JP2005056677A - Cylindrical alkaline storage battery - Google Patents

Cylindrical alkaline storage battery Download PDF

Info

Publication number
JP2005056677A
JP2005056677A JP2003286324A JP2003286324A JP2005056677A JP 2005056677 A JP2005056677 A JP 2005056677A JP 2003286324 A JP2003286324 A JP 2003286324A JP 2003286324 A JP2003286324 A JP 2003286324A JP 2005056677 A JP2005056677 A JP 2005056677A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode
thickness
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003286324A
Other languages
Japanese (ja)
Other versions
JP4359099B2 (en
Inventor
Yasushi Maeda
泰史 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003286324A priority Critical patent/JP4359099B2/en
Publication of JP2005056677A publication Critical patent/JP2005056677A/en
Application granted granted Critical
Publication of JP4359099B2 publication Critical patent/JP4359099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical alkaline storage battery having long life and preventing increase in internal resistance and decrease in capacity by solving problems caused by thickening a positive electrode in order to increase capacity. <P>SOLUTION: The cylindrical alkaline storage battery has an electrode group formed by spirally winding a positive electrode 24 and a negative electrode through a separator, and the positive electrode 24 has a positive electrode body part 57 having a thickness of 0.95 mm or more and a tapered winding starting end part 36 and/or a tapered winding finishing end part 40. As suitable embodiment, the thickness T4 at the tip 58 of the tapered winding starting end part 36 and the tapered winding finishing end part 40 is 70% or less of the thickness T3 of the electrode body part 57, and a tilt angle θ1 of an inclined slope 60 in the tapered winding starting end part 36 and/or the tapered winding finishing end part 40 is set to larger than 0° and 60° or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は円筒型アルカリ蓄電池に関する。   The present invention relates to a cylindrical alkaline storage battery.

アルカリ蓄電池としては、含まれる活物質の種類によって、例えばニッケルカドミウム二次電池、ニッケル水素二次電池等をあげることができ、これらアルカリ蓄電池には円筒状の外装缶を備えた円筒型のものがある。外装缶は、安全弁付きの蓋体で密封され、その内部には、セパレータを間に挟んでそれぞれ帯状の負極と正極とを渦巻状に巻回した電極群を収容している。正極は、例えば3次元の網目構造を有する金属体と、この金属体の内部に保持された正極活物質とからなる。これら正極及び負極の容量は、それぞれに含まれる活物質量で規定されるが、この種の円筒型アルカリ蓄電池にあっては、過充電時に正極で発生した酸素ガスを負極で還元して内圧上昇を防止すべく、正極容量よりも負極容量の方が大きく、電池容量は正極容量により規定される。   Examples of the alkaline storage battery include a nickel cadmium secondary battery and a nickel hydride secondary battery, depending on the type of active material contained, and these alkaline storage batteries include a cylindrical battery with a cylindrical outer can. is there. The outer can is sealed with a lid with a safety valve, and an electrode group in which a strip-shaped negative electrode and a positive electrode are wound in a spiral shape with a separator interposed therebetween is accommodated therein. The positive electrode is made of, for example, a metal body having a three-dimensional network structure and a positive electrode active material held inside the metal body. The capacities of the positive electrode and the negative electrode are determined by the amount of active material contained in each, but in this type of cylindrical alkaline storage battery, oxygen gas generated at the positive electrode during overcharging is reduced at the negative electrode and the internal pressure is increased. Therefore, the negative electrode capacity is larger than the positive electrode capacity, and the battery capacity is defined by the positive electrode capacity.

この種の円筒型アルカリ蓄電池にあっては、電池容量すなわち正極容量を高めるために、正極活物質の増量や利用率の向上が要求され、前者の正極活物質増量のためには、正極の長さ、厚み、面積及び密度を大きくすることが知られている。   In this type of cylindrical alkaline storage battery, in order to increase the battery capacity, that is, the positive electrode capacity, it is required to increase the amount of the positive electrode active material or to improve the utilization rate. It is known to increase the thickness, area, area and density.

例えば、正極を長くしたものとして、特許文献1が開示する円筒型アルカリ蓄電池をあげることができる。この円筒型アルカリ蓄電池では、少なくとも一方の極板が先細り状に薄肉な両端部を有し、正極の両端部の外面には、傾斜面がプレスや削り取りによって形成されている。このように極板の両端部を先細り状に薄肉としたことで、極板の巻始め端部の巻込みが容易となって電極群の中心部に形成される空隙が小さくなるとともに、極板の巻終わり端部が、電極群と外装缶との間の隙間に挿入され、電極群の外周形状が略真円状となっている。つまり、特許文献1の円筒型アルカリ蓄電池の場合、電極群の中心及び周囲の空隙に、先細り状の両端部を延在させることで容積効率を向上し、高容量化を図っているものと考えられる。   For example, the cylindrical alkaline storage battery which patent document 1 discloses as what lengthened the positive electrode can be mention | raise | lifted. In this cylindrical alkaline storage battery, at least one electrode plate has both end portions that are tapered and thin, and inclined surfaces are formed on the outer surfaces of both end portions of the positive electrode by pressing or scraping. Thus, by making the both ends of the electrode plate tapered, the winding start end of the electrode plate can be easily wound, and the gap formed at the center of the electrode group is reduced. Is inserted into the gap between the electrode group and the outer can, so that the outer peripheral shape of the electrode group is substantially a perfect circle. That is, in the case of the cylindrical alkaline storage battery of Patent Document 1, it is considered that the volume efficiency is improved and the capacity is increased by extending the both ends of the tapered shape to the gap between the center and the periphery of the electrode group. It is done.

また例えば、特許文献1の場合のように極板を長くするのとは別に、正極の厚みを増大することが行われている。正極の厚みを増大させた場合、負極やセパレータを長くする必要がないことから、効率的に正極活物質量を増量することができ、近頃では、AAサイズの円筒型アルカリ蓄電池用に0.95mm以上もの厚みを有する正極の開発が行われている。
実開昭53−160720号公報(例えば、5頁1行目〜9行目等。)
For example, apart from making the electrode plate longer as in Patent Document 1, increasing the thickness of the positive electrode has been performed. When the thickness of the positive electrode is increased, it is not necessary to lengthen the negative electrode and the separator, so the amount of the positive electrode active material can be increased efficiently. Recently, 0.95 mm for an AA size cylindrical alkaline storage battery is available. A positive electrode having the above thickness has been developed.
Japanese Utility Model Publication No. 53-160720 (for example, page 5, line 1 to line 9)

しかしながら、正極の厚みを増大し、0.95mm以上の厚さを有する正極を用いて円筒型アルカリ蓄電池を組立てたときには、以下のような問題が生じる。   However, when the thickness of the positive electrode is increased and a cylindrical alkaline storage battery is assembled using a positive electrode having a thickness of 0.95 mm or more, the following problems occur.

1つには、正極の厚み増大にともない、電池寿命が短くなるという問題である。
正極の厚み増大にともない、電極群の横断面でみて、正極及び負極により描かれる渦巻形状の歪みが大きくなり、正極と負極との間隔が、正極及び負極の長手方向に亘って不均一となる。とりわけ、正極の厚みが0.95mm以上になると、この極板間隔のばらつきが大きくなる。極板間隔のばらつきが大きくなると、充電時に酸素ガスが局所的に発生して電池内圧が上昇するので、安全弁が作動してアルカリ電解液が外部へ漏出し、電池の寿命が短くなる。
One problem is that the battery life is shortened as the thickness of the positive electrode increases.
As the thickness of the positive electrode increases, the distortion of the spiral shape drawn by the positive electrode and the negative electrode increases in the cross section of the electrode group, and the distance between the positive electrode and the negative electrode becomes non-uniform across the longitudinal direction of the positive electrode and the negative electrode. . In particular, when the thickness of the positive electrode is 0.95 mm or more, the variation in the electrode plate spacing increases. When the variation in the distance between the electrode plates becomes large, oxygen gas is locally generated during charging and the internal pressure of the battery rises. Therefore, the safety valve is activated and the alkaline electrolyte leaks to the outside, shortening the battery life.

また1つには、負極巻始め端部が、正極の外面側で電極群の周方向に正極巻始め端部を超えて延出している場合、正極巻始め端部を超えて延出している負極の部分から負極合剤が剥離し、負極容量が低下するという問題である。   For one thing, when the negative electrode winding start end portion extends beyond the positive electrode winding start end portion in the circumferential direction of the electrode group on the outer surface side of the positive electrode, it extends beyond the positive electrode winding start end portion. This is a problem that the negative electrode mixture is peeled off from the negative electrode portion and the negative electrode capacity is reduced.

電極群の巻回後、電極群の周方向でみて正極巻始め端面の前方には、正極巻始め端面と、正極の内面側及び外面側からそれぞれ正極巻始め端面を超えて延出したセパレータの部分とによって隙間が区画され、この隙間の大きさは、正極の厚みに応じた大きさで形成される。このような隙間を有する電極群を用いた円筒型アルカリ蓄電池では、初期充放電後、この隙間に対してセパレータを介して電極群の径方向外側に位置付けられた負極の部分が、この隙間を縮小するように正極巻始め端面に向かって折れ曲がる。とりわけ、正極の厚みが0.95mm以上になると、正極巻始め端面前方における負極の折れ曲がりが大きくなり、この折れ曲がった負極の部分から負極合剤が剥離し、負極容量が低下してしまう。   After winding the electrode group, in the circumferential direction of the electrode group, in front of the positive electrode winding start end surface, the positive electrode winding start end surface and the separator extending beyond the positive electrode winding start end surface from the inner surface side and the outer surface side of the positive electrode, respectively. A gap is defined by the portion, and the size of the gap is formed according to the thickness of the positive electrode. In a cylindrical alkaline storage battery using an electrode group having such a gap, after the initial charge / discharge, the negative electrode portion positioned radially outside the electrode group via a separator with respect to this gap reduces the gap. As shown, it bends toward the end face of the positive electrode winding. In particular, when the thickness of the positive electrode is 0.95 mm or more, the negative electrode bends in front of the positive electrode winding start end surface, and the negative electrode mixture is peeled off from the bent negative electrode portion, resulting in a decrease in the negative electrode capacity.

またもう1つには、負極巻終わり端部が、正極の外面側で電極群の周方向に正極の巻終わり端部を超えて延出している場合、セパレータを介して正極巻終わり端部の外面側エッジに重ね合わされた負極の部分で、負極芯体が破断して内部抵抗が増大したり、あるいは、負極合剤が剥離して負極容量が低下するという問題がある。   In another case, when the negative electrode winding end end portion extends beyond the positive electrode winding end portion in the circumferential direction of the electrode group on the outer surface side of the positive electrode, the positive electrode winding end end portion is interposed via the separator. There is a problem that the negative electrode core is broken at the portion of the negative electrode superimposed on the outer surface side edge and the internal resistance is increased, or the negative electrode mixture is peeled off and the negative electrode capacity is reduced.

電極群の巻回時、セパレータを介して正極巻終わり端部の外面側エッジに重ね合わされた負極の部分が折れ曲がる。その上、この折れ曲がった負極の部分で電極群の外径が大きくなり、電極群の巻回時や外装缶への挿入時に、折れ曲がった負極の部分は電極群の巻回装置や外装缶と摺動する。とりわけ、正極の厚みが0.95mm以上になると、正極巻終わり端部の外面側エッジに重ね合わされた負極の部分の折れ曲がりが大きくなる。この折れ曲がった負極の部分と巻回装置や外装缶との摺動も激しくなり、この折れ曲がった負極部分で負極芯体が破断して内部抵抗が増大したり、あるいはこの部分から負極合剤が剥離して負極容量が低下してしまう。特に、折れ曲がった負極の部分の内角が160度未満になると、内部抵抗の増大や負極容量の低下が著しくなる。   During winding of the electrode group, the negative electrode portion superimposed on the outer surface side edge of the positive electrode winding end end portion is bent through the separator. In addition, the outer diameter of the electrode group increases at the bent negative electrode portion, and when the electrode group is wound or inserted into the outer can, the bent negative electrode portion is slid with the winding device or outer can of the electrode group. Move. In particular, when the thickness of the positive electrode is 0.95 mm or more, the bending of the negative electrode portion superimposed on the outer surface side edge of the positive electrode winding end is increased. Sliding between the bent negative electrode part and the winding device or the outer can also becomes intense, and the negative electrode core breaks at the bent negative electrode part to increase the internal resistance, or the negative electrode mixture peels from this part. As a result, the negative electrode capacity decreases. In particular, when the inner angle of the bent negative electrode portion is less than 160 degrees, the increase in internal resistance and the decrease in negative electrode capacity become significant.

