JP2005055217A - 高さ測定方法 - Google Patents

高さ測定方法 Download PDF

Info

Publication number
JP2005055217A
JP2005055217A JP2003206519A JP2003206519A JP2005055217A JP 2005055217 A JP2005055217 A JP 2005055217A JP 2003206519 A JP2003206519 A JP 2003206519A JP 2003206519 A JP2003206519 A JP 2003206519A JP 2005055217 A JP2005055217 A JP 2005055217A
Authority
JP
Japan
Prior art keywords
height
measurement
sample
sampling range
measurement area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003206519A
Other languages
English (en)
Other versions
JP4274868B2 (ja
JP2005055217A5 (ja
Inventor
Takahiko Kakemizu
孝彦 掛水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003206519A priority Critical patent/JP4274868B2/ja
Publication of JP2005055217A publication Critical patent/JP2005055217A/ja
Publication of JP2005055217A5 publication Critical patent/JP2005055217A5/ja
Application granted granted Critical
Publication of JP4274868B2 publication Critical patent/JP4274868B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】高さ測定するサンプリング範囲を小さくして測定のタクトを短縮すること。
【解決手段】複数の測定エリアQ〜Qにおける半導体ウエハ表面20からバンプ21の頂点までの高さ測定を順次行なうとき、これら測定エリアQ〜Q毎に、差分Δ又は差分Δ〜Δだけバンプ21の高さ測定するときの最適サンプリング範囲αを半導体ウエハ表面20に対してオフセットする。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、共焦点光学系や干渉光学系等を利用して試料の高さ方向、すなわち光学系の光軸方向にサンプリング範囲を設定して、試料の微小構造や3次元形状を高速に観察・測定するための高さ測定方法に関する。
【0002】
【従来の技術】
共焦点光学系を用いた高さ測定装置は、試料の高さ方向(光軸aの方向)にサンプリング範囲を設定して試料の高さ測定を行なうものである。
【0003】
光源から放射された光は、PBSで反射し、所定の速度で回転する回転ディスクのピンホールを通過し、対物レンズを通って試料上に照射される。
【0004】
この試料からの反射光は、照射される光の光路とは逆方向に戻り、回転ディスクのピンホールを通過して試料上で焦点の合った光だけがCCDカメラにより撮像される。
【0005】
従って、試料を載置するXYZθステージを、Z方向に所定のサンプリング範囲内で上下移動することにより複数枚の共焦点画像が得られる。コンピュータの演算処理部は、データ蓄積部に蓄積された共焦点画像データを演算処理して試料の高さ、すなわち半導体ウエハ表面上に形成されたバンプの高さを算出する。
【0006】
ここで、バンプの高さを算出方法は、ピーク処理を行なって求める。すなわち、バンプの表面に焦点が合ったときが最大輝度になることを利用して、各焦点位置での画像データから一番輝度が高くなった焦点位置をバンプの表面位置とする。又は、離散的な輝度と焦点位置との関係から近似曲線を求め、この近似曲線から輝度が一番高くなる位置を推測してバンプの表面位置を求める。
【0007】
しかしながら、図11に示すように半導体ウエハ表面20上にバンプ21が形成されている試料において、半導体ウエハ表面20からバンプ21の頂点までの高さを測定する場合、高さ方向(光軸a方向)のサンプリング範囲αが設定される。このサンプリング範囲αは、半導体ウエハ表面20の位置とバンプ21の頂点の位置とが確実に含まれるように設定される必要がある。このためには半導体ウエハの厚みのばらつきSを含んだサンプリング範囲αに設定しなければならない。
【0008】
又、バンプ21の高さを測定するには、図12に示すように半導体ウエハ表面20を複数の測定エリア、例えば測定エリアQ〜Qに分割し、これら測定エリアQ〜Qを例えば測定エリアQ→Q→,…,Q→Qの順序に移動してバンプ21の頂点までの高さ測定が行われる。
【0009】
このような高さ測定をするときに、XYZθテーブル11が図13に示すように光軸Z方向に対して傾きγがあると、この傾きγによって高さ方向(光軸方向)の誤差Sが生じるので、これも考慮する必要がある。この場合、半導体ウエハ表面20の面積が広くなれば成る程、この誤差Sも大きくなる。これらばらつきS及び誤差Sをサンプリング範囲αに含めると、当然当該サンプリング範囲αは広くなり、このために高さの測定時間が長くなってしまう。
【0010】
この問題を解決するための技術として例えば特許文献1のものが知られている。この特許文献1は、半導体ウエハ表面20の厚みのばらつきと高さ(光軸)方向の誤差Sとを除いた最適サンプリング範囲を決定し、この最適サンプリング範囲を例えば図12に示す半導体ウエハ表面の全測定エリアQ〜Qに適用するものとなっている。そして、このために、図14に示すように測定前に、半導体ウエハ表面20の例えば3点以上の解析ポイントP〜Pに対してそれぞれ高さを測定して、これら解析ポイントP〜Pに基づいて半導体ウエハ表面20の仮想平面を算出し、この仮想平面の傾き等に応じて最適サンプリング範囲を高さ(光軸方向)方向にオフセットして高速測定を可能にしている。
