してもよく、反応に関与しない塩基を添加してもよい。pHの調節は、通常、無機塩基[水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウムなど]、有機塩基、無機酸[塩酸など]や有機酸を用いて行うことができ、通常、反応溶液が中性付近(pH=6〜8程度)にpH調整される。前記反応に関与しない塩基としては、第三級アミン類、例えば、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミンなどのトリアルキルアミン類、N−メチルモルホリン、ピリジンなどの複素環式第三級アミン類などが例示できる。このような塩基の使用量は、通常、ペプチドの総モル数の1〜2倍程度の範囲から選択できる。
前記ポリペプチドが3重らせん構造を形成することは、通常、ポリペプチドの溶液について、円二色性スペクトルを測定することにより立証できる。特に、円二色性スペクトルにおいては、3重らせん構造を形成する天然のコラーゲン及びペプチド鎖が、波長220nm〜230nmに正のコットン効果、及び波長195nm〜205nmに負のコットン効果を特徴的に示すことが報告されている(J. M. Biol., Vol.63 pp.85-99, 1972年)。
このようにして得られたポリペプチドは、コラーゲン様の立体構造と組織構造を形成可能である。そして、病原体や病原性因子[例えば、病原性に転化したタンパク質(例えば、異常型プリオンなど)など]の感染や伝達の危険性がなく、安全性が高いため、種々の工業材料として使用可能であり、特に、人体と接触する用途や、幼児などが口に入れる危険性のある用途などであっても安心して使用することができる。さらに、前記ポリペプチドは、安定性(熱安定性)が高く、基材に対して高い接着能を有するため、被膜形成組成物(被覆剤や接着剤)として有用である。なお、前記ポリペプチド(特にポリペプチド(II))は、コラーゲン様物質であるため、生分解性にも優れ、環境への負荷も少ない。
ポリペプチドを含む組成物(被膜形成組成物)は、水性組成物であってもよく、有機溶媒性(又は油性)組成物であってもよい。また、前記組成物は、溶液系組成物であってもよく、分散系組成物であってもよい。分散系組成物に、ポリペプチドを粉粒状の形態で含んでいてもよく、粉粒状ポリペプチドの平均粒径は、例えば、1〜300μm、好ましくは2〜100μm、さらに好ましくは3〜50μm程度であり、用途に応じて、1mm以上(例えば、1〜10mm)程度であってもよい。
本発明の被膜形成組成物は、少なくともポリペプチドを含んでいればよく、前記組成物は、通常、基剤成分(成膜成分やバインダー成分、接着剤成分)や添加剤成分を含んでいる。このような組成物において、ポリペプチドは、基剤成分及び/又は添加剤成分として使用してもよい。添加剤成分として使用する場合は、通常、天然素材(人肌や皮革など)の性質(風合い、外観、感触、機能など)を付与するために使用してもよい。さらに、基剤成分として用いた場合であっても、天然素材の性質を付与する機能も兼ねることができる。
さらに、被膜形成組成物は、基剤成分としての樹脂成分、他の添加剤、溶媒などを含んでいてもよい。樹脂成分としては、種々の高分子が使用でき、例えば、天然高分子(澱粉などの多糖類など)、熱可塑性樹脂、熱硬化性樹脂などが使用できる。熱可塑性樹脂としては、セルロース誘導体(セルロースアセテート、セルロースアセテートブチレートなどのセルロースエステル、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロースエーテルなど)、オレフィン系樹脂(塩素化ポリプロピレンなど)、アクリル系樹脂[(メタ)アクリル酸、(メタ)アクリル酸メチルや(メタ)アクリル酸エチルなどの(メタ)アクリル酸アルキルエステル、2−ヒドロキシエチル(メタ)アクリレートや2−ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシC2-6アルキル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートなどのアクリル系単量体の単独又は共重合体、前記アクリル系単量体と芳香族ビニル系体(スチレンなど)との共重合体など]、ビニル系樹脂[塩化ビニル樹脂、酢酸ビニル系樹脂(塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリビニルアルコール、エチレン−ビニルアルコール共重合体など)など]、ポリエステル系樹脂(ポリエチレンテレフタレートなどの芳香族ホモポリエステル系樹脂又はコポリエステル系樹脂、生分解性ポリエステル(乳酸、グリコール酸などのオキシカルボン酸の単独又は共重合体、前記オキシカルボン酸とラクトン類との共重合体など)などの脂肪族ポリエステル系樹脂、アルキド樹脂など)、ポリアミド系樹脂(ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12などの脂肪族ポリアミドなど)、ポリカーボネート系樹脂などが例示できる。熱硬化性樹脂としては、ウレタン系樹脂(トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネートなどのジイソシアネート成分と、ポリエチレングリコールやポリテトラメチレンエーテルグリコールなどのポリエーテルジオール、ポリエステルジオールなどのジオール成分とから得られたウレタン系樹脂など)、エポキシ樹脂(ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂など)、シリコーン樹脂、アミノ樹脂(メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂など)などが挙げられる。これらの樹脂成分は、単独で又は二種以上組み合わせて使用できる。
これらの樹脂成分は、用途に応じて適宜選択してポリペプチドと組み合わせることができ、例えば、人工皮革を製造する場合には、ポリウレタン系樹脂、ポリオレフィン系樹脂などの軟質樹脂を用いてもよく、繊維製品の糊剤などの場合には、多糖類、セルロース誘導体、ポリビニルアルコール、水溶性ポリエステル系樹脂、ポリエチレングリコール、水溶性アクリル系樹脂などの水溶性高分子などを用いてもよい。
基剤成分におけるポリペプチドの割合は、用途に応じて選択でき、例えば、1〜100重量%、好ましくは5〜100重量%、さらに好ましくは10〜100重量%程度であってもよい。また、ポリペプチドと基剤成分(樹脂成分を含む)との割合(重量比)は、例えば、前者/後者=0.1/99.9〜100/0、好ましくは1/99〜100/0、さらに好ましくは5/95〜100/0程度であってもよい。
添加剤としては、ポリペプチドに対する架橋剤(例えば、グリオキザール、グルタルアルデヒド、スクシンアルデヒドなどのジアルデヒド類、デキストランジアルデヒド、アルデヒドデンプンなど)、ポリペプチドの接着性を向上させるための接着性改善剤(グリセリン、エチレングリコール、プロピレングリコールなどの多価アルコール、ショ糖、ソルビトールなどの糖類、糖アルコール、ロジン又はその誘導体、テルペン又はその誘導体)、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤)、可塑剤、増粘剤、分散剤、湿潤剤、消泡剤、防腐剤、蛍光増白剤、香料、硬化促進剤、レベリング剤、滑剤、難燃剤、帯電防止剤などが挙げられる。架橋剤は被膜形成性や接着性能を高めるために有用である。これらの添加剤は、被覆形成組成物の種類に応じて適宜選択でき、単独で又は二種以上組み合わせて使用できる。これらの添加剤の割合は、用途に応じて選択でき、例えば、架橋剤や接着性改善剤の割合は、ポリペプチド100重量部に対して1〜20重量部、好ましくは1〜10重量部程度であってもよい。なお、ポリペプチドを添加剤として使用する場合、ペプチドと添加剤成分との割合(重量比)は、例えば、前者/後者=0.1/99.9〜100/0、好ましくは1/99〜100/0、さらに好ましくは5/95〜100/0程度であってもよい。
さらに、被膜形成組成物は、着色剤(染顔料)、充填剤などを含んでいてもよい。
水性組成物に含まれる水性溶媒としては、特に制限されないが、例えば、水、アルコール類(エタノール、イソプロパノール、ヘキサフルオロイソプロパノールなど)、ケトン類(アセトンなど)、スルホキシド類(ジメチルスルホキシドなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンなど)などが挙げられる。これらの水性溶媒は、単独で又は二種以上組み合わせて使用できる。
油性組成物に含まれる有機溶媒としては、特に制限されないが、例えば、ハロゲン化炭化水素類(塩化メチレンなど)、エーテル類(ジエチルエーテルなど)、エステル類(酢酸エチル、酢酸ブチルなど)、ケトン類(メチルエチルケトンなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(トルエン、キシレンなど)、アミド類(ジメチルホルムアミドなど)、ニトリル類(アセトニトリルなど)などが挙げられる。これらの有機溶媒は、単独で又は二種以上組み合わせて使用できる。
本発明の被覆組成物が適用される基材としては、例えば、天然高分子、プラスチック、セラミックス、金属などで形成された各種基材又は成形品などが挙げられる。成形品の形態は、粉粒状、線状又は繊維状、フィルム又はシート状などの二次元的構造や三次元的構造を有していてもよい。具体的には、天然繊維(紙、絹、羊毛、木綿、麻など)や合成繊維(ナイロン繊維、ポリエステル繊維、アクリル繊維など)などの繊維やその布帛(不織布または織布など)又はその繊維製品(Yシャツ、ブラウス、ズボンなどの衣服、シーツなどの寝具など)、多孔質基材(紙類、天然又は合成木材、皮革又は合成皮革など)、日用成形品(家庭用電気器具や自動車用内装材など)などである。
被膜形成組成物には、被覆剤及び接着剤が含まれる。被覆剤としては、例えば、塗料、コーティング剤、糊剤、被覆又は表面処理剤(表面加工剤)などが挙げられる。本発明の組成物をコーティング剤や塗料として使用する場合は、幅広い基材に対して好適に適用でき、通常、基材の表面に塗布した後、乾燥することより被膜を形成できる。なお、コーティング剤又は塗料で予め被膜を形成した後、接着剤を介して基材に貼り合わせてもよい。糊剤は、主に、前記繊維製品に対して使用され、繊維製品の表面を糊付けして、繊維製品の型を整えたり、繊維製品に滑性や防汚性などを付与することができる。被覆又は表面処理剤(表面加工剤)では、基材(前記繊維製品や皮革又は合成皮革、日用成形品など)の表面に塗布や散布したり、基材を含浸させることにより、基材の表面に前記ポリペプチドを付着させ、基材の表面を改質することができる。被覆又は表面処理剤(表面加工剤)では、通常、水性溶媒を用いる場合が多い。接着剤は、多孔質基材(紙類、天然又は合成木材、繊維類など)の接着に用いることができ、高い密着力で基材を接着できる。
前記ポリペプチドは、哺乳動物由来のコラーゲンに比べて、安全性、安定性(熱安定性)が高いだけでなく、基材に対して高い接着能を有する。そのため、前記ポリペプチドは被膜形成組成物、例えば、被覆剤や接着剤として有用である。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
製造例1
式:H-(Pro-Pro-Gly)10-OH(配列番号:1)で示されるペプチド((株)ペプチド研究所)5mg(0.002mmol)を2mLのジメチルスルホキシドに懸濁し、室温で撹拌した。この混合液に、0.31mg(0.0024mmol)のジイソプロピルエチルアミン、0.32mg(0.0024mmol)の1−ヒドロキシベンゾトリアゾール、0.46mg(0.0024mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに室温で7日間撹拌を続けた。
反応溶液を水で20倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superdex 200 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が4万〜20万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration LMW Calibration Kit及びGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られた反応溶液を水で5倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去した。得られたポリペプチドの円二色性スペクトルを測定したところ、227nmに正のコットン効果、199nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。得られたポリペプチドをポリペプチド(Ia)とする。
