JP2005059096A - Continuous casting method of low-carbon sulfur-based free cutting steel - Google Patents

Continuous casting method of low-carbon sulfur-based free cutting steel Download PDF

Info

Publication number
JP2005059096A
JP2005059096A JP2004199624A JP2004199624A JP2005059096A JP 2005059096 A JP2005059096 A JP 2005059096A JP 2004199624 A JP2004199624 A JP 2004199624A JP 2004199624 A JP2004199624 A JP 2004199624A JP 2005059096 A JP2005059096 A JP 2005059096A
Authority
JP
Japan
Prior art keywords
steel
content
less
continuous casting
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199624A
Other languages
Japanese (ja)
Other versions
JP4325497B2 (en
Inventor
Toru Kato
徹 加藤
Takayuki Nishi
隆之 西
Naoki Matsui
直樹 松井
Tatsuya Hasegawa
達也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004199624A priority Critical patent/JP4325497B2/en
Publication of JP2005059096A publication Critical patent/JP2005059096A/en
Application granted granted Critical
Publication of JP4325497B2 publication Critical patent/JP4325497B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which is capable of continuous casting of low-carbon sulfur-based free cutting steel without causing an internal crack or a surface crack. <P>SOLUTION: The continuous casting method is used for casting a molten low-carbon sulfur-based free cutting steel which contains 0.05-0.19% C , 1.0% or less Si, 0.4-2.0% Mn, 0.001-0.2% P, 0.2-0.69% S, less than 0.01% Pb, 0.2% or less Al, 0.001 to 0.02% O and 0.001 to 0.02% N, with the balance being Fe and impurities and in which the contents of Mn and S meet relations of [Mn%]×[S%]<0.9 and [S%]<0.32×[Mn%]<SP>5</SP>. Further the above low-carbon sulfur-based free cutting steel may contain one or more elements out of either or both of groups (a) and (b) mentioned below: group (a) consisting of Cu, Ni, Cr, Mo, V and Nb and group (b) consisting of Ti, Se, Te, Bi, Sn, Ca, Mg and rare earth elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉛を含有せずに、従来の鉛快削鋼や鉛と他の快削元素を複合添加した複合快削鋼に優る被削性と、熱間加工性を有する低炭素硫黄系快削鋼を製造する方法に関し、さらに詳しくは、連続鋳造時の内部割れを防止あるいは低減し、良好な品質を有する低炭素硫黄系快削鋼の鋳片を得るための連続鋳造方法に関する。   The present invention is a low-carbon sulfur-based material that does not contain lead and has superior machinability and hot workability compared to conventional lead free-cutting steel and composite free-cutting steel in which lead and other free-cutting elements are added in combination. More particularly, the present invention relates to a continuous casting method for obtaining a slab of low-carbon sulfur free-cutting steel having good quality by preventing or reducing internal cracking during continuous casting.

従来より鋼の被削性を向上するために鋼中に鉛(以下、「Pb」とも記す)を添加した鉛快削鋼が利用されてきた。しかし、近年、環境保全の観点から快削鋼へのPbの添加が問題視されるようになり、Pbを含有しない快削鋼の開発が進められている。これらのPb無添加の快削鋼では硫黄含有率を増加させる方法が採用されるが、硫黄含有率の増加は、内部割れ感受性を高め、連続鋳造時に内部割れを発生するため、圧延後の製品の機械的特性および内部品質に悪影響を及ぼし、したがって、連続鋳造による製造は困難とされている。   Conventionally, in order to improve the machinability of steel, lead free-cutting steel in which lead (hereinafter also referred to as “Pb”) is added to the steel has been used. However, in recent years, the addition of Pb to free-cutting steel has become a problem from the viewpoint of environmental protection, and the development of free-cutting steel that does not contain Pb has been promoted. These Pb-free free-cutting steels employ a method of increasing the sulfur content, but increasing the sulfur content increases internal cracking susceptibility and causes internal cracking during continuous casting. This adversely affects the mechanical properties and internal quality of the steel, and is therefore difficult to manufacture by continuous casting.

以下にさらに詳細に説明する。前述のとおり、鋼中にPbを添加した鉛快削鋼は、切り屑切断性や工具摩耗の低減による工具寿命の延長に高い効果を示すことから、生産性の向上や生産コストの削減を目的として多用されてきた。しかし、Pbは人体や自然界に悪影響を及ぼすため、Pbを含有する鋼材の製造工程には大規模な排気設備を必要とするばかりでなく、鉛含有鋼をスクラップとして再溶解する際にもPbを含有する蒸気が放出されるという問題がある。このため、近年、環境問題への関心の高まりから、Pbを含有しなくとも鉛含有快削鋼と同等あるいはそれ以上の被削性を有する快削鋼が強く求められている。   This will be described in more detail below. As mentioned above, lead free-cutting steel with Pb added to the steel is highly effective in extending the tool life by reducing chip cutting performance and tool wear, so it aims to improve productivity and reduce production costs. Has been used extensively. However, Pb adversely affects the human body and the natural world. Therefore, not only large-scale exhaust equipment is required for the manufacturing process of steel containing Pb, but also when re-melting lead-containing steel as scrap. There is a problem that the contained vapor is released. For this reason, in recent years, due to the growing interest in environmental problems, there has been a strong demand for free-cutting steel having machinability equivalent to or higher than that of lead-containing free-cutting steel without containing Pb.

このような要請に対して、例えば、特許文献1〜3には、鉛快削鋼に代わる鋼種として硫黄(S)含有率を高め、鋼中のMnS量を増加させることにより被削性を改善した硫黄系快削鋼が開示されている。また、本出願人は、鋼中にTi硫化物または/およびTi炭硫化物が内在するMnSを含有する場合に、被削性が向上することを明らかにし、そのための鋼成分の条件を特許文献4として提案した。同文献では、鋼中のC、Mn、S、Ti、Si、P、Al、O、Nなどの成分範囲を提案すると共に、良好な切削性を得るための条件として、TiとSの質量濃度比を1未満に、また、良好な熱間加工性を得るための条件として、MnとSの原子比は1を超える範囲を提案している。   In response to such a request, for example, in Patent Documents 1 to 3, the machinability is improved by increasing the content of sulfur (S) and increasing the amount of MnS in the steel as an alternative to lead free cutting steel. Sulfur-based free-cutting steel is disclosed. Further, the present applicant clarified that machinability is improved when MnS containing Ti sulfide and / or Ti carbon sulfide is contained in steel. Proposed as 4. This document proposes a range of components such as C, Mn, S, Ti, Si, P, Al, O, and N in steel, and the mass concentration of Ti and S as conditions for obtaining good machinability. As a condition for obtaining a ratio of less than 1 and good hot workability, a range in which the atomic ratio of Mn and S exceeds 1 is proposed.

しかしながら、これらの材質は、いずれも純粋に被削性や製品の機械的特性の点から提案されたものであり、実際に連続鋳造により製造する場合の品質上の問題などについては改善すべき点がある。   However, these materials are all proposed purely in terms of machinability and mechanical properties of the product, and should be improved with regard to quality problems when actually produced by continuous casting. There is.

従来、鋼はインゴット法により鋳造されてきたが、生産性および歩留まり向上の観点から連続鋳造化が進められている。しかし、鋼の連続鋳造時にはインゴット鋳造では発生しない鋳片の曲げや矯正、およびバルジングや圧下にともなう歪みを受けるため、鋳片の内部に内部割れが発生することがある。この割れは、連続鋳造中の鋳片の凝固過程で受ける歪み量がその鋼種固有の限界歪みを超えたときに発生するものである。   Conventionally, steel has been cast by the ingot method, but continuous casting is being promoted from the viewpoint of productivity and yield improvement. However, during continuous casting of steel, internal cracking may occur in the slab because it is subjected to distortion caused by bending and straightening of the slab and bulging and reduction that do not occur in ingot casting. This crack occurs when the amount of strain experienced during the solidification process of the slab during continuous casting exceeds the limit strain inherent to the steel type.

上記の内部割れを防止するための連続鋳造方法として、例えば特許文献5には、抗張力出現温度と延性出現温度の間の温度域に存在する間に受ける歪量の総和が、鋳造する鋼種の限界歪を超えない条件で鋳造する鋼の連続鋳造方法が開示されている。さらに、特許文献6には、鋳片の内部に未凝固溶鋼を残したまま厚み方向に圧下を加える未凝固圧下連続鋳造方法において、鋳造中の鋳片の凝固界面に作用する総歪が推算式により推算される内部割れ限界歪以下となるように、鋳片圧下量を制御する未凝固圧下連続鋳造方法が開示されている。   As a continuous casting method for preventing the above internal crack, for example, Patent Document 5 discloses that the total amount of strain received during the temperature range between the tensile strength appearance temperature and the ductility appearance temperature is the limit of the steel type to be cast. A continuous casting method of steel that is cast under conditions that do not exceed strain is disclosed. Furthermore, in Patent Document 6, the total strain acting on the solidification interface of the slab during casting is an estimation formula in the unsolidified reduction continuous casting method in which the reduction is performed in the thickness direction while leaving the unsolidified molten steel inside the slab. An unsolidified reduction continuous casting method is disclosed in which the slab reduction amount is controlled so as to be equal to or less than the internal crack limit strain estimated by

鋼中のS濃度が増加すると内部割れのおそれが高まることは、前記の特許文献5にも開示されているが、特許文献5および6の実施例中で開示されたS含有率は、0.020質量%以下であり、Sを0.2質量%以上含有する鋼種の内部割れを防止する方法については開示されていない。   The fact that the risk of internal cracking increases as the S concentration in the steel increases is also disclosed in Patent Document 5, but the S content disclosed in the Examples of Patent Documents 5 and 6 is 0. There is no disclosure about a method for preventing internal cracking of a steel type that is 020 mass% or less and contains 0.2 mass% or more of S.

特開2000−319753号公報(特許請求の範囲および〔0011〕)JP 2000-319753 A (Claims and [0011])

特開平7−305110号公報(特許請求の範囲など)JP-A-7-305110 (Claims etc.) 特開平9−31522号公報(特許請求の範囲など)JP-A-9-31522 (Claims etc.) 特願2002−26368号公報(特許請求の範囲および〔0018〕〜〔0023〕)Japanese Patent Application No. 2002-26368 (Claims and [0018] to [0023]) 特開平3−174962号公報(特許請求の範囲など)Japanese Patent Laid-Open No. 3-174962 (claims, etc.) 特開平8−281400号公報(特許請求の範囲および〔0009〕)JP-A-8-281400 (Claims and [0009])

本発明は、鉛快削鋼の代替として硫黄含有率を高めることにより被削性を向上した鋼種を、内部割れや表面割れの発生を起こすことなく連続鋳造できる方法を提供することを目的とする。   An object of the present invention is to provide a method capable of continuously casting a steel type having improved machinability by increasing the sulfur content as an alternative to lead free-cutting steel without causing internal cracks and surface cracks. .

本発明者らは、上述の課題を解決するために、前記した従来の問題点を踏まえて、硫黄系快削鋼の機械的特性劣化の原因となるMnSの生成形態および内部割れを防止できる組成条件を検討し、下記の(A)〜(E)の知見を得た。   In order to solve the above-mentioned problems, the present inventors have taken into consideration the above-mentioned conventional problems, and a composition that can prevent MnS formation and internal cracking that cause deterioration of mechanical properties of sulfur-based free-cutting steel. The conditions were examined and the following findings (A) to (E) were obtained.

(A)MnSの生成形態は、鋼中の[Mn%]と[S%]の濃度積の値により区分でき、(イ)濃度積の値が1.5以上の場合には多数の粗大なMnSが生成し、(ロ)同値が0.9以上1.5未満の場合には少数の粗大なMnSが生成し、(ハ)同値が0.9未満の場合には粗大なMnSはほとんど生成しない。   (A) The formation form of MnS can be classified by the concentration product values of [Mn%] and [S%] in steel. (A) When the concentration product value is 1.5 or more, a large number of coarse products MnS is formed. (B) When the equivalence is 0.9 or more and less than 1.5, a small number of coarse MnS is produced. (C) When the equivalence is less than 0.9, almost coarse MnS is produced. do not do.

(B)したがって、Mn含有率およびS含有率が上記(A)における(ハ)の条件を規定する下記(1)式の関係を満足すれば、初晶はメタル相となり、粗大なMnSの生成を抑制できる。   (B) Therefore, if the Mn content and the S content satisfy the relationship of the following formula (1) that defines the condition of (C) in (A) above, the primary crystal becomes a metal phase, and the formation of coarse MnS Can be suppressed.

[Mn%]×[S%]<0.9 ・・・(1)
(C)鋼の凝固過程における溶質成分の濃化比率は、MnよりもSの方が著しく、Sの初期濃度に対する濃化比率は、近似的にMnの初期濃度に対する濃化比率の5乗に比例する。
[Mn%] × [S%] <0.9 (1)
(C) The concentration ratio of the solute component in the solidification process of steel is more remarkable in S than in Mn, and the concentration ratio with respect to the initial concentration of S is approximately the fifth power of the concentration ratio with respect to the initial concentration of Mn. Proportional.

(D)連続鋳造凝固におけるMnおよびS成分の濃化過程で、[Mn%]と[S%]の濃度積の値が0.9以上に達した時に、化学量論的にMnがSに対して過剰であれば、鋳片に内部割れの発生するおそれはない。
(E)上記(A)〜(D)より、MnおよびSの凝固前、すなわち初期の含有率が、上記(1)式の関係に加えて下記(2)式の関係を満足すれば、内部割れを発生することなく、連続鋳造することが可能である。
(D) In the process of concentrating Mn and S components in continuous casting solidification, when the value of the concentration product of [Mn%] and [S%] reaches 0.9 or more, Mn is stoichiometrically changed to S. On the other hand, if it is excessive, there is no risk of internal cracks occurring in the slab.
(E) From the above (A) to (D), if the content of Mn and S before solidification, that is, the initial content satisfies the relationship of the following equation (2) in addition to the relationship of the above equation (1), the internal Continuous casting is possible without generating cracks.

[S%]<0.32×[Mn%]5 ・・・(2)
本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)〜(3)に示す低炭素硫黄系快削鋼の連続鋳造方法にある。
[S%] <0.32 × [Mn%] 5 (2)
The present invention has been completed based on the above findings, and the gist thereof is the continuous casting method for low-carbon sulfur-based free-cutting steel shown in the following (1) to (3).

(1)質量%で、C:0.05〜0.19%、Si:1.0%以下、Mn:0.4〜2.0%、P:0.001〜0.2%、S:0.2〜0.69%、Pb:0.01%未満、Al:0.2%以下、O(酸素):0.001〜0.02%およびN:0.001〜0.02%を含有し、残部がFeおよび不純物からなり、かつMnとSの含有率が下記(1)式および(2)式の関係を満足する溶鋼を連続鋳造することを特徴とする低炭素硫黄系快削鋼の連続鋳造方法。   (1) By mass%, C: 0.05 to 0.19%, Si: 1.0% or less, Mn: 0.4 to 2.0%, P: 0.001 to 0.2%, S: 0.2 to 0.69%, Pb: less than 0.01%, Al: 0.2% or less, O (oxygen): 0.001 to 0.02% and N: 0.001 to 0.02% Low-carbon sulfur-based free-cutting, characterized by comprising continuously casting molten steel that contains Fe and impurities in the balance, and the content ratio of Mn and S satisfies the relationship of the following formulas (1) and (2) Steel continuous casting method.

[Mn%]×[S%]<0.9 ・・・(1)
[S%]<0.32×[Mn%]5 ・・・(2)
ここで、[Mn%]はMn含有率(質量%)を、[S%]はS含有率(質量%)をそれぞれ表す。
[Mn%] × [S%] <0.9 (1)
[S%] <0.32 × [Mn%] 5 (2)
Here, [Mn%] represents the Mn content (mass%), and [S%] represents the S content (mass%).

(2)前記(1)における低炭素硫黄系快削鋼は、さらに下記の(a)および(b)の群の1つ以上の群から選んだ1種以上の成分元素を含有してもよい。
(a)Cu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.01〜2.0%、Mo:0.01〜1.0%、V:0.005〜0.5%およびNb:0.005〜0.1%、
(b)Ti:0.005〜0.30%、Se:0.001〜0.01%、Te:0.001〜0.07%、Bi:0.005〜0.3%、Sn:0.005〜0.3%、Ca:0.0001〜0.01%、Mg:0.0001〜0.01%および希土類元素:0.0005〜0.01%。
(2) The low-carbon sulfur-based free-cutting steel in (1) may further contain one or more component elements selected from one or more of the following groups (a) and (b). .
(A) Cu: 0.01-1.0%, Ni: 0.01-1.0%, Cr: 0.01-2.0%, Mo: 0.01-1.0%, V: 0 0.005-0.5% and Nb: 0.005-0.1%,
(B) Ti: 0.005 to 0.30%, Se: 0.001 to 0.01%, Te: 0.001 to 0.07%, Bi: 0.005 to 0.3%, Sn: 0 0.005-0.3%, Ca: 0.0001-0.01%, Mg: 0.0001-0.01%, and rare earth elements: 0.0005-0.01%.

(3)C含有率が0.05〜0.10質量%である前記(1)または(2)に記載の低炭素硫黄系快削鋼の連続鋳造方法。   (3) The continuous casting method for low-carbon sulfur-based free-cutting steel according to (1) or (2), wherein the C content is 0.05 to 0.10% by mass.

本発明において、「Al」とは、鋼中の酸可溶Al(以下、「sol.Al」ともいう)を意味する。   In the present invention, “Al” means acid-soluble Al in steel (hereinafter also referred to as “sol.Al”).

また、「O(酸素)」とは、鋼中の全酸素(以下、「T.O」ともいう)を意味する。   Further, “O (oxygen)” means total oxygen in the steel (hereinafter also referred to as “TO”).

本発明の連続鋳造方法によれば、低炭素高硫黄含有快削鋼を内部割れを発生することなく連続鋳造を行うことが可能となる。   According to the continuous casting method of the present invention, it becomes possible to perform continuous casting of free-cutting steel containing low carbon and high sulfur without causing internal cracks.

前述のように、鋼中にPbを添加しなくても良好な切削性能が得られる快削鋼は種々提案されている。しかし、これらの鋼種でよく使用される高S含有鋼は、連続鋳造時に内部割れが発生するという問題がある。これに対して、本発明者らは、凝固時の偏析挙動を考慮した上で成分設計を行えば内部割れの発生を抑制または防止でき、連続鋳造を行うことが可能となることを知見した。以下にその内容を詳細に述べる。   As described above, various free-cutting steels that can obtain good cutting performance without adding Pb to the steel have been proposed. However, the high S content steel often used in these steel types has a problem that internal cracks occur during continuous casting. On the other hand, the present inventors have found that if the component design is performed in consideration of the segregation behavior during solidification, the occurrence of internal cracks can be suppressed or prevented, and continuous casting can be performed. The details will be described below.

1.凝固にともなう溶質成分の濃化を考慮したMnおよびS含有率の関係
図1は、凝固過程における固相および液相内の溶質の濃度分布を模式的に示す図である。固液界面では局所的に固相と液相との間で平衡が成立し、溶質元素に固有の平衡分配係数にしたがって、溶質元素が分配される。液相内では、溶質元素の拡散速度は充分に早いことから、溶質濃度はほぼ均一な分布となり、固相内では、固相中における溶質元素の拡散係数および溶質の濃度勾配にしたがって、固液界面から凝固相の中心方向に向かって拡散する。
1. Relationship between Mn and S Content Considering Concentration of Solute Components Accompanying Solidification FIG. 1 is a diagram schematically showing the concentration distribution of the solute in the solid phase and the liquid phase in the solidification process. At the solid-liquid interface, an equilibrium is established locally between the solid phase and the liquid phase, and the solute element is distributed according to the equilibrium distribution coefficient unique to the solute element. In the liquid phase, the diffusion rate of the solute element is sufficiently fast, so that the solute concentration is almost evenly distributed. In the solid phase, the solid-liquid solution follows the diffusion coefficient of the solute element in the solid phase and the concentration gradient of the solute. It diffuses from the interface toward the center of the solidified phase.

凝固が進行すると、固液界面で平衡分配係数にしたがう分配比を維持しながら、すなわち、Cs=k×Clで表される関係を維持しながら、固液界面が同図中を右側に進行する。ここで、Csは固液界面における固相側の溶質濃度、kは溶質元素の平衡分配係数、そしてClは固液界面における液相側の溶質濃度を表す。このため、固液界面部分で固相中に溶解しきれない溶質成分が液相側に吐き出され、残溶鋼中の溶質濃度が増加していく。一方、凝固後の固相内では、偏析成分は拡散していく。このようにして溶質成分のミクロ偏析が生じる。すなわち、固液凝固界面における平衡分配係数と固相内の拡散速度により各溶質成分の偏析が決定される。   As the solidification progresses, the solid-liquid interface advances to the right in the figure while maintaining the distribution ratio according to the equilibrium distribution coefficient at the solid-liquid interface, that is, maintaining the relationship represented by Cs = k × Cl. . Here, Cs represents the solute concentration on the solid phase side at the solid-liquid interface, k represents the equilibrium partition coefficient of the solute element, and Cl represents the solute concentration on the liquid phase side at the solid-liquid interface. For this reason, a solute component that cannot be completely dissolved in the solid phase at the solid-liquid interface part is discharged to the liquid phase side, and the solute concentration in the residual molten steel increases. On the other hand, segregation components diffuse in the solid phase after solidification. In this way, microsegregation of solute components occurs. That is, the segregation of each solute component is determined by the equilibrium partition coefficient at the solid-liquid solidification interface and the diffusion rate in the solid phase.

図2は、上記のようなミクロ偏析の機構を考慮し、凝固過程における残溶鋼内のMnおよびSの濃度変化を解析した例を示す図である。同図に示されるとおり、固相率の増加すなわち凝固の進行に伴い、液相内のMnおよびSの濃度は増加するが、Mnの濃化に比べてSの濃化が顕著である。これは、固液界面でのMnの平衡分配係数が0.76程度であるのに対して、Sの平衡分配係数は0.05程度と非常に低く、Sの場合の方が固液凝固界面での液相側への溶質成分の吐き出し量が多いことに起因している。この解析結果は、ミクロ偏析部においてS成分が顕著に濃化する現象をよく再現している。   FIG. 2 is a diagram showing an example of analyzing the concentration change of Mn and S in the residual molten steel in the solidification process in consideration of the micro segregation mechanism as described above. As shown in the figure, the concentration of Mn and S in the liquid phase increases as the solid fraction increases, that is, the solidification progresses, but the concentration of S is more significant than the concentration of Mn. This is because the equilibrium distribution coefficient of Mn at the solid-liquid interface is about 0.76, whereas the equilibrium distribution coefficient of S is very low, about 0.05. This is because the amount of solute components discharged to the liquid phase side is large. This analysis result well reproduces the phenomenon in which the S component is significantly concentrated in the micro-segregation part.

一方、MnおよびSを含有する鋼種では、FeとMnSの共晶組織を形成する。MnおよびSの初期組成が共晶点組成よりも高濃度の場合には、過共晶領域となり、凝固時の初晶は金属相ではなくMnSになる。MnSが初晶として生成するとMnSが自由成長し、粗大なMnSが生成するので良好な機械的特性を得ることはできない。また、連続鋳造でこのような組織が生成すると脆弱となり、疲労特性や靱性などの機械的特性を劣化させるだけでなく、特に、後の圧延工程においてMnSが延伸されるとともに、金属相との間に剥離が生じ、内部割れや表面割れの原因となる。   On the other hand, a steel type containing Mn and S forms a eutectic structure of Fe and MnS. When the initial composition of Mn and S is higher than the eutectic point composition, it becomes a hypereutectic region, and the primary crystal upon solidification is not a metal phase but MnS. When MnS is formed as a primary crystal, MnS grows freely and coarse MnS is generated, so that good mechanical properties cannot be obtained. In addition, when such a structure is generated by continuous casting, it becomes brittle and not only deteriorates mechanical properties such as fatigue properties and toughness, but also, in particular, MnS is stretched in the subsequent rolling process, and between the metal phase. Peeling occurs, causing internal cracks and surface cracks.

そこで、本発明者らは、種々のMnおよびS含有率を有する溶鋼の凝固試験を行い、MnSの生成状況を調査した。図3は、MnおよびS含有率を種々に変化させて溶製した溶鋼を凝固させて得た鋳片を切断し、鋼中のMnSの生成状況を光学顕微鏡で調査した結果を示す図である。   Therefore, the present inventors conducted solidification tests on molten steels having various Mn and S contents, and investigated the production status of MnS. FIG. 3 is a view showing a result of cutting a slab obtained by solidifying molten steel produced by variously changing the Mn and S content ratios and examining the generation state of MnS in the steel with an optical microscope. .

同図の結果に示されるとおり、30μm以上の粗大なMnSの生成状況は、[Mn%]と[S%]との濃度積の値により、下記のとおり3段階に分類できた。すなわち、[Mn%]×[S%]≧1.5では、多数の粗大なMnSが生成し、0.9≦[Mn%]×[S%]<1.5では、少数の粗大MnSが生成し、そして、[Mn%]×[S%]<0.9では、粗大なMnSがほとんど生成しないことが判明した。   As shown in the result of the figure, the generation state of coarse MnS of 30 μm or more could be classified into the following three stages according to the concentration product value of [Mn%] and [S%]. That is, when [Mn%] × [S%] ≧ 1.5, a large number of coarse MnS is generated, and when 0.9 ≦ [Mn%] × [S%] <1.5, a small number of coarse MnS is formed. It was found that when [Mn%] × [S%] <0.9, almost no coarse MnS was generated.

上記の結果は、FeとMnSの共晶線が[Mn%]×[S%]=1.5により近似できることに対応しており、これは、とりもなおさず、[Mn%]×[S%]≧1.5の初期組成領域ではMnSを初晶として凝固したことを示すものである。また、0.9≦[Mn%]×[S%]<1.5では、凝固にともなう中心偏析などのマクロ偏析による溶質成分の濃化時などに粗大なMnSが晶出し、そして、[Mn%]×[S%]<0.9では、粗大なMnSの生成を安定的に防止できることを示している。このように、下記(1)式の関係を満足すれば、初晶はメタル相となり、粗大なMnSの生成を抑制できることを知見し、下記(1)式の関係を規定した。   The above results correspond to the fact that the eutectic line of Fe and MnS can be approximated by [Mn%] × [S%] = 1.5, which is not limited to [Mn%] × [S %] ≧ 1.5 indicates that MnS was solidified as the primary crystal in the initial composition region. In addition, when 0.9 ≦ [Mn%] × [S%] <1.5, coarse MnS crystallizes when the solute component is concentrated by macrosegregation such as center segregation accompanying solidification, and [Mn %] × [S%] <0.9 indicates that the formation of coarse MnS can be stably prevented. Thus, if the relationship of the following formula (1) was satisfied, the primary crystal became a metal phase, and it was found that the formation of coarse MnS could be suppressed, and the relationship of the following formula (1) was defined.

[Mn%]×[S%]<0.9 ・・・(1)
さらに一層厳しい条件の用途に使用され、MnSの大きさや鋼片品質に対する要求レベルの高い場合には、(1)式における[Mn%]×[S%]の値を0.8未満とすることが好ましい。
[Mn%] × [S%] <0.9 (1)
When it is used for applications with even more severe conditions and the required level for MnS size and billet quality is high, the value of [Mn%] x [S%] in equation (1) should be less than 0.8. Is preferred.