【0011】
【特許文献1】
特開平9−329426号公報
【0012】
【発明が解決しようとする課題】
しかしながら、測定前に、半導体ウエハ表面20の仮想平面を算出するためにステージを移動させて3点以上の解析ポイントP〜Pに対しての高さ測定が必要になり、その分だけ全体の測定に時間がかかる。
【0013】
そこで本発明は、高さ測定するときの無駄なサンプリング範囲でのサンプリング抑えて測定を高速にできる高さ測定方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、試料の高さ方向に所定のサンプリング範囲で所定ピッチ毎にサンプリングを行なって試料の画像データを取得し、この画像データから試料の高さを測定する高さ測定方法において、試料を複数の測定エリアに分割し、これら測定エリアにおける試料の高さ測定を行なうとき、複数の測定エリアでの高さ測定毎に、前回高さ測定した測定エリアの基準面の高さと今回高さ測定する測定エリアの基準面の高さとの差分を求め、この差分だけ試料の高さ方向に対するサンプリング範囲をオフセットする高さ測定方法である。
【0015】
本発明は、試料の高さ方向に所定のサンプリング範囲で所定ピッチ毎にサンプリングを行なって試料の画像データを取得し、この画像データから試料の高さを測定する高さ測定方法において、試料を複数の測定エリアに分割し、これら測定エリアにおける試料の高さ測定を行なうとき、試料の基準面の傾きを求め、隣接する2つの測定エリアのZ座標から両測定エリア間の高さの差分を求め、この差分だけ試料の高さ方向に対するサンプリング範囲をオフセットする高さ測定方法である。
【0016】
本発明は、試料の高さ方向に所定のサンプリング範囲で所定ピッチ毎にサンプリングを行って試料の画像データを取得し、画像データから試料の高さを測定する高さ測定方法において、試料を複数の測定エリアに分割し、これら測定エリアにおける試料の高さ測定を行なうとき、試料の基準面の傾きを求め、各測定エリア毎に傾きに基づいてサンプリング範囲をオフセットする高さ測定方法である。
【0017】
【発明の実施の形態】
(1)以下、本発明の第1の実施の形態について図面を参照して説明する。
【0018】
図1は本発明の高さ測定方法を適用した共焦点高さ測定装置の構成図である。
【0019】
光源2から放射される光の光路上には、レンズ3、偏光板4及び偏光ビームスプリッタ(以下、PBSと称する)5が配置されている。
【0020】
このPBS5の偏光方向の光路上には、回転ディスク6が配置されている。この回転ディスク6は、共焦点パターンとして例えばスリット状のパターンが形成されたもので、回転軸7を中心として所定の回転速度で回転するものとなっている。
【0021】
さらに、この回転ディスク6のスリットを通過した光の光路上には、第1結像レンズ8、1/4波長板9、対物レンズ10が配置されている。
【0022】
試料1は、例えば半導体ウエハ表面上にバンプが形成されたもので、XYZθステージ11上に配置されている。このXYZθステージ11は、ステージ移動機構コントローラ12の動作制御によってXYZθ方向に移動するものとなっている。従って、試料1の高さ方向(光軸aの方向)のサンプリング範囲は、XYZθステージ11がZ方向に上下移動することにより得られる。
【0023】
試料1からの反射光は、対物レンズ10、1/4波長板9、第1結像レンズ8、回転ディスク6を通ってPBS5に入射するものであり、このPBS5の透過光の光路上には、第2結像レンズ13を介してCCDカメラ14が配置されている。このCCDカメラ14は、入射する試料1の画像を撮像してその画像信号を出力するものとなっている。
【0024】
コンピュータ15は、CCDカメラ14から出力される画像信号を取り込んでその画像をモニター16に表示出力すると共に、XYZθステージ11をZ方向に上下移動することにより取得された共焦点画像データをデータ蓄積部17に蓄積する機能を有している。
【0025】
又、このコンピュータ15の演算処理部18は、データ蓄積部17に蓄積された共焦点画像データを演算処理して試料1の高さ、すなわち半導体ウエハ表面20上に形成されたバンプ21の高さを算出する機能を有している。
【0026】
この共焦点高さ測定装置は、上記図12に示すように、試料1である半導体ウエハ表面20を複数の測定エリア、例えば測定エリアQ〜Qに分割し、これら測定エリアQ〜Qを例えば測定エリアQ→Q→,…,Q→Qの順序に移動して各測定エリアQ〜Qにおいて半導体ウエハ表面20からバンプ21の頂点までの高さ測定を行なうものである。
【0027】
この半導体ウエハ表面20からバンプ21の頂点までの高さ測定を行なうとき、同装置は、図2に示すサンプリング範囲α内において、半導体ウエハ表面20(XYZθステージ11を)所定のステップ(間隔)でZ方向に移動させてバンプ21の共焦点画像データを取得し、この共焦点画像データからバンプ21の高さを測定するものとなっている。
【0028】
このとき、サンプリング範囲αは、半導体ウエハ表面20とバンプ21の頂点との両方の高さ(光軸)方向位置を確実に検出できる可能な限り無駄なサンプリング範囲を含まないもので、以下、最適サンプリング範囲αと称する。この最適サンプリング範囲αは、基準値となる半導体ウエハ表面20に対して高さ(光軸)方向の位置関係が常に同じになるように設定され、半導体ウエハ表面20を基準位置にしてバンプ21の高さより上下方向に半導体ウエハの厚さのバラツキ等を考慮してサンプリング範囲が広げられている。
【0029】
ところで、第1の実施の形態では、複数の測定エリアQ〜Qにおける半導体ウエハ表面20からバンプ21の頂点までの高さ測定を順次行なうとき、測定初期エリアQで測定した基準面の高さ(Z座標)と隣接する測定エリアQの高さ(Z座標)との差分Δを求め、測定エリアを順次変更するごとに前の測定エリアの高さ位置情報に基づいてこの差分Δだけ最適サンプリング範囲αをオフセットする。
【0030】
例えば、図3に示すように測定エリアQにおいてバンプ21の高さ測定を行なった後に測定エリアQにおいてバンプ21の高さ測定を行なう場合、先ず、最初の測定エリアQ内において図4に示すように3点以上の解析ポイントP〜Pでそれぞれ高さ測定を行ない、これら解析ポイントP〜Pの各座標(X,Y,Z)に基づいて同測定エリアQ内での半導体ウエハ表面20の最小自乗平面を演算し求める。この最小自乗平面により測定エリアQ内での半導体ウエハ表面20の基準面の傾きが分る。なお、各解析ポイントP〜Pの各高さ測定は、上記同様に、共焦点画像データを取得することにより求められる。
【0031】
次に、隣接する測定エリアQの座標(X,Y)を平面方程式に代入して測定エリアQのZ座標を求める。
【0032】
次に、(測定エリアQのZ座標)−(測定エリアQのZ座標)を演算することにより、図3に示す測定エリアQと測定エリアQとの高さ(光軸)方向の差分Δを推測する。
【0033】
しかるに、測定エリアQ〜Qにおいて、測定エリアを順次変更するごとに前回の測定エリアの高さ位置情報に基づいて推測した差分Δだけ最適サンプリング範囲αをオフセットして測定を行う。
【0034】
又、図5に示すように、各測定エリアQ〜Qでのバンプ21の高さ測定においても、上記同様に、各測定エリアQ〜Q毎に、前回高さ測定した測定エリアの高さと今回高さ測定する測定エリアの高さとの各差分Δ〜Δをそれぞれ求め、これら差分Δ〜Δだけバンプ21の高さ方向に対する各最適サンプリング範囲α〜αをオフセットして測定を行うこともできる。このように測定エリアQ〜Qにおいて、前回の測定エリアと今回の測定エリアとの高さ差分Δ〜Δを求める。最適サンプリング範囲αを高精度に設定できる。
【0035】
従って、コンピュータ15のプログラムメモリ30には、複数の測定エリアQ〜Qにおける半導体ウエハ表面20からバンプ21の頂点までの高さ測定を順次行なうとき、これら測定エリアQ〜Qでの高さ測定毎に、推測した差分Δ又は前回高さ測定した測定エリアの高さと今回高さ測定する測定エリアの高さとの差分Δ〜Δを求め、この差分Δ又はΔ〜Δだけバンプ21の高さ方向に対する最適サンプリング範囲αをオフセットするためのプログラムが記憶されている。
【0036】
又、コンピュータ15には、最小自乗平面演算部31が備えられている。この最小自乗平面演算部31は、測定エリアQ内において上記図4に示すように3点以上の解析ポイントP〜Pそれぞれ高さ測定を行ない、これら解析ポイントP〜Pの各座標(X,Y,Z)に基づいて同測定エリアQ内での半導体ウエハ表面20の最小自乗平面を演算し求める機能を有している。
【0037】
次に、上記の如く構成された装置での高さ測定について説明する。
【0038】
先ず、上記図12に示す半導体ウエハ表面20上の測定エリアQにおける各バンプ21の高さ測定を行なう。
【0039】
光源2から放射された光は、レンズ3を通って偏光板4に入射し、この偏光板4で偏光されてPBS5に入射する。このPBS5に入射した光は、当該PBS5で反射し、所定の速度で回転する回転ディスク6のスリットを通過し、第1結像レンズ8、1/4波長板9及び対物レンズ10を通って試料1上に照射される。
【0040】
この試料1からの反射光は、照射される光の光路とは逆方向となる対物レンズ10、1/4波長板9、第1結像レンズ8を通って回転ディスク6に入射する。
試料1上で焦点の合った光だけが回転ディスク6のスリットを通過し、CCDカメラ14により撮像され共焦点画像が得られる。
【0041】
従って、CCDカメラ14は、XYZθステージ11が最適サンプリング範囲αにおいてZ方向に所定のステップ移動毎に共焦点画像を得る。サンプリングの方法は、ステージ11を固定し、対物レンズ10を含む観察光学系の焦点位置をZ方向に所定のステップ間隔で移動させてもよい。なお、測定初期は、半導体ウエハ表面20の高さを正確に把握できないので、上記図11に示すばらつきS及び上記図13に示す誤差Sを考慮したサンプリング範囲αでサンプリングを行なう。
【0042】
コンピュータ15は、CCDカメラ14から出力される画像信号を取り込んでその画像をモニター16に表示出力すると共に、XYZθステージ11をZ方向に上下移動することにより取得された共焦点画像データをデータ蓄積部17に蓄積する。
【0043】
又、コンピュータ15の演算処理部18は、データ蓄積部17に蓄積された共焦点画像データを演算処理して試料1の高さ、すなわち半導体ウエハ表面20上に形成されたバンプ21の高さを算出する。このバンプ21の高さを算出方法はピーク処理、すなわちバンプ21の表面に焦点が合ったときが最大輝度になることを利用して、各焦点位置での画像データから一番輝度が高くなった焦点位置をバンプ21の頂点位置とする。又は、XYZθステージ11を所定のステップでZ方向に移動して得た離散的な輝度と焦点位置との関係から近似曲線を求め、この近似曲線から輝度が一番高くなる位置を推測してバンプ21の表面位置を求める。
【0044】
又、測定エリアQでの各バンプ21の高さ測定の際、この測定エリアQ内において図4に示すように3点以上の解析ポイントP〜Pでそれぞれ高さ測定を行なう。
【0045】
次に、最小自乗平面演算部31は、各解析ポイントP〜Pの各座標(X,Y,Z)に基づいて同測定エリアQ内での半導体ウエハ表面20の最小自乗平面を演算し、半導体ウエハ表面20の傾きを求める。
【0046】
次に、演算処理部13は、次に高さ測定を行なう測定エリアQの座標(X,Y)を平面方程式に代入して測定エリアQのZ座標を求める。
【0047】
次に、演算処理部13は、(測定エリアQのZ座標)−(測定エリアQのZ座標)を演算することにより、図3に示す測定エリアQと測定エリアQとの高さ(光軸)方向の差分Δを推測する。
【0048】
しかるに、次の測定エリアQでの高さ測定では、この推測した差分Δを最適サンプリング範囲αをオフセットする。