製造例2
式:H-(Pro-Pro-Gly)5-OH(配列番号:2)で示されるペプチド鎖をペプチド自動合成装置を用いて固相合成法により合成した。すなわち、4−(Nα−9−(フルオレニルメトキシカルボニル)−グリシン)−オキシメチル−フェノキシ−メチル基を0.65mmol/g (樹脂)の割合で含むスチレン−ジビニルベンゼン共重合体〔スチレンとジビニルベンゼンの構成モル比:99対1〕からなる粒状樹脂〔米国アプライド・バイオシステムズ社製、HMPグリシン〕0.1mmolを用い、目的とするペプチドのカルボキシル末端からアミノ末端に向かって順次対応するアミノ酸を結合させた。結合反応において、アミノ酸として、米国アプライド・バイオシステムズ社製のNα−9−(フルオレニルメトキシカルボニル)−L−プロリン〔Fmocプロリン〕、Nα−9−(フルオレニルメトキシカルボニル)−グリシン〔Fmocグリシン〕を、各結合ステップについてそれぞれ1mmolずつ用いた。
得られたペプチド樹脂(ペプチドを結合した樹脂)を、10mLのジメチルホルムアミドに懸濁し、50mg(0.5mmol)の無水コハク酸と13mg(0.1mmol)のジイソプロピルエチルアミンを加えて、室温で12時間反応した。その後、メチルアルコールとジクロロメタンで交互に洗浄し、減圧乾燥した。
得られたペプチド樹脂を、5%の水を含むトリフルオロ酢酸10mLで3時間処理した。得られた溶液をジエチルエーテルに加えて生じる沈殿をさらに数回ジエチルエーテルで洗浄して、ペプチドの脱保護と樹脂からの脱離を行った。粗生成物を、PD10カラム(アマシャム・バイオサイエンス(株)製)で精製してペプチドを得た。得られた精製ペプチドをアマシャム・バイオサイエンス(株)製「AKTA explorer10XT」〔カラム:ミリポア(株)製「ノバパックC18」 3.9mmφ×150mm、移動相:トリフルオロ酢酸を0.05容量%含有するアセトニトリルと水の混合溶媒(アセトニトリル濃度を30分間で5容量%から50容量%に直線的に変化させた)、流速1.0mL/min〕に付したところ、リテンションタイム14.5minに単一のピ−クが示された。FAB法マススペクトルにより求めた精製ペプチドの分子量は1375であった(理論値:1374.52)。
1.4mg(0.001mmol)のHOOC-(CH2)2-CO-(Pro-Pro-Gly)5-OHと、0.06mg (0.001mmol)のエチレンジアミンとを0.05mLの水に懸濁し、混合液に、0.32mg(0.0024mmol)の1−ヒドロキシベンゾトリアゾール、4.6mg(0.024mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、室温で3日間振盪した。
反応溶液を水で100倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superdex 200 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))により分子量を測定したところ、分子量が3万〜20万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration LMW Calibration Kit及びGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られた反応溶液を水で5倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去した。得られたポリペプチドの円二色性スペクトルを測定したところ、228nmに正のコットン効果、198nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。得られたポリペプチドをポリペプチド(Ib)とする。
製造例3
式:H-(Pro-Hyp-Gly)10-OH(配列番号:3)で示されるペプチド((株)ペプチド研究所)5mg(0.0016mmol)を2mLのジメチルスルホキシドに懸濁し、室温で撹拌した。この混合液に、0.23mg(0.0018mmol)のジイソプロピルエチルアミン、0.24mg(0.0018mmol)の1−ヒドロキシベンゾトリアゾール、0.65mg(0.0034mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに室温で7日間撹拌を続けた。
反応溶液を水で20倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superdex 200 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が6万〜20万以上の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration LMW Calibration Kit及びGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られた反応溶液を水で5倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去した。得られたポリペプチドの円二色性スペクトルを測定したところ、225nmに正のコットン効果、197nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。得られたポリペプチドをポリペプチド(Ic)とする。
得られたポリペプチド(Ic)の水懸濁液をフッ素樹脂(ポリテトラフルオロエチレン)シート上に流延した後、風乾することによりキャストフィルムを作製した。このフィルムに金を蒸着した後、走査型電子顕微鏡で観測すると、図1に示すような繊維状の構造物が観測された。
製造例4
式:H-(Pro-Pro-Gly)5-OH(配列番号:2)で示されるペプチド((株)ペプチド研究所)3.5mg(0.0026mmol)と、実施例2と同様の方法で合成した0.92mg(0.0011mmol)のH-(Val-Pro-Gly-Val-Gly)2-OH(配列番号:4)とを所定の割合(70モル%:30モル%)で1.5mLのジメチルスルホキシドに懸濁し、室温で撹拌した。この混合液に、0.52mg(0.0040mmol)のジイソプロピルエチルアミン、0.51mg(0.0038mmol)の1−ヒドロキシベンゾトリアゾール、1.45mg(0.0076mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに室温で7日間撹拌を続けた。
反応溶液を水で20倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superdex 200 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))により分子量を測定したところ、分子量が8万〜45万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration LMW Calibration Kit及びGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られた反応溶液を水で5倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去した。得られたポリペプチドの円二色性スペクトルを測定したところ、227nmに正のコットン効果、198nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。得られたポリペプチドをポリペプチド(Id)とする。
得られたポリペプチドの水懸濁液をフッ素樹脂(ポリテトラフルオロエチレン)シート上に流延した後、風乾することによりキャストフィルムを作製した。このフィルムを、150mMのNaClを含む10mM phosphate buffer(pH 7.4)に浸漬するとシート状のゲル状物が得られた。このシート状のゲル状物は、室温では透明であったが、40℃以上の温度で可逆的に白濁した。
製造例5
式:H-(Pro-Hyp-Gly)5-OH(配列番号:5)で示されるペプチド((株)ペプチド研究所)5mg(0.0033mmol)を2 mLのジメチルスルホキシドに懸濁し、室温で撹拌した。この混合液に、0.44mg(0.0034mmol)のジイソプロピルエチルアミン、0.46mg(0.0033mmol)の1−ヒドロキシベンゾトリアゾール、1.3mg(0.0068mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに室温で14日間撹拌を続けた。
反応溶液を水で20倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superdex 200 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が4万〜10万以上の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration LMW Calibration Kit及びGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られた反応溶液を水で5倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去した。得られたポリペプチドの円二色性スペクトルを測定したところ、224nmに正のコットン効果、199nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。得られたポリペプチドをポリペプチド(Ie)とする。
製造例6
5mg(0.0016mmol)の式:H-(Pro-Hyp-Gly)10-OH(配列番号:3)で示されるペプチド((株)ペプチド研究所)を0.5mLの10mMリン酸塩緩衝液(8.1mMのNa2HPO4・12H2O、1.5mMのKH2PO4、2.7mMのKCl、pH 7.4)に溶解し、20℃で撹拌した。この溶液に、0.24mg(0.0018mmol)の1−ヒドロキシベンゾトリアゾール、31mg(0.16mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに20℃で24時間撹拌を続けた。
反応溶液を水で60倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superose 6 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM リン酸塩緩衝液(pH 7.4))に供したところ、平均分子量40万に相当するポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration LMW Calibration Kit及びGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られた反応溶液を水で5倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去した。得られたポリペプチドの円二色性スペクトルを測定したところ、225nmに正のコットン効果、197nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。得られたポリペプチドをポリペプチド(If)とする。
製造例7
式:H-(Pro-Hyp-Gly)1-OHで示されるペプチド((株)ペプチド研究所)1gを20mLの10mMリン酸塩緩衝液(pH7.4)に溶解し、473mgの1−ヒドロキシベンゾトリアゾール、3.35gの1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を加えて、4℃で2時間、その後20℃で46時間撹拌を続けた。反応液をミリQ水(超純水)に対して48時間透析した。
得られた透析後の溶液を水で50倍に希釈し、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superdex 200 HR 10/30、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が10万〜60万の範囲にポリペプチドのピークが認められた。
また、得られた透析後の溶液を水で100倍に希釈し、円二色性スペクトルを測定したところ、225nmに正のコットン効果、198nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。
式:(Pro-Hyp-Gly)10(配列番号:3)で示されるペプチド((株)ペプチド研究所)の215nmにおける吸光度から検量線を作成し、得られた3重らせん構造を形成するポリペプチドの濃度を測定すると約20mg/mLであった。得られたポリペプチドをポリペプチド(Ih)とする。
製造例8
式:H-(Pro-Hyp-Gly)4-Pro-Gln-Gly-Ile-Ala-Gly-(Pro-Hyp-Gly)4-OH(配列番号:6)で示されるペプチド鎖を、ペプチド自動合成装置を用いて固相合成法により合成した。すなわち、4−(Nα−9−(フルオレニルメトキシカルボニル)−グリシン)−オキシメチル−フェノキシ−メチル基を0.65mmol/g(樹脂)の割合で含むスチレン−ジビニルベンゼン共重合体〔スチレンとジビニルベンゼンの構成モル比:99対1〕からなる粒状樹脂〔米国アプライド・バイオシステムズ社製、HMPグリシン〕0.1mmolを用い、目的とするペプチドのカルボキシル末端からアミノ末端に向かって順次対応するアミノ酸を結合させた。結合反応において、アミノ酸として、米国アプライド・バイオシステムズ社製のNα−9−(フルオレニルメトキシカルボニル)−L−プロリン〔Fmocプロリン〕、Nα−9−(フルオレニルメトキシカルボニル)−グリシン〔Fmocグリシン〕、Nα−9−(フルオレニルメトキシカルボニル)−Nγ−トリチル−L−グルタミン〔Fmocグルタミン〕、Nα−9−(フルオレニルメトキシカルボニル)−L−イソロイシン〔Fmocイソロイシン〕、Nα−9−(フルオレニルメトキシカルボニル)−L−アラニン〔Fmocアラニン〕、バッケム社製のNα−9−(フルオレニルメトキシカルボニル)−O−t−ブチル−L−ヒドロキシプロリン〔Fmocヒドロキシプロリン〕を、各結合ステップについてそれぞれ1mmolずつ用いた。
得られたペプチド樹脂を、5%の水を含むトリフルオロ酢酸10mLで3時間処理した。得られた溶液をジエチルエーテルに加えて生じる沈殿をさらに数回ジエチルエーテルで洗浄して、ペプチドの脱保護と樹脂からの脱離を行った。粗生成物を、PD10カラム(アマシャム・バイオサイエンス(株)製)で精製してペプチドを得た。得られた精製ペプチドをアマシャム・バイオサイエンス(株)製「AKTA explorer10XT」〔カラム:ミリポア(株)製「ノバパックC18」 3.9mmφ×150mm、移動相:トリフルオロ酢酸を0.05容量%含有するアセトニトリルと水の混合溶媒(アセトニトリル濃度を30分間で5容量%から50容量%に直線的に変化させた)、流速1.0mL/min〕に付したところ、リテンションタイム12.4minに単一のピ−クが示された。FAB法マススペクトルにより求めた精製ペプチドの分子量は2681.3であった(理論値:2679.9)。
2.5mg(0.0009mmol)のH-(Pro-Hyp-Gly)4-Pro-Gln-Gly-Ile-Ala-Gly-(Pro-Hyp-Gly)4-OHを1mLのジメチルスルホキシドに懸濁し、室温で撹拌した。この混合液に、0.12mg(0.0009mmol)のジイソプロピルエチルアミン、0.12mg(0.0009mmol)の1−ヒドロキシベンゾトリアゾール、0.34mg(0.0018mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに20℃で2日間撹拌を続けた。得られた反応溶液を水で3倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去し、ポリペプチド(IIa)を得た。ペプチドユニット(4)と(5)の割合((4)/(5))は8/1(88.9/11.1)(モル比)であった。
得られたポリペプチド(IIa)をゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superose 6 HR GL、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が7万〜100万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られたポリペプチド(IIa)の円二色性スペクトルを測定したところ、223nmに正のコットン効果、198nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。
製造例9
1.2mg(0.00045mmol)の式:H-(Pro-Hyp-Gly)10-OH(配列番号:3)で示されるペプチド((株)ペプチド研究所)と、1.2mg(0.00045mmol)の実施例1で得られた式:H-(Pro-Hyp-Gly)4-Pro-Gln-Gly-Ile-Ala-Gly-(Pro-Hyp-Gly)4-OH(配列番号:6)で示されるペプチドを0.25mLの10mMリン酸塩緩衝液(pH=7.4)に溶解し、0.12mg(0.0009mmol)の1−ヒドロキシベンゾトリアゾール、15.7mg(0.082mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに20℃で2日間撹拌を続けた。得られた反応溶液を水で10倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去し、ポリペプチド(IIb)を得た。ペプチドユニット(4)と(5)の割合((4)/(5))は、18/1(94.7/5.3)(モル比)であった。
得られたポリペプチド(IIb)をゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superose 6 HR GL、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が14万〜100万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られたポリペプチド(IIb)の円二色性スペクトルを測定したところ、224nmに正のコットン効果、196nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。
製造例10
2.2mg(0.00081mmol)の式:H-(Pro-Hyp-Gly)10-OH(配列番号:3)で示されるペプチド((株)ペプチド研究所)と、0.24mg(0.00009mmol)の実施例1で得られた式:H-(Pro-Hyp-Gly)4-Pro-Gln-Gly-Ile-Ala-Gly-(Pro-Hyp-Gly)4-OH(配列番号:6)で示されるペプチドを0.25mLの10mMリン酸塩緩衝液(pH=7.4)に溶解し、0.12mg(0.0009mmol)の1−ヒドロキシベンゾトリアゾール、15.7mg(0.082mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに20℃で2日間撹拌を続けた。得られた反応溶液を水で10倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去し、ポリペプチド(IIc)を得た。ペプチドユニット(4)と(5)の割合((4)/(5))は、98/1(≒99/1)(モル比)であった。
得られたポリペプチド(IIc)をゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superose 6 HR GL、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が14万〜40万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られたポリペプチド(IIc)の円二色性スペクトルを測定したところ、224nmに正のコットン効果、197nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。
試験例1
製造例8〜10で得られたポリペプチドのそれぞれ0.025mgを、0.05mLの50mMのNaClと10mMのCaCl2を含む50mM Tris/HCl緩衝液(pH=7.5)に溶解した。さらに、同じ緩衝液0.05mLに溶解した200ngのコラゲナーゼ(MMP-1, human rheumatoid synovial fibroblast)を添加し、37℃で24時間静置した。その後、0.1M HCl水溶液を0.01mL添加して、酵素反応を停止した後、150mMのNaClを含む10mM phosphate buffer(pH 7.4)で希釈して、ゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superose 6 HR GL、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))で分子量分布の変化を測定した。
その結果、製造例8のポリペプチドではコラゲナーゼを加えない場合のピーク分子量約100万が約54万に低下した。同様に製造例9、10のポリペプチドでも、それぞれ約80万が約40万、約70万が約30万に低下した。
製造例11
式:H-(Pro-Hyp-Gly)4-Pro-Leu-Gly-Ile-Ala-Gly-(Pro-Hyp-Gly)4-OH(配列番号:7)で示されるペプチド鎖を、ペプチド自動合成装置を用いて固相合成法により合成した。すなわち、4−(Nα−9−(フルオレニルメトキシカルボニル)−グリシン)−オキシメチル−フェノキシ−メチル基を0.65mmol/g(樹脂)の割合で含むスチレン−ジビニルベンゼン共重合体〔スチレンとジビニルベンゼンの構成モル比:99対1〕からなる粒状樹脂〔米国アプライド・バイオシステムズ社製、HMPグリシン〕0.1mmolを用い、目的とするペプチドのカルボキシル末端からアミノ末端に向かって順次対応するアミノ酸を結合させた。結合反応において、アミノ酸として、米国アプライド・バイオシステムズ社製のNα−9−(フルオレニルメトキシカルボニル)−L−プロリン〔Fmocプロリン〕、Nα−9−(フルオレニルメトキシカルボニル)−グリシン〔Fmocグリシン〕、Nα−9−(フルオレニルメトキシカルボニル)−L−ロイシン〔Fmocロイシン〕、Nα−9−(フルオレニルメトキシカルボニル)−L−イソロイシン〔Fmocイソロイシン〕、Nα−9−(フルオレニルメトキシカルボニル)−L−アラニン〔Fmocアラニン〕、バッケム社製のNα−9−(フルオレニルメトキシカルボニル)−O−t−ブチル−L−ヒドロキシプロリン〔Fmocヒドロキシプロリン〕を、各結合ステップについてそれぞれ1mmolずつ用いた。
得られたペプチド樹脂を、5%の水を含むトリフルオロ酢酸10mLで3時間処理した。得られた溶液をジエチルエーテルに加えて生じる沈殿をさらに数回ジエチルエーテルで洗浄して、ペプチドの脱保護と樹脂からの脱離を行った。粗生成物を、PD10カラム(アマシャム・バイオサイエンス(株)製)で精製してペプチドを得た。得られた精製ペプチドをアマシャム・バイオサイエンス(株)製「AKTA explorer10XT」〔カラム:ミリポア(株)製「ノバパックC18」 3.9mmφ×150mm、移動相:トリフルオロ酢酸を0.05容量%含有するアセトニトリルと水の混合溶媒(アセトニトリル濃度を30分間で5容量%から50容量%に直線的に変化させた)、流速1.0mL/min〕に付したところ、リテンションタイム15minに単一のピ−クが示された。FAB法マススペクトルにより求めた精製ペプチドの分子量は2666.3であった(理論値:2664.9)。
1.2mg(0.00045mmol)のH-(Pro-Hyp-Gly)4-Pro-Leu-Gly-Ile-Ala-Gly-(Pro-Hyp-Gly)4-OHを0.25mLの10mMリン酸塩緩衝液(pH=7.4)に溶解し、0.12mg(0.0009mmol)の1−ヒドロキシベンゾトリアゾール、15.7mg(0.082mmol)の1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩を添加して、さらに20℃で2日間撹拌を続けた。得られた反応溶液を水で10倍に希釈し、水に対して3日間透析して、縮合剤などの試薬と未反応モノマーを除去し、ポリペプチド(IId)を得た。ペプチドユニット(4)と(5)の割合((4)/(5))は、8/1(88.9/11.1)(モル比)であった。
得られたポリペプチド(IId)をゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム、カラム:Superose 6 HR GL、流速:0.5mL/min、溶離液:150mMのNaClを含む10mM phosphate buffer(pH 7.4))に供したところ、分子量が8万〜100万の範囲にポリペプチドのピークが認められた。分子量はアマシャム・バイオサイエンス(株)製のGel Filtration HMW Calibration Kitを標準物質として使用し、算出した。
得られたポリペプチド(IId)の円二色性スペクトルを測定したところ、224nmに正のコットン効果、197nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。
実施例1
製造例7で得られたポリペプチド(Ih)を凍結乾燥することに粉末状のポリペプチド(粉末状ポリペプチド(Ih))を得た。アクリル樹脂10gを酢酸ブチル30mLに溶解した溶液に、上記ポリペプチド粉末1gを添加した後、攪拌して透明塗料を得た。得られた塗料は、木材などの基材との密着性に優れていた。
実施例2
ポリエーテル型ポリウレタン樹脂10gをメチルエチルケトン15mLとジメチルホルムアミド15mLに溶解した溶液に、粉末状ポリペプチド(Ih)1gを添加した後、攪拌してコーティング剤を得た。得られたコーティング剤は、皮革や人工皮革等の基材との密着性が高く、柔軟性にも優れていた。
実施例3
非イオン性界面活性剤(ポリオキシエチレンアルキルフェニルエーテル)を0.3重量%の割合で含有する水溶液20mlに対して、粉末状ポリペプチド(Ih)0.5gを添加した後、攪拌して、粉末状コラーゲンを含有する分散液を調製した。この分散液20gと、ヒドロキシプロピル化澱粉(20℃における4重量%水溶液の粘度:10mPa・s)を10重量%の割合で含有する水溶液80gとを混合して攪拌することにより糊剤を得た。この糊剤は、衣服などの繊維製品との密着性に優れ、風合いも良好であった。
実施例4
水100mlと粉末状ポリペプチド(Ih)50gとを混合して、オートクレーブ処理(121℃、10分間加熱)することにより、半溶液状接着剤を得た。この接着剤は、繊維製品などの基材に対して良好な接着力を示した。
図1は製造例3で得られたフィルムを示す走査電子顕微鏡写真である。

Claims (8)

  1. ポリペプチドを含み、かつ基材に適用するための被膜形成組成物であって、前記ポリペプチドが少なくとも式Pro-Y-Gly(式中、YはPro又はHypを表す)で表されるアミノ酸配列を有し、かつコラーゲン様の構造を形成する合成ポリペプチドで構成されている被膜形成組成物。
  2. ポリペプチドが、下記式(1)〜(3)で表されるペプチドユニットで構成されたポリペプチド(I)、及び下記式(4)で表されるアミノ酸配列を有するペプチドユニットと、下記式(5)で表されるアミノ酸配列を有するペプチドユニットとを含むポリペプチド(II)から選択された少なくとも一種のポリペプチドである請求項1記載の組成物。
    [-(OC-(CH2)m-CO)p-(Pro-Y-Gly)n-]a (1)
    [-(OC-(CH2)m-CO)q-(Z)r-]b (2)
    [-HN-R-NH-]c (3)
    (式中、mは1〜18の整数、p及びqは同一又は異なって0又は1、YはPro又はHypを表し、nは1〜20の整数を表す。Zは1〜10個のアミノ酸残基からなるペプチド鎖を表し、rは1〜20の整数を表し、Rは直鎖状又は分岐鎖状アルキレン基を表す。aとbとの割合(モル比)はa/b=100/0〜30/70であり、p=1及びq=0であるときc=a、p=0及びq=1であるときc=bであり、p=1及びq=1であるときc=a+bであり、p=0及びq=0であるときc=0である)
    -Pro-Y-Gly- (4)
    (式中、Yは前記に同じ)
    -Pro-V-Gly-W-Ala-Gly- (5)
    (式中、VはGln、Asn、Leu、Ile、Val又はAla、WはIle又はLeuを表す)
  3. ポリペプチド(I)において、mが2〜12の整数、nが2〜15の整数、Zが、Gly、Sar、Ser、Glu、Asp、Lys、His、Ala、Val、Leu、Arg、Pro、Tyr、Ileから選択された1〜10個のアミノ酸残基から構成されているペプチド鎖、rが1〜10の整数、RがC2-12アルキレン基である請求項2記載の組成物。
  4. ポリペプチド(II)が、式(4)で表されるアミノ酸配列を有するペプチドユニットと、式(5)で表されるアミノ酸配列を有するペプチドユニットとを、ペプチドユニット(4)/ペプチドユニット(5)=99/1〜30/70(モル比)の割合で含む請求項2記載の組成物。
  5. ポリペプチドが、円二色性スペクトルにおいて、波長220〜230nmに正のコットン効果を示し、波長195〜205nmに負のコットン効果を示す請求項1記載の組成物。
  6. ポリペプチドの少なくとも一部が3重らせん構造を形成可能である請求項1記載の組成物。
  7. ポリペプチドの分子量が5×103〜500×104の範囲にピークを示す請求項1記載の組成物。
  8. 被覆剤又は接着剤である請求項1記載の組成物。
JP2003293046A 2003-08-13 2003-08-13 被膜形成組成物 Pending JP2005060550A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293046A JP2005060550A (ja) 2003-08-13 2003-08-13 被膜形成組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293046A JP2005060550A (ja) 2003-08-13 2003-08-13 被膜形成組成物

Publications (1)

Publication Number Publication Date
JP2005060550A true JP2005060550A (ja) 2005-03-10

Family

ID=34370167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293046A Pending JP2005060550A (ja) 2003-08-13 2003-08-13 被膜形成組成物

Country Status (1)

Country Link
JP (1) JP2005060550A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075589A1 (ja) * 2006-12-21 2008-06-26 Chisso Corporation 血小板凝集惹起物質
WO2008114577A2 (ja) * 2007-02-26 2008-09-25 National University Corporation NARA Institute of Science and Technology 抗菌性ペプチド
JP2010163386A (ja) * 2009-01-15 2010-07-29 Chisso Corp 化粧料シート
WO2010088469A2 (en) 2009-01-30 2010-08-05 Ethicon, Inc. Collagen-related peptides and uses thereof and hemostatic foam substrates
US8076294B2 (en) 2007-08-01 2011-12-13 Advanced Technologies And Regenerative Medicine, Llc. Collagen-related peptides and uses thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075589A1 (ja) * 2006-12-21 2008-06-26 Chisso Corporation 血小板凝集惹起物質
JP5251516B2 (ja) * 2006-12-21 2013-07-31 Jnc株式会社 血小板凝集惹起物質
US8686117B2 (en) 2006-12-21 2014-04-01 Jnc Corporation Platelet aggregation inducing substance
US8981059B2 (en) 2006-12-21 2015-03-17 Jnc Corporation Platelet aggregation inducing substance
WO2008114577A2 (ja) * 2007-02-26 2008-09-25 National University Corporation NARA Institute of Science and Technology 抗菌性ペプチド
WO2008114577A3 (ja) * 2007-02-26 2008-11-27 Nat Univ Corp Nara Inst 抗菌性ペプチド
JP5354206B2 (ja) * 2007-02-26 2013-11-27 国立大学法人 奈良先端科学技術大学院大学 抗菌性ペプチド
US8076294B2 (en) 2007-08-01 2011-12-13 Advanced Technologies And Regenerative Medicine, Llc. Collagen-related peptides and uses thereof
JP2010163386A (ja) * 2009-01-15 2010-07-29 Chisso Corp 化粧料シート
WO2010088469A2 (en) 2009-01-30 2010-08-05 Ethicon, Inc. Collagen-related peptides and uses thereof and hemostatic foam substrates

Similar Documents

Publication Publication Date Title
JP5162363B2 (ja) 新規なポリペプチドおよびその製造方法
US20070207955A1 (en) Novel polypeptide and process for producing the same, and collagenase inhibitor
JP2005058499A (ja) 生体材料
WO2012045822A1 (en) A thermo-responsive polymer covalently bound with a peptide
WO2004003561A9 (en) Peptide rod amphiphiles and self-assembly of same
KR20160110723A (ko) 아스파탐을 이용하여 rgd 펩타이드를 제조하는 방법
US20220267522A1 (en) Process For Preparation Of Bioorganic Nylon Polymers And Their Use As Antibacterial Material
JP2005060550A (ja) 被膜形成組成物
JP2003073400A (ja) 骨形成作用を有する新規なペプチドおよびこれを固定化してなる骨形成促進剤
JP4303137B2 (ja) 新規なポリペプチド及びその製造方法
JP2005060315A (ja) 製剤組成物
JP2005053878A (ja) 新規なポリペプチドおよびその製造方法
JP5997902B2 (ja) 多重刺激応答型高分子及びその製造方法
WO2013002311A1 (ja) 幹細胞培養用基材及びそれを用いた培養方法
JP2005126360A (ja) 新規なポリペプチドで構成されたコラゲナーゼ阻害剤
KR102465713B1 (ko) 펩타이드 기반 일산화질소 공여체의 제조방법
CA2419469C (en) Derivatives of peptides and peptide mimetics having integrin inhibitor properties ii
JPH06116287A (ja) プロペンアミド誘導体、その重合物およびその用途
JPS6330499A (ja) オピオイドペプチド・ポリペプチド複合体
JP2007230891A (ja) ペプチドファイバー集合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623