本発明は、正極を厚くして高容量化に好適した円筒型アルカリ蓄電池における上記の問題を解決し、寿命が長く、内部抵抗の増大及び負極容量低下が防止された円筒型アルカリ蓄電池を提供することを目的とする。   The present invention provides a cylindrical alkaline storage battery that solves the above-described problems in a cylindrical alkaline storage battery that is suitable for increasing the capacity by increasing the thickness of the positive electrode, and that has a long life and prevents an increase in internal resistance and a decrease in negative electrode capacity. For the purpose.

上記した目的を達成するため、請求項1の発明では、導電性の円筒状外装缶と、前記外装缶内にアルカリ電解液とともに収容され、帯状の金属体及びこの金属体に充填された正極合剤からなる正極並びに負極をセパレータを介して渦巻状に巻回してなる電極群とを備えた円筒型アルカリ蓄電池において、前記正極は、前記電極群の巻始め及び巻終わりのそれぞれに対応する端部と、前記正極の両端部間に0.95mm以上の厚みを有する正極本体部とを有し、前記負極の両端部は、前記正極の外面側で前記電極群の周方向に前記正極の両端部を超えてそれぞれ延出し、前記正極の両端部のうち少なくとも一方は、前記正極本体部から先端に向かって先細り状に形成されていることを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a conductive cylindrical outer can, and a strip-shaped metal body that is accommodated in the outer can together with an alkaline electrolyte and filled with the metal body. A cylindrical alkaline storage battery comprising a positive electrode made of an agent and an electrode group formed by winding a negative electrode in a spiral shape with a separator interposed therebetween, wherein the positive electrode is an end corresponding to each of the start and end of winding of the electrode group And a positive electrode main body having a thickness of 0.95 mm or more between both ends of the positive electrode, and the both ends of the negative electrode are arranged at both ends of the positive electrode in the circumferential direction of the electrode group on the outer surface side of the positive electrode. And at least one of both end portions of the positive electrode is tapered from the positive electrode main body portion toward the tip.

上記した構成では、正極が0.95mm以上の厚みを有する正極本体部を有しているので、この円筒型アルカリ蓄電池は高容量化に好適する。
また、上記した構成では、正極が0.95mm以上の厚みを有する正極本体部を有し、かつ、負極の両端部が、正極の外面側にて電極群の周方向に正極の両端部を超えて延出しているけれども、正極の両端部のうち少なくとも一方は、正極本体部から先端に向かって先細り状に形成されているので、負極容量低下や内部抵抗の増大が防止されている。
In the above configuration, since the positive electrode has a positive electrode main body having a thickness of 0.95 mm or more, this cylindrical alkaline storage battery is suitable for increasing the capacity.
In the above-described configuration, the positive electrode has a positive electrode main body having a thickness of 0.95 mm or more, and both ends of the negative electrode exceed both ends of the positive electrode in the circumferential direction of the electrode group on the outer surface side of the positive electrode. However, since at least one of both end portions of the positive electrode is tapered from the positive electrode main body portion toward the tip, a decrease in negative electrode capacity and an increase in internal resistance are prevented.

より詳しくは、正極巻始め端部を先細り状に形成した場合、正極巻始め端部の先端における正極の厚みが薄くなるので、電極群の周方向でみて正極巻始め端面の前方にて、正極巻始め端面と、正極の内面側及び外面側からそれぞれ正極巻始め端面を超えて延出したセパレータの部分とによって区画される隙間が小さくなる。その故、この円筒型アルカリ蓄電池の初期充放電後、この隙間に対してセパレータを介して電極群の径方向外側に位置付けられた負極の部分が、この隙間を縮小するように正極巻始め端面に向かって折れ曲がったとしても、この折れ曲がりが小さいことから、この折れ曲がった負極の部分で負極芯体から負極芯体が剥離するのが防止され、もって、負極容量低下が防止されている。   More specifically, when the positive electrode winding start end portion is tapered, the thickness of the positive electrode at the tip of the positive electrode winding start end portion is reduced, so the positive electrode winding start end surface in front of the positive electrode winding start end surface as viewed in the circumferential direction of the electrode group. The gap defined by the winding start end surface and the portion of the separator that extends from the inner surface side and the outer surface side of the positive electrode beyond the positive electrode winding start end surface is reduced. Therefore, after the initial charge / discharge of this cylindrical alkaline storage battery, the negative electrode portion positioned radially outside the electrode group through the separator with respect to the gap is formed on the end surface of the positive electrode winding so as to reduce the gap. Even if it is bent, the bending is small, so that the negative electrode core is prevented from peeling off from the negative electrode core at the bent negative electrode portion, thereby preventing the negative electrode capacity from being lowered.

また、正極巻終り端部を先細り状に形成した場合、セパレータを介して正極巻終わり端部の外面に重ね合わされた負極の部分は、正極の巻終り端部の外面側エッジよりもむしろ、正極本体部と正極巻終わり端部との境界で折り曲げられる。このように正極の境界で負極が折れ曲がった場合、正極巻終り端部を先細り状に形成せずに正極巻終り端部の外面側エッジで負極が折れ曲がった場合に比べて負極の折れ曲がりが小さく、また、負極の折れ曲がった部分の電極群の径方向外側への突出量も小さいので、折れ曲がった負極の部分と電極群巻回装置や外装缶との摺動が抑制される。その故、この円筒型アルカリ蓄電池は、セパレータを介して正極の境界に重ね合わされた負極の部分で負極芯体が破断して内部抵抗が増大したり、あるいはこの部分から負極合剤が剥離して負極容量が低下することが防止されている。   In addition, when the end of the positive electrode winding is formed in a tapered shape, the portion of the negative electrode superimposed on the outer surface of the end of the positive electrode winding via the separator is not the outer edge of the positive end of the positive electrode. It is bent at the boundary between the main body and the positive electrode winding end. In this way, when the negative electrode is bent at the boundary of the positive electrode, the negative electrode is bent less than the case where the negative electrode is bent at the outer surface side edge of the positive electrode winding end without forming the end of the positive electrode winding in a tapered shape, Moreover, since the amount of protrusion of the bent portion of the negative electrode to the radially outer side of the electrode group is small, sliding between the bent negative electrode portion and the electrode group winding device or the outer can is suppressed. Therefore, in this cylindrical alkaline storage battery, the negative electrode core is broken at the portion of the negative electrode superimposed on the positive electrode boundary via the separator and the internal resistance increases, or the negative electrode mixture is peeled off from this portion. The negative electrode capacity is prevented from decreasing.

また更に、上記した構成では、正極巻始め端部を先細り状に形成した場合、電池寿命が長くなる。
より詳しくは、上記した構成において、正極巻始め端部を先細り状に形成した場合、正極本体部の厚みが0.95mm以上であっても、セパレータを介して正極の巻始め端部の外面側に重ね合わされた負極の部分は、正極巻始め端部と正極本体部との間の境界で折り曲げられ、小さくしか折れ曲がらないので、正極及び負極はきれいに渦巻状に巻回される。その故、この円筒型アルカリ蓄電池にあっては、正極と負極との間隔が、正極及び負極の長手方向に亘って均一となり、充電時に酸素ガスが局所的に発生して電池内圧が上昇するのが防止されるので、安全弁の作動によるアルカリ電解液の減少も防止され、寿命が長い。
Furthermore, in the above configuration, when the positive electrode winding start end portion is formed in a tapered shape, the battery life is extended.
More specifically, in the above-described configuration, when the positive electrode winding start end portion is formed in a tapered shape, even if the thickness of the positive electrode main body portion is 0.95 mm or more, the outer surface side of the positive electrode winding start end portion via the separator The portion of the negative electrode superimposed on the positive electrode is bent at the boundary between the positive electrode winding start end and the positive electrode main body, and is bent only small, so that the positive electrode and the negative electrode are neatly wound in a spiral shape. Therefore, in this cylindrical alkaline storage battery, the distance between the positive electrode and the negative electrode is uniform over the longitudinal direction of the positive electrode and the negative electrode, and oxygen gas is locally generated during charging, increasing the internal pressure of the battery. Therefore, the alkaline electrolyte is prevented from decreasing due to the operation of the safety valve, and the life is long.

請求項2の発明では、前記正極の両端部が、前記正極本体部から先端に向かって先細り状に形成され、前記正極の両端部における外面が、傾斜面として形成されていることを特徴としている。
上記した構成では、正極の両端部の外面を傾斜面として形成して、内部抵抗の増大及び負極容量低下をより確実に防止し、また、正極の端部を先細り状に形成する好適な態様として、正極の端部の外面を傾斜面として形成している。
The invention according to claim 2 is characterized in that both end portions of the positive electrode are tapered from the positive electrode main body portion toward the tip, and outer surfaces at both end portions of the positive electrode are formed as inclined surfaces. .
In the above-described configuration, the outer surfaces of both end portions of the positive electrode are formed as inclined surfaces to more reliably prevent an increase in internal resistance and a decrease in negative electrode capacity, and as a preferred aspect in which the end portion of the positive electrode is tapered. The outer surface of the end portion of the positive electrode is formed as an inclined surface.

請求項3の発明では、前記電極群の最外周には前記負極が巻回され、前記負極は、前記電極群の内側に巻回された負極本体部と、前記電極群の最外周部として巻回され、前記本体部よりも薄い負極薄肉部とを有することを特徴としている。
上記した構成では、電極群の内側に巻回された負極本体部に比べて、電極群の最外周部として巻回され、電池反応への寄与が小さい負極薄肉部を薄くした分、更に正極の厚みを増大可能であり、この円筒型アルカリ蓄電池は高容量化に一層好適する。ここで、負極薄肉部は、負極本体部に比べて薄いことから強度が低いけれども、セパレータを介して正極の境界に重ね合わされる負極薄肉部の部分の折れ曲がりが小さいので、この薄肉部の部分での負極芯体の破断や負極合剤の剥離が防止されている。その故、この円筒型アルカリ蓄電池は、高容量化に好適しながら、内部抵抗の増大及び負極容量低下が防止されている。
In the invention of claim 3, the negative electrode is wound around the outermost periphery of the electrode group, and the negative electrode is wound as a negative electrode main body wound inside the electrode group and as the outermost peripheral portion of the electrode group. A negative electrode thin-walled portion that is thinner than the main body portion.
In the configuration described above, compared to the negative electrode main body wound inside the electrode group, it is wound as the outermost peripheral part of the electrode group, and the negative electrode thin part that has a small contribution to the battery reaction is thinned. The thickness can be increased, and this cylindrical alkaline storage battery is more suitable for increasing the capacity. Here, although the strength of the negative electrode thin portion is lower than that of the negative electrode main body portion, the bending of the portion of the negative electrode thin portion that is superimposed on the boundary of the positive electrode via the separator is small. Breakage of the negative electrode core and peeling of the negative electrode mixture are prevented. Therefore, while this cylindrical alkaline storage battery is suitable for increasing the capacity, an increase in internal resistance and a decrease in negative electrode capacity are prevented.

上記した構成の好適な態様として、前記負極は、帯状の基板と、前記基板の内面側に保持された第1負極活物質層と、前記基板の外面側に保持された第2負極活物質層とを含み、前記薄肉部において、前記第2負極活物質層の厚みが前記第1負極活物質層の厚みの半分以下である(請求項4)。
上記した構成の好適な態様として、前記先細り状の正極端部の先端での厚みは、前記正極本体部の厚みの70%以下であることが好ましく、前記傾斜面の傾斜角度は0°を超えて60°以下であることが好ましい(請求項5)。
As a preferable aspect of the above-described configuration, the negative electrode includes a strip-shaped substrate, a first negative electrode active material layer held on the inner surface side of the substrate, and a second negative electrode active material layer held on the outer surface side of the substrate. In the thin portion, the thickness of the second negative electrode active material layer is half or less than the thickness of the first negative electrode active material layer (Claim 4).
As a preferred aspect of the above-described configuration, the thickness of the tapered positive electrode end is preferably 70% or less of the thickness of the positive electrode main body, and the inclination angle of the inclined surface exceeds 0 °. Is preferably 60 ° or less (claim 5).

この態様によれば、セパレータを介して正極の境界に重ね合わされて折れ曲がった負極の部分の内角が160度以上になるので、この折れ曲がった負極の部分での負極芯体の破断や負極合剤の剥離が確実に防止され、内部抵抗の増大及び負極容量低下が確実に防止されている。
上記した構成の好適な態様として、請求項6の発明では、前記電極群は巻芯を用いて巻回され、前記巻芯の外径は、前記外装缶の外径の30%以下であることを特徴としている。
According to this aspect, since the inner angle of the bent negative electrode portion overlaid on the boundary of the positive electrode via the separator is 160 degrees or more, the broken negative electrode core breaks in the bent negative electrode portion or the negative electrode mixture Peeling is reliably prevented, and an increase in internal resistance and a decrease in negative electrode capacity are reliably prevented.
As a preferred aspect of the above configuration, in the invention of claim 6, the electrode group is wound using a core, and the outer diameter of the core is 30% or less of the outer diameter of the outer can. It is characterized by.

この態様では、電極群の巻回に用いられる巻芯の外径が外装缶の外径の30%以下なので、電池寿命の低下がより確実に防止されている。
外装缶の外径に対する巻芯の外径の比率が30%を超えると、電極群の中心軸近傍に存在する空洞が大きくなり、充電時、正極で発生した酸素ガスがこの空洞内にたまりやすくなり、負極での酸素ガス還元反応に遅れが生じる。酸素ガス還元反応が遅れると内圧が上昇し、安全弁が作動してアルカリ電解液が漏出して電池寿命が低下してしまう。そこで、この態様では、正極、負極及びセパレータ等を外装缶内に収容するにあたり、外装缶の外径に対して30%以下の外径を有する巻芯を用いて電極群を巻回し、電極群の中心軸近傍の空洞を小さくする一方、空洞を小さくした分だけ酸素ガスを一時的に蓄える空間を電池内部に分散させることで、負極の全体で酸素ガス還元反応を効率的に進行させて酸素ガス還元反応の遅れを防止している。その故、この態様では、内圧上昇に伴なう安全弁の作動によるアルカリ電解液の漏出が防止され、電池寿命の低下がより確実に防止される。
In this aspect, since the outer diameter of the core used for winding the electrode group is 30% or less of the outer diameter of the outer can, the battery life is more reliably prevented from being reduced.
If the ratio of the outer diameter of the core to the outer diameter of the outer can exceeds 30%, the cavity existing in the vicinity of the central axis of the electrode group becomes large, and oxygen gas generated at the positive electrode tends to accumulate in this cavity during charging. Thus, there is a delay in the oxygen gas reduction reaction at the negative electrode. When the oxygen gas reduction reaction is delayed, the internal pressure increases, the safety valve is activated, the alkaline electrolyte leaks, and the battery life is reduced. Therefore, in this embodiment, when the positive electrode, the negative electrode, the separator, and the like are accommodated in the outer can, the electrode group is wound using a core having an outer diameter of 30% or less with respect to the outer diameter of the outer can. The space near the central axis of the anode is made smaller, while the space in which the oxygen gas is temporarily stored is dispersed within the battery by reducing the size of the cavity. The delay of the gas reduction reaction is prevented. Therefore, in this aspect, leakage of the alkaline electrolyte due to the operation of the safety valve accompanying the increase in internal pressure is prevented, and the battery life is more reliably prevented from being reduced.

また、上記した構成の好適な態様として、請求項7の発明では、前記電極群の一端と前記外装缶の蓋体との間に配置され、前記正極の一方の面に溶接された端部及び前記電極群と前記蓋体との間で折曲された折曲部を有する帯状の正極リードを備え、前記電極群は前記巻芯形状に対応した空洞部を有し、横断面でみたときに、前記空洞部の断面積を差し引いた前記電極群の断面積を、前記外装缶の内側の断面積から前記電極群の空洞部の断面積を差し引いた値で除した値の百分率(以下、電極群断面積比率という)が90%以上100%以下であることを特徴としている。   Moreover, as a preferable aspect of the above-described configuration, in the invention of claim 7, an end portion disposed between one end of the electrode group and the lid of the outer can and welded to one surface of the positive electrode and A belt-like positive electrode lead having a bent portion bent between the electrode group and the lid body, the electrode group has a cavity corresponding to the core shape, when viewed in cross section The percentage of the cross-sectional area of the electrode group obtained by subtracting the cross-sectional area of the hollow portion divided by the value obtained by subtracting the cross-sectional area of the hollow portion of the electrode group from the cross-sectional area inside the outer can (hereinafter referred to as an electrode) (Group cross-sectional area ratio) is 90% or more and 100% or less.

この態様によれば、電極群断面積比率が90%以上に設定されているので、更に、内部抵抗の増大が防止されている。
電極群断面積比率が低い場合、外装缶の周壁により径方向両側から電極群に加えられる圧縮力は小さくなるので、電極群における緊縛度が低くなる。緊縛度が低い状態で、正極の一方の面に溶接された正極リードを折曲げて外装缶の開口内に蓋体を配置した場合、正極リードの端部が溶接された正極の個所に大きな負荷がかかり、正極のこの個所で破断が生じて内部抵抗が高くなる。そこで、この態様では、電極群断面積比率を90%以上にすることで、電極群に加えられる圧縮力を大きくして電極群の緊縛度を高め、正極リードの端部が溶接された正極の個所を、セパレータを介して径方向両側から負極で押圧して挟持し、正極リードの折曲時における正極のこの個所での変形を防止している。その故、この態様では、正極の正極リード端部を溶接した個所での破断が防止され、内部抵抗の増大が防止される。
According to this aspect, since the electrode group cross-sectional area ratio is set to 90% or more, an increase in internal resistance is further prevented.
When the electrode group cross-sectional area ratio is low, the compressive force applied to the electrode group from both sides in the radial direction by the peripheral wall of the outer can is reduced, so that the degree of binding in the electrode group is lowered. If the positive lead welded to one side of the positive electrode is bent and the lid is placed in the opening of the outer can with a low degree of tightness, a large load is applied to the positive electrode where the end of the positive lead is welded. And a breakage occurs at this portion of the positive electrode, increasing the internal resistance. Therefore, in this aspect, by setting the electrode group cross-sectional area ratio to 90% or more, the compressive force applied to the electrode group is increased to increase the tightness of the electrode group, and the positive electrode lead end welded to the positive electrode lead is welded. The part is pressed and held by the negative electrode from both sides in the radial direction via the separator to prevent the positive electrode from being deformed at this point when the positive electrode lead is bent. For this reason, in this aspect, breakage at the portion where the positive electrode lead end of the positive electrode is welded is prevented, and an increase in internal resistance is prevented.

以上説明したように、本発明の円筒型アルカリ蓄電池は、正極本体部の厚みが0.95mm以上であって高容量化に好適する一方、正極の少なくとも一方の正極端部を先細り状に形成したので、セパレータを介して先細り状の正極端部近傍に隣接する負極の部分で負極芯体の破断や負極合剤の剥離が防止され、内部抵抗の増大や負極容量低下が防止されて品質が向上している。   As described above, in the cylindrical alkaline storage battery of the present invention, the thickness of the positive electrode main body is 0.95 mm or more, which is suitable for high capacity, and at least one positive electrode end of the positive electrode is tapered. Therefore, the negative electrode core adjacent to the vicinity of the tapered positive electrode end through the separator is prevented from breaking the negative electrode core and peeling of the negative electrode mixture, thereby preventing an increase in internal resistance and a decrease in negative electrode capacity, thereby improving quality. doing.

また、本発明の円筒型アルカリ蓄電池は、正極の巻始め端部を先細り状に形成した場合、正極本体部の厚みが0.95mm以上であっても、電極群において正極及び負極の間隔が長手方向に亘って均一となり、充電時に酸素ガスの局所的な発生が防止されて内圧上昇が防止されているので寿命が長い。   In the cylindrical alkaline storage battery of the present invention, when the winding start end portion of the positive electrode is tapered, the distance between the positive electrode and the negative electrode is long in the electrode group even if the thickness of the positive electrode main body portion is 0.95 mm or more. It becomes uniform over the direction, and since the local generation of oxygen gas during charging is prevented and the increase in internal pressure is prevented, the life is long.

以下に添付の図面を参照して、本発明の一実施形態のAAサイズの円筒型ニッケル水素二次電池(以下、電池A)を詳細に説明する。   Hereinafter, an AA-sized cylindrical nickel-hydrogen secondary battery (hereinafter referred to as a battery A) according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示したように、電池Aは上端が開口した有底円筒形状をなす外装缶10を備え、電池AがAAサイズであることから、外装缶10は13.5mm以上14.5mm以下の外径Dを有する(図2参照)。外装缶10は導電性を有して負極端子として機能し、外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性の蓋板14が配置され、開口縁をかしめ加工することにより絶縁パッキン12及び蓋板14は開口内に固定されている。   As shown in FIG. 1, the battery A includes an outer can 10 having a bottomed cylindrical shape with an open upper end. Since the battery A is AA size, the outer can 10 has a size of 13.5 mm to 14.5 mm. It has an outer diameter D (see FIG. 2). The outer can 10 has conductivity and functions as a negative electrode terminal. In the opening of the outer can 10, a conductive cover plate 14 is disposed via a ring-shaped insulating packing 12, and the edge of the opening is caulked. Thus, the insulating packing 12 and the cover plate 14 are fixed in the opening.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に蓋板14の外面上には、弁体18を覆う帽子状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18とともに蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生してその内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。   The cover plate 14 has a gas vent hole 16 in the center, and a rubber valve element 18 is disposed on the outer surface of the cover plate 14 so as to close the gas vent hole 16. Further, a cap-shaped positive terminal 20 covering the valve body 18 is fixed on the outer surface of the cover plate 14, and the positive terminal 20 presses the valve body 18 against the cover plate 14. Accordingly, the outer can 10 is normally airtightly closed by the lid plate 14 together with the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and its internal pressure increases, the valve body 18 is compressed and the gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, and the positive electrode terminal 20 form a safety valve.

外装缶10内には、アルカリ電解液(図示せず)とともに略円柱状の電極群22が収容され、電極群22はその最外周部が外装缶10の周壁に直接接触している。電極群22は、正極24、負極26及びセパレータ28からなり、アルカリ電解液としては、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができる。   A substantially cylindrical electrode group 22 is accommodated in the outer can 10 together with an alkaline electrolyte (not shown), and the outermost peripheral portion of the electrode group 22 is in direct contact with the peripheral wall of the outer can 10. The electrode group 22 includes a positive electrode 24, a negative electrode 26, and a separator 28. Examples of the alkaline electrolyte include a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, and an aqueous solution obtained by mixing two or more of these. Etc.

更に外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極24及び蓋板14に接続されている。従って、正極端子20と正極24との間は、正極リード30及び蓋板14を介して電気的に接続されている。より詳しくは、正極リード30は帯状をなし、蓋板14を外装缶14の開口内に配置する時に、電極群22と蓋板14との間にて折り曲げられて収容され、正極リード30の電極群22側の端部は、正極24の一方の面に面接触した状態で溶接されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。   Further, in the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the lid plate 14, and both ends of the positive electrode lead 30 are connected to the positive electrode 24 and the lid plate 14. Therefore, the positive electrode terminal 20 and the positive electrode 24 are electrically connected via the positive electrode lead 30 and the lid plate 14. More specifically, the positive electrode lead 30 has a band shape, and is folded and accommodated between the electrode group 22 and the cover plate 14 when the cover plate 14 is disposed in the opening of the outer can 14. The end portion on the group 22 side is welded in a state of surface contact with one surface of the positive electrode 24. A circular insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit provided in the insulating member 32. A circular insulating member 34 is also disposed between the electrode group 22 and the bottom of the outer can 10.

図2を参照すると、電極群22において、正極24及び負極26は、セパレータ28を間に挟んだ状態で電極群22の径方向でみて交互に重ね合わされている。   Referring to FIG. 2, in the electrode group 22, the positive electrode 24 and the negative electrode 26 are alternately overlapped when viewed in the radial direction of the electrode group 22 with the separator 28 interposed therebetween.

より詳しくは、電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28を用意し、これら正極24及び負極26を、セパレータ28を介してそれらの一端側から巻芯を用いて渦巻状に巻回して形成される。このため、正極24及び負極26の一端部(巻始め端部)36,38が電極群22の中心側に位置付けられる一方、正極24及び負極26の他端部(巻終わり端部)40,42が電極群22の外周側に位置付けられている。また、負極26は、正極24に比べて長く、電極群22の径方向でみて正極24よりも内側に巻かれるとともに、正極24よりも外側に巻かれている。そして、負極巻始め端部38は、電極群22の中心側を向いた正極24の径方向内面側で電極群22の周方向に正極巻始め端部36を超えて延出し、一方、負極巻終わり端部42は、電極群22の外周側を向いた正極24の径方向外面側で、電極群22の周方向に正極巻終わり端部40を超えて延出している。従って、負極26は、セパレータ28を介して正極24を長手方向全域に亘って両側から挟んでいる。電極群22の最外周にはセパレータ28は巻回されておらず、負極26が電極群22の最外周部を形成し、電極群22の最外周部において、負極26と外装缶10とは互いに電気的に接続されている。なお、巻回後に巻芯は電極群22から引き抜かれるので、電極群22はその中心に、巻芯の形状に対応した空洞部44を有する。ここで、電極群22の横断面積は、図3(a)に斜線で示したように、外装缶10の内側の断面積から、空洞部44と、電極群22と外装缶との間に生じた隙間45とを差し引いた値となるが、本実施形態では好適な態様として、この電極群22の横断面積を、外装缶10の周壁内側の断面積から空洞部44の断面積を差し引いた値、つまり図3(b)に斜線で示した横断面積で除した値の百分率、すなわち電極群断面比率が90%以上100%以下の範囲内に入っている。   More specifically, the electrode group 22 is provided with a belt-like positive electrode 24, a negative electrode 26, and a separator 28, respectively, and the positive electrode 24 and the negative electrode 26 are spirally formed from one end side of the separator 24 via a core. It is formed by winding. Therefore, one end portions (winding start end portions) 36 and 38 of the positive electrode 24 and the negative electrode 26 are positioned on the center side of the electrode group 22, while the other end portions (winding end end portions) 40 and 42 of the positive electrode 24 and the negative electrode 26. Is positioned on the outer peripheral side of the electrode group 22. The negative electrode 26 is longer than the positive electrode 24, and is wound inside the positive electrode 24 and wound outside the positive electrode 24 in the radial direction of the electrode group 22. The negative electrode winding start end portion 38 extends beyond the positive electrode winding start end portion 36 in the circumferential direction of the electrode group 22 on the radially inner surface side of the positive electrode 24 facing the center side of the electrode group 22. The end 42 extends on the radially outer surface side of the positive electrode 24 facing the outer peripheral side of the electrode group 22 and extends beyond the positive electrode winding end 40 in the circumferential direction of the electrode group 22. Accordingly, the negative electrode 26 sandwiches the positive electrode 24 from both sides across the entire longitudinal direction via the separator 28. The separator 28 is not wound around the outermost periphery of the electrode group 22, and the negative electrode 26 forms the outermost peripheral portion of the electrode group 22. In the outermost peripheral portion of the electrode group 22, the negative electrode 26 and the outer can 10 are mutually connected. Electrically connected. Since the winding core is pulled out from the electrode group 22 after winding, the electrode group 22 has a hollow portion 44 corresponding to the shape of the winding core at the center thereof. Here, the cross-sectional area of the electrode group 22 is generated between the cavity 44 and the electrode group 22 and the outer can from the cross-sectional area inside the outer can 10 as indicated by hatching in FIG. In this embodiment, as a preferred mode, the cross sectional area of the electrode group 22 is obtained by subtracting the cross-sectional area of the cavity 44 from the cross-sectional area inside the peripheral wall of the outer can 10. That is, the percentage of the value divided by the cross-sectional area shown by hatching in FIG. 3B, that is, the electrode group cross-sectional ratio is in the range of 90% to 100%.

セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものをあげることができる。
負極26は、例えば、図4及び図5に展開して示したように、帯状をなす導電性の負極芯体46を有し、この負極芯体46には負極合剤が保持されている。負極芯体46は、厚み方向に複数の貫通孔を有するシート状の金属材からなり、このようなものとして、例えば、パンチングメタル、金属粉末焼結体基板、エキスパンデッドメタル及びニッケルネット等をあげることができる。とりわけ、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板は負極芯体46に好適する。なお、図1及び図2中、作図上の都合により、負極芯体46を省略した。
Examples of the material of the separator 28 include polyamide fiber nonwoven fabrics, and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene, to which hydrophilic functional groups are added.
For example, as shown in FIGS. 4 and 5, the negative electrode 26 has a conductive negative electrode core 46 in a strip shape, and the negative electrode mixture 46 holds a negative electrode mixture. The negative electrode core 46 is made of a sheet-like metal material having a plurality of through-holes in the thickness direction, and examples thereof include a punching metal, a metal powder sintered body substrate, an expanded metal, and a nickel net. I can give you. In particular, a punched metal or a metal powder sintered body substrate obtained by molding and sintering a metal powder is suitable for the negative electrode core 46. In FIG. 1 and FIG. 2, the negative electrode core 46 is omitted for convenience of drawing.

負極合剤は、電池Aがニッケル水素二次電池であることから、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子及び結着剤からなるが、水素吸蔵合金に代えて、例えばカドミウム化合物を用いて電池Aをニッケルカドミウム二次電池としてもよく、特に限定されない。ただし、電池の高容量化には、ニッケル水素二次電池が好適する。尚、本発明において水素吸蔵合金のことを、便宜上活物質ともいう。
水素吸蔵合金粒子は、電池Aの充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えば、LaNi5やMmNi5(Mmはミッシュメタル)等のAB5型系のものをあげることができる。また、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。
The negative electrode mixture is composed of the hydrogen storage alloy particles and the binder capable of storing and releasing hydrogen as the negative electrode active material since the battery A is a nickel hydrogen secondary battery. Instead of the hydrogen storage alloy, for example, The battery A may be a nickel cadmium secondary battery using a cadmium compound, and is not particularly limited. However, a nickel-hydrogen secondary battery is suitable for increasing the capacity of the battery. In the present invention, the hydrogen storage alloy is also referred to as an active material for convenience.
The hydrogen storage alloy particles may be any particles that can store hydrogen generated electrochemically in an alkaline electrolyte when the battery A is charged and can easily release the stored hydrogen during discharge. Such a hydrogen storage alloy is not particularly limited, and examples thereof include AB 5 type alloys such as LaNi 5 and MmNi 5 (Mm is a misch metal). In addition, examples of the binder include hydrophilic or hydrophobic polymers.

上記した負極合剤は、負極芯体46の貫通孔内に充填されるとともに、負極芯体46がシート状であることから、負極芯体46の両面上に層状にして保持されている。以下では、負極芯体46の内面を被覆し、電極群22の中心軸側を向いた負極合剤の層を内側水素吸蔵合金層48又は内側合金層48といい、負極芯体46の外面を被覆し、電極群22の外側を向いた負極合剤の層を外側水素吸蔵合金層50又は外側合金層50という。
負極26において、内側合金層48の厚みT2は、負極巻始め端部38から負極巻終わり端部42に亘って一定である。一方、外側合金層50は、負極巻始め端部38と負極巻終わり端部42との間で厚みが変化し、負極26は、外側合金層50の厚みに関して、負極芯体46の長手方向でみて3つの領域、すなわち、負極巻始め端部38から負極巻終わり端部42に向かって順に、負極本体部52、負極境界部54および負極薄肉部56に区分けされる。
The negative electrode mixture described above is filled in the through hole of the negative electrode core body 46 and is held in layers on both surfaces of the negative electrode core body 46 because the negative electrode core body 46 is in a sheet form. Hereinafter, the layer of the negative electrode mixture that covers the inner surface of the negative electrode core 46 and faces the central axis side of the electrode group 22 is referred to as the inner hydrogen storage alloy layer 48 or the inner alloy layer 48, and the outer surface of the negative electrode core 46 is The layer of the negative electrode mixture that is covered and faces the outside of the electrode group 22 is referred to as an outer hydrogen storage alloy layer 50 or an outer alloy layer 50.
In the negative electrode 26, the thickness T <b> 2 of the inner alloy layer 48 is constant from the negative electrode winding start end portion 38 to the negative electrode winding end portion 42. On the other hand, the outer alloy layer 50 changes in thickness between the negative electrode winding start end portion 38 and the negative electrode winding end end portion 42, and the negative electrode 26 has a thickness in the longitudinal direction of the negative electrode core 46 with respect to the thickness of the outer alloy layer 50. Thus, three regions, that is, the negative electrode winding start end portion 38 and the negative electrode winding end portion 42 are sequentially divided into a negative electrode main body portion 52, a negative electrode boundary portion 54, and a negative electrode thin portion 56.

負極本体部52は電極群22の内側に巻回され、セパレータ28介して両側に正極24が配置されている。負極本体部52における外側合金層50の厚みは、内側合金層48の厚みT2に等しく一定である。
負極薄肉部56は、電極群22の外側に巻回されて電極群22の最外周部を形成し、正極巻終わり端部40の外側をセパレータ28を介して囲む一方、外装缶10の周壁と密接する。負極薄肉部56における外側合金層50の厚みT1は、負極芯体46の長手方向でみて一定であり、且つ、負極本体部52における外側合金層50の厚み、すなわち内側合金層48の厚みT2よりも薄い。従って、負極薄肉部56においては、内側合金層48の方が外側合金層50よりも厚い。なお、本実施形態では好ましい態様として、外側合金層50の厚みT1は内側合金層48の厚みT2の半分以下に設定されている。
The negative electrode main body 52 is wound inside the electrode group 22, and the positive electrode 24 is disposed on both sides via the separator 28. The thickness of the outer alloy layer 50 in the negative electrode main body 52 is equal to the thickness T2 of the inner alloy layer 48 and is constant.
The negative electrode thin portion 56 is wound around the outer side of the electrode group 22 to form the outermost peripheral portion of the electrode group 22, and surrounds the outer side of the positive electrode winding end end portion 40 via the separator 28, Closely. The thickness T1 of the outer alloy layer 50 in the negative electrode thin portion 56 is constant in the longitudinal direction of the negative electrode core 46, and the thickness of the outer alloy layer 50 in the negative electrode main body 52, that is, the thickness T2 of the inner alloy layer 48. Is also thin. Therefore, in the negative electrode thin portion 56, the inner alloy layer 48 is thicker than the outer alloy layer 50. In the present embodiment, as a preferable aspect, the thickness T1 of the outer alloy layer 50 is set to be equal to or less than half the thickness T2 of the inner alloy layer 48.

負極境界部54は、負極本体部52と負極薄肉部56との間に形成されている。負極境界部54は、電極群22として巻回されたとき、電極群22の周方向でみて正極巻終わり端部40とは異なる位置に位置付けられていることが好ましく、本実施形態では正極巻終わり端部40の内側にはセパレータ28を介して負極本体部52が配置されている。ただし、負極境界部54と正極巻終わり端部40との周方向位置は特には限定されない。また、負極境界部54は、長さLを有し、負極芯体46の長手方向でみて厚みが変化する。より詳しくは、負極境界部54における外側合金層50の厚みは、負極本体部52から負極薄肉部56に向かって略一定の変化率にて徐々に減少し、厚みT2から厚みT1まで変化する。   The negative electrode boundary portion 54 is formed between the negative electrode main body portion 52 and the negative electrode thin portion 56. When the negative electrode boundary portion 54 is wound as the electrode group 22, the negative electrode boundary portion 54 is preferably positioned at a position different from the positive electrode winding end portion 40 in the circumferential direction of the electrode group 22. A negative electrode main body 52 is disposed inside the end 40 via a separator 28. However, the circumferential position between the negative electrode boundary portion 54 and the positive electrode winding end portion 40 is not particularly limited. Further, the negative electrode boundary portion 54 has a length L, and the thickness changes in the longitudinal direction of the negative electrode core body 46. More specifically, the thickness of the outer alloy layer 50 at the negative electrode boundary portion 54 gradually decreases at a substantially constant change rate from the negative electrode main body portion 52 toward the negative electrode thin portion 56, and changes from the thickness T2 to the thickness T1.

なお、上記したように負極26が、負極本体部52、負極境界部54及び負極薄肉部56を有し、負極薄肉部56の厚みが負極本体部52の厚みよりも薄いことが好ましいが、負極26の厚みは特に限定されず、長手方向でみて一定であってもよい。
正極24は、例えば、帯状をなす導電性の正極芯体を有し、この芯体には正極合剤が保持されている。正極芯体は、3次元の網目構造、つまり多孔質構造を有する導電体であって、例えばニッケル製の金属体からなり、正極合剤は金属体の連通孔内に充填されている。
As described above, the negative electrode 26 preferably includes the negative electrode main body portion 52, the negative electrode boundary portion 54, and the negative electrode thin portion 56, and the negative electrode thin portion 56 is preferably thinner than the negative electrode main portion 52. The thickness of 26 is not particularly limited, and may be constant in the longitudinal direction.
The positive electrode 24 has, for example, a conductive positive electrode core having a strip shape, and a positive electrode mixture is held in the core. The positive electrode core body is a conductor having a three-dimensional network structure, that is, a porous structure, and is made of, for example, a nickel metal body, and the positive electrode mixture is filled in the communicating holes of the metal body.

正極合剤は、例えば、正極活物質、添加剤及び結着剤からなる。正極活物質としては、電池Aが円筒型ニッケル水素電池であることから、水酸化ニッケル粒子、あるいは、コバルト、亜鉛、カドミウム等を固溶した水酸化ニッケル粒子をあげることができるが、特に限定されることはない。また、添加剤としては、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。   The positive electrode mixture includes, for example, a positive electrode active material, an additive, and a binder. As the positive electrode active material, since the battery A is a cylindrical nickel-metal hydride battery, nickel hydroxide particles, or nickel hydroxide particles in which cobalt, zinc, cadmium, or the like is dissolved can be exemplified, but it is particularly limited. Never happen. Further, as additives, in addition to yttrium oxide, cobalt compounds such as cobalt oxide, metal cobalt and cobalt hydroxide, zinc compounds such as metal zinc, zinc oxide and zinc hydroxide, rare earth compounds such as erbium oxide, etc. Examples of the binder include hydrophilic or hydrophobic polymers.

図6及び図7に展開して示したように、正極24は、長手方向に亘って一定の厚みT3を有する正極本体部57を有し、この厚みT3は0.95mm以上に設定されている。正極巻始め端部36及び巻終わり端部40は、正極本体部57の両端に一体に形成され、正極巻始め端部36及び巻終わり端部40は、それぞれ正極本体部57から先端(端面58)に向かって先細り状に形成されている。より詳しくは、正極巻始め端部36及び巻終わり端部40は、正極本体部57との境界である稜59から先端側の外面が傾斜面60として形成され、正極24の厚みは稜59から先端に向かって一定の変化率で漸減している。   As shown in FIG. 6 and FIG. 7, the positive electrode 24 has a positive electrode main body portion 57 having a constant thickness T3 in the longitudinal direction, and the thickness T3 is set to 0.95 mm or more. . The positive electrode winding start end portion 36 and the winding end end portion 40 are integrally formed at both ends of the positive electrode main body portion 57, and the positive electrode winding start end portion 36 and the winding end end portion 40 are respectively connected from the positive electrode main body portion 57 to the front end (end surface 58. ) Toward the top. More specifically, the positive electrode winding start end portion 36 and the winding end end portion 40 are formed such that the outer surface on the tip side from the ridge 59 that is a boundary with the positive electrode main body portion 57 is an inclined surface 60, and the thickness of the positive electrode 24 is It gradually decreases at a constant rate of change toward the tip.

ここで、本実施形態では好ましい態様として、これら傾斜面60の傾斜角度θ1を、0°を超えて60°以下の範囲内に設定するとともに、正極巻始め端部36及び巻終わり端部40の先端における厚みT4を、正極本体部57の厚みT3の0%以上70%以下の範囲内に設定し、図7に模式的に示したように、外装缶10内に挿入された電極群22において、正極24の外面側にセパレータ28を介して沿わされた負極26における稜59で折れ曲がった部分の内角θ2を160°以上に保っている。   Here, as a preferable aspect in the present embodiment, the inclination angle θ1 of the inclined surfaces 60 is set within a range of more than 0 ° and not more than 60 °, and the positive electrode winding start end portion 36 and the winding end end portion 40 are In the electrode group 22 inserted into the outer can 10, the thickness T4 at the tip is set within a range of 0% to 70% of the thickness T3 of the positive electrode main body portion 57, as schematically shown in FIG. The inner angle θ2 of the portion of the negative electrode 26 that is bent along the outer surface of the positive electrode 24 via the separator 28 and bent at the ridge 59 is maintained at 160 ° or more.

なお、正極24の正極本体部57での厚みT3及び正極24の先端での厚みT4とは、いずれも組立てられた電池Aの内部における厚みであって、X線CT装置により撮影した電池Aの横断面像上で測定して求められる値のことをいう。
上述した電池Aは、通常の方法を適用して製造することができるが、以下では正極24の製造方法及び電極群22の製造(巻回)方法のそれぞれ一例を説明する。
Note that the thickness T3 at the positive electrode main body 57 and the thickness T4 at the tip of the positive electrode 24 are both the thicknesses inside the assembled battery A, and the thickness of the battery A taken by the X-ray CT apparatus. A value obtained by measurement on a cross-sectional image.
Although the battery A described above can be manufactured by applying a normal method, examples of the method for manufacturing the positive electrode 24 and the method for manufacturing (winding) the electrode group 22 will be described below.

正極24の製造にあたっては、まず、正極芯体となる例えばニッケル製金属体のシート及び正極合剤ペーストを用意し、金属体に正極合剤ペーストを充填して乾燥させる。次いで、乾燥状態の正極合剤が充填されている金属体を、一対の圧延ロール間のギャップに通してその厚み方向両側から圧縮して厚みを調整してから、正極巻始め端部36及び正極巻終わり端部40となる箇所を削って傾斜面60を形成した後、所定の寸法に裁断して正極24が得られる。なお、正極24における正極リード30を溶接する個所では、例えば超音波を加えることで正極合剤が部分的に除去される。   In manufacturing the positive electrode 24, first, for example, a sheet of a nickel metal body and a positive electrode mixture paste to be a positive electrode core are prepared, and the positive electrode mixture paste is filled in the metal body and dried. Next, the metal body filled with the positive electrode mixture in a dry state is compressed from both sides in the thickness direction through a gap between a pair of rolling rolls to adjust the thickness, and then the positive electrode winding start end portion 36 and the positive electrode After forming the inclined surface 60 by cutting a portion that becomes the winding end portion 40, the positive electrode 24 is obtained by cutting into a predetermined dimension. In addition, in the location where the positive electrode lead 30 in the positive electrode 24 is welded, the positive electrode mixture is partially removed by applying ultrasonic waves, for example.

電極群22は、上述した製造方法で得られた正極24と、別に用意した負極26及びセパレータ28とを、図9に示したように、巻芯61を用いて巻回して形成する。円柱状の巻芯61には、巻芯61の軸線方向に延び且つその径方向に巻芯61を2分割するスリット62が形成されている。このスリット62にセパレータ28を挟んだ状態で、図中、矢線64で示した方向に巻芯61を回転させるとともに、巻芯61に対して正極24、負極26及びセパレータ28を連続的に繰り出すことにより、電極群22が巻回される。このとき、巻芯61の外径dは、特に限定されないが、本実施形態では好適な態様として、外装缶10の外径D(図2参照)の0%以上30%以下の外径dを有する巻芯61を用いて電極群22を巻回した。   The electrode group 22 is formed by winding the positive electrode 24 obtained by the above-described manufacturing method and the separately prepared negative electrode 26 and separator 28 using a winding core 61 as shown in FIG. The cylindrical core 61 is formed with a slit 62 that extends in the axial direction of the core 61 and divides the core 61 into two in the radial direction. With the separator 28 sandwiched between the slits 62, the core 61 is rotated in the direction indicated by the arrow 64 in the figure, and the positive electrode 24, the negative electrode 26, and the separator 28 are continuously fed out of the core 61. As a result, the electrode group 22 is wound. At this time, the outer diameter d of the core 61 is not particularly limited, but in the present embodiment, as a suitable aspect, an outer diameter d of 0% or more and 30% or less of the outer diameter D of the outer can 10 (see FIG. 2). The electrode group 22 was wound using the core 61 having the core.

上記した構成の電池Aは、正極巻始め端部36と正極巻終わり端部40との間における正極本体部57の厚みT3が0.95mm以上なので、正極24に充填される正極活物質量が多く、高容量化に好適する。
その上、電池Aは、正極巻始め端部36及び巻終り端部40が先細り状に形成されているので、内部抵抗の増大や負極容量低下が防止されている。
In the battery A having the above-described configuration, since the thickness T3 of the positive electrode main body portion 57 between the positive electrode winding start end portion 36 and the positive electrode winding end portion 40 is 0.95 mm or more, the amount of the positive electrode active material filled in the positive electrode 24 is small. Many are suitable for high capacity.
In addition, since the positive electrode winding start end 36 and the winding end end 40 of the battery A are tapered, an increase in internal resistance and a decrease in negative electrode capacity are prevented.

電池Aでは、負極巻始め端部38は、正極24の外面側で電極群22の周方向に正極巻始め端部36を超えて延出しており、電極群22の周方向でみて正極巻始め端面58の前方には、正極巻始め端面58と、正極24の径方向内面側及び外面側から正極巻始め端面58を超えて延出したセパレータ28の部分とによって隙間が形成されている。そして、電池Aの初期充放電後に、図7に矢線66で示したように、この正極巻始め端面58の前方の隙間を小さくするよう、この隙間に対してセパレータ28を介して径方向外側に位置付けられた負極26の部分が正極巻始め端面58に向かって折れ曲がる。ここで、電池Aの場合、正極本体部57の厚みT3が0.95mm以上であっても、正極巻始め端部36を先細り状に形成し、正極巻始め端面58の前方の隙間が小さいことから、この隙間を小さくするための負極26の折れ曲がりは小さいので、この折れ曲がった負極26の部分での負極芯体46からの内側及び外側合金層48、50の剥離が防止され、もって負極容量低下が防止されている。   In the battery A, the negative electrode winding start end portion 38 extends beyond the positive electrode winding start end portion 36 in the circumferential direction of the electrode group 22 on the outer surface side of the positive electrode 24, and the positive electrode winding start is seen in the circumferential direction of the electrode group 22. A gap is formed in front of the end surface 58 by the positive electrode winding start end surface 58 and the portion of the separator 28 extending beyond the positive electrode winding start end surface 58 from the radially inner and outer surface sides of the positive electrode 24. Then, after the initial charge / discharge of the battery A, as indicated by an arrow 66 in FIG. 7, the gap in front of the positive electrode winding start end surface 58 is reduced radially outward with respect to the gap via the separator 28. The portion of the negative electrode 26 positioned at the end is bent toward the positive electrode winding start end surface 58. Here, in the case of the battery A, even when the thickness T3 of the positive electrode main body portion 57 is 0.95 mm or more, the positive electrode winding start end portion 36 is formed in a tapered shape, and the gap in front of the positive electrode winding start end surface 58 is small. Therefore, since the bending of the negative electrode 26 for reducing the gap is small, peeling of the inner and outer alloy layers 48 and 50 from the negative electrode core 46 at the bent negative electrode 26 is prevented, and the negative electrode capacity is reduced. Is prevented.

なお、電池寿命との関係から、正極24の厚みは1.50mm以下の範囲内に設定することが好ましい。
また、電池Aでは、負極巻終わり端部42が、正極24の外面側で電極群22の周方向に正極巻終わり端部40を超えて延出しているけれども、正極巻終わり端部40が先細り状に形成されているので、電極群22の巻回時、セパレータ28を介して正極巻終わり端部40の外面を覆う負極26の部分は、正極24の稜59で折れ曲がり、正極巻終わり端部40を先細り状に形成せずに、正極巻終わり端部の外面側エッジで負極が折れ曲がった場合に比べて折れ曲がりが小さい。そして、稜59で小さくしか折れ曲がらなかった負極26の部分は、電極群22の径方向外側への突出量も小さいので、電極群22の巻回時や外装缶10への挿入時、電極群22の巻回装置や外装缶10との摺動も抑制される。かくして、電池Aは、正極本体部57の厚みT3が0.95mm以上であっても、正極24の稜59での負極26の折れ曲がりが小さいので、この折れ曲がった負極26の部分での負極芯体46の破断や、負極芯体46からの内側及び外側合金層48、50の剥離が防止され、もって内部抵抗の増大や負極容量低下が防止されている。
From the relationship with the battery life, the thickness of the positive electrode 24 is preferably set within a range of 1.50 mm or less.
Further, in the battery A, the negative electrode winding end portion 42 extends beyond the positive electrode winding end portion 40 in the circumferential direction of the electrode group 22 on the outer surface side of the positive electrode 24, but the positive electrode winding end portion 40 tapers. When the electrode group 22 is wound, the portion of the negative electrode 26 that covers the outer surface of the positive electrode winding end 40 via the separator 28 is bent at the ridge 59 of the positive electrode 24, and the positive electrode winding end Compared to the case where the negative electrode is bent at the outer surface side edge at the end of the positive electrode winding without forming the taper 40, the bending is small. The portion of the negative electrode 26 that is bent only slightly at the ridge 59 also has a small amount of protrusion outward in the radial direction of the electrode group 22, so that when the electrode group 22 is wound or inserted into the outer can 10, the electrode group Sliding with the winding device 22 and the outer can 10 is also suppressed. Thus, in the battery A, even when the thickness T3 of the positive electrode main body 57 is 0.95 mm or more, the bending of the negative electrode 26 at the ridge 59 of the positive electrode 24 is small, so the negative electrode core at the bent negative electrode 26 portion. 46 and the inner and outer alloy layers 48 and 50 from the negative electrode core 46 are prevented from being peeled off, thereby preventing an increase in internal resistance and a decrease in negative electrode capacity.

また、電池Aは、負極26が、電極群22の内側に巻回された負極本体部52及び電極群22の最外周部として巻回された負極薄肉部56を有し、負極薄肉部56の厚みが負極本体部52の厚みよりも薄いので、高容量化に更に好適する一方、内部抵抗の増大及び負極容量低下が防止されている。
負極26において、電極群22の内側に巻回され、セパレータ28を介して両側に正極24が配置された負極本体部52に比べて、電極群22の最外周に巻回され、セパレータ28を介して内面側のみに正極24が配置された負極薄肉部56は、電池反応への寄与が小さい。このことから、負極26においては負極本体部52に比べて負極薄肉部56を薄くしてもよく、負極薄肉部56を薄くした分だけ、正極本体部57の厚みT3を増大可能であり、もって電池Aは高容量化に更に好適する。一方、負極薄肉部56は、負極本体部52に比べて薄いことから強度が低くなるけれども、正極巻終わり端部40を先細り状に形成し、正極巻終わり端部40の外面側エッジではなく正極24の稜59で負極薄肉部56が折り曲げられる。上述したように、稜59での負極薄肉部56の折れ曲がりは小さく、この折り曲げられた負極薄肉部56の部分での負極芯体46の破断や内側及び外側合金層48,50の剥離が防止される。その故、この円筒型アルカリ蓄電池は、負極薄肉部56が電極群22の最外周に巻回されていても、内部抵抗の増大及び負極容量低下が防止されている。
Further, the battery A includes a negative electrode main body 52 wound inside the electrode group 22 and a negative electrode thin portion 56 wound as the outermost peripheral portion of the electrode group 22. Since the thickness is thinner than the thickness of the negative electrode main body 52, it is further suitable for increasing the capacity, while increasing the internal resistance and reducing the negative electrode capacity are prevented.
In the negative electrode 26, the negative electrode 26 is wound around the outermost periphery of the electrode group 22 as compared with the negative electrode main body 52 in which the positive electrode 24 is disposed on both sides via the separator 28. The negative electrode thin portion 56 in which the positive electrode 24 is disposed only on the inner surface side has a small contribution to the battery reaction. Therefore, in the negative electrode 26, the negative electrode thin portion 56 may be thinner than the negative electrode main portion 52, and the thickness T3 of the positive electrode main portion 57 can be increased by the thickness of the negative electrode thin portion 56. The battery A is further suitable for increasing the capacity. On the other hand, the negative electrode thin portion 56 is thinner than the negative electrode main body portion 52 and thus has lower strength. However, the positive electrode winding end end portion 40 is formed in a tapered shape, and the positive electrode winding end end portion 40 is not an outer surface side edge but a positive electrode. The negative electrode thin portion 56 is bent at the 24 ridges 59. As described above, the bending of the negative electrode thin portion 56 at the ridge 59 is small, and the fracture of the negative electrode core 46 and the peeling of the inner and outer alloy layers 48 and 50 at the bent negative electrode thin portion 56 are prevented. The Therefore, in this cylindrical alkaline storage battery, even when the negative electrode thin portion 56 is wound around the outermost periphery of the electrode group 22, an increase in internal resistance and a decrease in negative electrode capacity are prevented.

なお、電池Aでは、好ましい態様として、外側合金層50の厚みT1は内側合金層48の厚みT2の半分以下に設定されているけれども、外側合金層50が負極薄肉部56に存在しない場合には、充電時、電極群22と外装缶10の周壁との間に回り込んだ酸素ガスが還元されず、内圧上昇に伴ない安全弁が作動してアルカリ電解液の減少を招くので、内側合金層に対する外側合金層の厚みT4の比は、0を超えていることが好ましい。   In the battery A, as a preferred embodiment, when the thickness T1 of the outer alloy layer 50 is set to be equal to or less than half the thickness T2 of the inner alloy layer 48, the outer alloy layer 50 does not exist in the negative electrode thin portion 56. During charging, the oxygen gas that has entered between the electrode group 22 and the peripheral wall of the outer can 10 is not reduced, and the safety valve is activated as the internal pressure rises, leading to a decrease in the alkaline electrolyte. The ratio of the thickness T4 of the outer alloy layer is preferably greater than zero.

そして、電池Aでは、正極24の両端面58での厚みT4は、正極本体部57の厚みT3の0%以上70%以下に設定され、且つ、傾斜面60の傾斜角度θ1は0°を超えて60°以下に設定されているので、確実に内部抵抗の増大及び負極容量低下が防止されている。
このように厚みT3に対する厚みT4の割合及び傾斜角度θ1の数値範囲を設定したので、セパレータ28を介して正極24の稜59で折り曲げられた負極26の部分の内角θ2は、確実に160度以上に維持される。その故、この折り曲げられた負極26の部分での負極芯体46の破断や負極合剤の剥離が確実に防止され、もって電池Aでは内部抵抗の増大及び負極容量低下が防止される。
In the battery A, the thickness T4 at both end surfaces 58 of the positive electrode 24 is set to 0% or more and 70% or less of the thickness T3 of the positive electrode main body 57, and the inclination angle θ1 of the inclined surface 60 exceeds 0 °. Therefore, an increase in internal resistance and a decrease in negative electrode capacity are reliably prevented.
Since the ratio of the thickness T4 to the thickness T3 and the numerical range of the inclination angle θ1 are set in this way, the internal angle θ2 of the portion of the negative electrode 26 bent at the ridge 59 of the positive electrode 24 via the separator 28 is surely 160 degrees or more. Maintained. Therefore, breakage of the negative electrode core 46 and peeling of the negative electrode mixture at the bent negative electrode portion 26 are surely prevented, so that in the battery A, an increase in internal resistance and a decrease in negative electrode capacity are prevented.

そしてその上、正極24に両端にて厚みT4をもたせれば、両端を尖端とした場合に比べて、正極24の両端近傍からの正極合剤の脱落が防止されるので、電池Aは、正極容量の低下が防止されて高容量化に更に好適する。従って、より好ましくは、正極24の両端面58での厚みT4は、正極本体部57の厚みT3の5%以上70%以下に設定される。
また、電池Aでは、電極群22の巻回に用いられる巻芯61の外径dが外装缶10の外径Dの30%以下なので、電池寿命の低下がより確実に防止されている。
In addition, if the positive electrode 24 has a thickness T4 at both ends, the positive electrode mixture is prevented from falling off from the vicinity of both ends of the positive electrode 24 as compared with the case where both ends are pointed. The reduction of the capacity is prevented, which is further suitable for increasing the capacity. Therefore, more preferably, the thickness T4 at both end faces 58 of the positive electrode 24 is set to 5% or more and 70% or less of the thickness T3 of the positive electrode main body portion 57.
Further, in the battery A, since the outer diameter d of the core 61 used for winding the electrode group 22 is 30% or less of the outer diameter D of the outer can 10, the battery life is more reliably prevented from being reduced.

外装缶10の外径Dに対する巻芯の外径の比率が30%を超えると、電極群22の中心軸近傍に存在する空洞44が大きくなり、充電時、正極24で発生した酸素ガスがこの空洞44内にたまりやすくなり、負極26での酸素ガス還元反応に遅れが生じる。酸素ガス還元反応が遅れると内圧が上昇し、安全弁が作動してアルカリ電解液が漏出して電池寿命が低下してしまう。そこで、電池Aでは、正極24、負極26及びセパレータ28等を外装缶10内に収容するにあたり、外装缶10の外径Dに対して30%以下の外径dを有する巻芯61を用いて電極群を巻回し、電極群22の中心軸近傍の空洞44を小さくする一方、空洞44を小さくした分だけ酸素ガスを一時的に蓄える空間を電池内部に分散させることで、負極26の全体で酸素ガス還元反応を効率的に進行させて酸素ガス還元反応の遅れを防止している。その故、電池Aでは、内圧上昇に伴なう安全弁の作動によるアルカリ電解液の漏出が防止され、電池寿命の低下がより確実に防止される。   When the ratio of the outer diameter of the core to the outer diameter D of the outer can 10 exceeds 30%, the cavity 44 existing in the vicinity of the central axis of the electrode group 22 becomes larger, and the oxygen gas generated in the positive electrode 24 during charging is this It tends to accumulate in the cavity 44, and a delay occurs in the oxygen gas reduction reaction at the negative electrode 26. When the oxygen gas reduction reaction is delayed, the internal pressure increases, the safety valve is activated, the alkaline electrolyte leaks, and the battery life is reduced. Therefore, in the battery A, when the positive electrode 24, the negative electrode 26, the separator 28, and the like are accommodated in the outer can 10, a core 61 having an outer diameter d of 30% or less with respect to the outer diameter D of the outer can 10 is used. By winding the electrode group to make the cavity 44 near the central axis of the electrode group 22 small, the space for temporarily storing oxygen gas by the amount of the cavity 44 being reduced is dispersed inside the battery, so that the entire anode 26 The oxygen gas reduction reaction is efficiently advanced to prevent delay of the oxygen gas reduction reaction. Therefore, in the battery A, the leakage of the alkaline electrolyte due to the operation of the safety valve accompanying the increase in internal pressure is prevented, and the battery life is more reliably prevented from decreasing.

そして、電池Aでは、電極群断面積比率が90%以上に設定されているので、更に、内部抵抗の増大が防止されている。
電極群断面積比率が低い場合、外装缶10の周壁により径方向両側から電極群22に加えられる圧縮力は小さくなるので、電極群22における緊縛度が低くなる。緊縛度が低い状態で、正極24の一方の面に端部が溶接された正極リード30を折曲げて外装缶10の開口内に蓋板14を配置した場合、正極リード30の端部が溶接された正極24の個所に大きな負荷がかかり、正極24のこの個所で破断が生じて内部抵抗が高くなる。そこで、電池Aでは、電極群断面積比率を90%以上にすることで、電極群22に加えられる圧縮力を大きくして電極群22の緊縛度を高め、正極リード30の端部が溶接された正極24の個所を、セパレータ28を介して径方向両側から負極26で押圧して挟持し、正極リード30の折曲時における正極24のこの個所での変形を防止している。その故、電池Aでは、正極24の正極リード端部30を溶接した個所での破断が防止され、内部抵抗の増大が防止される。
In battery A, since the electrode group cross-sectional area ratio is set to 90% or more, an increase in internal resistance is further prevented.
When the electrode group cross-sectional area ratio is low, the compressive force applied to the electrode group 22 from both sides in the radial direction by the peripheral wall of the outer can 10 becomes small, so the degree of binding in the electrode group 22 is low. When the positive electrode lead 30 whose end is welded to one surface of the positive electrode 24 is bent and the cover plate 14 is disposed in the opening of the outer can 10 in a state where the tightness is low, the end of the positive electrode lead 30 is welded. A large load is applied to the portion of the positive electrode 24, and the portion of the positive electrode 24 is broken to increase the internal resistance. Therefore, in the battery A, by setting the electrode group cross-sectional area ratio to 90% or more, the compressive force applied to the electrode group 22 is increased to increase the tightness of the electrode group 22, and the end of the positive electrode lead 30 is welded. The portion of the positive electrode 24 is pressed and clamped by the negative electrode 26 from both sides in the radial direction via the separator 28 to prevent the positive electrode 24 from being deformed at this portion when the positive electrode lead 30 is bent. Therefore, in the battery A, breakage at the portion where the positive electrode lead end portion 30 of the positive electrode 24 is welded is prevented, and an increase in internal resistance is prevented.

本発明は、上記した一実施形態に限定されることはなく、種々変形が可能であり、例えば、電池AはAAAサイズであってもよいが、正極本体部57の厚みT3と外装缶10の外径Dとの関係から、本発明はAAサイズの円筒型アルカリ蓄電池に好適する。
また、正極巻始め端部36及び巻終わり端部40のうち一方のみを先細り状に形成してもよい。ただし、これら正極巻始め端部36及び巻終わり端部40の両方を先細り形状に形成すれば、一方のみの場合に比べてより確実に電池寿命の低下を防止することができるとともに、負極容量低下や内部抵抗の増大を防止することができるので好ましい。また、正極巻始め端部36及び巻終わり端部40のうち一方のみを先細り状にする場合、正極巻終わり端部40よりも正極巻始め端部36を先細り状に形成する方が、電極群22の渦巻形状が良くなって電池寿命が長くなるので好ましい。
The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the battery A may be AAA size, but the thickness T3 of the positive electrode main body 57 and the outer can 10 From the relationship with the outer diameter D, the present invention is suitable for an AA size cylindrical alkaline storage battery.
Further, only one of the positive electrode winding start end portion 36 and the winding end end portion 40 may be tapered. However, if both the positive electrode winding start end portion 36 and the winding end end portion 40 are formed in a tapered shape, it is possible to more reliably prevent a decrease in battery life and a decrease in negative electrode capacity as compared with the case of only one. And increase in internal resistance can be prevented, which is preferable. When only one of the positive electrode winding start end portion 36 and the winding end end portion 40 is tapered, the positive electrode winding start end portion 36 is tapered rather than the positive electrode winding end end portion 40. This is preferable because the spiral shape of 22 is improved and the battery life is extended.

実施例1〜8、比較例1、2
1.電池の組み立て
実施例1として、正極巻始め端部36のみを先細り状に形成し、正極巻終わり端部40を先細り状に形成しなかったことを除き、図1、2、4、5、6及び7に示した構成を有するAAサイズの円筒型ニッケル水素二次電池を100個組み立てた。
Examples 1 to 8, Comparative Examples 1 and 2
1. Assembling of the battery As Example 1, only the positive electrode winding start end portion 36 was tapered and the positive electrode winding end end portion 40 was not formed in a tapered shape. 100 AA-sized cylindrical nickel-metal hydride secondary batteries having the configurations shown in FIGS.

実施例2として、正極巻終わり端部40のみを先細り状に形成し、正極巻始め端部36を先細り状に形成しなかったことを除き、図1、2、4、5、6及び7に示した構成を有するAAサイズの円筒型ニッケル水素二次電池を100個組み立てた。
実施例3〜8として、図1、2、4、5、6及び7に示した構成を有するAAサイズの円筒型ニッケル水素二次電池をそれぞれ100個ずつ組み立てた。
As Example 2, only the positive electrode winding end portion 40 was tapered and the positive electrode winding start end portion 36 was not formed in a tapered shape, as shown in FIGS. 1, 2, 4, 5, 6 and 7. 100 AA-sized cylindrical nickel-metal hydride secondary batteries having the structure shown were assembled.
As Examples 3 to 8, 100 AA-sized cylindrical nickel-metal hydride secondary batteries having the configurations shown in FIGS. 1, 2, 4, 5, 6 and 7 were assembled.

また、比較例1として、正極巻始め端部36を先細り状に形成しなかったことを除いて実施例1と同じ構成の円筒型ニッケル水素二次電池を100個組立てるとともに、比較例2として、正極の巻始め端部36を先細り状に形成せず、且つ正極24の厚みが0.90mmであることを除いて実施例1と同じ構成の円筒型ニッケル水素二次電池を100個組立てた。   As Comparative Example 1, 100 cylindrical nickel-metal hydride secondary batteries having the same configuration as Example 1 except that the positive electrode winding start end portion 36 was not formed in a tapered shape were assembled. 100 cylindrical nickel-hydrogen secondary batteries having the same configuration as in Example 1 were assembled except that the positive electrode winding start end portion 36 was not tapered and the thickness of the positive electrode 24 was 0.90 mm.

ここで、表1は、実施例1〜8及び比較例1、2における正極の長さ及び幅、並びに負極及びセパレータの長さ、幅及び厚みを示し、表2は、実施例1〜8及び比較例1、2における、正極本体部の厚みT3、傾斜面の傾斜角度θ1、正極端面での厚みT4、及び、厚みT3に対する厚みT4の比率を示している。   Here, Table 1 shows the length and width of the positive electrode in Examples 1 to 8 and Comparative Examples 1 and 2, and the length, width and thickness of the negative electrode and separator, and Table 2 shows Examples 1 to 8 and In Comparative Examples 1 and 2, the thickness T3 of the positive electrode main body, the inclination angle θ1 of the inclined surface, the thickness T4 at the positive electrode end surface, and the ratio of the thickness T4 to the thickness T3 are shown.

Figure 2005056677
Figure 2005056677

2.電池の特性評価試験
1)負極合剤剥がれ及び負極芯体破断
実施例1〜8、比較例1、2のそれぞれにおいて、電極群22の巻回後に、100個中、正極巻終わり端部40近傍の負極巻終わり端部42側で負極芯体46に破断が発生した数を数えた。また、各実施例及び比較例の電池について短絡検査を行った後、短絡していなかった電池を充放電させてから、X線CTを用いて各電池の横断面を観察し、正極巻始め端部36近傍の負極巻始め端部40側で負極合剤剥がれ発生数を数えるとともに、正極巻終わり端部40近傍で折れ曲がった負極板26の部分の内角θ2を測定した。これらの結果を表1に示す。
2. Battery Characteristic Evaluation Test 1) Negative electrode mixture peeling and negative electrode core breakage In each of Examples 1 to 8 and Comparative Examples 1 and 2, after winding the electrode group 22, in the vicinity of the positive electrode winding end 40 The number of fractures in the negative electrode core 46 on the negative electrode winding end 42 side was counted. In addition, after performing a short circuit inspection on the batteries of each Example and Comparative Example, after charging and discharging the batteries that were not short-circuited, the cross section of each battery was observed using X-ray CT, and the positive electrode winding start end The number of occurrences of peeling of the negative electrode mixture on the negative electrode winding start end 40 side in the vicinity of the portion 36 was counted, and the internal angle θ2 of the portion of the negative electrode plate 26 bent in the vicinity of the positive electrode winding end end portion 40 was measured. These results are shown in Table 1.

2)電池寿命(サイクル特性)
実施例1〜8、比較例1、2の各円筒型アルカリ蓄電池について、まず初充放電を施し、電池質量を測定した。次に、これらの各電池に、1It相当の電流量で−ΔV充電した後に1時間の休止をおき、1It相当の電流量で電池電圧が1.0Vに達するまで放電する充放電を1サイクルとして、この充放電を200サイクル行なった。そして、200サイクル目の放電後に、電池質量を測定し、先に測定した電池質量との差を求めて充放電サイクルによる電池質量(電解液)の減少量(mg)を求め、この結果を表2に示した。なお、減少量は、100個から短絡したものを除いた平均値である。
2) Battery life (cycle characteristics)
About each cylindrical alkaline storage battery of Examples 1-8 and Comparative Examples 1 and 2, first charge / discharge was first performed, and the battery mass was measured. Next, after charging each of these batteries with -ΔV with a current amount equivalent to 1 It, a pause of 1 hour is performed, and charging and discharging are performed until the battery voltage reaches 1.0 V with a current amount equivalent to 1 It as one cycle. This charging / discharging was performed 200 cycles. Then, after discharging at the 200th cycle, the battery mass was measured, and the difference from the previously measured battery mass was determined to determine the decrease (mg) of the battery mass (electrolyte) due to the charge / discharge cycle. It was shown in 2. In addition, the amount of reduction is an average value excluding the short-circuited from 100 pieces.

Figure 2005056677
Figure 2005056677

表2からは以下のことが明らかである。
比較例1と比較例2とを比べると、正極24の厚みが0.95mm以上になると、負極巻始め端部38側での負極合剤剥がれ、負極巻終わり端42側での負極芯体46の破断、短絡及び質量減少が生じやすい。
実施例1、2及び比較例1を比べると、正極巻始め端部36を先細り状にすれば、負極巻始め端部38側で負極合剤の剥がれを防止することができ、正極巻終わり端部40を先細り状にすれば、負極巻終わり端部42側での負極芯体46の破断を防止することができる。また、正極巻始め端部36及び巻終わり端部40の少なくとも一方を先細り状にすれば、短絡や質量減少を抑制することができるけれども、正極巻始め端部36のみを先細り状にした場合の方が、正極巻終わり端部40のみを先細り状にした場合よりも、短絡及び質量減少を抑制することができる。
From Table 2, the following is clear.
Comparing Comparative Example 1 and Comparative Example 2, when the thickness of the positive electrode 24 is 0.95 mm or more, the negative electrode mixture is peeled off at the negative electrode winding start end 38 side, and the negative electrode core body 46 at the negative electrode winding end end 42 side. Are likely to break, short circuit, and lose mass.
Comparing Examples 1 and 2 and Comparative Example 1, if the positive electrode winding start end portion 36 is tapered, it is possible to prevent the negative electrode mixture from being peeled off at the negative electrode winding start end portion 38 side. If the portion 40 is tapered, it is possible to prevent the negative electrode core body 46 from being broken on the negative electrode winding end portion 42 side. Further, if at least one of the positive electrode winding start end portion 36 and the winding end end portion 40 is tapered, a short circuit and a decrease in mass can be suppressed. However, when only the positive electrode winding start end portion 36 is tapered. However, it is possible to suppress a short circuit and a decrease in mass as compared with a case where only the positive electrode winding end portion 40 is tapered.

実施例6と実施例7とを比べると、傾斜角度θ1が60度を超え、負極板26の折れ曲がった部分の内角θ2が160度よりも小さくなると、短絡数や質量減少量が増加するとともに、負極巻始め端部38側で負極合剤の剥がれや負極巻終わり端部42側での負極芯体46の破断が発生しやすくなる。
実施例7と実施例8とを比べると、正極本体部57の厚みT3に対する端面58での厚みT4の比率が70%を超えると、短絡数や質量減少量が増加するとともに、負極巻始め端部38側で負極合剤の剥がれや負極巻終わり端部42側での負極芯体46の破断が発生しやすくなる。
Comparing Example 6 and Example 7, when the inclination angle θ1 exceeds 60 degrees and the inner angle θ2 of the bent portion of the negative electrode plate 26 is smaller than 160 degrees, the number of short circuits and the amount of mass decrease increase. The negative electrode mixture is easily peeled off at the negative electrode winding start end portion 38 side and the negative electrode core body 46 is easily broken at the negative electrode winding end end portion 42 side.
When Example 7 and Example 8 are compared, if the ratio of the thickness T4 at the end face 58 to the thickness T3 of the positive electrode main body 57 exceeds 70%, the number of short circuits and the amount of mass decrease increase, and the negative electrode winding start end. The negative electrode mixture is peeled off at the portion 38 side, and the negative electrode core 46 is easily broken at the negative electrode winding end portion 42 side.

本発明の実施形態に係る円筒型ニッケル水素二次電池の部分切欠き斜視図である。1 is a partially cutaway perspective view of a cylindrical nickel-metal hydride secondary battery according to an embodiment of the present invention. 図1の電池の横断面図である。It is a cross-sectional view of the battery of FIG. 図1の電池における(a)電極群の横断面積を示した模式図、および(b)外装缶の内側の断面積から空洞部の断面積を差し引いた横断面積を示した模式図である。2A is a schematic diagram showing a cross-sectional area of an electrode group in the battery of FIG. 1, and FIG. 2B is a schematic diagram showing a cross-sectional area obtained by subtracting the cross-sectional area of a cavity from the cross-sectional area inside the outer can. 図1の電池に用いられる負極を展開して示した斜視図である。It is the perspective view which expanded and showed the negative electrode used for the battery of FIG. 図4の負極の側面図である。It is a side view of the negative electrode of FIG. 図1の電池に用いられる正極を展開して示した斜視図である。It is the perspective view which expanded and showed the positive electrode used for the battery of FIG. 図6の正極の側面図に、この正極の両端部近傍で折れ曲がる負極を模式的に示した負極の折れ曲がりの説明図である。It is explanatory drawing of the bending of the negative electrode which showed typically the negative electrode bent in the side view of the positive electrode of FIG. 6 in the both ends vicinity of this positive electrode. 図1の電池に用いられる電極群の巻回方法の説明図である。It is explanatory drawing of the winding method of the electrode group used for the battery of FIG.

符号の説明Explanation of symbols

24 正極
26 負極
28 セパレータ
36 正極巻始め端部
40 正極巻終わり端部
57 正極本体部
58 端面
59 稜
60 傾斜面
24 Positive electrode 26 Negative electrode 28 Separator 36 Positive electrode winding start end portion 40 Positive electrode winding end end portion 57 Positive electrode main body portion 58 End surface 59 Edge 60 Inclined surface

Claims (7)

導電性の円筒状外装缶と、
前記外装缶内にアルカリ電解液とともに収容され、帯状の金属体及びこの金属体に充填された正極合剤からなる正極並びに負極をセパレータを介して渦巻状に巻回してなる電極群と
を備えた円筒型アルカリ蓄電池において、
前記正極は、前記電極群の巻始め及び巻終わりのそれぞれに対応する端部と、前記正極の両端部間に0.95mm以上の厚みを有する正極本体部とを有し、
前記負極の両端部は、前記正極の外面側で前記電極群の周方向に前記正極の両端部を超えてそれぞれ延出し、
前記正極の両端部のうち少なくとも一方は、前記正極本体部から先端に向かって先細り状に形成されていることを特徴とする円筒型アルカリ蓄電池。
A conductive cylindrical outer can;
The outer can is housed together with an alkaline electrolyte, and includes a strip-shaped metal body, a positive electrode composed of a positive electrode mixture filled in the metal body, and an electrode group obtained by winding the negative electrode in a spiral shape with a separator interposed therebetween. In cylindrical alkaline storage battery,
The positive electrode has an end corresponding to each of the winding start and the winding end of the electrode group, and a positive electrode main body having a thickness of 0.95 mm or more between both ends of the positive electrode,
Both ends of the negative electrode extend beyond the both ends of the positive electrode in the circumferential direction of the electrode group on the outer surface side of the positive electrode,
At least one of both end portions of the positive electrode is formed in a tapered shape from the positive electrode main body portion toward the tip, and is a cylindrical alkaline storage battery.
前記正極の両端部が、前記正極本体部から先端に向かって先細り状に形成され、
前記先細り状の正極端部では、前記正極の外面が傾斜面として形成されていることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
Both ends of the positive electrode are tapered from the positive electrode main body toward the tip,
2. The cylindrical alkaline storage battery according to claim 1, wherein an outer surface of the positive electrode is formed as an inclined surface at the tapered positive electrode end portion.
前記電極群の最外周には前記負極が巻回され、
前記負極は、
前記電極群の内側に巻回された負極本体部と、
前記電極群の最外周部として巻回され、前記負極本体部よりも薄い負極薄肉部と
を有することを特徴とする請求項1又は2記載の円筒型アルカリ蓄電池。
The negative electrode is wound around the outermost periphery of the electrode group,
The negative electrode is
A negative electrode main body wound inside the electrode group;
The cylindrical alkaline storage battery according to claim 1, wherein the cylindrical alkaline storage battery is wound as an outermost peripheral portion of the electrode group and has a thin negative electrode portion thinner than the negative electrode main body portion.
前記負極は、
帯状の基板と、
前記基板の内面側に保持された第1負極活物質層と、
前記基板の外面側に保持された第2負極活物質層と
を含み、
前記負極薄肉部において、前記第2負極活物質層の厚みが前記第1負極活物質層の厚みの半分以下であることを特徴とする請求項3記載の円筒型アルカリ蓄電池。
The negative electrode is
A belt-shaped substrate;
A first negative electrode active material layer held on the inner surface side of the substrate;
A second negative electrode active material layer held on the outer surface side of the substrate,
4. The cylindrical alkaline storage battery according to claim 3, wherein the thickness of the second negative electrode active material layer is half or less than the thickness of the first negative electrode active material layer in the negative electrode thin portion.
前記先細り状の正極端部の先端での厚みは、前記正極本体部の厚みの70%以下であり、前記傾斜面の傾斜角度は0°を超えて60°以下であることを特徴とする請求項2記載の円筒型アルカリ蓄電池。   The thickness at the tip of the tapered positive electrode end is 70% or less of the thickness of the positive electrode main body, and the inclination angle of the inclined surface is more than 0 ° and 60 ° or less. Item 3. A cylindrical alkaline storage battery according to Item 2. 前記電極群は、前記外装缶の外径と比べて30%以下の外径を有する巻芯を用いて巻回されたことを特徴とする請求項1記載の円筒型アルカリ蓄電池。   2. The cylindrical alkaline storage battery according to claim 1, wherein the electrode group is wound using a winding core having an outer diameter of 30% or less compared to the outer diameter of the outer can. 前記電極群の一端と前記外装缶の蓋体との間に配置され、前記正極の一方の面に溶接された端部及び前記電極群と前記蓋体との間で折曲された折曲部を有する帯状の正極リードを備え、
前記電極群は巻芯を用いて巻回され、前記巻芯形状に対応した空洞部を有し、
横断面でみたときに、前記空洞部の断面積を差し引いた前記電極群の断面積を、前記外装缶の内側の断面積から前記電極群の空洞部の断面積を差し引いた値で除した値の百分率が90%以上100%以下であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
An end portion disposed between one end of the electrode group and the lid of the outer can and welded to one surface of the positive electrode and a bent portion bent between the electrode group and the lid body A belt-like positive electrode lead having
The electrode group is wound using a core, and has a hollow portion corresponding to the core shape,
The value obtained by subtracting the cross-sectional area of the electrode group obtained by subtracting the cross-sectional area of the cavity portion from the value obtained by subtracting the cross-sectional area of the cavity portion of the electrode group from the cross-sectional area inside the outer can when viewed in cross section. The cylindrical alkaline storage battery according to claim 1, wherein the percentage of the battery is 90% or more and 100% or less.
JP2003286324A 2003-08-04 2003-08-04 Cylindrical alkaline storage battery Expired - Fee Related JP4359099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286324A JP4359099B2 (en) 2003-08-04 2003-08-04 Cylindrical alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286324A JP4359099B2 (en) 2003-08-04 2003-08-04 Cylindrical alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2005056677A true JP2005056677A (en) 2005-03-03
JP4359099B2 JP4359099B2 (en) 2009-11-04

Family

ID=34365656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286324A Expired - Fee Related JP4359099B2 (en) 2003-08-04 2003-08-04 Cylindrical alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4359099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095357A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Cylindrical alkaline storage battery
JP2007250536A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
US8815451B2 (en) 2011-06-30 2014-08-26 Fdk Twicell Co., Ltd. Negative-electrode plate and cylindrical cell including same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095357A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Cylindrical alkaline storage battery
JP2007250536A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
US8815451B2 (en) 2011-06-30 2014-08-26 Fdk Twicell Co., Ltd. Negative-electrode plate and cylindrical cell including same

Also Published As

Publication number Publication date
JP4359099B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4359100B2 (en) Cylindrical alkaline storage battery
JP4179943B2 (en) Cylindrical alkaline storage battery
WO2017090219A1 (en) Cylindrical battery
JP4868809B2 (en) Cylindrical alkaline storage battery
JP4359098B2 (en) Cylindrical alkaline storage battery
JP4439220B2 (en) Cylindrical alkaline storage battery and cylindrical nickel metal hydride secondary battery
JP4359099B2 (en) Cylindrical alkaline storage battery
JP5110889B2 (en) Nickel metal hydride secondary battery
JP5456333B2 (en) Sealed alkaline storage battery
JP4201664B2 (en) Cylindrical alkaline storage battery
JP2005056675A (en) Cylindrical alkaline battery
JP4334386B2 (en) battery
WO2021192978A1 (en) Alkaline storage battery
JP2005158654A (en) Cylinder-shaped alkali storage battery
JP7421038B2 (en) Alkaline storage battery and method for manufacturing an alkaline storage battery
JP2002110171A (en) Conductive core for electrode plate of battery and battery using the same
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2005050771A (en) Battery
JP2005056680A (en) Cylindrical alkaline storage battery
JP2001176541A (en) Alkaline storage battery
JP2013134940A (en) Cylindrical battery
JP2006019083A (en) Cylindrical alkaline battery
JP2007242394A (en) Battery
JPH11283662A (en) Cylindrical nickel-hydrogen secondary battery
JP2008181774A (en) Cylindrical non-sintering type alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4359099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees