JP2005054211A - Method for recovering rubidium from dust - Google Patents

Method for recovering rubidium from dust Download PDF

Info

Publication number
JP2005054211A
JP2005054211A JP2003206375A JP2003206375A JP2005054211A JP 2005054211 A JP2005054211 A JP 2005054211A JP 2003206375 A JP2003206375 A JP 2003206375A JP 2003206375 A JP2003206375 A JP 2003206375A JP 2005054211 A JP2005054211 A JP 2005054211A
Authority
JP
Japan
Prior art keywords
rubidium
dust
ion exchanger
water
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003206375A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003206375A priority Critical patent/JP2005054211A/en
Publication of JP2005054211A publication Critical patent/JP2005054211A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently recovering rubidium from cement dust. <P>SOLUTION: The method for recovering rubidium from dust comprises: a step wherein dust is water-leached to elute heavy metal and alkali metal, and solid-liquid separation is performed; a step wherein the obtained filtrate is concentrated under heating to separate precipitates by filtration; a step wherein the filtrate from which the precipitates are separated by the filtration is passed into an ion exchanger to separate rubidium and cesium from the liquid; and a step wherein the rubidium is eluted from the ion exchanger so as to be recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼却炉ないし溶融炉の飛灰などに含まれるルビジウムないしセシウムを効率良く回収する方法に関する。
【0002】
【背景技術】
一般にルビジウムはポルサイト鉱石に含まれ、セシウムの副産物として回収されている。具体的には、先ずポルサイト鉱石を硫酸浸出し、この浸出液にアルミニウムを加えて硫酸セシウムアルミニウム、硫酸ルビジウムアルミニウムを沈澱させて回収し、さらに、この硫酸アルミニウム化合物に水酸化バリウムを添加して水酸化アルミニウムおよび硫酸バリウムを沈澱させてルビジウムおよびセシウムと分離し、この濾液からルビジウムをイオン交換や溶媒抽出によって回収している。
【0003】
一方、セメントキルンなどの焼却炉、または溶融炉などから発生する飛灰などのダストにはルビジウムが若干含まれているものがあり、これを再資源化できる可能性がある。しかし、セメントキルンダスト等には鉛等の重金属やアルカリ金属等がルビジウムよりも多く含まれており、ルビジウムを回収するには、ダストに含まれる鉛等の重金属やアルカリ金属を効率良く分離する必要がある。
【0004】
【発明が解決しようとする課題】
本発明は、焼却炉や溶融炉などから発生する飛灰などのダストからルビジウムを簡単にかつ効率よく回収する方法を提供するものであり、セメントダスト等を資源として再利用することができる方法を提供する。
【0005】
【課題を解決する手段】
すなわち、本発明は以下の構成からなる回収方法に関する。
(1)ダストを水浸出して重金属とアルカリ金属を溶出させ、固液分離する工程と、この濾液を加熱濃縮して析出物を濾過分離する工程と、析出物を濾過分離した濾液をイオン交換体に通液してルビジウムとセシウムを液中から分離する工程と、このイオン交換体からルビジウムを溶離して回収する工程とを有することを特徴とするダストからルビジウムを回収する方法。
(2)水浸出液を加熱濃縮した後に炭酸イオンを添加して析出物を濾過分離する工程を含む上記(1)の回収方法。
(3)炭酸ガス、炭酸ナトリウム、炭酸カリウム、または炭酸リチウムを添加することによって水浸出液の加熱濃縮液に炭酸イオンを導入する上記(2)の回収方法。
(4)イオン交換体として陽イオン交換体あるいはゼオライトを用いる上記(1)、(2)または(3)の回収方法。
(5)ルビジウムを含むイオン交換体にセシウム含有溶液を通液してルビジウムを選択均に溶離する上記(1)〜(4)の何れかの回収方法。
(6)ダストを水浸出して重金属とアルカリ金属を溶出させ固液分離した後、この濾液を加熱濃縮して析出物を濾過分離した濾液からルビジウムを回収する一方、浸出残滓に含まれるカルシウムをセメント原料に、あるいは重金属を製錬原料として再利用する上記(1)〜(5)の何れかの回収方法。
【0006】
〔具体的な説明〕
以下、本発明の回収方法を具体的に説明する。
本発明の回収方法の基本的な工程を図1に示す。図示するように、本発明の回収方法は、ダストを水浸出して重金属とアルカリ金属を溶出させ、固液分離する工程(水浸出工程)と、この濾液を加熱濃縮して析出物を濾過分離する工程(濃縮工程)と、析出物を濾過分離した濾液よりルビジウムとセシウムをイオン交換にて分離する工程(イオン交換工程)と、イオン交換体よりルビジウムを溶出し回収する工程(溶解工程)とを有する方法である.
【0007】
セメントキルンダストには銅や鉛、亜鉛などの重金属やアルカリ金属などが塩化物の形で含まれており、またカルシウムが塩化物、酸化物、水酸化カルシウムの形態で含まれている。従って、このダストを水洗するとアルカリ金属や重金属の一部が浸出液中に溶出する。この水浸出工程ではセメントキルンダストと水の比率はアルカリ金属を溶出させるのに必要な量であればよく特に限定されない。一般的には概ねセメントキルンダスト(D)と水(W)の比率(D:W)が1:1から1:5が好ましい。この比率が1:5より大きいと濃縮工程での揮発水分量が多くなるので好ましくない。また、この比率が1:1より小さいと浸出残滓に付着する水分の影響によって回収率が低下するので好ましくない。
【0008】
この水浸出工程において、ダストに含まれているアルカリ金属および鉛等の重金属は液中に溶出し、ダスト中のアルミニウム成分やシリカ分が浸出滓に残る。また、セメントキルンダストに含まれている酸化カルシウムあるいは水酸化カルシウムの影響によって水浸出液のpHは10程度を示すので、重金属は水酸化物等の沈澱を形成する。これを固液分離して濾液から除去する。なお、水浸出液のpHが中性付近であれば水酸化カルシウムを添加して水浸出液のpHを10程度に調整しても良い。
【0009】
ダスト中に多量に含有されている塩化カリウムは他のアルカリ金属塩化物に比較して室温付近での溶解度が小さいので、水浸出液を加熱濃縮した後に冷却することによってカリウムの一部を塩化物結晶として析出させることができる。塩化カリウムを析出させる割合はダスト中に含有されるカリウムとルビジウムの比率に基づいて調整すればよく、ルビジウムが結晶析出しない程度に濃縮することが好ましい。
【0010】
この濃縮工程では液中に一部溶解しているカルシウムも析出するが、炭酸イオンを導入して、より溶解度の小さい炭酸カルシウムとして沈澱させると良い。さらに、この炭酸イオンの導入によって液中に微量溶解している鉛も炭酸鉛として沈澱する。炭酸イオンの添加量は沈澱対象であるカルシウムと鉛の含有量に対して好ましくは2.5倍等量以上であれば良い。沈澱した炭酸カルシウムや炭酸鉛を塩化カリウム結晶と共に固液分離して濃縮液から除去する。
【0011】
上記沈澱物を除去した濃縮液をイオン交換体に通液して液中に含まれるアルカリ金属のルビジウムおよびセシウムをイオン交換体に吸着させて液中から分離する。イオン交換体として陽イオン交換樹脂や無機イオン交換体あるゼオライトを使用することができる。陽イオン交換樹脂やゼオライトはアルカリ金属のうちセシウム、ルビジウムに対してナトリウム、カリウムよりも選択性が高く、選択的にイオン交換される。
【0012】
イオン交換されたルビジウムおよびセシウムを含むイオン交換体を水洗浄した後に、イオン交換体からルビジウムを選択的に溶離させる。このルビジウムの選択的溶離はイオン交換体への選択性がルビジウムより高いセシウム溶液をイオン交換体に通液して行えば良い。セシウム溶液をイオン交換体に通液することによってセシウムがイオン交換され、代わりにルビジウムが溶離きれる。溶離のために用いるセシウム溶液の液性は特に限定されず、塩化物、硫酸塩、硝酸塩等のセシウム塩類を含む溶液を使用することができる。
【0013】
ルヒジウム溶離後のイオン交換体にはセシウムが残留しているが、塩酸、硫酸等の酸をイオン交換体に通液することによって、セシウムを溶離することができる。通液後、セシウムを含む溶離液を揮発させることによってセシウム塩を回収することができる。さらに回収したセシウム塩を水に溶解してセシウム溶液とすれば、これをルビジウム含有イオン交換体のルビジウム溶解液として再使用することが可能である。
【0014】
以上のように、ダストを水浸出して重金属とアルカリ金属を溶出させ固液分離した後、この濾液を加熱濃縮して析出物を濾過分離した濾液からルビジウムを回収すると共に、必要に応じて浸出残滓に含まれるカルシウムをセメント原料に、あるいは重金属を製錬原料として再利用することができる。
【0015】
〔発明の実施形態〕
以下、本発明を実施例によって具体的に示す。
〔実施例1〕
表1に示す組成のダストに水を加え、ダストと水の比率を変化させた試料を調製した。これらの試料について、攪拌下、室温にて30分間水浸出を行った。浸出残滓を濾過分離し、得られた浸出液に含まれる溶出元素の濃度を測定した。この結果を表2に示した。目的のルビジウムは80%以上が水浸出によって液中に溶解していた。
【0016】
【表1】

Figure 2005054211
【0017】
【表2】
Figure 2005054211
【0018】
〔実施例2〕
表2に示した浸出液2を1Lずつ2液にし、これを加熱して濃縮度合いを変化させ、室温まで冷却した。冷却後、析出した生成沈澱を濾過して分離し、濾液100mlと150mlの2種の濾液を得た。この濾液に含まれる元素の液中濃度を表3に示した。加熱濃縮によってカリウムが析出し、これを固液分離することによって液中のカリウム含有量が大幅に低下し、またルビジウム濃度が約6倍〜8倍に濃縮されている。
【0019】
【表3】
Figure 2005054211
【0020】
〔実施例3〕
表1に示したダストを用い、ダスト10kgに水50Lを加えて浸出した以外は実施例1および実施例2と同様にしてルビジウム濃縮液5Lを得た。この濃縮液500mlを用い、これに表4に示す量の炭酸ガス、炭酸ナトリウム、炭酸カルシウムを導入し、1時間攪拌して沈澱を生成させた。生成した沈澱を濾過分離後、得られた濾液のカルシウム濃度と鉛濃度を測定した。この結果を表4に示した。いずれの場合にもカルシウムおよび鉛はこれらを導入しない原液に比べてその濃度が大幅に低下している。
【0021】
【表4】
Figure 2005054211
【0022】
〔実施例4〕
表1に示したダストを用い、ダスト10kgに水20Lを加えて浸出した以外は実施例1および実施例2と同様にしてルビジウム濃縮液を1.5L得た。これに炭酸ソーダを液中カルシウム量の3倍等量添加した以外は実施例3と同様にして沈澱を生成させ、これを濾過分離した。濾液に含まれる金属元素の濃度を表5に示した。
【0023】
【表5】
Figure 2005054211
【0024】
〔実施例5〕
20mmφのカラムにナトリウムをイオン交換した強酸性イオン交換樹脂を200mm高さに充填し、このカラムに実施例4のルビジウム含有液をpH6に調整して1ml/minの流速にて200mlを通液した。その後、同一流速で水をカラムに通液し、カラム内部を洗浄した。その後、さらに溶離液としてセシウム濃度20g/Lの液200mlを同一流速にて上記カラムに通液し、カラムから流出する液の前後30mlを廃棄し、中間に流出する140mlを回収した。この回収した溶離液に含まれる金属濃度を表6に示した。回収した溶離液に含まれるルビジウム以外のアルカリ金属イオン濃度は大幅に少なくルビジウムが選択的に溶離されている。
【0025】
〔実施例6〕
実施例5の強酸性イオン交換樹脂に代えて無機イオン交換体であるゼオライトを用い、これを同様のカラムに同量充填した以外は実施例5と同様にしてルビジウムを溶離した。この結果を表6に示した。回収した溶離液に含まれるルビジウム以外のアルカリ金属イオン濃度は大幅に少なくルビジウムが選択的に溶離されている。
【0026】
【表6】
Figure 2005054211
【0027】
【発明の効果】
本発明の回収方法によれば、セメントダスト等に含まれるルビジウムを効果的にかつ容易に回収することができる。また、イオン交換体から溶離したセシウムを再利用して溶離液に用いることによってセシウムを循環的に利用し、ルビジウムの回収効果を高めることができる。
【図面の簡単な説明】
【図1】本発明の回収方法の基本工程を示すフロー図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently recovering rubidium or cesium contained in fly ash of an incinerator or melting furnace.
[0002]
[Background]
Generally, rubidium is contained in porsite ore and recovered as a byproduct of cesium. Specifically, first, the porsite ore is leached with sulfuric acid, and aluminum is added to the leaching solution to precipitate and recover cesium aluminum sulfate and rubidium aluminum sulfate. Further, barium hydroxide is added to the aluminum sulfate compound to add water. Aluminum oxide and barium sulfate are precipitated and separated from rubidium and cesium, and rubidium is recovered from the filtrate by ion exchange and solvent extraction.
[0003]
On the other hand, some dusts such as fly ash generated from incinerators such as cement kilns or melting furnaces contain some rubidium, which may be recyclable. However, cement kiln dust, etc. contain more heavy metals such as lead and alkali metals than rubidium, and in order to recover rubidium, it is necessary to efficiently separate heavy metals such as lead and alkali metals contained in dust. There is.
[0004]
[Problems to be solved by the invention]
The present invention provides a method for easily and efficiently recovering rubidium from dust such as fly ash generated from incinerators, melting furnaces, etc., and a method capable of reusing cement dust or the like as a resource. provide.
[0005]
[Means for solving the problems]
That is, this invention relates to the collection | recovery method which consists of the following structures.
(1) The process of leaching dust with water to elute heavy metals and alkali metals, solid-liquid separation, the process of heating and concentrating the filtrate to separate the precipitate, and the filtrate obtained by filtering the precipitate to ion exchange A method for recovering rubidium from dust, comprising: a step of separating rubidium and cesium from the liquid by passing through a body; and a step of eluting and recovering rubidium from the ion exchanger.
(2) The recovery method of (1) above, which comprises a step of heating and concentrating the water leachate and then adding carbonate ions to filter and separate the precipitate.
(3) The recovery method of (2) above, wherein carbonate ions are introduced into the heated concentrate of the water leachate by adding carbon dioxide, sodium carbonate, potassium carbonate, or lithium carbonate.
(4) The method of (1), (2) or (3) above, wherein a cation exchanger or zeolite is used as the ion exchanger.
(5) The recovery method according to any one of (1) to (4), wherein rubidium is selectively eluted by passing a cesium-containing solution through an ion exchanger containing rubidium.
(6) After leaching the dust with water to elute heavy metals and alkali metals and separating them into solid and liquid, this filtrate is heated and concentrated to collect rubidium from the filtrate obtained by filtering and separating the precipitate, while the calcium contained in the leach residue is removed. The recovery method according to any one of (1) to (5) above, wherein a heavy metal is reused as a raw material for cement or as a raw material for smelting.
[0006]
[Specific description]
Hereinafter, the recovery method of the present invention will be specifically described.
The basic steps of the recovery method of the present invention are shown in FIG. As shown in the figure, the recovery method of the present invention includes a step of leaching dust to elute heavy metals and alkali metals, solid-liquid separation (water leaching step), and heating and concentrating the filtrate to separate the precipitate by filtration. A step (concentration step), a step of separating rubidium and cesium by ion exchange from the filtrate obtained by separating the precipitate (ion exchange step), a step of elution and recovery of rubidium from the ion exchanger (dissolution step), This method has
[0007]
Cement kiln dust contains heavy metals such as copper, lead, and zinc, and alkali metals in the form of chlorides, and calcium is contained in the form of chlorides, oxides, and calcium hydroxides. Therefore, when this dust is washed with water, a part of alkali metal or heavy metal is eluted in the leachate. In this water leaching step, the ratio of cement kiln dust to water is not particularly limited as long as it is an amount necessary for eluting the alkali metal. Generally, the ratio of cement kiln dust (D) to water (W) (D: W) is preferably 1: 1 to 1: 5. If this ratio is larger than 1: 5, the amount of volatile water in the concentration step increases, which is not preferable. On the other hand, if this ratio is less than 1: 1, the recovery rate is lowered due to the influence of water adhering to the leach residue, which is not preferable.
[0008]
In this water leaching step, alkali metals and heavy metals such as lead contained in the dust are eluted in the liquid, and the aluminum component and silica in the dust remain in the leach. Further, since the pH of the water leachate is about 10 due to the influence of calcium oxide or calcium hydroxide contained in cement kiln dust, heavy metals form precipitates such as hydroxide. This is solid-liquid separated and removed from the filtrate. If the pH of the water leachate is near neutral, calcium hydroxide may be added to adjust the pH of the water leachate to about 10.
[0009]
Potassium chloride contained in a large amount in dust has a lower solubility near room temperature than other alkali metal chlorides. Therefore, a portion of potassium is converted into chloride crystals by cooling the water leachate after heating and concentrating it. Can be deposited as The ratio of depositing potassium chloride may be adjusted based on the ratio of potassium and rubidium contained in the dust, and it is preferable to concentrate to the extent that rubidium does not precipitate.
[0010]
In this concentration step, calcium partially dissolved in the liquid is also precipitated, but it is preferable to introduce carbonate ions to precipitate calcium carbonate having a lower solubility. Furthermore, lead that is dissolved in a small amount in the liquid by the introduction of carbonate ions also precipitates as lead carbonate. The amount of carbonate ion added is preferably 2.5 times or more equivalent to the content of calcium and lead to be precipitated. The precipitated calcium carbonate and lead carbonate are separated from the concentrate by solid-liquid separation together with potassium chloride crystals.
[0011]
The concentrated liquid from which the precipitate has been removed is passed through an ion exchanger, and the alkali metals rubidium and cesium contained in the liquid are adsorbed on the ion exchanger and separated from the liquid. As an ion exchanger, a cation exchange resin or a zeolite which is an inorganic ion exchanger can be used. Cation exchange resins and zeolites are more selective than cesium and rubidium among alkali metals than sodium and potassium, and are selectively ion-exchanged.
[0012]
After the ion exchanger containing ion-exchanged rubidium and cesium is washed with water, rubidium is selectively eluted from the ion exchanger. The selective elution of rubidium may be performed by passing a cesium solution having higher selectivity to the ion exchanger than rubidium through the ion exchanger. By passing the cesium solution through the ion exchanger, cesium is ion-exchanged and rubidium is eluted instead. The liquidity of the cesium solution used for elution is not particularly limited, and a solution containing cesium salts such as chlorides, sulfates and nitrates can be used.
[0013]
Cesium remains in the ion exchanger after elution of ruhidium, but cesium can be eluted by passing an acid such as hydrochloric acid or sulfuric acid through the ion exchanger. After passing through, the cesium salt can be recovered by volatilizing the eluent containing cesium. Furthermore, if the recovered cesium salt is dissolved in water to form a cesium solution, it can be reused as a rubidium solution of a rubidium-containing ion exchanger.
[0014]
As described above, after leaching the dust with water to elute heavy metals and alkali metals and separating them into solid and liquid, the filtrate is heated and concentrated to collect rubidium from the filtrate obtained by filtration and separation. Calcium contained in the residue can be reused as cement raw material or heavy metal as smelting raw material.
[0015]
[Embodiment of the Invention]
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
Water was added to dust having the composition shown in Table 1 to prepare samples in which the ratio of dust to water was changed. These samples were water leached for 30 minutes at room temperature under stirring. The leach residue was separated by filtration, and the concentration of the eluted element contained in the obtained leachate was measured. The results are shown in Table 2. More than 80% of the target rubidium was dissolved in the liquid by leaching with water.
[0016]
[Table 1]
Figure 2005054211
[0017]
[Table 2]
Figure 2005054211
[0018]
[Example 2]
The leaching solution 2 shown in Table 2 was made into two liquids by 1 L, heated to change the degree of concentration, and cooled to room temperature. After cooling, the formed precipitate was separated by filtration to obtain two kinds of filtrates of 100 ml and 150 ml of filtrate. Table 3 shows the concentration of elements contained in the filtrate. Potassium is precipitated by heat concentration, and by solid-liquid separation, the potassium content in the liquid is greatly reduced, and the rubidium concentration is concentrated to about 6 to 8 times.
[0019]
[Table 3]
Figure 2005054211
[0020]
Example 3
Using the dust shown in Table 1, 5 L of rubidium concentrate was obtained in the same manner as in Example 1 and Example 2 except that 50 L of water was added to 10 kg of the dust and leached. Using 500 ml of this concentrated liquid, carbon dioxide, sodium carbonate, and calcium carbonate in the amounts shown in Table 4 were introduced and stirred for 1 hour to form a precipitate. The produced precipitate was separated by filtration, and the calcium concentration and lead concentration of the obtained filtrate were measured. The results are shown in Table 4. In either case, the concentrations of calcium and lead are greatly reduced compared to the stock solution in which these are not introduced.
[0021]
[Table 4]
Figure 2005054211
[0022]
Example 4
Using the dust shown in Table 1, 1.5 L of a rubidium concentrate was obtained in the same manner as in Example 1 and Example 2 except that 20 L of water was added to 10 kg of the dust and leached. A precipitate was produced in the same manner as in Example 3 except that sodium carbonate was added in an amount equal to 3 times the amount of calcium in the liquid, and this was separated by filtration. Table 5 shows the concentration of the metal element contained in the filtrate.
[0023]
[Table 5]
Figure 2005054211
[0024]
Example 5
A 20 mmφ column was filled with 200 mm height of a strongly acidic ion exchange resin obtained by ion exchange of sodium, and the column was passed through 200 ml at a flow rate of 1 ml / min with the rubidium-containing solution of Example 4 adjusted to pH 6. . Thereafter, water was passed through the column at the same flow rate to wash the inside of the column. Thereafter, 200 ml of a cesium concentration 20 g / L as an eluent was passed through the column at the same flow rate, 30 ml before and after the liquid flowing out from the column was discarded, and 140 ml flowing out in the middle was collected. Table 6 shows the metal concentration contained in the recovered eluent. The concentration of alkali metal ions other than rubidium contained in the recovered eluent is significantly small, and rubidium is selectively eluted.
[0025]
Example 6
Rubidium was eluted in the same manner as in Example 5 except that zeolite, which is an inorganic ion exchanger, was used instead of the strongly acidic ion exchange resin of Example 5 and the same amount was packed in the same column. The results are shown in Table 6. The concentration of alkali metal ions other than rubidium contained in the recovered eluent is significantly small, and rubidium is selectively eluted.
[0026]
[Table 6]
Figure 2005054211
[0027]
【The invention's effect】
According to the recovery method of the present invention, rubidium contained in cement dust or the like can be recovered effectively and easily. Further, by reusing cesium eluted from the ion exchanger and using it as an eluent, cesium can be used cyclically and the effect of recovering rubidium can be enhanced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing basic steps of a recovery method of the present invention.

Claims (6)

ダストを水浸出して重金属とアルカリ金属を溶出させ、固液分離する工程と、この濾液を加熱濃縮して析出物を濾過分離する工程と、析出物を濾過分離した濾液をイオン交換体に通液してルビジウムとセシウムを液中から分離する工程と、このイオン交換体からルビジウムを溶離して回収する工程とを有することを特徴とするダストからルビジウムを回収する方法。The step of leaching the dust with water to elute heavy metals and alkali metals and separating them into solid and liquid, the step of heating and concentrating the filtrate to separate the precipitate, and the filtrate after separating the precipitate through the ion exchanger are passed through the ion exchanger. A method for recovering rubidium from dust, comprising: a step of separating rubidium and cesium from the liquid, and a step of eluting and recovering rubidium from the ion exchanger. 水浸出液を加熱濃縮した後に炭酸イオンを添加して析出物を濾過分離する工程を含む請求項1の回収方法。The recovery method according to claim 1, further comprising the step of filtering and separating the precipitate by adding carbonate ions after the water leachate is heated and concentrated. 炭酸ガス、炭酸ナトリウム、炭酸カリウム、または炭酸リチウムを添加することによって水浸出液の加熱濃縮液に炭酸イオンを導入する請求項2の回収方法。The recovery method according to claim 2, wherein carbonate ions are introduced into the heated concentrate of the water leachate by adding carbon dioxide, sodium carbonate, potassium carbonate, or lithium carbonate. イオン交換体として陽イオン交換体あるいはゼオライトを用いる請求項1、2または3の回収方法。The recovery method according to claim 1, 2 or 3, wherein a cation exchanger or zeolite is used as the ion exchanger. ルビジウムを含むイオン交換体にセシウム含有溶液を通液してルビジウムを選択均に溶離する請求項1〜4の何れかの回収方法。The recovery method according to any one of claims 1 to 4, wherein rubidium is selectively eluted by passing a cesium-containing solution through an ion exchanger containing rubidium. ダストを水浸出して重金属とアルカリ金属を溶出させ固液分離した後、この濾液を加熱濃縮して析出物を濾過分離した濾液からルビジウムを回収する一方、浸出残滓に含まれるカルシウムをセメント原料に、あるいは重金属を製錬原料として再利用する請求項1〜5の何れかの回収方法。After leaching the dust with water to elute heavy metals and alkali metals and separating them into solid and liquid, this filtrate is heated and concentrated to recover rubidium from the filtrate obtained by filtering and separating the precipitate, while calcium contained in the leach residue is used as a cement raw material. Or the recovery method in any one of Claims 1-5 which reuses a heavy metal as a smelting raw material.
JP2003206375A 2003-08-06 2003-08-06 Method for recovering rubidium from dust Withdrawn JP2005054211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206375A JP2005054211A (en) 2003-08-06 2003-08-06 Method for recovering rubidium from dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206375A JP2005054211A (en) 2003-08-06 2003-08-06 Method for recovering rubidium from dust

Publications (1)

Publication Number Publication Date
JP2005054211A true JP2005054211A (en) 2005-03-03

Family

ID=34363261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206375A Withdrawn JP2005054211A (en) 2003-08-06 2003-08-06 Method for recovering rubidium from dust

Country Status (1)

Country Link
JP (1) JP2005054211A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013843A (en) * 2011-07-01 2013-01-24 Taiheiyo Cement Corp Method for treating alkali metal-containing waste
JP2013117450A (en) * 2011-12-02 2013-06-13 Daiki Ataka Engineering Co Ltd Method for removing radioactive cesium from aqueous solution containing radioactive cesium
JP2013181953A (en) * 2012-03-05 2013-09-12 Taiheiyo Cement Corp Selective separation method of cesium, and method for the same
JP2013210248A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Method for recovering radioactive cesium
JP2016017798A (en) * 2014-07-07 2016-02-01 株式会社タクマ Apparatus and method for treating fly ash
KR20160082380A (en) * 2014-12-26 2016-07-08 주식회사 포스코 Ferruginous by-product recycling method
CN105964659A (en) * 2016-05-27 2016-09-28 中南大学 Comprehensive resource recycling method for waste cathode carbon blocks of aluminum cells
CN105964660A (en) * 2016-05-27 2016-09-28 中南大学 Innocent treatment method of waste cell linings of aluminum electrolysis cells
CN107267777A (en) * 2017-06-09 2017-10-20 北京矿冶研究总院 Novel method for extracting rubidium from rubidium-containing ore
CN108774688A (en) * 2018-06-25 2018-11-09 攀枝花火凤凰再生资源回收利用有限责任公司 It is sintered the fine purification treatment process of smoke dust leachate
JP2019210498A (en) * 2018-06-01 2019-12-12 宇部興産株式会社 Method of recovering cesium
CN112479236A (en) * 2020-12-16 2021-03-12 中国科学院青海盐湖研究所 Preparation method of rubidium carbonate and/or cesium carbonate
CN113061736A (en) * 2021-03-30 2021-07-02 攀钢集团攀枝花钢铁研究院有限公司 Method for separating potassium, lead and iron from sintering machine head ash
CN114107674A (en) * 2021-11-29 2022-03-01 中国地质科学院矿产综合利用研究所 Method for extracting rubidium from spodumene tailings by volatilization based on microwave field
CN115821059A (en) * 2022-11-28 2023-03-21 昆明理工大学 Method for efficiently extracting rubidium from rubidium-containing ore through microwave-ultrasonic synergy

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013843A (en) * 2011-07-01 2013-01-24 Taiheiyo Cement Corp Method for treating alkali metal-containing waste
JP2013117450A (en) * 2011-12-02 2013-06-13 Daiki Ataka Engineering Co Ltd Method for removing radioactive cesium from aqueous solution containing radioactive cesium
JP2013181953A (en) * 2012-03-05 2013-09-12 Taiheiyo Cement Corp Selective separation method of cesium, and method for the same
JP2013210248A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Method for recovering radioactive cesium
JP2016017798A (en) * 2014-07-07 2016-02-01 株式会社タクマ Apparatus and method for treating fly ash
KR20160082380A (en) * 2014-12-26 2016-07-08 주식회사 포스코 Ferruginous by-product recycling method
KR101698655B1 (en) * 2014-12-26 2017-01-23 주식회사 포스코 Ferruginous by-product recycling method
CN105964659A (en) * 2016-05-27 2016-09-28 中南大学 Comprehensive resource recycling method for waste cathode carbon blocks of aluminum cells
CN105964660A (en) * 2016-05-27 2016-09-28 中南大学 Innocent treatment method of waste cell linings of aluminum electrolysis cells
CN107267777A (en) * 2017-06-09 2017-10-20 北京矿冶研究总院 Novel method for extracting rubidium from rubidium-containing ore
JP7085409B2 (en) 2018-06-01 2022-06-16 Ube株式会社 How to recover cesium
JP2019210498A (en) * 2018-06-01 2019-12-12 宇部興産株式会社 Method of recovering cesium
CN108774688A (en) * 2018-06-25 2018-11-09 攀枝花火凤凰再生资源回收利用有限责任公司 It is sintered the fine purification treatment process of smoke dust leachate
CN108774688B (en) * 2018-06-25 2020-12-08 攀枝花火凤凰再生资源回收利用有限责任公司 Refining treatment method of sintering smoke dust lixivium
CN112479236A (en) * 2020-12-16 2021-03-12 中国科学院青海盐湖研究所 Preparation method of rubidium carbonate and/or cesium carbonate
CN113061736A (en) * 2021-03-30 2021-07-02 攀钢集团攀枝花钢铁研究院有限公司 Method for separating potassium, lead and iron from sintering machine head ash
CN113061736B (en) * 2021-03-30 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 Method for separating potassium, lead and iron from sintering machine head ash
CN114107674A (en) * 2021-11-29 2022-03-01 中国地质科学院矿产综合利用研究所 Method for extracting rubidium from spodumene tailings by volatilization based on microwave field
CN114107674B (en) * 2021-11-29 2023-09-29 中国地质科学院矿产综合利用研究所 Method for volatilizing and extracting rubidium from spodumene tailings based on microwave field
CN115821059A (en) * 2022-11-28 2023-03-21 昆明理工大学 Method for efficiently extracting rubidium from rubidium-containing ore through microwave-ultrasonic synergy

Similar Documents

Publication Publication Date Title
JP2005054211A (en) Method for recovering rubidium from dust
CN106148705A (en) The method going arsenic removal from acidic arsenic-containing solution
KR102514227B1 (en) Lithium recovery method
CN104789786B (en) A kind of harmlessness disposing arsenic-containing waste residue and the method for synthetical recovery wherein valuable metal
KR20190134085A (en) Method of recycling chlorine bypass dust generated in cement manufacturing process
CN108342583A (en) A method of recycling rhenium and molybdenum from calcining molybdenum ore concentrate collected ash
CN102296180B (en) Method for separating tungsten, molybdenum and bismuth in bismuth sulfide ore concentrate
JP2008264628A (en) Treatment method of molten fly ash
JP5403224B2 (en) How to recover bismuth
US11401578B2 (en) Extraction methods from refractory ores
JP4071973B2 (en) Treatment method for chloride-containing dust
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JPS59193230A (en) Preparation of ga or in from substance containing minute amount of ga or in
CN108179290A (en) A kind of method that mercury is enriched with from sour mud
JP4059677B2 (en) Bismuth recovery method and bismuth sulfate recovery method
JP2021188080A (en) Manufacturing method of cadmium hydroxide
JP7359760B2 (en) Methods for recovering metals from cobalt-retaining materials
JP4358594B2 (en) Collection method of valuable materials
JP3633739B2 (en) Ash processing method
JPS6056031A (en) Method for recovering ge, ga and in from substance containing trace of ge, ga and in
CN110195162A (en) Antimony in a kind of arsenic alkaline slag, arsenic, the separation of alkali leaching simultaneously method
PL181871B1 (en) Hydrometallurgical treatment process for purifying vanadium group metals oxides by leaching with sodium carbonate
JP3914814B2 (en) Method for treating fly ash containing calcium
JP3633840B2 (en) Processing method of molten fly ash
CN109173340A (en) A method of the adsorbing and removing chlorine from strongly acidic solution

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107