実際の連続鋳造鋳片では、前記ミクロ偏析した濃化溶鋼がガイドロール間での鋳片のバルジングなどにより鋳片厚み中心部近傍に集積し、そのまま凝固することにより、中心偏析やV偏析などのマクロ偏析を生じることがあるため、初期組成が上記(1)式で表される濃度積の値より小さい場合であっても粗大なMnSが生成することがある。本発明者らは、高S含有鋼を用いた実際の連続鋳造鋳片におけるマクロ偏析部の溶質の濃化状況を調査し、中心偏析部ではMnが平均組成に対して約1.1倍、Sが同じく1.6倍程度にまで濃化することを把握した。   In an actual continuous cast slab, the concentrated microsegregated molten steel accumulates near the center of the slab thickness by bulging of the slab between guide rolls and solidifies as it is. Since macrosegregation may occur, coarse MnS may be generated even when the initial composition is smaller than the concentration product represented by the above formula (1). The present inventors investigated the concentration state of the solute in the macro segregation part in the actual continuous cast slab using the high S content steel, and Mn is about 1.1 times the average composition in the central segregation part, It was found that S was also concentrated to about 1.6 times.

上記の知見に基づいてマクロ偏析部にける初晶の境界線を計算すると、1.5/(1.1×1.6)=0.9となる。すなわち、Mn濃度とS濃度との積、つまり[Mn%]×[S%]の値が0.9以上の場合に、マクロ偏析部において粗大なMnSが初晶として生成する可能性がある。したがって、この点からも、マクロ偏析部における粗大MnSの生成を防止する条件としての前記(1)式の規定は妥当と判断される。中心偏析部においても上記のような粗大なMnSが生成すれば、材料性能を著しく低下させる要因となる。また、連続鋳造後の圧延や鍛造工程においてこれらの粗大MnSが鋼片表面に出現し、表面性状を悪化させることもある。   When the boundary line of the primary crystal in the macro segregation part is calculated based on the above knowledge, 1.5 / (1.1 × 1.6) = 0.9 is obtained. That is, when the product of the Mn concentration and the S concentration, that is, the value of [Mn%] × [S%] is 0.9 or more, coarse MnS may be generated as a primary crystal in the macrosegregation part. Therefore, also from this point, it is judged that the definition of the above formula (1) as a condition for preventing the formation of coarse MnS in the macro-segregation part is appropriate. If coarse MnS as described above is generated even in the center segregation part, it becomes a factor that significantly lowers the material performance. In addition, these coarse MnS may appear on the surface of the steel slab in rolling or forging processes after continuous casting, which may deteriorate the surface properties.

次に、初期Mn濃度およびS濃度を種々に変化させて前記図2と同様に凝固過程における残溶鋼の濃度についての解析を行った。   Next, the initial Mn concentration and the S concentration were variously changed, and the analysis of the residual molten steel concentration in the solidification process was performed in the same manner as in FIG.

図4は、凝固過程における残溶鋼内のMnおよびSの濃度推移の一例を示す図である。同図に示すとおり、凝固の進行にともない、MnおよびSが濃化し、両濃度により表される座標点([Mn%]、[S%])は、図中で右上方に移動して行く。ここで、SはMnと比較して平衡分配係数が小さく、より顕著に濃化することから、凝固の進行にともない残溶網中の溶質濃度比、[Mn%]/[S%]の値は次第に小さくなっていく。   FIG. 4 is a diagram showing an example of transition of Mn and S concentrations in the residual molten steel in the solidification process. As shown in the figure, as the solidification progresses, Mn and S are concentrated, and the coordinate points ([Mn%], [S%]) represented by both concentrations move to the upper right in the figure. . Here, since S has a smaller equilibrium partition coefficient than Mn and becomes more conspicuous, the solute concentration ratio in the residual network as the solidification progresses, the value of [Mn%] / [S%] Gradually gets smaller.

前述のように、共晶線は[Mn%]×[S%]=1.5により近似でき、濃度積の値が1.5以上で共晶組織が生成するのであるが、現実のプロセスではマクロ偏析などが形成されることから、[Mn%]×[S%]≧0.9となった段階で粗大なMnSが生成し始めることがある。そこで、MnおよびSの濃度が[Mn%]×[S%]=0.9の曲線と交差した時にMnSの晶出が開始するとした。凝固過程でMnSが晶出を開始すれば、それ以上の溶質濃度の増加は抑えられる。   As described above, the eutectic line can be approximated by [Mn%] × [S%] = 1.5, and the eutectic structure is generated when the value of the concentration product is 1.5 or more. Since macrosegregation or the like is formed, coarse MnS may begin to be generated when [Mn%] × [S%] ≧ 0.9. Therefore, crystallization of MnS starts when the concentration of Mn and S crosses the curve of [Mn%] × [S%] = 0.9. If MnS starts to crystallize during the solidification process, further increase in solute concentration can be suppressed.

また、同図中の直線aは、MnとSの原子比が1:1となる関係、すなわちMnS生成のためのMnとSの化学量論比が1となる関係を示す(以下、「直線aの関係」ともいう)。同図中のAの初期組成を有する溶鋼では、前記の直線よりも上方の領域で[Mn%]×[S%]=0.9の曲線と交差することから、MnSの晶出開始時には、化学量論的にSが過剰である。このため、共晶組織の晶出開始後もSの濃化が進行し、メタル相の凝固温度がさらに低下する。凝固温度が低下すると、それにともない延性出現温度が低下するため、内部割れの発生する温度域が拡大し、内部割れを悪化させる。   Further, a straight line a in the figure shows a relationship in which the atomic ratio of Mn to S is 1: 1, that is, a relationship in which the stoichiometric ratio of Mn to S for generating MnS is 1 (hereinafter referred to as “straight line”). a) ". In the molten steel having the initial composition of A in the figure, since it intersects the curve of [Mn%] × [S%] = 0.9 in the region above the straight line, at the start of crystallization of MnS, S is stoichiometrically excessive. For this reason, the concentration of S proceeds even after the start of crystallization of the eutectic structure, and the solidification temperature of the metal phase further decreases. When the solidification temperature is lowered, the ductile appearance temperature is lowered accordingly, so that the temperature range in which the internal crack occurs is expanded and the internal crack is deteriorated.

一方、同図中のBの初期組成を有する溶鋼では、MnとSの原子比が1:1の直線より下方の領域で[Mn%]×[S%]=0.9の曲線と交差するので、MnSの晶出開始時にMn/Sの比の値が1以上、すなわち化学量論的にMnが過剰となり、MnSの晶出にともないSが固定され、Sはそれ以上濃化しなくなる。残溶鋼中には余剰のMnが存在することになるが、Mnの濃化による凝固温度の低下は小さく、内部割れを悪化させることはない。すなわち、高S含有鋼の連続鋳造時の内部割れを防止するためには、MnSの晶出開始時に化学量論的にSに対してMnが過剰であればよい。   On the other hand, in the molten steel having the initial composition of B in the same figure, the atomic ratio of Mn and S intersects with the curve of [Mn%] × [S%] = 0.9 in the region below the 1: 1 straight line. Therefore, at the start of crystallization of MnS, the value of the Mn / S ratio is 1 or more, that is, Mn is stoichiometrically excessive, S is fixed with MnS crystallization, and S no longer concentrates. Excess Mn is present in the residual molten steel, but the decrease in solidification temperature due to the concentration of Mn is small, and internal cracks are not deteriorated. That is, in order to prevent internal cracks during continuous casting of high S content steel, it is sufficient that Mn is stoichiometrically excessive with respect to S at the start of crystallization of MnS.

このように、溶質濃度が増加すると、その成分に対応する凝固温度が低下し、延性出現温度が低下するため、内部割れの発生する温度域を拡大する。Sは平衡分配係数が小さく凝固温度を大幅に低下させるため、内部割れ感受性を高める。MnSの晶出開始時に化学量論的にSに対してMnが過剰であれば、Mnの濃化による凝固温度の低下は小さく、内部割れをそれ以上悪化させない。   Thus, when the solute concentration increases, the solidification temperature corresponding to the component decreases and the ductility appearance temperature decreases, so the temperature range in which internal cracks occur is expanded. Since S has a small equilibrium partition coefficient and greatly reduces the solidification temperature, it increases the internal cracking sensitivity. If Mn is stoichiometrically excessive with respect to S at the start of crystallization of MnS, the decrease in solidification temperature due to Mn concentration is small, and internal cracks are not further deteriorated.

種々の初期Mn濃度およびS濃度を有する溶鋼の凝固過程における溶質濃度の変化を解析し、MnSの晶出開始時のMnおよびS濃度を求めた。図5は、溶鋼中の初期のMnおよびS濃度と、MnS晶出開始時のMnおよびS濃度との関係を示す図である。同図において、[Mn%]0 および[S%]0 は、それぞれMnおよびSの初期濃度を表し、比[Mn%]/[Mn%]0 および比[S%]/[S%]0 は、それぞれMnおよびSの初期濃度に対する比率、すなわち濃化比率を表す。同図に示すとおり、Mnの濃化比率とSの濃化比率との関係は、ほぼ一本の曲線により整理され、比[S%]/[S%]0 は近似的に、比[Mn%]/[Mn%]0 の5乗に比例する関係を有することが判明した。 Changes in the solute concentration in the solidification process of molten steel having various initial Mn concentrations and S concentrations were analyzed, and Mn and S concentrations at the start of crystallization of MnS were obtained. FIG. 5 is a diagram showing the relationship between the initial Mn and S concentrations in molten steel and the Mn and S concentrations at the start of MnS crystallization. In the figure, [Mn%] 0 and [S%] 0 represent the initial concentrations of Mn and S, respectively, and the ratio [Mn%] / [Mn%] 0 and the ratio [S%] / [S%] 0. Represents the ratio of Mn and S to the initial concentration, that is, the concentration ratio. As shown in the figure, the relationship between the concentration ratio of Mn and the concentration ratio of S is roughly arranged by a single curve, and the ratio [S%] / [S%] 0 is approximately the ratio [Mn %] / [Mn%] It was found to have a relationship proportional to the fifth power of 0 .

そこで、上記の結果から、[Mn%]×[S%]の値が0.9以上となったとき、すなわちMnSの生成開始時に、Mnが過剰となり内部割れを防止できる初期MnおよびS濃度の領域を求めた。   Therefore, from the above results, when the value of [Mn%] × [S%] is 0.9 or more, that is, at the start of MnS generation, Mn becomes excessive and the initial Mn and S concentrations that can prevent internal cracking Sought the area.

図6は、内部割れの発生および粗大なMnSの生成を防止できる適正なMnおよびSの初期濃度範囲を示す図である。MnおよびSの初期濃度が同図中の5次曲線PQRの下方でかつ前記(1)式の下方の斜線を付した領域にある場合は、MnSの晶出開始時に、MnがSに対して化学量論的に過剰、すなわちMnとSの原子比が1以上となり内部割れの問題なく連続鋳造することが可能である。これに対して、MnおよびSの初期濃度が5次曲線PQRよりも上方の領域に存在する場合には、MnSの晶出開始時に、SがMnに対して化学量論的に過剰となり、内部割れが悪化するとともに、圧延時の表面疵も悪化する。   FIG. 6 is a diagram illustrating an appropriate initial concentration range of Mn and S that can prevent generation of internal cracks and generation of coarse MnS. When the initial concentrations of Mn and S are in the region under the quintic curve PQR in the same figure and the hatched area in the lower part of the equation (1), at the start of crystallization of MnS, Mn is more than S Stoichiometric excess, that is, the atomic ratio of Mn and S becomes 1 or more, and continuous casting is possible without problems of internal cracks. On the other hand, when the initial concentrations of Mn and S are present in the region above the quintic curve PQR, S becomes stoichiometrically excessive with respect to Mn at the start of crystallization of MnS. As cracks worsen, surface defects during rolling also worsen.

前述のとおり、凝固過程におけるMnおよびS成分の濃化に関しては、近似的に[S%]/[S%]0 =C×{[Mn%]/[Mn%]05 で表される関係が成立する。ここで、Cは定数である。この曲線、すなわちMnS晶出開始時におけるMn過剰の境界線は、[Mn%]×[S%]=0.9の曲線と、直線aとの交点R1を通る曲線PQ11となることから定数Cの値が決定され、内部割れを起こすことなく連続鋳造でき、圧延時においても表面疵を発生することなく圧延することが可能な範囲は、下記の(3)式により表される。 As described above, the concentration of Mn and S components in the solidification process is approximately represented by [S%] / [S%] 0 = C × {[Mn%] / [Mn%] 0 } 5. A relationship is established. Here, C is a constant. The boundary line of this curve, that is, Mn excess at the beginning of MnS crystallization, is a curve PQ 1 R 1 passing through the intersection R 1 of the curve of [Mn%] × [S%] = 0.9 and the straight line a. Therefore, the value of the constant C is determined, and the range in which continuous casting can be performed without causing internal cracks and rolling without generating surface flaws even during rolling is expressed by the following equation (3). .

[S%]<0.25×[Mn%]5 ・・・(3)
実機のプロセスで生産される種々の鋳片について調査した結果、良好な鋳片が得られる許容範囲は、上記の(3)式で規定される範囲よりもやや広く、[Mn%]および[S%]を前記のとおり曲線PQRの下方の領域、すなわち、下記の(2)式により規定される範囲内に調整すれば、内部割れや圧延時の表面疵も事実上発生することのない鋳片を製造できることが判明した。
[S%] <0.25 × [Mn%] 5 (3)
As a result of investigating various slabs produced in the actual process, the allowable range for obtaining good slabs is slightly wider than the range defined by the above formula (3), and [Mn%] and [S %] Is adjusted to the region below the curve PQR as described above, that is, within the range defined by the following equation (2), the inner slab is virtually free of internal cracks and surface defects during rolling. It was found that can be manufactured.

[S%]<0.32×[Mn%]5 ・・・(2)
上記のように、実際に内部割れや圧延時の表面疵を発生することのない鋳片を製造できる範囲が、理論的に導出された範囲よりも広くなる理由は、下記のように推察される。すなわち、前記の比[S%]/[S%]0 が近似的に、比[Mn%]/[Mn%]0 の5乗に比例するとした近似式に誤差が含まれること、ならびに、MnおよびSの濃度が高く、[Mn%]×[S%]=0.9により表される関係に近い凝固初期組成を有する鋳片では、内部割れの原因となるMnSの晶出開始までの凝固時におけるMnおよびS成分の濃化量が少ないことによると推察される。
[S%] <0.32 × [Mn%] 5 (2)
As described above, the reason why the range in which a slab that does not actually generate internal cracks or surface defects during rolling can be produced is wider than the theoretically derived range is presumed as follows. . That is, an error is included in the approximate expression in which the ratio [S%] / [S%] 0 is approximately proportional to the fifth power of the ratio [Mn%] / [Mn%] 0 , and Mn In a slab having a high initial and solidification composition close to the relationship represented by [Mn%] × [S%] = 0.9, the solidification until the start of crystallization of MnS causing internal cracks It is presumed that the concentration of Mn and S components at that time is small.

さらに、より確実に内部割れおよび表面疵の発生を防止するためには、[Mn%]×[S%]=1.5の曲線と直線aとの交点R2を通る条件で同様に求めた曲線PQ22の下方の領域、すなわち、下記(4)式で表される範囲で連続鋳造することが好ましい。 Furthermore, in order to more reliably prevent the occurrence of internal cracks and surface flaws, it was similarly determined under the condition of passing the intersection R 2 between the curve of [Mn%] × [S%] = 1.5 and the straight line a. It is preferable that continuous casting is performed in a region below the curve PQ 2 R 2 , that is, in a range represented by the following expression (4).

[S%]<0.08×[Mn%]5 ・・・(4)
MnSの生成開始時にMnが過剰であれば固相線の温度低下がなく、連続鋳造時の鋳片の内部割れを低減できるとの知見は、さらにS濃度の低い鋼種においても有効ではあるが、硫黄濃度の低い鋼種では、固相線温度の低下量が少なく、内部割れの拡大量も少ないため、その効果は大きくはない。前記(1)式および(2)式の関係を規定することによる内部割れ防止効果は、S含有率が0.05質量%以上の鋼種において顕著となる。本発明の目的は、Pbを含有しない快削鋼の連続鋳造技術を提供することであることから、後述するように被削性を確保するために、S含有率は、さらに高い0.2質量%以上とする必要がある。
[S%] <0.08 × [Mn%] 5 (4)
The knowledge that if Mn is excessive at the start of MnS generation, there is no decrease in the temperature of the solidus line, and the internal cracking of the slab at the time of continuous casting can be reduced even in a steel type having a lower S concentration, In steel types with low sulfur concentration, the amount of decrease in solidus temperature is small and the amount of expansion of internal cracks is also small, so the effect is not great. The effect of preventing internal cracks by defining the relationship between the formulas (1) and (2) becomes remarkable in the steel type having an S content of 0.05% by mass or more. The object of the present invention is to provide a continuous casting technique of free-cutting steel containing no Pb. Therefore, in order to ensure machinability as will be described later, the S content is further increased to 0.2 mass. % Or more is necessary.

2.化学成分組成の限定理由および好ましい範囲
以下に本発明において規定した鋼の成分組成範囲の限定理由および好ましい範囲について説明する。なお、成分組成は、全て質量%により表示する。
2. Reasons for Limiting Chemical Component Composition and Preferred Ranges Reasons for limiting the component composition range of steel defined in the present invention and preferred ranges will be described below. In addition, all component composition is displayed by the mass%.

C:0.05〜0.19%:
一般に、Cは鋼の強度に大きな影響をおよぼす元素として知られる。強度と被削性には強い相関関係があり、被削性にも大きな影響を与える。すなわち、C含有率が0.19%を超えると鋼の強度が上昇し、被削性が低下する。このため被削性を重要視する用途には使用できなくなる。一方、C含有率が0.05%未満の場合には強度が低下し、切削中に粘りが生じるため、かえって被削性が低下し、切り屑の処理性も悪化する。そこで、Cの含有率の適正範囲を0.05〜0.19%とした。
C: 0.05 to 0.19%:
Generally, C is known as an element having a great influence on the strength of steel. There is a strong correlation between strength and machinability, which also has a large effect on machinability. That is, if the C content exceeds 0.19%, the strength of the steel increases and the machinability decreases. For this reason, it cannot be used for applications in which machinability is important. On the other hand, when the C content is less than 0.05%, the strength is lowered and stickiness is generated during cutting, so that the machinability is lowered and the chip disposability is also deteriorated. Therefore, the appropriate range of the C content is set to 0.05 to 0.19%.

さらに、Cを0.10%超0.18%以下含有する鋼種はδ相を初晶として凝固を開始し、凝固過程で包晶反応を生じ、凝固終了時にはδ相が残る亜包晶鋼となる。亜包晶鋼は、包晶反応にともなう応力の発生により、不均一凝固を呈する。このため、連続鋳造鋳片では、デプレッションや縦割れなどの問題が発生することがある。このような欠陥を防止するためには、他の鋼種と比べて鋳造速度を下げる必要があり、生産性が阻害される。加えて、本発明で規定するSを0.2%以上含有する高S含有鋼を連続鋳造する場合には、前記応力により内部割れも悪化させることもある。このため、C含有率の好ましい範囲を0.05〜0.10%とした。   Further, a steel type containing more than 0.10% and not more than 0.18% of C begins to solidify with a δ phase as an initial crystal, and causes a peritectic reaction in the solidification process, and a subperitectic steel in which the δ phase remains at the end of solidification. Become. Hypoperitectic steel exhibits non-uniform solidification due to the generation of stress associated with the peritectic reaction. For this reason, problems such as depletion and vertical cracking may occur in a continuous cast slab. In order to prevent such defects, it is necessary to lower the casting speed as compared with other steel types, and productivity is hindered. In addition, when a high S content steel containing 0.2% or more of S specified in the present invention is continuously cast, internal stress may be deteriorated by the stress. For this reason, the preferable range of C content was made 0.05 to 0.10%.

Mn:0.4〜2.0%:
Mnは、鋼材の強度に大きな影響を与える元素であるが、快削鋼では、Sとともに硫化物を形成して被削性に大きな影響を与える。その含有率が0.4%未満では硫化物の絶対量が少なく、満足な被削性を得ることができない。また、含有率が2.0%を超えると前述のように初晶としてMnSを生成するため、S含有率を相対的に低減せざるを得ず、硫化物の総量が減少する。このため、被削性改善効果は飽和するか、むしろ被削性が悪化する。また、含有率が2.0%を超えると強度が増加するため、被削性が低下する。そこで、Mn含有率の上限は2.0%とした。
Mn: 0.4 to 2.0%:
Mn is an element that greatly affects the strength of the steel material. However, in free-cutting steel, sulfide is formed together with S to greatly affect the machinability. If the content is less than 0.4%, the absolute amount of sulfide is small and satisfactory machinability cannot be obtained. Further, when the content rate exceeds 2.0%, MnS is generated as the primary crystal as described above, so the S content rate must be relatively reduced, and the total amount of sulfides is reduced. For this reason, the machinability improving effect is saturated, or rather the machinability is deteriorated. On the other hand, if the content exceeds 2.0%, the strength increases, so that the machinability decreases. Therefore, the upper limit of the Mn content is set to 2.0%.

さらに、切削性や熱間加工性などの材料特性の観点から、MnとSの原子比、Mn/Sは1以上とする必要がある。この条件は、MnおよびS含有率が前記(1)式および(2)式の関係を満足すれば結果的に満足される条件である。なお、上記の効果をより確実に得るためのMn含有率の好ましい範囲は、0.6〜1.8%である。   Furthermore, from the viewpoint of material properties such as machinability and hot workability, the atomic ratio of Mn to S, Mn / S, needs to be 1 or more. This condition is a condition that is satisfied as a result if the Mn and S contents satisfy the relations of the expressions (1) and (2). In addition, the preferable range of Mn content for obtaining said effect more reliably is 0.6 to 1.8%.

S:0.2〜0.69%:
Sは、Mnまたは鋼種によってはTiなどの元素と硫化物を形成して被削性を改善するために必要な元素である。その含有率が0.2%未満では充分な量の硫化物が生成せず、被削性の改善効果が得られないことから、その含有率を0.2%以上とした。一般に、S含有率が0.35%を超えると熱間加工性が劣化する。また、S含有率を高めれば内部割れ感受性も高まり、連続鋳造時のみならず、後工程である圧延時や鍛造時にも割れを誘発する。しかし、本発明で規定する含有率の範囲を維持すれば、このような問題を発生することなく、連続鋳造プロセスにより快削鋼を製造することが可能である。
S: 0.2 to 0.69%:
S is an element necessary for improving the machinability by forming a sulfide with an element such as Ti depending on Mn or steel type. If the content is less than 0.2%, a sufficient amount of sulfide is not generated, and the machinability improving effect cannot be obtained. Therefore, the content is set to 0.2% or more. Generally, when the S content exceeds 0.35%, hot workability deteriorates. Further, if the S content is increased, the internal cracking sensitivity is increased, and cracks are induced not only during continuous casting but also during rolling or forging, which are subsequent processes. However, if the content range defined in the present invention is maintained, free-cutting steel can be produced by a continuous casting process without causing such problems.

本発明では、前記(1)式および(2)式で規定される関係から、S含有率の上限は0.69%とした。さらに確実で安定した割れ防止効果を得るには、S含有率の上限を0.55%とすることが好ましい。   In the present invention, the upper limit of the S content is set to 0.69% from the relationship defined by the formulas (1) and (2). In order to obtain a more reliable and stable crack prevention effect, the upper limit of the S content is preferably 0.55%.

Si:1.0%以下:
Siは、鋼の製造プロセスにおいて鋼中の酸素濃度を低減するために脱酸元素として用いられる有効な元素の一つである。溶鋼が充分に脱酸されていない状態で連続鋳造を行うと鋼中に気泡が生成し、製品の欠陥を発生するばかりでなく、場合によってはブレークアウトを誘発し、操業が不可能になるという問題がある。しかし、その含有率が1.0%を超えると鋼の熱間加工性を低下させ、切削抵抗が高くなるという問題がある。そこで、含有率の上限を1.0%と規定した。切削性をより一層改善するためには含有率は0.1%未満とすることが好ましい。なお、Si以外のAlやTiなどの脱酸元素により適切な脱酸が行われていれば、Si含有率は0.01%以下の不純物レベルの値であっても快削鋼の性能上および製造工程上、問題はない。
Si: 1.0% or less:
Si is one of the effective elements used as a deoxidizing element in order to reduce the oxygen concentration in steel in the steel manufacturing process. Continuous casting in a state where the molten steel has not been sufficiently deoxidized not only generates bubbles in the steel, resulting in product defects, but also induces breakout in some cases, making operation impossible. There's a problem. However, when the content exceeds 1.0%, there is a problem that the hot workability of the steel is lowered and the cutting resistance is increased. Therefore, the upper limit of the content rate is defined as 1.0%. In order to further improve the machinability, the content is preferably less than 0.1%. In addition, if appropriate deoxidation is performed by deoxidation elements other than Si, such as Al and Ti, even if the Si content is a value of an impurity level of 0.01% or less, the performance of free-cutting steel and There is no problem in the manufacturing process.

P:0.001〜0.2%:
Pは、鋼中の不純物元素の一つであるが、被削性改善効果を有する元素でもある。そのため、含有率の下限を0.001%とした。好ましくは0.01%以上を含有させる。一方、Pは凝固界面における分配係数が小さいため、偏析を助長し、内部割れを悪化させ、熱間加工性を悪化させる。そこで、P含有率の上限を0.2%とした。Pの偏析に起因する内部割れを確実に防止するためには、含有率の上限を0.1%とするのが好ましい。
P: 0.001 to 0.2%:
P is one of impurity elements in steel, but is also an element having an effect of improving machinability. Therefore, the lower limit of the content rate is set to 0.001%. Preferably it contains 0.01% or more. On the other hand, since P has a small distribution coefficient at the solidification interface, it promotes segregation, deteriorates internal cracks, and deteriorates hot workability. Therefore, the upper limit of the P content is set to 0.2%. In order to reliably prevent internal cracking due to P segregation, the upper limit of the content is preferably 0.1%.

Al:0.2%以下:
Alは、鋼中の酸素濃度を低減するために脱酸元素として用いられる有効な元素の一つである。なお、本発明においてAlとはsol.Alを意味し、脱酸のために必要なその含有率は0.003%以上であるが、前述のSiなど他の脱酸剤を用いる場合は、含有率が0.003%未満であっても差し支えない。一方、脱酸にともない生成するアルミナは被削性を低下させることから、Al含有率は0.2%以下とした。被削性を低下させないためにはその含有率を0.1%以下とするのが好ましい。
Al: 0.2% or less:
Al is one of the effective elements used as a deoxidizing element in order to reduce the oxygen concentration in steel. In the present invention, Al is sol. It means Al, and its content necessary for deoxidation is 0.003% or more. However, when other deoxidizing agents such as Si described above are used, the content is less than 0.003%. There is no problem. On the other hand, since the alumina produced by deoxidation reduces machinability, the Al content is set to 0.2% or less. In order not to lower the machinability, the content is preferably 0.1% or less.

O(酸素):0.001〜0.02%:
本発明においてO(酸素)含有率とは全酸素(T.O)含有率を意味し、前述のように、鋼中の脱酸が不充分でO含有率が高い場合には、製品欠陥や製造上のトラブルが発生する。このため、O含有率の上限は0.02%とした。しかしながら、O含有率は、被削性能の一因子である鋼材の表面粗さと相関を有し、O含有率の低い場合には表面粗さが増大する。したがって、鋼材の表面粗さが小さいことを重視する用途に対しては、O含有率は0.01%以上とすることが好ましい。
O (oxygen): 0.001 to 0.02%:
In the present invention, the O (oxygen) content means the total oxygen (TO) content. As described above, when the deoxidation in the steel is insufficient and the O content is high, Manufacturing trouble occurs. For this reason, the upper limit of the O content is set to 0.02%. However, the O content has a correlation with the surface roughness of the steel material, which is a factor of the cutting performance, and the surface roughness increases when the O content is low. Therefore, it is preferable that the O content is 0.01% or more for applications in which importance is attached to the small surface roughness of the steel material.

一方、O含有率が0.01%を超える場合には鋼中のCと反応してCOガスを発生するなど、他の合金成分と反応してその含有率を下げるのみでなく、鋳型内部に気泡を生成して鋳片の品質を低下させたり、その気泡が原因となってブレークアウトを引き起こすこともある。したがって、O含有率が0.01%を超える鋼種を連続鋳造するためには、Cなどの他の成分調整が必要となることがある。酸素含有率は、通常、脱酸元素および脱酸条件の選択により決定されるが、鋼中に生成するMnSに固溶または酸化物として存在する酸素は、鋼材の熱間加工時のMnSの延伸を防止するために有効であり、この効果を得るには、Oは0.001%以上を含有させる必要がある。   On the other hand, when the O content exceeds 0.01%, it reacts with C in the steel to generate CO gas. For example, it reacts with other alloy components to lower the content, and it also enters the inside of the mold. Bubbles may be generated to deteriorate the quality of the slab, or the bubbles may cause breakout. Therefore, in order to continuously cast a steel type in which the O content exceeds 0.01%, other component adjustments such as C may be necessary. The oxygen content is usually determined by the selection of deoxidation element and deoxidation conditions, but oxygen present as a solid solution or oxide in MnS produced in steel is the extension of MnS during hot working of steel. In order to obtain this effect, O needs to be contained in an amount of 0.001% or more.

N:0.001〜0.02%:
Nは、電気炉や転炉などの大気雰囲気で溶製する場合には鋼中に不可避的に侵入する元素であるが、鋼中ではAlやTiなどと化合して窒化物を形成し、この窒化物が熱間加工の過程でピン留め粒子として結晶粒を微細化する効果を有することから、鋼材の機械的特性に好ましい影響を与える。このため、Nは0.001%以上を含有させる必要がある。一方、これらの窒化物が鋼中に多量に生成すると被削性を悪化させるのみならず、鋳片の表面割れの原因ともなることから、含有率の上限を0.02%とした。好ましい含有率の範囲は、0.002〜0.015%である。
N: 0.001 to 0.02%:
N is an element that inevitably penetrates into steel when it is melted in an air atmosphere such as an electric furnace or converter, but in steel it forms a nitride by combining with Al, Ti, etc. Since nitride has an effect of refining crystal grains as pinned particles in the process of hot working, it has a favorable influence on the mechanical properties of the steel material. For this reason, N needs to contain 0.001% or more. On the other hand, if a large amount of these nitrides are produced in steel, not only the machinability is deteriorated but also the surface crack of the slab is caused, so the upper limit of the content is set to 0.02%. A preferable range of the content is 0.002 to 0.015%.

本発明の請求項2〜4に係る発明は、上記成分に加えて、さらに下記の(a)群および(b)群の1つ以上の群から選んだ1種以上の元素を含有する低炭素硫黄系快削鋼の連続鋳造方法である。   The invention according to claims 2 to 4 of the present invention is a low carbon containing one or more elements selected from one or more of the following groups (a) and (b) in addition to the above components: This is a continuous casting method of sulfur-based free-cutting steel.

すなわち、(a)群元素は、Cu、Ni、Cr、Mo、VおよびNbからなり、鋼の機械的特性を改善する元素である。また、(b)群元素は、Ti、Se、Te、Bi、Sn、Ca、Mgおよび希土類元素からなり、鋼の被削性をさらに改善する元素である。   That is, (a) group element consists of Cu, Ni, Cr, Mo, V, and Nb, and is an element that improves the mechanical properties of steel. The (b) group element is composed of Ti, Se, Te, Bi, Sn, Ca, Mg, and rare earth elements, and is an element that further improves the machinability of steel.

Cu:0.01〜1.0%:
Cuは、鋼の焼入れ性を向上させる元素であり、その効果を得るためには、0.01%以上を含有することが好ましい。一方、その含有率が1.0%を超えると鋼材の熱間加工性や被削性が低下する。そこで、Cuを含有させる場合は、その含有率の範囲を0.01〜1.0%とした。また、連続鋳造時には「スタークラッキング」と称する表面割れを誘発する元素であることから、Cuを0.03%以上含有する場合にはその1/3以上の含有率のNiを併せて含有させるのが好ましい。
Cu: 0.01 to 1.0%:
Cu is an element that improves the hardenability of steel, and in order to obtain the effect, it is preferable to contain 0.01% or more. On the other hand, when the content exceeds 1.0%, the hot workability and machinability of the steel material are degraded. Therefore, when Cu is contained, the range of the content is set to 0.01 to 1.0%. In addition, since it is an element that induces surface cracking called “star cracking” during continuous casting, when Cu is contained in an amount of 0.03% or more, Ni with a content ratio of 1/3 or more is also contained. Is preferred.

Ni:0.01〜1.0%:
Niは、固溶強化によって鋼の強度を向上させる効果を有する元素である。また、焼入れ性や靭性を改善する効果も有する。これらの効果を得るには、その含有率を0.01%以上とすることが好ましい。一方、含有率が1.0%を超えるとその効果は飽和するばかりか被削性が低下する。そこで、Niを含有させる場合は、その含有率の範囲を0.01〜1.0%とした。
Ni: 0.01 to 1.0%:
Ni is an element having an effect of improving the strength of steel by solid solution strengthening. It also has the effect of improving hardenability and toughness. In order to obtain these effects, the content is preferably 0.01% or more. On the other hand, if the content exceeds 1.0%, the effect is saturated and the machinability is lowered. Therefore, when Ni is contained, the content rate range is set to 0.01 to 1.0%.

Cr:0.01〜2.0%:
Crは、鋼の焼入れ性を改善する効果を有する元素である。その効果を得るためには0.01%以上を含有させるのが好ましい。しかし、含有率が2.0%を超えると被削性を劣化させる。そこで、Crを含有させる場合は、その含有率の範囲を0.01〜2.0%とした。
Cr: 0.01 to 2.0%:
Cr is an element having an effect of improving the hardenability of steel. In order to acquire the effect, it is preferable to contain 0.01% or more. However, if the content exceeds 2.0%, the machinability is deteriorated. Therefore, when Cr is contained, the content range is set to 0.01 to 2.0%.

Mo:0.01〜1.0%:
Moは、鋼組織を微細化し、靱性を改善する効果を有する。その効果を得るには0.01%以上を含有させることが好ましい。しかし、1.0%を超えて含有させてもその効果は飽和し、また、Moは高価な元素であることから、コスト増加につながる。そこで、Moを含有させる場合は、その含有率の範囲を0.01〜1.0%とした。
Mo: 0.01 to 1.0%:
Mo has the effect of refining the steel structure and improving toughness. In order to acquire the effect, it is preferable to contain 0.01% or more. However, even if the content exceeds 1.0%, the effect is saturated, and Mo is an expensive element, leading to an increase in cost. Therefore, when Mo is contained, the content rate range is set to 0.01 to 1.0%.

V:0.005〜0.5%、Nb:0.005〜0.1%:
VおよびNbは、鋼中で炭窒化物を形成し、鋼の強度を高める効果を有する元素である。その効果を得るためには、それぞれ0.005%以上を含有させるのが好ましい。しかし、Vは0.5%を、また、Nbは0.1%をそれぞれ超えて含有されると上記の効果が飽和するのみならず、炭化物や窒化物が過剰に生成し、被削性の劣化をきたす。そこで、これらの元素を含有させる場合は、その含有率の範囲を、Vについては0.005〜0.5%、Nbについては0.005〜0.1%とした。
V: 0.005-0.5%, Nb: 0.005-0.1%:
V and Nb are elements having the effect of forming carbonitrides in steel and increasing the strength of the steel. In order to acquire the effect, it is preferable to contain 0.005% or more of each. However, if the V content exceeds 0.5% and the Nb content exceeds 0.1%, not only the above effects are saturated, but also carbides and nitrides are generated excessively, and machinability is reduced. Causes deterioration. Therefore, when these elements are contained, the range of the content is set to 0.005 to 0.5% for V and 0.005 to 0.1% for Nb.

Ti:0.005〜0.30%:
Tiは、CまたはSとともにTi硫化物やTi炭硫化物を形成し、鋼中に微細に分散して鋼の被削性や熱間加工性を改善する効果を有する。この効果を得るためにはTiを0.005%以上含有させることが好ましい。さらに、Tiの含有率を増加すると、鋼中にTi硫化物やTi炭硫化物と金属相との共晶組織を形成し、鋼の被削性を一層改善する。この効果を得るためには0.03%以上含有させるのがより好ましい。しかし、0.30%を超えて多量に含有されると炭化物を形成するようになり、被削性を劣化させる。このため、Tiを含有させる場合の含有率の範囲は0.005〜0.30%とした。なお、より好ましいTi含有率の上限は0.20%である。
Ti: 0.005 to 0.30%:
Ti forms Ti sulfide or Ti carbon sulfide together with C or S and is finely dispersed in the steel, thereby improving the machinability and hot workability of the steel. In order to acquire this effect, it is preferable to contain 0.005% or more of Ti. Furthermore, when the Ti content is increased, a eutectic structure of Ti sulfide or Ti carbon sulfide and a metal phase is formed in the steel, and the machinability of the steel is further improved. In order to acquire this effect, it is more preferable to make it contain 0.03% or more. However, if it is contained in a large amount exceeding 0.30%, carbides are formed and the machinability is deteriorated. For this reason, the range of the content rate in the case of containing Ti is set to 0.005 to 0.30%. A more preferable upper limit of the Ti content is 0.20%.

Se:0.001〜0.01%:
Seは、MnとともにMn(S、Se)を形成し、被削性の改善に有効な元素である。また、Seを含有する硫化物は、熱間加工時の硫化物の伸びを抑制する作用があるので、熱間加工後の鋼材の機械的特性の異方性を低減する作用がある。これらの効果を得るためには、0.001%以上を含有させることが好ましい。しかし、Seは、0.01%を超えて多量に含有されるとその効果が飽和し、また、極めて高価な元素であることから、コスト高となる。そこで、含有させる場合は、その含有率の範囲を、0.001〜0.01%とした。
Se: 0.001 to 0.01%:
Se is an element that forms Mn (S, Se) together with Mn and is effective in improving machinability. Further, since the sulfide containing Se has an action of suppressing the elongation of sulfide during hot working, it has an action of reducing the anisotropy of mechanical properties of the steel material after hot working. In order to obtain these effects, it is preferable to contain 0.001% or more. However, if Se is contained in a large amount exceeding 0.01%, the effect is saturated, and the cost is high because it is an extremely expensive element. Then, when making it contain, the range of the content rate was made into 0.001-0.01%.

Te:0.001〜0.07%:
Teは、MnとともにMn(S、Te)を形成し、被削性の改善に有効な元素である。また、Teを含有する硫化物は、熱間加工時の硫化物の伸びを抑制する作用があるので、熱間加工後の鋼材の機械的特性の異方性を低減する作用がある。さらに、Teを含有させると被削性能の一因子である表面粗さを著しく改善する効果が得られる。これらの効果を得るためには、0.001%以上を含有させることが好ましく、特に、表面粗さが小さいことを重視する用途の場合には、0.03%以上を含有させることが好ましい。
Te: 0.001 to 0.07%:
Te is an element that forms Mn (S, Te) together with Mn and is effective in improving machinability. Moreover, since the sulfide containing Te has the effect | action which suppresses the elongation of the sulfide at the time of hot working, it has the effect | action which reduces the anisotropy of the mechanical characteristic of the steel materials after hot working. Further, when Te is contained, an effect of remarkably improving the surface roughness which is one factor of the cutting performance can be obtained. In order to acquire these effects, it is preferable to contain 0.001% or more, and it is preferable to contain 0.03% or more especially in the case of the use which attaches importance to small surface roughness.

しかし、Teは高価な元素であることから、多量に含有させるとコスト高となることはもちろん、0.07%を超えて多量に含有されると高温での延性が低下し、連続鋳造時に鋳片表面に割れを発生する。鋳片に割れが発生すると鋳片の表面手入れを行う必要が生じるのみならず、重度の割れの場合には、手入れが不可能となったり、さらには鋳造が不可能となることもある。そこで、Teを含有させる場合は、その含有率の範囲を、0.001〜0.07%とした。   However, since Te is an expensive element, if it is contained in a large amount, the cost becomes high, and if it is contained in a large amount exceeding 0.07%, the ductility at high temperature is lowered, and casting is performed during continuous casting. Cracks occur on one surface. When a crack occurs in the slab, not only the surface of the slab needs to be cleaned, but also in the case of a severe crack, the maintenance may be impossible or the casting may be impossible. Therefore, when Te is contained, the range of the content is set to 0.001 to 0.07%.

ここで、鋼材の表面粗さにおよぼすTeおよび酸素含有率の効果について、さらに説明を加える。図7は、酸素含有率と鋼材の表面粗さとの関係におよぼすTe含有の効果を示す図である。なお、Te含有率は0.04〜0.07%の範囲で変化させた。また、表面粗さは、直径60mmφの丸棒を切削により製作して切削試験に供し、その仕上げ面の粗さを接触式粗さ計により測定し、JIS B 0601の方法に準拠して最大粗さ(Rmax)にて表示した。   Here, the effect of Te and oxygen content on the surface roughness of the steel material will be further described. FIG. 7 is a graph showing the effect of Te content on the relationship between the oxygen content and the surface roughness of the steel material. The Te content was changed in the range of 0.04 to 0.07%. In addition, the surface roughness is determined by manufacturing a round bar having a diameter of 60 mmφ by cutting and subjecting it to a cutting test, measuring the roughness of the finished surface with a contact-type roughness meter, and measuring the maximum roughness according to the method of JIS B 0601. (Rmax).

同図の結果によれば、O含有率の増加およびTe含有率の増加にともなって表面の最大粗さ(Rmax)は小さくなり、表面粗さは改善される。従来のPb快削鋼では最大粗さが4〜6μm程度を得ることが可能であることから、それと同程度の仕上げ面の性状を得るためには、O含有率を0.01%以上にするとともに、Teを0.03〜0.07%
の範囲で含有させることが好ましい。
According to the result of FIG. 6, the maximum surface roughness (Rmax) decreases with an increase in the O content and an increase in the Te content, and the surface roughness is improved. In conventional Pb free cutting steel, it is possible to obtain a maximum roughness of about 4 to 6 μm. Therefore, in order to obtain a finished surface property equivalent to that, the O content is set to 0.01% or more. In addition, Te is 0.03-0.07%
It is preferable to contain in the range.

Bi:0.005〜0.3%、Sn:0.005〜0.3%
BiおよびSnは、いずれも低融点金属介在物として鋼材の切削加工時に潤滑効果を発揮し、被削性を改善する。その効果は、それぞれの含有率が0.005%以上で顕著になる。他方、連続鋳造時にはこれらの介在物が表面割れの起点となることがあり、表面品質悪化の原因となる。このため、これらの元素の含有率の上限をそれぞれ0.3%とした。
Bi: 0.005-0.3%, Sn: 0.005-0.3%
Bi and Sn are both low melting point metal inclusions, exhibit a lubricating effect when cutting steel, and improve machinability. The effect becomes remarkable when each content rate is 0.005% or more. On the other hand, during the continuous casting, these inclusions may become the starting point of the surface crack, which causes the surface quality to deteriorate. For this reason, the upper limit of the content rate of these elements was 0.3%, respectively.

Ca:0.0001〜0.01%、Mg:0.0001〜0.01%:
CaおよびMgは、強力な脱酸元素であり、溶鋼中で徹細な酸化物を多数生成し、MnS生成の核となる。これらの酸化物を核としたMnSは、熱間加工時に延伸が抑制される。また、CaおよびMgは、硫化物を形成し、MnS生成の核となる。このように、CaおよびMgは、硫化物を微細分散させ、形態を制御して被削性を改善する効果を有する。この効果を得たい場合には、CaおよびMgのいずれについても0.0001%以上含有させる。より好ましくは0.0005%以上含有させればよい。一方、これらの元素を0.01%を超えて多量に含有させてもその効果は飽和し、溶鋼の存在する高温では蒸気圧が高く歩留まりも悪化する。そこで、CaおよびMgを含有させる場合は、それらの含有率の範囲をいずれについても0.0001〜0.01%とした。
Ca: 0.0001 to 0.01%, Mg: 0.0001 to 0.01%:
Ca and Mg are powerful deoxidizing elements, and generate a large number of fine oxides in molten steel, which becomes the core of MnS generation. MnS having these oxides as nuclei is restrained from being stretched during hot working. Moreover, Ca and Mg form sulfides and become nuclei for generating MnS. Thus, Ca and Mg have the effect of finely dispersing sulfides and controlling the form to improve machinability. To obtain this effect, 0.0001% or more of Ca and Mg is contained. More preferably, the content may be 0.0005% or more. On the other hand, even if these elements are contained in a large amount exceeding 0.01%, the effect is saturated, and at a high temperature where molten steel exists, the vapor pressure is high and the yield is also deteriorated. Therefore, when Ca and Mg are contained, the range of their content is set to 0.0001 to 0.01% for all.

希土類元素:0.0005〜0.01%:
希土類元素は、ランタノイドとして分類される元素群である。これらの元素を含有させる場合には、通常、これらの元素を主要成分とする安価なミッシュメタルなどを用いて添加する。本発明では、希土類元素の含有率は、希土類元素の中の1種または2種以上の元素の合計含有率で表す。希土類元素は、Sおよび酸素とともに硫化物または酸化物を形成する。酸化物は微細に分散しMnS生成の核となるため、熱間加工時の延伸を抑制し、硫化物を微細に分散させ、形態を制御して被削性を向上させる。その効果を得るためには、0.0005%以上を含有させるのが好ましい。しかし、含有率が0.01%を超えると上記の効果が飽和するばかりでなく、多量の酸化物が生成し、連続鋳造過程において浸漬ノズル閉塞の原因となる。また、CaおよびMgと同様に添加歩留りが低いので多量に含有させるのはコスト的にも不利となる。そこで、希土類元素を含有させる場合は、その含有率の範囲を、0.0005〜0.01%とした。
Rare earth elements: 0.0005 to 0.01%:
Rare earth elements are a group of elements classified as lanthanoids. When these elements are contained, they are usually added by using an inexpensive misch metal containing these elements as main components. In the present invention, the rare earth element content is represented by the total content of one or more elements in the rare earth elements. Rare earth elements form sulfides or oxides with S and oxygen. Since the oxide is finely dispersed and becomes a nucleus of MnS formation, the stretching during hot working is suppressed, the sulfide is finely dispersed, and the form is controlled to improve the machinability. In order to acquire the effect, it is preferable to contain 0.0005% or more. However, if the content exceeds 0.01%, not only the above effects are saturated, but also a large amount of oxide is generated, which causes clogging of the immersion nozzle in the continuous casting process. Moreover, since the addition yield is low like Ca and Mg, it is disadvantageous in terms of cost to contain a large amount. Therefore, when the rare earth element is included, the range of the content is set to 0.0005 to 0.01%.

Pb:0.01%未満:
本発明では、Pbの含有率は特に規定しないが、本発明の目的がPbを含有しなくても良好な切削性能が得られる快削鋼の製造方法を提供することにあることから、不純物レベルのPbを含有する快削鋼の製造方法は本発明の方法に含まれる。スクラップからの混入などに起因して不純物として鋼中に含有されるPb含有率は高々0.01%程度であることを考慮すれば、本発明の方法は、Pb含有率が0.01%未満の快削鋼の製造方法が対象となる。
Pb: less than 0.01%:
In the present invention, the content of Pb is not particularly specified, but the object of the present invention is to provide a method for producing free-cutting steel that can obtain good cutting performance even if Pb is not contained. The method for producing free-cutting steel containing Pb is included in the method of the present invention. Considering that the Pb content contained in steel as an impurity due to contamination from scrap and the like is about 0.01% at most, the method of the present invention has a Pb content of less than 0.01%. The method for producing free-cutting steels is the target.

鋼中にTiおよびCrなどが含有されると、MnSの他にそれぞれTiの硫化物、Tiの炭硫化物、Crの硫化物などが生成する。しかし、本発明の方法で規定した成分組成の範囲では、MnSがそれらの硫化物よりも優先して生成し始めるため、MnSの生成開始時にMnがSに対して過剰であれば、内部割れの防止が可能であり、本発明の方法で規定する条件により良好な鋳片が得られる。また、CaおよびMgは、前述のとおり、硫化物の形態を制御する元素であり、MnSよりも優先して硫化物を形成するが、上述のとおり、その含有率は高々0.01%であり、さらに、酸化物も同時に生成することから、CaSまたはMgSとして固定される硫黄量は全硫黄量のごく一部である。したがって、CaおよびMgを含有する鋼種に関しても本発明の方法は適用できる。   When Ti and Cr are contained in the steel, Ti sulfide, Ti carbon sulfide, Cr sulfide and the like are generated in addition to MnS. However, in the component composition range defined by the method of the present invention, MnS begins to preferentially generate over those sulfides. Therefore, if Mn is excessive with respect to S at the start of MnS generation, internal cracks will occur. Can be prevented, and a good slab can be obtained under the conditions specified by the method of the present invention. Further, as described above, Ca and Mg are elements that control the form of sulfide, and form sulfide in preference to MnS. As described above, the content is at most 0.01%. Furthermore, since the oxide is also generated at the same time, the amount of sulfur fixed as CaS or MgS is a small part of the total amount of sulfur. Therefore, the method of the present invention can also be applied to steel types containing Ca and Mg.

本発明の効果を確認するため、表1に示す成分組成の供試鋼を溶製し、連続鋳造試験を行った。得られた鋳片サンプルを用いて内部割れの発生状況を調査するとともに、被削性などの材料性能についても調査し、試験結果の評価を行った。   In order to confirm the effects of the present invention, test steels having the composition shown in Table 1 were melted and subjected to a continuous casting test. The resulting slab sample was used to investigate the occurrence of internal cracks, and the material performance such as machinability was also investigated, and the test results were evaluated.

Figure 2005059096
Figure 2005059096

鋳造試験には鋳片断面が幅400mm×厚さ300mmの5点曲げ、1点矯正の垂直曲げ型ブルーム連続鋳造機を使用し、鋳造速度は0.55〜0.75m/minの範囲で鋳造試験を行った。   For the casting test, a 5-point bend with a slab cross section of width 400mm x thickness 300mm was used, and a 1-point straight vertical bending type bloom continuous casting machine was used. Casting speed was in the range of 0.55 to 0.75m / min. A test was conducted.

(内部割れの長さ)
鋳片の横断面および縦断面のサンプルを採取し、サルファプリントを行い、目視により最大の内部割れ発生長さを測定した。
(Internal crack length)
Samples of the cross section and vertical section of the slab were collected, subjected to sulfur printing, and the maximum internal crack occurrence length was measured visually.

内部割れは、その長さが10mm未満であれば圧延後の材料特性や表面性状などに悪影響を及ぼすことはなく、製品の超音波検査においても問題となるエコーが検出されることはない。しかし、割れ長さが10mmを超えると、用途や加工工程によっては製品の表面疵の原因になったり、疲労強度や被削性などの材料性能に悪影響を及ぼす。内部割れの長さが20mmを超えると圧延時に表面にまで伸張し、製品の表面疵の原因となる可能性が著しく増加することから、歩留りが著しく低下する。   If the length of the internal crack is less than 10 mm, the material properties and surface properties after rolling will not be adversely affected, and no echo that poses a problem in ultrasonic inspection of the product will be detected. However, if the crack length exceeds 10 mm, it may cause surface flaws of the product or adversely affect material performance such as fatigue strength and machinability depending on the application and processing process. When the length of the internal crack exceeds 20 mm, the yield extends significantly to the surface during rolling, and the possibility of causing surface defects of the product is remarkably increased.

(表面性状の調査)
連続鋳造により得られた鋳片を分塊圧延し、横断面の形状が160mm×160mmの角状ビレットとした。この角ビレットについて表面を目視検査し、表面品質を評価した。表面疵が存在する場合には、これを除去する必要があるため、グラインダーにより手入れを行った。なお、表面品質の評価は、下記のとおりとした。すなわち、手入れの必要のない場合を「良好」とし、部分的な手入れが必要な場合を「軽手入れ」とし、全面的な手入れが必要な場合を「重手入れ」とし、そして、疵が深く、手入れを行っても次工程で圧延可能なビレットが確保できない場合を「手入れ不可能」として、4段階に区分した。
(Survey of surface properties)
The slab obtained by continuous casting was subjected to block rolling to obtain a square billet having a cross-sectional shape of 160 mm × 160 mm. The surface of this square billet was visually inspected to evaluate the surface quality. If surface flaws exist, they must be removed, so they were maintained with a grinder. The surface quality was evaluated as follows. In other words, the case where no maintenance is required is “good”, the case where partial care is required is “light care”, the case where full care is required is “heavy care”, and the wrinkles are deep, A case where a billet that can be rolled in the next process could not be secured even though it was maintained was classified as “uncleanable” and divided into four stages.

(超音波検査)
分塊圧延したビレットを孔型圧延し、直径65mmφの丸棒鋼片に加工した。この丸棒鋼片について、下記の条件で超音波検査を行って内部欠陥の有無を判定し、不良率を求めて内部欠陥を評価した。すなわち、周波数を5MHzとして、JISに規定されたG形標準試験片を用いて探傷感度をV5=100%+6dBに設定した。この条件で測定を行って、エコー高さが50%以上の場合を不良とし、全検査数に対する不良率が5%未満の場合を「良好」とし、5%以上の場合を「不良」とした。
(Ultrasonic inspection)
The billet that had been rolled in pieces was punch-rolled and processed into round bar steel pieces having a diameter of 65 mm. About this round bar steel piece, the ultrasonic inspection was performed on the following conditions, the presence or absence of an internal defect was determined, the defect rate was calculated | required, and the internal defect was evaluated. That is, the frequency was set to 5 MHz, and the flaw detection sensitivity was set to V5 = 100% + 6 dB using a G-type standard test piece defined in JIS. Measurement was performed under these conditions. A case where the echo height was 50% or higher was regarded as defective, a case where the defect rate with respect to the total number of inspections was less than 5% was determined as “good”, and a case where the echo height was 5% or higher was determined as “bad” .

(被削性の調査および表面粗さの測定)
前記のようにして得られた丸棒を60mmφまで外削した後、切削試験に供した。被削性試験は、TiNコーティング処理が施されていないJIS P種の超硬工具を用いて行った。切削は乾式(潤滑油無し)の旋削で、その条件は、切削速度:150m/min、送り:0.10mm/rev、切り込み:2.0mmとし、この条件で30分切削した後、切削工具の平均逃げ面摩耗量(VB)を測定した。さらに、接触式粗さ計を使用して、仕上げ面の最大粗さを測定した。
(Investigation of machinability and measurement of surface roughness)
The round bar obtained as described above was externally cut to 60 mmφ and then subjected to a cutting test. The machinability test was performed using a JIS P type cemented carbide tool not subjected to TiN coating treatment. Cutting is dry (no lubricating oil), and the conditions are cutting speed: 150 m / min, feed: 0.10 mm / rev, cutting: 2.0 mm. After cutting for 30 minutes under these conditions, the cutting tool Average flank wear (VB) was measured. Furthermore, the maximum roughness of the finished surface was measured using a contact-type roughness meter.

(熱間加工性の評価)
熱間加工性の評価は次のように行った。すなわち、連続鋳造試験により得られた鋳片の表皮より120mm厚さの位置から直径10mm、長さ130mmの高温引張試験片を採取した。これを、固定間隔を110mmの条件で固定し、直接通電によって1100℃まで加熱し、20秒間保持後、歪み速度10-3/秒にて引張試験を行った。破断後の試験片の破断部の絞りを測定して熱間加工性を評価した。
(Evaluation of hot workability)
Evaluation of hot workability was performed as follows. That is, a high-temperature tensile test piece having a diameter of 10 mm and a length of 130 mm was taken from a position 120 mm thick from the skin of the slab obtained by the continuous casting test. This was fixed at a fixing interval of 110 mm, heated to 1100 ° C. by direct energization, held for 20 seconds, and then subjected to a tensile test at a strain rate of 10 −3 / sec. The hot workability was evaluated by measuring the squeezing of the rupture portion of the test piece after rupture.

表2に、上記で述べた項目についての試験結果を示した。   Table 2 shows the test results for the items described above.

Figure 2005059096
Figure 2005059096

鋼番号A〜Dを用いた試験番号1〜4、鋼番号Hを用いた試験番号8および鋼番号J〜Qを用いた試験番号10〜17は、本発明例であり、鋼番号E〜Gを用いた試験番号5〜7および鋼番号Iを用いた試験番号9は、比較例である。また、鋼番号A〜Gを用いた試験番号1〜7、鋼番号Lを用いた試験番号12および鋼番号Mを用いた試験番号13は、Cr、Nb、Ti、CaまたはTeといった任意添加元素のいずれをも含まない成分系での試験であり、鋼番号H〜Kを用いた試験番号8〜11および鋼番号N〜Qを用いた試験番号14〜17は、前記任意添加元素のいずれか1種以上を含む成分系での試験である。   Test numbers 1 to 4 using steel numbers A to D, test number 8 using steel numbers H and test numbers 10 to 17 using steel numbers J to Q are examples of the present invention, and steel numbers E to G Test Nos. 5-7 using No. and Test No. 9 using Steel No. I are comparative examples. Test numbers 1 to 7 using steel numbers A to G, test number 12 using steel number L, and test number 13 using steel number M are optional added elements such as Cr, Nb, Ti, Ca, or Te. The test numbers 8 to 11 using steel numbers H to K and the test numbers 14 to 17 using steel numbers N to Q are any of the above optional additive elements. It is a test in a component system containing one or more kinds.

さらに、鋼番号L〜Qを用いた試験番号12〜17は、O(酸素)含有率を増加させるか、またはTeを含有させるか、または、O含有率を増加させ且つTeを含有させた鋼を用いた試験であり、Teを含有させず、またO含有率を増加させない試験番号1〜11と比較して、特に切削試験後の仕上げ面の粗さに着目して評価を行った。   Furthermore, the test numbers 12 to 17 using the steel numbers L to Q increase the O (oxygen) content, or include Te, or increase the O content and include Te. In comparison with Test Nos. 1 to 11 that do not contain Te and do not increase the O content, the evaluation was performed with a particular focus on the roughness of the finished surface after the cutting test.

前記任意添加元素を含まない成分系の鋼を用いた試験のうち、本発明例である試験番号1〜4は、いずれも最大内部割れ長さは10mm未満であり、鋳造状況、圧延後の鋼片品質ともに問題はなく、良好な結果であった。ただし、C含有率が0.12%の鋼番号Cを用いた試験番号3では、鋳片表面にディプレッションやこれにともなうコーナー割れが発生した。また、通常は、鋳片のバルジングや曲げ応力に起因して鋳片の中心部近傍に最大の内部割れが発生するのに対して、試験番号3においては、ディプレッションに対応する鋳片の内部に長さ5mmの内部割れが発生した。これは、包晶反応にともなう不均一凝固に起因して発生した応力によるものと推察される。   Among the tests using component steels that do not contain the optional additive elements, the test numbers 1 to 4 that are examples of the present invention all have a maximum internal crack length of less than 10 mm. There was no problem in either quality, and the result was good. However, in test number 3 using steel number C with a C content of 0.12%, depletion and corner cracks associated therewith occurred on the slab surface. Further, normally, the largest internal crack occurs near the center of the slab due to bulging and bending stress of the slab, whereas in test number 3, the slab corresponding to the depletion is inside. An internal crack having a length of 5 mm occurred. This is presumed to be due to stress generated due to non-uniform solidification accompanying the peritectic reaction.

Mn含有率とS含有率の濃度積が0.9を超え、前記(1)式の関係を満たさない鋼番号Eを用いた試験番号5では、内部割れは許容範囲の10mm未満の値にとどまったが、100μm以上の粗大なMnSが生成した。このような粗大なMnSが生成すると、それらが圧延時における鋼片内部での割れの発生起点となり、超音波検査の不良率が悪化した。また、粗大なMnSの生成にともない微細なMnSの生成数が減少するため、これが被削性能に悪影響を与え、工具摩耗量が増加した。これに対して、Mn含有率とS含有率の濃度積が0.9に近い鋼番号Dを用いた試験番号4では、6mmの内部割れが発生し、工具摩耗量は、増加傾向にあるものの、良好な品質が得られた。   In test number 5 using steel number E in which the concentration product of Mn content and S content exceeds 0.9 and does not satisfy the relationship of the formula (1), the internal crack remains within the allowable range of less than 10 mm. However, coarse MnS of 100 μm or more was generated. When such coarse MnS was generated, they became the starting point of cracks in the steel slab during rolling, and the defect rate of ultrasonic inspection deteriorated. Moreover, since the number of fine MnS produced decreases with the production of coarse MnS, this has an adverse effect on the machining performance, and the amount of tool wear increases. On the other hand, in test number 4 using steel number D in which the concentration product of Mn content and S content is close to 0.9, an internal crack of 6 mm occurs, and the amount of tool wear tends to increase. Good quality was obtained.

また、Mn含有率に対してS含有率が高く、前記(2)式の関係を満足しない鋼番号FおよびGを用いた試験番号6および7では、それぞれ長い内部割れが発生し、これが原因となり、高温引張試験における破断部絞り値が低く、圧延時には表面疵が発生するとともに、超音波検査の不良率も極めて高く、劣った結果となった。   Moreover, in the test numbers 6 and 7 using the steel numbers F and G, which have a high S content relative to the Mn content and do not satisfy the relationship of the formula (2), long internal cracks are generated, respectively. The drawing value at the fracture in the high-temperature tensile test was low, surface flaws occurred during rolling, and the defect rate of ultrasonic inspection was extremely high, resulting in inferior results.

工具摩耗量は、前記任意添加元素を含まない成分系では、鋼番号Eを用いた試験番号5を除き、72〜84μmの範囲内にあり、本発明例も比較例も同程度の被削性能が得られている。粗大なMnSが生成した鋼番号Eを用いた試験番号5では、被削性は悪化し、工具摩耗量が増加した。   The amount of tool wear is in the range of 72 to 84 μm, except for test number 5 using steel number E, in the component system that does not contain the optional additive element. Is obtained. In test number 5 using steel number E in which coarse MnS was generated, machinability deteriorated and the amount of tool wear increased.

前記任意添加元素を含む成分系の鋼を用いた試験においても、前記(1)式および(2)式の関係を満足する鋼番号H、JおよびKを用いた試験番号8、10および11では、いずれも最大内部割れ長さは10mm未満であり、鋳造状況、圧延後の鋼片品質ともに問題はなく、良好な結果であった。鋼番号Hと同様にTiを含有する成分系でありながら、Mn含有量が低く、前記(2)式の関係を満足しない鋼番号Iを用いた試験番号9では、鋳片内部に長い内部割れが発生し、これが原因となって圧延時には表面疵が発生し、超音波検査の不良率も増加した。   Also in the test using the component steel containing the optional additive element, the test numbers 8, 10, and 11 using the steel numbers H, J, and K satisfying the relationship of the formulas (1) and (2). In either case, the maximum internal crack length was less than 10 mm, and there was no problem in the casting situation and the quality of the steel slab after rolling, which was a good result. Although it is a component system containing Ti as in Steel No. H, Test No. 9 using Steel No. I, which has a low Mn content and does not satisfy the relationship of the above formula (2), has a long internal crack inside the slab. As a result, surface defects occurred during rolling, and the defect rate of ultrasonic inspection also increased.

なお、Tiを含有させた場合には、前記任意添加元素を含まない成分系である鋼番号A〜Gを用いた場合に比較して、工具摩耗量が顕著に減少しており、被削性を重視する場合には、Tiを含有させることが有効であることがわかる。また、Caなどの被削性を向上させる他の元素を含有させた場合にも工具摩耗量は減少する。   In addition, when Ti is contained, the amount of tool wear is remarkably reduced as compared with the case where steel numbers A to G, which are component systems not containing the optional additive element, are used, and machinability is reduced. It is understood that it is effective to contain Ti when emphasizing the above. The amount of tool wear also decreases when other elements that improve machinability such as Ca are contained.

さらに、O含有率を増加させた鋼番号LおよびMを使用した試験番号12および13、ならびにTeを含有させた鋼番号N〜Qを使用した試験番号14〜17では、Te含有率の増加にともなってビレットの表面疵が若干増加したが、鋼番号A〜Kを使用した試験番号1〜11に比較して仕上げ面の表面粗さは良好な結果が得られた。特に、O含有率を0.008%以上とし、さらに、Te含有率を0.03〜0.07%とした鋼番号PおよびQを用いた試験番号16および17では、従来のPb快削鋼並みの極めて良好な表面性状が得られた。ただし、Te含有率の高い鋼番号Pを用いた試験番号16では、破断部絞り値が低下し、ビレット表面性状が若干悪化し、また、超音波検査の不良率も若干悪化した。   Furthermore, in test numbers 12 and 13 using steel numbers L and M having an increased O content, and test numbers 14 to 17 using steel numbers N to Q containing Te, the Te content increased. At the same time, the surface wrinkles of the billet were slightly increased. However, the surface roughness of the finished surface was good as compared with the test numbers 1 to 11 using the steel numbers A to K. In particular, in the test numbers 16 and 17 using steel numbers P and Q in which the O content is 0.008% or more and the Te content is 0.03 to 0.07%, the conventional Pb free cutting steel is used. A very good surface texture was obtained. However, in the test number 16 using the steel number P having a high Te content, the fracture portion drawing value was lowered, the billet surface properties were slightly deteriorated, and the defect rate of the ultrasonic inspection was also slightly deteriorated.

また、Teを含有させた鋼番号N〜Qを用いた試験番号14〜17では、Tiを含有させた鋼番号H〜Jを用いた試験番号8〜10と同様に、鋼番号A〜Gを用いた試験番号1〜7に比較して工具摩耗量が顕著に減少しており、被削性を重視する場合には、Teを含有させることも有効な手段であることがわかる。   In addition, in test numbers 14 to 17 using steel numbers N to Q containing Te, steel numbers A to G are set in the same manner as test numbers 8 to 10 using steel numbers H to J containing Ti. Compared with the test numbers 1 to 7 used, the amount of wear of the tool is remarkably reduced, and it can be seen that inclusion of Te is also an effective means when emphasizing machinability.

前記(2)式の関係を満足しない鋼番号F、GおよびIを用いた試験番号6、7および9では、熱間加工性を評価する破断部絞り値が著しく低下し、60%未満の値となっている。これらの試験では長い内部割れが発生しており、凝固時のミクロ偏析挙動により、内部割れの発生とともに液膜脆化が生じているものと推察される。   In test numbers 6, 7, and 9 using steel numbers F, G, and I that do not satisfy the relationship of the formula (2), the squeezing value for fracture at which the hot workability is evaluated is significantly reduced, and is less than 60%. It has become. In these tests, long internal cracks have occurred, and it is assumed that liquid film embrittlement has occurred along with the occurrence of internal cracks due to the microsegregation behavior during solidification.

本発明の連続鋳造方法によれば、凝固過程におけるMnおよびSなどの偏析成分の濃化をも考慮した上で、鋼成分組成を適正化することにより、粗大MnSの生成を防止し、内部割れを発生することなく、低炭素高硫黄含有快削鋼の連続鋳造を行うことが可能になる。よって、本発明の方法は、連続鋳造が困難であった硫黄系快削鋼の生産性および品質向上のための鋳造方法として広範に利用可能であり、当技術分野の発展に大きく寄与する。   According to the continuous casting method of the present invention, by taking into account the concentration of segregation components such as Mn and S in the solidification process, the formation of coarse MnS is prevented by optimizing the composition of the steel components, and internal cracks are prevented. It is possible to perform continuous casting of a low-carbon, high-sulfur-containing free-cutting steel without generating. Therefore, the method of the present invention can be widely used as a casting method for improving the productivity and quality of sulfur-based free-cutting steel, which has been difficult to continuously cast, and greatly contributes to the development of this technical field.

凝固過程における固相および液相内の溶質の濃度分布を模式的に示す図である。It is a figure which shows typically the concentration distribution of the solute in the solid phase in a solidification process, and a liquid phase. 凝固過程における残溶鋼内のMnおよびSの濃化を示す図である。It is a figure which shows the concentration of Mn and S in the residual molten steel in the solidification process. 種々のMnおよびS含有率を有する溶鋼を凝固させた試験により得られた鋳片内のMnSの生成状況を示す図である。It is a figure which shows the production | generation condition of MnS in the slab obtained by the test which solidified the molten steel which has various Mn and S content rate. 凝固過程における残溶鋼内のMnおよびSの濃度推移の一例を示す図である。It is a figure which shows an example of the density | concentration transition of Mn and S in the residual molten steel in the solidification process. 初期のMnおよびS濃度と、MnS晶出開始時のMnおよびS濃度との関係を示す図である。It is a figure which shows the relationship between the initial Mn and S density | concentration and the Mn and S density | concentration at the time of the MnS crystallization start. 内部割れの発生および粗大なMnSの生成を防止できる適正なMnおよびSの初期濃度範囲を示す図である。It is a figure which shows the appropriate initial concentration range of Mn and S which can prevent generation | occurrence | production of an internal crack and the production | generation of coarse MnS. 酸素含有率と表面粗さとの関係におよぼすTe含有の効果を示す図である。It is a figure which shows the effect of Te containing on the relationship between oxygen content rate and surface roughness.

Claims (5)

質量%で、C:0.05〜0.19%、Si:1.0%以下、Mn:0.4〜2.0%、P:0.001〜0.2%、S:0.2〜0.69%、Pb:0.01%未満、Al:0.2%以下、O(酸素):0.001〜0.02%およびN:0.001〜0.02%を含有し、残部がFeおよび不純物からなり、かつMnとSの含有率が下記(1)式および(2)式の関係を満足する溶鋼を連続鋳造することを特徴とする低炭素硫黄系快削鋼の連続鋳造方法。
[Mn%]×[S%]<0.9 ・・・(1)
[S%]<0.32×[Mn%]5 ・・・(2)
ここで、[Mn%]はMn含有率(質量%)を、[S%]はS含有率(質量%)をそれぞれ表す。
In mass%, C: 0.05 to 0.19%, Si: 1.0% or less, Mn: 0.4 to 2.0%, P: 0.001 to 0.2%, S: 0.2 -0.69%, Pb: less than 0.01%, Al: 0.2% or less, O (oxygen): 0.001-0.02% and N: 0.001-0.02%, A continuous low-carbon sulfur free-cutting steel characterized by continuously casting a molten steel comprising the balance Fe and impurities and having a Mn and S content satisfying the relationship of the following formulas (1) and (2): Casting method.
[Mn%] × [S%] <0.9 (1)
[S%] <0.32 × [Mn%] 5 (2)
Here, [Mn%] represents the Mn content (mass%), and [S%] represents the S content (mass%).
質量%で、C:0.05〜0.19%、Si:1.0%以下、Mn:0.4〜2.0%、P:0.001〜0.2%、S:0.2〜0.69%、Pb:0.01%未満、Al:0.2%以下、O(酸素):0.001〜0.02%およびN:0.001〜0.02%、ならびにCu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.01〜2.0%、Mo:0.01〜1.0%、V:0.005〜0.5%およびNb:0.005〜0.1%からなる群から選んだ1種または2種以上を含有し、残部がFeおよび不純
物からなり、かつMnとSの含有率が下記(1)式および(2)式の関係を満足する溶鋼を連続鋳造することを特徴とする低炭素硫黄系快削鋼の連続鋳造方法。
[Mn%]×[S%]<0.9 ・・・(1)
[S%]<0.32×[Mn%]5 ・・・(2)
ここで、[Mn%]はMn含有率(質量%)を、[S%]はS含有率(質量%)をそれぞれ表す。
In mass%, C: 0.05 to 0.19%, Si: 1.0% or less, Mn: 0.4 to 2.0%, P: 0.001 to 0.2%, S: 0.2 ~ 0.69%, Pb: less than 0.01%, Al: 0.2% or less, O (oxygen): 0.001-0.02% and N: 0.001-0.02%, and Cu: 0.01-1.0%, Ni: 0.01-1.0%, Cr: 0.01-2.0%, Mo: 0.01-1.0%, V: 0.005-0. 5% and Nb: containing one or more selected from the group consisting of 0.005 to 0.1%, the balance is made of Fe and impurities, and the contents of Mn and S are expressed by the following formula (1) And a continuous casting method for low-carbon sulfur-based free-cutting steel, characterized by continuously casting molten steel that satisfies the relationship of formula (2).
[Mn%] × [S%] <0.9 (1)
[S%] <0.32 × [Mn%] 5 (2)
Here, [Mn%] represents the Mn content (mass%), and [S%] represents the S content (mass%).
質量%で、C:0.05〜0.19%、Si:1.0%以下、Mn:0.4〜2.0%、P:0.001〜0.2%、S:0.2〜0.69%、Pb:0.01%未満、Al:0.2%以下、O(酸素):0.001〜0.02%およびN:0.001〜0.02%、ならびにTi:0.005〜0.30%、Se:0.001〜0.01%、Te:0.001〜0.07%、Bi:0.005〜0.3%、Sn:0.005〜0.3%、Ca:0.0001〜0.01%、Mg:0.0001〜0.01%および希土類元素:0.0005〜0.01%からなる群から選んだ1種または2種以上を含有し、残部がFeおよび不純物からなり、かつMnとSの含有率が下記(1)式および(2)式の関係を満足する溶鋼を連続鋳造することを特徴とする低炭素硫黄系快削鋼の連続鋳造方法。
[Mn%]×[S%]<0.9 ・・・(1)
[S%]<0.32×[Mn%]5 ・・・(2)
ここで、[Mn%]はMn含有率(質量%)を、[S%]はS含有率(質量%)をそれぞれ表す。
In mass%, C: 0.05 to 0.19%, Si: 1.0% or less, Mn: 0.4 to 2.0%, P: 0.001 to 0.2%, S: 0.2 -0.69%, Pb: less than 0.01%, Al: 0.2% or less, O (oxygen): 0.001-0.02% and N: 0.001-0.02%, and Ti: 0.005-0.30%, Se: 0.001-0.01%, Te: 0.001-0.07%, Bi: 0.005-0.3%, Sn: 0.005-0. Contains one or more selected from the group consisting of 3%, Ca: 0.0001-0.01%, Mg: 0.0001-0.01%, and rare earth elements: 0.0005-0.01% And continuously casting molten steel in which the balance is Fe and impurities, and the content ratio of Mn and S satisfies the relationship of the following formulas (1) and (2): Continuous casting method of low carbon sulfur-free-cutting steel according to symptoms.
[Mn%] × [S%] <0.9 (1)
[S%] <0.32 × [Mn%] 5 (2)
Here, [Mn%] represents the Mn content (mass%), and [S%] represents the S content (mass%).
質量%で、C:0.05〜0.19%、Si:1.0%以下、Mn:0.4〜2.0%、P:0.001〜0.2%、S:0.2〜0.69%、Pb:0.01%未満、Al:0.2%以下、O(酸素):0.001〜0.02%およびN:0.001〜0.02%、ならびにCu:0.01〜1.0%、Ni:0.01〜1.0%、Cr:0.01〜2.0%、Mo:0.01〜1.0%、V:0.005〜0.5%およびNb:0.005〜0.1%からなる群から選んだ1種または2種以上と、Ti:0.005〜0.30%、Se:0.001〜0.01%、Te:0.001〜0.07%、Bi:0.005〜0.3%、Sn:0.005〜0.3%、Ca:0.0001〜0.01%、Mg:0.0001〜0.01%および希土類元素:0.0005〜0.01%からなる群から選んだ1種または2種以上を含有し、残部がFeおよび不純物からなり、かつMnとSの含有率が下記(1)式および(2)式の関係を満足する溶鋼を連続鋳造することを特徴とする低炭素硫黄系快削鋼の連続鋳造方法。
[Mn%]×[S%]<0.9 ・・・(1)
[S%]<0.32×[Mn%]5 ・・・(2)
ここで、[Mn%]はMn含有率(質量%)を、[S%]はS含有率(質量%)をそれぞれ表す。
In mass%, C: 0.05 to 0.19%, Si: 1.0% or less, Mn: 0.4 to 2.0%, P: 0.001 to 0.2%, S: 0.2 ~ 0.69%, Pb: less than 0.01%, Al: 0.2% or less, O (oxygen): 0.001-0.02% and N: 0.001-0.02%, and Cu: 0.01-1.0%, Ni: 0.01-1.0%, Cr: 0.01-2.0%, Mo: 0.01-1.0%, V: 0.005-0. 1% or more selected from the group consisting of 5% and Nb: 0.005 to 0.1%, Ti: 0.005 to 0.30%, Se: 0.001 to 0.01%, Te : 0.001 to 0.07%, Bi: 0.005 to 0.3%, Sn: 0.005 to 0.3%, Ca: 0.0001 to 0.01%, Mg: 0.0001 to 0 .01% and rare Analogous elements: containing one or more selected from the group consisting of 0.0005 to 0.01%, the balance consisting of Fe and impurities, and the contents of Mn and S having the following formula (1) and ( 2) A continuous casting method of low-carbon sulfur-based free-cutting steel, characterized by continuously casting molten steel that satisfies the relationship of formula (2).
[Mn%] × [S%] <0.9 (1)
[S%] <0.32 × [Mn%] 5 (2)
Here, [Mn%] represents the Mn content (mass%), and [S%] represents the S content (mass%).
C含有率が0.05〜0.10質量%であることを特徴とする請求項1〜4のいずれかに記載の低炭素硫黄系快削鋼の連続鋳造方法。
C content rate is 0.05-0.10 mass%, The continuous casting method of the low carbon sulfur type free cutting steel in any one of Claims 1-4 characterized by the above-mentioned.
JP2004199624A 2003-07-28 2004-07-06 Continuous casting method of low carbon sulfur free cutting steel Active JP4325497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199624A JP4325497B2 (en) 2003-07-28 2004-07-06 Continuous casting method of low carbon sulfur free cutting steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003280565 2003-07-28
JP2004199624A JP4325497B2 (en) 2003-07-28 2004-07-06 Continuous casting method of low carbon sulfur free cutting steel

Publications (2)

Publication Number Publication Date
JP2005059096A true JP2005059096A (en) 2005-03-10
JP4325497B2 JP4325497B2 (en) 2009-09-02

Family

ID=34380116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199624A Active JP4325497B2 (en) 2003-07-28 2004-07-06 Continuous casting method of low carbon sulfur free cutting steel

Country Status (1)

Country Link
JP (1) JP4325497B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129531A1 (en) * 2005-05-30 2006-12-07 Sumitomo Metal Industries, Ltd. Low carbon sulfur free-machining steel
JP2007113038A (en) * 2005-10-19 2007-05-10 Sumitomo Metal Ind Ltd Method for producing low carbon sulfur free-cutting steel
JP2009106967A (en) * 2007-10-30 2009-05-21 Sumitomo Metal Ind Ltd Continuous casting method for steel
WO2010071060A1 (en) * 2008-12-16 2010-06-24 Jfe条鋼株式会社 Low-carbon sulphur free-cutting steel
KR100992342B1 (en) 2007-12-18 2010-11-04 주식회사 포스코 Free Cutting Steel Containing Sulfur and Refining Method for Manufacturing It
KR101197881B1 (en) 2009-12-28 2012-11-05 주식회사 포스코 Method for manufacturing bloom of low-carbon sulfur-containing free-cutting steel
CN109778073A (en) * 2019-02-20 2019-05-21 宝钢特钢长材有限公司 A kind of Cutting free automobile synchronizer steel and preparation method thereof
KR20190063711A (en) * 2017-11-30 2019-06-10 주식회사 포스코 Steel material and manufacturing method thereof
CN114250417A (en) * 2021-12-17 2022-03-29 广东韶钢松山股份有限公司 Tellurium-containing medium-carbon high-sulfur free-cutting steel, wire rod and production method of wire rod
CN114645217A (en) * 2022-03-25 2022-06-21 宝武杰富意特殊钢有限公司 Free-cutting steel and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924422B2 (en) * 2005-05-30 2012-04-25 住友金属工業株式会社 Low carbon sulfur free cutting steel
WO2006129531A1 (en) * 2005-05-30 2006-12-07 Sumitomo Metal Industries, Ltd. Low carbon sulfur free-machining steel
JP2007113038A (en) * 2005-10-19 2007-05-10 Sumitomo Metal Ind Ltd Method for producing low carbon sulfur free-cutting steel
JP4544126B2 (en) * 2005-10-19 2010-09-15 住友金属工業株式会社 Manufacturing method of low carbon sulfur free cutting steel
JP2009106967A (en) * 2007-10-30 2009-05-21 Sumitomo Metal Ind Ltd Continuous casting method for steel
KR100992342B1 (en) 2007-12-18 2010-11-04 주식회사 포스코 Free Cutting Steel Containing Sulfur and Refining Method for Manufacturing It
US8691141B2 (en) 2008-12-16 2014-04-08 JFE Bars and Shapes Corporation Low carbon resulfurized free cutting steel
WO2010071060A1 (en) * 2008-12-16 2010-06-24 Jfe条鋼株式会社 Low-carbon sulphur free-cutting steel
JP2010144187A (en) * 2008-12-16 2010-07-01 Jfe Bars & Shapes Corp Low-carbon, sulfur-containing free-cutting steel having excellent surface roughness and having reduced surface flaw
KR101197881B1 (en) 2009-12-28 2012-11-05 주식회사 포스코 Method for manufacturing bloom of low-carbon sulfur-containing free-cutting steel
KR20190063711A (en) * 2017-11-30 2019-06-10 주식회사 포스코 Steel material and manufacturing method thereof
KR102034429B1 (en) * 2017-11-30 2019-10-18 주식회사 포스코 Steel material and manufacturing method thereof
CN109778073A (en) * 2019-02-20 2019-05-21 宝钢特钢长材有限公司 A kind of Cutting free automobile synchronizer steel and preparation method thereof
CN114250417A (en) * 2021-12-17 2022-03-29 广东韶钢松山股份有限公司 Tellurium-containing medium-carbon high-sulfur free-cutting steel, wire rod and production method of wire rod
CN114645217A (en) * 2022-03-25 2022-06-21 宝武杰富意特殊钢有限公司 Free-cutting steel and preparation method thereof
CN114645217B (en) * 2022-03-25 2023-02-28 宝武杰富意特殊钢有限公司 Free-cutting steel and preparation method thereof

Also Published As

Publication number Publication date
JP4325497B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP4424503B2 (en) Steel bar and wire rod
JP6918238B2 (en) Martensitic S Free-cutting stainless steel
US20150071813A1 (en) Brass alloy for tap water supply member
JP4325497B2 (en) Continuous casting method of low carbon sulfur free cutting steel
WO2004067789A1 (en) High strength high toughness high carbon steel wire rod and process for producing the same
JP2005298909A (en) Cast slab having reduced surface crack
JP7408347B2 (en) High Ni alloy and method for producing high Ni alloy
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP5299169B2 (en) Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate
JP4203068B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP3912308B2 (en) Steel for machine structure
JP5089267B2 (en) Integrated crankshaft
JP4160103B1 (en) Steel ingot for forging
JP2009106967A (en) Continuous casting method for steel
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP2003041351A (en) High chromium steel and manufacturing method therefor
AU2014312968B2 (en) Cu-Sn coexisting steel and method for manufacturing the same
JP2003147492A (en) Ti-CONTAINING Fe-Cr-Ni STEEL HAVING EXCELLENT SURFACE PROPERTY, AND CASTING METHOD THEREFOR
JPH0711056B2 (en) Die steel manufacturing method
JP6303737B2 (en) Continuous casting method for steel pipe slabs
JP6299349B2 (en) Continuous casting method for slabs for oil well pipes with excellent toughness and pitting resistance
JP7370396B2 (en) Ferritic stainless steel
JP2006200032A (en) Low-carbon sulfur free-cutting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350