【0049】
XYZθステージ11は、最適サンプリング範囲αをZ方向に所定のピッチで移動し、CCDカメラ14は、XYZθステージ11のZ方向へのピッチ移動毎にバンプ21の底面から頂上までの共焦点画像を得る。
【0050】
図5に示すように、各測定エリアQ〜Qでのバンプ21の高さ測定において、推測した差分Δ又は差分Δ〜Δだけバンプ21の高さ方向に対する各最適サンプリング範囲αをプラス(+)側にオフセットする。
【0051】
測定エリアQ〜Qを逆方向から走査する場合には、最適サンプリング範囲を半導体ウエハ表面20に対してマイナス(−)側にオフセットする。又、図12に示すように測定エリアが行列方向に配列されている場合、行方向と列方向とに対してそれぞれ差分Δを求め、行列方向の測定エリアにシフトする際に、行方向の差分Δと列方向の差分Δとに基づいて最適サンプリング範囲αをオフセットする。
【0052】
このように上記第1の実施の形態においては、複数の測定エリアQ〜Qにおける半導体ウエハ表面20からバンプ21の頂点までの高さ測定を順次行なうとき、これら測定エリアQ〜Q毎に、差分Δ又は差分Δ〜Δだけバンプ21の高さ測定するときの最適サンプリング範囲αを半導体ウエハ表面20に対してオフセットするので、サンプリング範囲を狭くしてバンプ21の高さ測定に要する時間を短縮できる。
【0053】
なお、半導体ウエハ表面20の最小自乗平面を演算し求めたり、(測定エリアQのZ座標)−(測定エリアQのZ座標)を演算して上記差分Δを推測するにしても、これらの演算は、従来における半導体ウエハ表面20の仮想平面を算出するとの比較してその演算量が少なく、バンプ21の高さ測定にかかる時間を長くすることはない。
【0054】
従って、バンプ21の高さ測定するときの無駄なサンプリング範囲でのサンプリング抑えて高さ測定を高速にできる、すなわち測定タクトを短縮できる。
【0055】
(2)次に、本発明の第2の実施の形態について説明する。
【0056】
この第2の実施の形態は、上記図1に示す共焦点高さ測定装置に適用するものであり、従って、当該図1を援用して説明する。
【0057】
この共焦点高さ測定装置は、上記図12に示すように、半導体ウエハ表面20を複数の測定エリア、例えば測定エリアQ〜Qに分割し、これら測定エリアQ〜Qを例えば測定エリアQ→Q→,…,Q→Qの順序に移動して各測定エリアQ〜Qにおいて半導体ウエハ表面20からバンプ21の頂点までの高さ測定を行なうもので、この場合、上記図2に示すようにバンプ21の高さ方向に最適サンプリング範囲αでサンプリングを行なってバンプ21の共焦点画像データを取得し、この共焦点画像データからバンプ21の高さを測定するところは上記第1の実施の形態と同様である。
【0058】
ところで、本発明装置の特徴とするところは、複数の測定エリアQ〜Qにおける各バンプ21の高さ測定を順次行なうとき、先ずは少なくとも2つの測定エリア同士、例えば図6に示すように隣接する各測定エリアQとQとの傾きφを求め、各測定エリアQ〜Qでの高さ測定において、前記傾きφに基づいて高さ測定を行なう当該測定エリアQ〜Qにおける最適サンプリング範囲αの高さ位置をオフセットする。
【0059】
従って、本発明装置には、上記図1に示すように、コンピュータ15にプログラムメモリ30が接続されている。このプログラムメモリ30には、コンピュータ15により読み取られて実行することにより、複数の測定エリアQ〜Qにおける各バンプ21の高さ測定を順次行なうとき、先ずは高さ測定する順序に従って隣接する各測定エリア、例えば測定エリアQとQとの傾きφを求め、以後の各測定エリアQ〜Qでの高さ測定において、前記傾きφに基づいて高さ測定を行なう当該測定エリアQ〜Qにおける最適サンプリング範囲αの高さ位置をオフセットするためのプログラムが記憶されている。
【0060】
次に、上記の如く構成された装置での高さ測定について説明する。
【0061】
測定エリアQでの各バンプ21の高さ測定の際、この測定エリアQ内において図4に示すように3点以上の解析ポイントP〜Pでそれぞれ共焦点画像データを取得して高さ測定を行なう。
【0062】
次に、最小自乗平面演算部31は、各解析ポイントP〜Pの各座標(X,Y,Z)に基づいて同測定エリアQ内での半導体ウエハ表面20の最小自乗平面を演算し、測定エリアQ内での半導体ウエハ表面20の傾きφを求める。
【0063】
次に、演算処理部13は、高さ測定を行なう測定エリアQの座標(X,Y)又は測定エリアの配列ピッチ(測定エリアの間隔)と傾きφから上記図3に示す測定エリアQと測定エリアQとの高さ(光軸)方向の差分Δを推測する。
【0064】
次に、測定エリアQ〜Qにおける各バンプ21の高さ測定を順次行なうとき、今回の測定エリアQ〜Qにおける最適サンプリング範囲αの高さ(光軸方向)位置を前回の測定エリアの最適サンプリング範囲αの高さに対して差分Δだけプラス(+)側にオフセットする。
【0065】
測定エリアQ〜Qを逆方向から走査する場合には、最適サンプリング範囲を半導体ウエハ表面20に対してマイナス(−)側にオフセットする。又、図12に示すように測定エリアが行列方向に配列されている場合、行方向と列方向とに対してそれぞれ差分Δを求め、行列方向の測定エリアにシフトする際に、行方向の差分Δと列方向の差分Δとに基づいて最適サンプリング範囲αをオフセットする。
【0066】
そして、XYZθステージ11は、オフセットした最適サンプリング範囲αをZ方向に所定ピッチで移動し、CCDカメラ14は、XYZθステージ11のZ方向のピッチ移動毎にバンプ21の底面から頂点までの共焦点画像を得る。この共焦点画像データは、データ蓄積部17に蓄積される。
【0067】
コンピュータ15の演算処理部18は、データ蓄積部17に蓄積された共焦点画像データを演算処理して測定エリアQにおけるバンプ21の高さを上記ピーク処理によって算出する。
【0068】
このように上記第2の実施の形態においても、上記第1の実施の形態と同様に、半導体ウエハ表面20の全測定エリアQ〜Qにおいて前回の測定エリアの最適サンプリング範囲αに対して差分Δだけオフセットすることにより、バンプ21の高さ測定するときの無駄なサンプリング範囲でのサンプリング抑えて高さ測定を高速にして測定タクトを短縮できる。
【0069】
なお、上記第1及び第2の実施の形態は、次のように変形してもよい。
【0070】
例えば、測定初期におけるバンプ21の高さを正確に把握するためにオートフォーカス(AF)又は変位センサを別途設けて予め半導体ウエハ表面20の高さ位置を測定すれば、測定初期から最適サンプリング範囲αでバンプ21の高さ測定ができる。又、画像データを取得する方法としては、上記第1及び第2の実施の形態の共焦点光学系に代えて干渉光学系を用いることができる。
【0071】
(3)次に、本発明の第3の実施の形態について説明する。
【0072】
この第3の実施の形態は、上記第1及び第2の実施の形態における最適サンプリング範囲αを変更したものである。従って、この第3の実施の形態においても上記図1に示す共焦点高さ測定装置を援用して説明する。
【0073】
この共焦点高さ測定装置では、最適サンプリング範囲は、図7に示すように試料1の底面すなわち半導体ウエハ表面20の高さに対応して当該半導体ウエハ表面20の高さを検出できる第1の最適サンプリング範囲αと、バンプ21の頂点の高さに対応して当該バンプ21の頂点の高さを検出できる第2の最適サンプリング範囲αとから成っている。
【0074】
これら第1と第2の最適サンプリング範囲α、αは、上記図11に示すばらつきSなどを考慮に入れて、可能な限り無駄なサンプリング範囲を含まないものである。これら最適サンプリング範囲α、αは、基板表面(半導体ウエハ表面20)に対して高さ(光軸)方向の位置関係が常に同じになるように設定されている。各測定エリアQ〜Qにおける第1と第2の最適サンプリング範囲α、αに対する差分Δのオフセットの仕方は、第1及び第2の実施の形態と同じである。
【0075】
この第3の実施の形態においては、各測定エリアQ〜Qで順次バンプ21の頂点の高さを測定するとき、XYZθステージ11を、図7に示す第1と第2の最適サンプリング範囲α、αでそれぞれZ方向に所定ピッチで移動することによりバンプ21の高さを測定するのに必要な半導体ウエハ表面20の近傍の共焦点画像とバンプ21の頂点近傍の共焦点画像を得ることができる。
【0076】
このように上記第3の実施の形態においては、半導体ウエハ表面20の高さに対応して当該半導体ウエハ表面20の高さを検出できる第1の最適サンプリング範囲αと、バンプ21の頂点の高さに対応して当該バンプ21の頂点の高さを検出できる第2の最適サンプリング範囲αのみをサンプリングはてバンプ21の高さ測定を行なう。すなわち、図7に示す第1と第2の最適サンプリング範囲α、αとの間の範囲β部をサンプリングすることは無駄であることから、この範囲β部を第1及び第2の最適サンプリング範囲α、αのZ方向の移動ピッチに比べて粗い移動ピッチでXYZθステージ11を移動させてXYZθステージ11を範囲β部の間を高速で移動してサンプリングしないようにすることにより、上記第1又は第2の実施の形態よりも測定タクトをさらに短縮できる。
【0077】
なお、上記第3の実施の形態は、次のように変形してもよい。
【0078】
例えば、上記第3の実施の形態では、半導体ウエハ表面20の高さとバンプ21の頂点の高さとの2つの高さ情報を取得するために第1と第2の最適サンプリング範囲α、αを設定したが、必要な高さ情報に応じて最適サンプリング範囲を分割設定してもよい。
【0079】
(4)次に、本発明の第4の実施の形態について説明する。
【0080】
この第4の実施の形態は、上記第1及び第2の実施の形態における最適サンプリング範囲αを変更したものである。従って、この第4の実施の形態においても上記図1に示す共焦点高さ測定装置を援用して説明する。
【0081】
この共焦点高さ測定装置では、最適サンプリング範囲は、図8に示すようにバンプ21の頂点の高さに対応する第2の最適サンプリング範囲αと、試料1の底面すなわち半導体ウエハ表面20からバンプ21の頂点を含む最適サンプリング範囲(以下、基準最適サンプリング範囲と称する)αとに設定したものである。各測定エリアQ〜Qにおける基準サンプリング範囲αと第2の最適サンプリング範囲αとに対する差分Δのオフセットの仕方は、第1及び第2の実施の形態と同じである。
【0082】
この共焦点高さ測定装置は、図9に示すように複数の測定エリアQ〜Qにおけるバンプ21の高さ測定を順次行なうとき、これら測定エリアQ〜Qのうち所定箇所の各測定エリア、例えば測定エリアQ、Q、Q、Q、Qにおいて基準最適サンプリング範囲αでサンプリングを行ない、他の各測定エリアQ、Q、Q、Qにおいて第2の最適サンプリング範囲αでサンプリングを行なう。
【0083】
このような構成であれば、予め設定した各測定エリアQ、Q、Q、Q、Qでは、それぞれXYZθステージ11を、図8に示す基準最適サンプリング範囲αでZ方向に所定ピッチで移動し、CCDカメラ14により各共焦点画像を得る。
【0084】
コンピュータ15の演算処理部18は、データ蓄積部17に蓄積された各測定エリアQ、Q、Q、Q、Qごとに各共焦点画像データを演算処理して、半導体ウエハ表面20のZ位置情報とバンプ21の頂点のZ位置情報とを上記ピーク処理により求め、これら半導体ウエハ表面20のZ位置情報とバンプ21の頂点のZ位置情報との差分からバンプ21の高さを算出する。
【0085】
一方、他の各測定エリアQ、Q、Q、Qでは、第2の最適サンプリング範囲αの下限位置が半導体ウエハ表面20に対して常に同じになるように前回の測定エリアの高さ位置情報に基づいて差分Δだけオフセットされる。この後、XYZθステージ11は、図8に示す第2の最適サンプリング範囲αでの下限位置まで移動させ、この第2の最適サンプリング範囲αでZ方向に所定ピッチで移動させながらCCDカメラ14により各共焦点画像を得る。
【0086】
コンピュータ15の演算処理部18は、データ蓄積部17に蓄積された各測定エリアQ、Q、Q、Qごとに各共焦点画像データを演算処理して、バンプ21の頂点のZ位置を上記ピーク処理により求める。
【0087】
ところで、上記基準最適サンプリング範囲αでサンプリングを行なった各測定エリアQ、Q、Q、Q、Qでは、半導体ウエハ表面20の高さ情報が取得されている。この測定エリアQ、Q、Q、Q、Qで取得された半導体ウエハ表面20の高さ情報とオフセット値(差分Δ)から各測定エリアQ、Q、Q、Qの半導体ウエハ表面20の高さ情報を求めることができる。
【0088】
しかるに、演算処理部18は、この半導体ウエハ表面20の高さ位置とバンプ21の頂点のZ位置との差分からバンプ21の高さを算出する。
【0089】
このように上記第4の実施の形態においては、バンプ21の頂点の高さに対応する第2の最適サンプリング範囲αと、試料1の底面すなわち半導体ウエハ表面20からバンプ21の頂点を含む基準最適サンプリング範囲αとに任意に設定できるようにしたので、半導体ウエハ表面20のような面精度の高いものにおいては、基板表面の傾きやオフセット値(差分Δ)から各測定エリアの基板表面のZ位置を求めることが出来、基板表面のZ位置を求めるサンプリング範囲を省くことが可能である。
【0090】
これにより、全測定エリアに対して厳密に高さ測定する必要がある場合には、高さ位置を高精度で測定するための基準最適サンプリング範囲αを全測定エリアに対して設定する。高さのバラツキなど厳密な高さ測定を必要としない場合には、少なくとも最初の測定エリアに対して基準最適サンプリング範囲αを設定し、他の測定エリアに対して第2の最適サンプリング範囲αを設定する。又、全測定エリアに対して複数箇所のみ厳密な高さ測定を必要とする場合、指定した複数の測定エリアに対して基準最適サンプリング範囲αを設定し、他の粗い高さ測定でよい測定エリアに対して第2のサンプリング範囲αを設定する。このように測定エリアに対して頂点のZ位置のみを測定するための第2の最適サンプリング範囲αを設定できるようにすることで、さらに第3の実施の形態に比べてサンプリング範囲を狭くすることができ、これにより高さ測定のタクトをさらに短縮できる。
【0091】
(5)次に、本発明の第5の実施の形態について説明する。
【0092】
この第5の実施の形態は、上記第1及び第2の実施の形態における最適サンプリング範囲αを変更したものである。従って、この第5の実施の形態においても上記図1に示す共焦点高さ測定装置を援用して説明する。
【0093】
この共焦点高さ測定装置では、図10に示すように第4の実施の形態で適用したバンプ21の頂点の高さに対応する第2のサンプリング範囲αと、第3の実施の形態で適用した半導体ウエハ表面20の高さに対応するサンプリング範囲α及びパンプ21の頂点の高さに対応するサンプリング範囲αからなる第3の最適サンプリング範囲α−αに設定されている。第5の実施の形態では、第4の実施の形態に適用された基準最適サンプリング範囲αを第3の実施の形態で適用した第3のサンプリング範囲α−αに置き換えたものである。
【0094】
又、この共焦点高さ測定装置では、上記図9に示すように複数の測定エリアQ〜Qにおけるパンプ21の高さ測定を順次行なうとき、これら測定エリアQ〜Qのうち所定箇所の測定エリアQ、Q、Q、Q、Qにおいて第3の最適サンプリング範囲α−αでサンプリングを行ない、他の各測定エリアQ、Q、Q、Qにおいて第2の最適サンプリング範囲αでサンプリングを行なうものとなっている。
【0095】
このように上記第5の実施の形態においては、第4の実施の形態に適用した基準最適サンプリング範囲αを、半導体ウエハ表面20の高さに対応する第1の最適サンプリング範囲α及びパンプ21の頂点の高さに対応する第2の最適サンプリング範囲αからなる第3の最適サンプリング範囲α−αに置き換えることで、第4の実施の形態と比べて第3の最適サンプリング範囲α−αのサンプリング範囲を狭くすることができ、さらに高さ測定のタクトを短縮できる。
【0096】
【発明の効果】
以上詳記したように本発明によれば、高さ測定するサンプリング範囲を小さくして測定のタクトを短縮できる高さ測定方法を提供できる。
【図面の簡単な説明】
【図1】本発明に係わる高さ測定方法の第1の実施の形態を適用した共焦点高さ測定装置の構成図。
【図2】本発明に係わる高さ測定方法の第1の実施の形態における最適サンプリング範囲を示す図。
【図3】本発明に係わる高さ測定方法の第1の実施の形態における各測定エリア間の高さの差を示す図。
【図4】本発明に係わる高さ測定方法の第1の実施の形態における各解析ポイントを示す図。
【図5】本発明に係わる高さ測定方法の第1の実施の形態における各測定エリアでの最適サンプリング範囲に対する各オフセットを示す図。
【図6】本発明に係わる高さ測定方法の第2の実施の形態における各測定エリアでの最適サンプリング範囲に対する比例的なオフセットを示す図。
【図7】本発明に係わる高さ測定方法の第3の実施の形態における最適サンプリング範囲を示す図。
【図8】本発明に係わる高さ測定方法の第4の実施の形態における最適サンプリング範囲を示す図。
【図9】本発明に係わる高さ測定方法の第4の実施の形態におけるサンプリングパターンの異なる各測定エリアを示す図。
【図10】本発明に係わる高さ測定方法の第5の実施の形態における最適サンプリング範囲を示す図。
【図11】半導体ウエハ表面からバンプ頂点までの高さ測定するときのサンプリング範囲を示す図。
【図12】半導体ウエハ表面を複数の測定エリアに分割したときの測定順序を示す図。
【図13】半導体ウエハ表面からバンプ頂点までの高さ測定するときの傾きに起因する誤差を示す図。
【図14】従来において最適サンプリング範囲で高速測定を可能とすめ解析ポイントを示す図。
【符号の説明】
1:試料、2:光源、3:レンズ、4:偏光板、5:偏光ビームスプリッタ(PBS)、6:回転ディスク、7:回転軸、8:第1結像レンズ、9:1/4波長板、10:対物レンズ、11:XYZθステージ、12:ステージ移動機構コントローラ、13:第2結像レンズ、14:CCDカメラ、15:コンピュータ、16:データ蓄積部、17:データ蓄積部、18:演算処理部、20:半導体ウエハ表面、21:バンプ。

Claims (8)

  1. 試料の高さ方向に所定のサンプリング範囲で所定ピッチ毎にサンプリングを行なって前記試料の画像データを取得し、この画像データから前記試料の高さを測定する高さ測定方法において、
    前記試料を複数の測定エリアに分割し、これら測定エリアにおける前記試料の高さ測定を行なうとき、複数の前記測定エリアでの高さ測定毎に、前回高さ測定した前記測定エリアの基準面の高さと今回高さ測定する前記測定エリアの基準面の高さとの差分を求め、この差分だけ前記試料の高さ方向に対する前記サンプリング範囲をオフセットすることを特徴とする高さ測定方法。
  2. 試料の高さ方向に所定のサンプリング範囲で所定ピッチ毎にサンプリングを行なって前記試料の画像データを取得し、この画像データから前記試料の高さを測定する高さ測定方法において、
    前記試料を複数の測定エリアに分割し、これら測定エリアにおける前記試料の高さ測定を行なうとき、前記試料の基準面の傾きを求め、隣接する2つの前記測定エリアのZ座標から両測定エリア間の高さの差分を求め、この差分だけ前記試料の高さ方向に対する前記サンプリング範囲をオフセットすることを特徴とする高さ測定方法。
  3. 試料の高さ方向に所定のサンプリング範囲で所定ピッチ毎にサンプリングを行って前記試料の画像データを取得し、前記画像データから前記試料の高さを測定する高さ測定方法において、
    前記試料を複数の測定エリアに分割し、これら測定エリアにおける前記試料の高さ測定を行なうとき、前記試料の基準面の傾きを求め、前記各測定エリア毎に前記傾きに基づいて前記サンプリング範囲をオフセットすることを特徴とする高さ測定方法。
  4. 前記差分は、最初の測定エリアと隣接する前記測定エリアから差分を求めることを特徴とする請求項2記載の高さ測定方法。
  5. 前記差分は、前回の前記測定エリアと今回の前記測定エリアとから差分を求めることを特徴とする請求項2記載の高さ測定方法。
  6. 前記サンプリング範囲は、前記試料の底面の高さに対応する第1の最適サンプリング範囲と前記試料の頂点の高さに対応する第2の最適サンプリング範囲とからなることを特徴とする請求項1乃至3のいずれか1項記載の高さ測定方法。
  7. 前記サンプリングの範囲は、前記試料の頂点の高さに対応する第2の最適サンプリング範囲と前記試料の底面から頂点を含む所定の基準最適サンプリング範囲とに設定し、
    複数の前記測定エリアのうち所定箇所の前記各測定エリアにおいて前記基準最適サンプリング範囲でサンプリングを行ない、他の各測定エリアにおいて前記第2のサンプリング範囲でサンプリングを行なうことを特徴とする請求項1乃至3のいずれか1項記載の高さ測定方法。
  8. 前記サンプリングの範囲は、前記試料の頂点の高さに対応する第2の最適サンプリング範囲と、前記試料の底面の高さと前記頂点の高さとにそれぞれに対応する2つのサンプリング範囲を持つ第3の最適サンプリング範囲とに設定し、
    複数の前記測定エリアのうち所定箇所の前記各測定エリアにおいて前記第3のサンプリング範囲でサンプリングを行ない、他の各測定エリアにおいて前記第2の最適サンプリング範囲でサンプリングを行なうことを特徴とする請求項1乃至3のいずれか1項記載の高さ測定方法。
JP2003206519A 2003-08-07 2003-08-07 高さ測定方法 Expired - Fee Related JP4274868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206519A JP4274868B2 (ja) 2003-08-07 2003-08-07 高さ測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206519A JP4274868B2 (ja) 2003-08-07 2003-08-07 高さ測定方法

Publications (3)

Publication Number Publication Date
JP2005055217A true JP2005055217A (ja) 2005-03-03
JP2005055217A5 JP2005055217A5 (ja) 2006-08-31
JP4274868B2 JP4274868B2 (ja) 2009-06-10

Family

ID=34363356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206519A Expired - Fee Related JP4274868B2 (ja) 2003-08-07 2003-08-07 高さ測定方法

Country Status (1)

Country Link
JP (1) JP4274868B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010354A (ja) * 2005-06-28 2007-01-18 Opcell Co Ltd 物体の表面形状を観察測定する装置
JP2007155527A (ja) * 2005-12-06 2007-06-21 Opcell Co Ltd 物体表面の観察装置
JP2008058133A (ja) * 2006-08-31 2008-03-13 Tohoku Univ 長尺工具エッジの曲率半径の計測装置および長尺工具エッジの曲率半径の計測方法
JP2008076058A (ja) * 2006-09-19 2008-04-03 Taisei Corp 形状変動監視方法および形状変動監視システム
WO2014109320A1 (ja) * 2013-01-11 2014-07-17 株式会社Djtech 印刷検査装置による不良原因の推定(分類)方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010354A (ja) * 2005-06-28 2007-01-18 Opcell Co Ltd 物体の表面形状を観察測定する装置
JP2007155527A (ja) * 2005-12-06 2007-06-21 Opcell Co Ltd 物体表面の観察装置
JP2008058133A (ja) * 2006-08-31 2008-03-13 Tohoku Univ 長尺工具エッジの曲率半径の計測装置および長尺工具エッジの曲率半径の計測方法
JP2008076058A (ja) * 2006-09-19 2008-04-03 Taisei Corp 形状変動監視方法および形状変動監視システム
WO2014109320A1 (ja) * 2013-01-11 2014-07-17 株式会社Djtech 印刷検査装置による不良原因の推定(分類)方法
JP2014134496A (ja) * 2013-01-11 2014-07-24 Djtech Co Ltd 印刷検査装置による不良原因の推定(分類)方法
CN105074439A (zh) * 2013-01-11 2015-11-18 名古屋电机工业株式会社 利用印刷检查装置的不良原因的估计(分类)方法

Also Published As

Publication number Publication date
JP4274868B2 (ja) 2009-06-10

Similar Documents

Publication Publication Date Title
US7127098B2 (en) Image detection method and its apparatus and defect detection method and its apparatus
JP3678915B2 (ja) 非接触三次元測定装置
JPS5999304A (ja) 顕微鏡系のレーザ光による比較測長装置
JP5397537B2 (ja) 高さ測定方法、高さ測定用プログラム、高さ測定装置
US8810799B2 (en) Height-measuring method and height-measuring device
KR20180021132A (ko) 정적 프린지 패턴을 사용하는 간섭 롤오프 측정
KR100785802B1 (ko) 입체 형상 측정장치
JP2010121960A (ja) 測定装置及び被検物の測定方法
JP3678916B2 (ja) 非接触三次元測定方法
JP2015072197A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
JP3602965B2 (ja) 非接触三次元測定方法
JP4274868B2 (ja) 高さ測定方法
JP5057848B2 (ja) 透明膜の屈折率測定方法およびその装置並びに透明膜の膜厚測定方法およびその装置
JP4603177B2 (ja) 走査型レーザ顕微鏡
JP2016148569A (ja) 画像測定方法、及び画像測定装置
JP2009074849A (ja) 線幅測定装置の検査方法
JP4197340B2 (ja) 三次元形状測定装置
JP4382315B2 (ja) ウェーハバンプの外観検査方法及びウェーハバンプの外観検査装置
JP2018115988A (ja) 表面形状測定装置の測定準備アライメント方法及び表面形状測定装置
JPH08327327A (ja) バンプ高さ測定方法及び装置
JP2011085402A (ja) 表面性状測定機
JP6880396B2 (ja) 形状測定装置および形状測定方法
JP5261891B2 (ja) アライメントマークおよび位置計測方法
JP4384446B2 (ja) オートフォーカス方法及びその装置
JP7198731B2 (ja) 撮像装置、及びフォーカス調整方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R151 Written notification of patent or utility model registration

Ref document number: 4274868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees