JP2005054075A - Material for organic electroluminescent element, and organic electroluminescent element using the same - Google Patents

Material for organic electroluminescent element, and organic electroluminescent element using the same Download PDF

Info

Publication number
JP2005054075A
JP2005054075A JP2003286944A JP2003286944A JP2005054075A JP 2005054075 A JP2005054075 A JP 2005054075A JP 2003286944 A JP2003286944 A JP 2003286944A JP 2003286944 A JP2003286944 A JP 2003286944A JP 2005054075 A JP2005054075 A JP 2005054075A
Authority
JP
Japan
Prior art keywords
group
organic electroluminescent
organic
electroluminescent element
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003286944A
Other languages
Japanese (ja)
Inventor
Michiko Tamano
美智子 玉野
Harunori Naruhiro
治憲 成廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003286944A priority Critical patent/JP2005054075A/en
Publication of JP2005054075A publication Critical patent/JP2005054075A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting material for an organic electroluminescent element having high light-emitting luminance and a long light-emitting life, and to provide the organic electroluminescent element using the light-emitting material. <P>SOLUTION: The material for the organic electroluminescent element contains a non-conjugated polymer, an amine compound and a phosphorescent compound. The non-conjugated polymer contains at least one unit represented by general formula (1) and obtained by bonding a group B (a substituted or unsubstituted arylene or heteroarylene group, or a direct bond) to a group A (a non-conjugated trivalent organic residue), and further bonding a group C (a monovalent organic residue) represented by formula (2) to the group B. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は平面光源や表示に使用される有機電界発光(EL)素子などに用いられる発光材料および高輝度の発光素子に関するものである。   The present invention relates to a light-emitting material and a high-luminance light-emitting element used for a planar light source, an organic electroluminescence (EL) element used for display, and the like.

有機物質を使用した電界発光素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機電界発光素子は、発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入され、電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。   An electroluminescent element using an organic substance is promising for use as a solid light emitting type inexpensive large-area full-color display element, and many developments have been made. In general, an organic electroluminescent element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side, holes are injected from the anode side, the electrons recombine with holes in the light emitting layer, and the energy level starts from the conduction band. It is a phenomenon in which energy is released as light when returning to the valence band.

従来の有機電界発光素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。   Conventional organic electroluminescent elements have a higher driving voltage and lower luminance and luminous efficiency than inorganic EL elements. Further, the characteristic deterioration has been remarkably not put into practical use.

近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機電界発光素子が報告され、関心を集めている(非特許文献1参照)。この方法は、金属キレート錯体を発光層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は数1000cd/mに達している。しかしながら、有機化合物の蒸着操作を伴う有機電界発光素子作成は、生産性に問題が有り、製造工程の簡略化、大面積化の観点から塗布方式の素子作成が望ましい。 In recent years, an organic electroluminescent device in which a thin film containing an organic compound having a high fluorescence quantum efficiency that emits light at a low voltage of 10 V or less has been reported and attracted attention (see Non-Patent Document 1). This method uses a metal chelate complex as a light emitting layer and an amine compound as a hole injection layer to obtain green light emission with high luminance. The luminance reaches several thousand cd / m 2 at a DC voltage of 6 to 7V. ing. However, the production of an organic electroluminescent element involving an organic compound vapor deposition operation has a problem in productivity, and it is desirable to create a coating method element from the viewpoint of simplifying the manufacturing process and increasing the area.

生産性に有利な塗布方式の有機電界発光素子作成で使用される有機電界発光素子の発光材料としては、ポリフェニレンビニレン系ポリマーが知られているが、(非特許文献2、3参照)、発光部をポリマー主鎖に持つため、発光材料の濃度制御が難しく、色調、発光強度の微妙な制御が難しい等の問題があった。同じく、塗布方式を用いる有機電界発光素子として、例えばポリビニルカルバゾール中に、低分子量色素等を分散する素子(特許文献1参照)があるが、性能に問題のある事がわかった。また、ホール輸送性モノマーと電子輸送性モノマーからなる共重合体を用いた有機電界発光素子が報告されている(特許文献2、3)。   A polyphenylene vinylene polymer is known as a light emitting material of an organic electroluminescent element used in the production of an organic electroluminescent element of a coating method advantageous for productivity (see Non-Patent Documents 2 and 3), but a light emitting part. Has a problem in that it is difficult to control the concentration of the light-emitting material and to delicately control the color tone and light emission intensity. Similarly, as an organic electroluminescent element using a coating method, for example, there is an element that disperses a low molecular weight dye or the like in polyvinyl carbazole (see Patent Document 1), but it has been found that there is a problem in performance. In addition, organic electroluminescent devices using a copolymer comprising a hole transporting monomer and an electron transporting monomer have been reported (Patent Documents 2 and 3).

リン光性発光材料を発光材料に使用した素子においては、非常に高い発光効率が報告(非特許文献4参照)が報告されているが、駆動電圧がポリフェニレンビニレン系の高分子発光材料を用いた有機電界発光素子(本特許比較例4を参照)にくらべて高い。これは、ポリフェニレンビニレン系の高分子発光材料に比べて、ポリビニルカルバゾールに代表される非共役ポリマーの正孔の移動度が低い為、有機電界発光素子内で電子と正孔のバランスが崩れ、駆動電圧が上昇したものと考えられる。低分子材料を用いたリン光発光有機電界素子では、低分子アミン材料を発光層中にドープすることにより駆動電圧が低下するとの報告(非特許文献5参照)がなされているが、高分子材料を用いたリン光発光有機電界素子では、この問題を改善する様な報告は見られない。   In a device using a phosphorescent light emitting material as a light emitting material, extremely high luminous efficiency has been reported (see Non-Patent Document 4), but a polyphenylene vinylene-based polymer light emitting material is used. Higher than an organic electroluminescent device (see Comparative Example 4 of this patent). This is because the mobility of holes in non-conjugated polymers typified by polyvinylcarbazole is low compared to polyphenylene vinylene-based polymer light-emitting materials. The voltage is considered to have increased. In the phosphorescent light emitting organic electric field element using a low molecular material, there is a report (see Non-Patent Document 5) that the driving voltage is lowered by doping a light emitting layer with a low molecular amine material. In the phosphorescent light-emitting organic electric field device using, there is no report to improve this problem.

特開平4−212286号公報JP-A-4-212286 アプライド・フィジクス・レターズ、51巻、913ページ、1987年Applied Physics Letters, 51, 913, 1987 アドバンストマテーリアルズ 2巻、4ページ 1992年Advanced Materials, Volume 2, Page 4 1992 アドバンストマテーリアルズ 9巻、551ページ 1997年Advanced Material 9, 551 pages 1997 特開2000−159846号公報JP 2000-159846 A 特開2001−104580号公報JP 2001-104580 A アプライド・フィジクス・レターズ、77巻、2280ページ、2000年Applied Physics Letters, 77, 2280 pages, 2000 第50回応用物理学関連連合講演会 講演予稿集(2003.3)、講演番号28p−A−1、1411ページ、2003年The 50th Applied Physics-related Joint Lecture Proceedings (2003.3), Lecture number 28p-A-1, 1411 pages, 2003

本発明は、発光輝度が高く、長い発光寿命を持つ電界発光素子用材料およびそれを用いた電界発光素子の提供にある。本発明者らが鋭意検討した結果、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機電界発光素子において、上記発光層中に、非共役ポリマーとリン光発光性化合物、およびアミン化合物を含有する材料を用いることにより、電界発光素子の発光開始電圧および発光効率が向上することを見いだした。   An object of the present invention is to provide an electroluminescent element material having high emission luminance and a long emission lifetime, and an electroluminescent element using the same. As a result of intensive studies by the present inventors, in an organic electroluminescent device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, a non-conjugated polymer and a phosphorus are included in the light emitting layer. It has been found that the light emission starting voltage and the light emission efficiency of the electroluminescent device are improved by using a material containing a photoluminescent compound and an amine compound.

本発明は、下記材料およびそれを用いた発光素子によって達成された。   The present invention has been achieved by the following materials and a light emitting device using the same.

すなわち、本発明は、非共役ポリマー、アミン化合物、およびリン光発光性化合物を含んでなる有機電界発光素子用材料に関する。   That is, the present invention relates to a material for an organic electroluminescent device comprising a non-conjugated polymer, an amine compound, and a phosphorescent compound.

また、本発明は、さらに、電子輸送性化合物を含有する上記有機電界発光素子用材料に関する。   The present invention further relates to the material for an organic electroluminescent element containing an electron transporting compound.

また、本発明は、非共役ポリマーが、下記一般式[1]で表されるユニットを少なくとも1つ含む上記有機電界発光素子用材料に関する。   Moreover, this invention relates to the said organic electroluminescent element material in which a nonconjugated polymer contains at least 1 unit represented by following General formula [1].

一般式[1]

Figure 2005054075
General formula [1]
Figure 2005054075

[式中Aは非共役の3価の有機残基を表し、
Bは置換もしくは未置換のアリーレン基および置換もしくは未置換のヘテロアリーレン基からなる群より一つまたは二つ以上選ばれてなる2価の有機残基、または直接結合を表し、
Cは下記一般式[2]で表される一価の有機残基を表す。]
一般式[2]
[Wherein A represents a non-conjugated trivalent organic residue,
B represents a divalent organic residue selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group, or a direct bond;
C represents a monovalent organic residue represented by the following general formula [2]. ]
General formula [2]

Figure 2005054075
Figure 2005054075

[式中R1〜R7は、結合部位、水素原子もしくは置換基を表し、
Xは直接結合、−O−、−S−、−Se−、−NH−、−NR8−(Rはアルキル基またはアリール基を表す。)、−S (=O)2−、−(CO)−、−COO−、−OCO−、−CH2−を表し、
R〜R7は互いに結合してアリール環を形成しても良く、さらにそのアリール環に置換基を有しても良い。]
[Wherein R 1 to R 7 represent a bonding site, a hydrogen atom or a substituent,
X is a direct bond, —O—, —S—, —Se—, —NH—, —NR 8 — (R 8 represents an alkyl group or an aryl group), —S (═O) 2 —, — ( CO) -, - COO -, - OCO -, - CH 2 - represents,
R 1 to R 7 may be bonded to each other to form an aryl ring, and further the aryl ring may have a substituent. ]

また、本発明は、一般式[2]が、下記一般式[3]で表される一価の有機残基である上記有機電界発光素子用材料に関する。
一般式[3]
Moreover, this invention relates to the said organic electroluminescent element material whose general formula [2] is a monovalent organic residue represented by the following general formula [3].
General formula [3]

Figure 2005054075
Figure 2005054075

[式中R18〜R26は、結合部位、水素原子もしくは置換基を表す。]
また、本発明は、電子輸送性化合物が、オキサジアゾール誘導体である上記有機電界発光素子用材料に関する。
[Wherein R 18 to R 26 represent a bonding site, a hydrogen atom or a substituent. ]
The present invention also relates to the material for an organic electroluminescent element, wherein the electron transporting compound is an oxadiazole derivative.

また、本発明は、リン光発光性化合物が、イリジウム錯体である上記有機電界発光素子用材料に関する。   Moreover, this invention relates to the said material for organic electroluminescent elements whose phosphorescence-emitting compound is an iridium complex.

また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機電界発光素子において、前記発光層中が、上記有機電界発光素子用材料を含有する有機電界発光素子に関する。   Further, the present invention provides an organic electroluminescent device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, wherein the light emitting layer contains the material for an organic electroluminescent device. The present invention relates to an organic electroluminescent device.

本発明により、従来に比べて駆動電圧が低く、高輝度であり、長寿命の有機EL素子を得ることができる。   According to the present invention, it is possible to obtain an organic EL element having a lower driving voltage, higher luminance, and longer life than conventional ones.

本発明は、有機エレクトロルミネッセンス素子において、発光層中に、非共役ポリマーとリン光発光性化合物、およびアミン化合物を含有することを特徴とする。   The present invention is characterized in that, in the organic electroluminescence device, the light emitting layer contains a non-conjugated polymer, a phosphorescent compound, and an amine compound.

一般式[1]においてAはB、Cを側鎖に有する非共役主鎖骨格を形成することのできる任意の3価の有機残基を表す。例をE−1〜E−12に示すがこれらに限定されるものではない。   In the general formula [1], A represents an arbitrary trivalent organic residue capable of forming a non-conjugated main chain skeleton having B and C in the side chain. Examples are shown in E-1 to E-12, but are not limited thereto.

Figure 2005054075
Figure 2005054075

ポリマーを形成する際の非共役主鎖骨格モノマーの重合様式はラジカル重合、カチオン重合、アニオン重合などのビニル重合、縮重合、開環重合、種々の重合反応によるポリマー形成を行うことができ、重合方法は特に限定しないが、本発明では特にビニル重合モノマーの重合によるポリマー形成反応が好ましい。   The polymerization mode of the non-conjugated main chain skeleton monomer when forming the polymer can be polymerized by vinyl polymerization such as radical polymerization, cationic polymerization, anion polymerization, condensation polymerization, ring-opening polymerization, and various polymerization reactions. The method is not particularly limited, but in the present invention, a polymer formation reaction by polymerization of a vinyl polymerization monomer is particularly preferable.

また、一般式[1]のBおよび/またはCは、非共役主鎖骨格モノマーの段階で導入されていなくとも、非共役主鎖骨格が形成されたあと、導入・変性されてもよい。   Further, B and / or C in the general formula [1] may be introduced / modified after the non-conjugated main chain skeleton is formed, even though it is not introduced at the stage of the non-conjugated main chain skeleton monomer.

一般式[1]〜[3]におけるアリーレン基として好ましくは炭素数6〜60の単環または縮環のアリーレン基であり、より好ましくは炭素数6〜40、更に好ましくは炭素数6〜30のアリーレン基である。具体例としてはフェニレン、ビフェニレン、ナフタレンジイル、アントラセンジイル、フェナントロリンジイル、ピレンジイル、トリフェニレンジイル、ベンゾフェナントロリンジイル、ペリレンジイル、ペンタフェニレンジイル、ペンタセンジイルなどが挙げられ、これらの基に置換基を有しても良い。   The arylene group in the general formulas [1] to [3] is preferably a monocyclic or condensed arylene group having 6 to 60 carbon atoms, more preferably 6 to 40 carbon atoms, still more preferably 6 to 30 carbon atoms. An arylene group. Specific examples include phenylene, biphenylene, naphthalenediyl, anthracenediyl, phenanthroline diyl, pyrenediyl, triphenylenediyl, benzophenanthroline diyl, perylenediyl, pentaphenylenediyl, pentacenediyl, and the like. good.

一般式[1]〜[3]におけるヘテロアリーレン基としては好ましくは炭素数4ないし60の単環または縮環の芳香族ヘテロ環基であり、より好ましくは窒素原子、酸素原子または硫黄原子の少なくとも一つを含有する炭素数4ないし60の単環または縮環の芳香族ヘテロ環基であり、更に好ましくは炭素数4ないし30の5員または6員の芳香族ヘテロ環基である。芳香族ヘテロ環基の具体例としてはピロールジイル、フランジイル、チエニレン、ピリジンジイル、ピリダジンジイル、ピリミジンジイル、ピラジンジイル、キノリンジイル、イソキノリンジイル、シンノリンジイル、キナゾリンジイル、キノキサリンジイル、フタラジンジイル、プテリジンジイル、アクリジンジイル、フェナジンジイル、フェナントロリンジイルなどが挙げられ、これらの基に置換基を有しても良い。   The heteroarylene group in the general formulas [1] to [3] is preferably a monocyclic or condensed aromatic heterocyclic group having 4 to 60 carbon atoms, and more preferably at least a nitrogen atom, an oxygen atom or a sulfur atom. It is a monocyclic or condensed aromatic heterocyclic group having 4 to 60 carbon atoms containing one, and more preferably a 5- or 6-membered aromatic heterocyclic group having 4 to 30 carbon atoms. Specific examples of the aromatic heterocyclic group include pyrrole diyl, furandyl, thienylene, pyridinediyl, pyridazinediyl, pyrimidinediyl, pyrazinediyl, quinolinediyl, isoquinolinediyl, cinnolinediyl, quinazolinediyl, quinoxalinediyl, phthalazinediyl, pteridinediyl, acridinediyl, phenidinediyl Examples thereof include diyl and phenanthroline diyl, and these groups may have a substituent.

本発明における化合物の置換基とはハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。)、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のチオアルコキシ基、シアノ基、アミノ基、モノもしくはジ置換アミノ基、水酸基、メルカプト基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアリール基、置換もしくは未置換のヘテロアリール基を表し、また置換基は、隣接した置換基同士で置換もしくは未置換の環を形成しても良い。   The substituent of the compound in the present invention is a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted. Substituted thioalkoxy group, cyano group, amino group, mono- or di-substituted amino group, hydroxyl group, mercapto group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted aryl group, substituted Alternatively, it represents an unsubstituted heteroaryl group, and the substituents may form a substituted or unsubstituted ring with adjacent substituents.

置換もしくは未置換のアリール基としては、フェニル基、ビフェニレニル基、トリフェニレニル基、テトラフェニレニル基、3−ニトロフェニル基、4−メチルチオフェニル基、3,5−ジシアノフェニル基、o−,m−およびp−トリル基、キシリル基、o−,m−およびp−クメニル基、メシチル基、ペンタレニル基、インデニル基、ナフチル基、アントラセニル基、アズレニル基、ヘプタレニル基、アセナフチレニル基、フェナレニル基、フルオレニル基、アントリル基、アントラキノニル基、3−メチルアントリル基、フェナントリル基、ピレニル基、クリセニル基、2−エチル−1−クリセニル基、ピセニル基、ペリレニル基、6−クロロペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、オバレニル基等がある。   Examples of the substituted or unsubstituted aryl group include phenyl group, biphenylenyl group, triphenylenyl group, tetraphenylenyl group, 3-nitrophenyl group, 4-methylthiophenyl group, 3,5-dicyanophenyl group, o-, m- And p-tolyl group, xylyl group, o-, m- and p-cumenyl group, mesityl group, pentarenyl group, indenyl group, naphthyl group, anthracenyl group, azulenyl group, heptaenyl group, acenaphthylenyl group, phenalenyl group, fluorenyl group, Anthryl group, anthraquinonyl group, 3-methylanthryl group, phenanthryl group, pyrenyl group, chrysenyl group, 2-ethyl-1-chrysenyl group, picenyl group, perylenyl group, 6-chloroperylenyl group, pentaphenyl group, pentacenyl group, tetra Phenylenyl group, hexaphenyl Group, hexacenyl group, rubicenyl group, coronenyl groups, trinaphthylenyl groups, heptacenyl groups, pyranthrenyl groups, there is ovalenyl group.

置換もしくは未置換のヘテロアリール基としては、チオニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、キノリル基、イソキノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アクリジニル基、フェナジニル基、フルフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンズイミダゾリル基、2−メチルピリジル基、3−シアノピリジル基等がある。   Examples of the substituted or unsubstituted heteroaryl group include thionyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, indolyl group, quinolyl group, isoquinolyl group, phthalazinyl group, Quinoxalinyl group, quinazolinyl group, carbazolyl group, acridinyl group, phenazinyl group, furfuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, phenoxazinyl group, benzothiazolyl group, benzoxazolyl group, benzimidazolyl group, 2-methylpyridyl group, 3 -A cyanopyridyl group and the like.

モノまたはジ置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ビス(アセトオキシメチル)アミノ基、ビス(アセトオキシエチル)アミノ基、ビス(アセトオキシプロピル)アミノ基、ビス(アセトオキシブチル)アミノ基、ジベンジルアミノ基等がある。   Mono- or di-substituted amino groups include methylamino, dimethylamino, ethylamino, diethylamino, dipropylamino, dibutylamino, diphenylamino, bis (acetoxymethyl) amino, bis (acetoxy) And ethyl) amino group, bis (acetoxypropyl) amino group, bis (acetoxybutyl) amino group, and dibenzylamino group.

置換もしくは未置換のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、2−エチルヘキシル基、ヘプチル基、オクチル基、イソオクチル基、ステアリル基、トリクロロメチル基、トリフロロメチル基、シクロプロピル基、シクロヘキシル基、1,3−シクロヘキサジエニル基、2−シクロペンテン−1−イル基、2,4−シクロペンタジエン−1−イリデニル基などがある。   Substituted or unsubstituted alkyl groups include methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, 2-ethylhexyl, heptyl, octyl, isooctyl , Stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group, 1,3-cyclohexadienyl group, 2-cyclopenten-1-yl group, 2,4-cyclopentadiene-1-ylidenyl group, etc. There is.

置換もしくは未置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、ステアリルオキシ基、トリフロロメトキシ基等がある。   Examples of the substituted or unsubstituted alkoxy group include methoxy group, ethoxy group, propoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, 2-ethylhexyloxy group, stearyloxy Group, trifluoromethoxy group and the like.

置換もしくは未置換のチオアルコキシ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基等がある。   Examples of the substituted or unsubstituted thioalkoxy group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.

置換もしくは未置換のアリールオキシ基としては、フェノキシ基、p−tert−ブチルフェニキシ基、3−フルオロフェニキシ基等がある。   Examples of the substituted or unsubstituted aryloxy group include a phenoxy group, a p-tert-butylphenoxy group, and a 3-fluorophenoxy group.

置換もしくは未置換のアリールチオ基としては、フェニルチオ基、3−フルオロフェニルチオ基等がある。   Examples of the substituted or unsubstituted arylthio group include a phenylthio group and a 3-fluorophenylthio group.

好ましい置換基しては、水素原子、炭素数が1〜20のアルキル基、もしくはアルコキシ基である。また、隣接した置換基同士で5ないし7員環の酸素原子、窒素原子、硫黄原子等が含まれてもよい脂肪族、炭素環式芳香族、複素環式芳香族、複素環を形成してもよく、これらの環の任意の位置にさらに置換基を有してもよい。   Preferred substituents are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group. Further, adjacent substituents form an aliphatic, carbocyclic aromatic, heterocyclic aromatic or heterocyclic ring which may contain a 5- to 7-membered oxygen atom, nitrogen atom, sulfur atom, etc. It may also have a substituent at any position of these rings.

なお、本発明の一般式[1]で表されるユニットを有するポリマーは、ホモポリマーであっても、ランダム、ブロック、またはグラフト共重合体であってもよく、それらの中間的な構造を有する高分子たとえばブロック性をもつランダム共重合体であってもよい。   In addition, the polymer having a unit represented by the general formula [1] of the present invention may be a homopolymer, a random, block, or graft copolymer, and has an intermediate structure thereof. The polymer may be a random copolymer having block property.

一般式[1]で表されるユニットがビニル重合によるものであるときは、スチレンおよびその誘導体、アクリル酸およびその誘導体、マレイン酸およびその誘導体、有機酸ビニルエステルなどとの共重合体としてもよい。   When the unit represented by the general formula [1] is based on vinyl polymerization, it may be a copolymer with styrene and its derivatives, acrylic acid and its derivatives, maleic acid and its derivatives, organic acid vinyl ester, and the like. .

本発明で用いられるアミン化合物は、低分子アミン化合物、共役アミンポリマー、非共役アミンポリマーであり、これらの代表例を表1に具体的に示すが、本発明のポリマーは以下の代表例に限定されるものではない。
表1
The amine compound used in the present invention is a low molecular weight amine compound, a conjugated amine polymer, or a non-conjugated amine polymer. Typical examples of these are shown in Table 1, but the polymer of the present invention is limited to the following representative examples. Is not to be done.
Table 1

Figure 2005054075
Figure 2005054075

Figure 2005054075
Figure 2005054075

Figure 2005054075
Figure 2005054075

本発明の非共役ポリマーの代表例を表2に具体的に示すが、本発明の非共役ポリマーは以下の代表例に限定されるものではない。なお、24,26〜30は、コポリマーであるが、各ユニットモノマーの構造を示すのみで、その重合形態を示したものではない。また、n、mは自然数を表す。
表2
Although the typical example of the nonconjugated polymer of this invention is specifically shown in Table 2, the nonconjugated polymer of this invention is not limited to the following representative examples. In addition, although 24 and 26-30 are copolymers, they show only the structure of each unit monomer, and do not show the polymerization form. N and m represent natural numbers.
Table 2

Figure 2005054075
Figure 2005054075

Figure 2005054075
Figure 2005054075

Figure 2005054075
Figure 2005054075

Figure 2005054075
Figure 2005054075

本発明で用いられるリン光発光材料としては、特に三重項発光性の金属錯体が好ましく、三重項励起子からの発光が可能な発光材料としては、イリジウム錯体Ir(ppy)3(Tris-Ortho-Metalated Complexof Iridium (III) with 2-Phenylpyridine)等が知られている。また経験上、イリジウムの他に、ロジウム、ルテニウム、オスミウム、レニウムの各金属配位化合物についても、全て6配位の重金属化合物であり、これらはスピン−軌道相互作用が強い事が知られており、リン光発光が強い事がしられているので、本発明のリン光発光化合物の中心金属として特に好ましい。
本発明のリン光発光材料の代表例を表3に具体的に示す。
表3
The phosphorescent light emitting material used in the present invention is particularly preferably a triplet light emitting metal complex, and the light emitting material capable of emitting light from triplet excitons is iridium complex Ir (ppy) 3 (Tris-Ortho- Metalated Complexof Iridium (III) with 2-Phenylpyridine) is known. Moreover, experience has shown that in addition to iridium, rhodium, ruthenium, osmium, and rhenium metal coordination compounds are all hexacoordinate heavy metal compounds, and these have strong spin-orbit interaction. Since phosphorescence is strong, it is particularly preferable as the central metal of the phosphorescence-emitting compound of the present invention.
Table 3 shows typical examples of the phosphorescent material of the present invention.
Table 3

Figure 2005054075
Figure 2005054075

Figure 2005054075
Figure 2005054075

また、この表3の化合物には、電気的に中性でないものが含まれるが、この場合は、カウンターイオン(ハロゲンイオン、PF 、CIO )で中和する事が出来る。
Ir(ppy)3を用いた緑色発光素子は8%の外部量子収率を達成しており、従来有機発光素子の限界といわれていた外部量子収率5%を凌駕した(Applied Physics Letters 75, 4(1999))。その他Ir錯体化合物、金属配位ポリフィリン化合物が本発明の素子構成に使用可能であるが、これらに限定されるものではない。
The compounds shown in Table 3 include those that are not electrically neutral. In this case, the compounds can be neutralized with counter ions (halogen ions, PF 6 , CIO 4 ).
The green light emitting device using Ir (ppy) 3 achieves an external quantum yield of 8%, surpassing the external quantum yield of 5%, which was previously considered the limit of organic light emitting devices (Applied Physics Letters 75, 4 (1999)). Other Ir complex compounds and metal coordination porphyrin compounds can be used in the device configuration of the present invention, but are not limited thereto.

本発明で用いられる電子注入材料としては、電子を輸送する能力を持ち、陰極からの正孔注入効果、発光層または発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入帯域への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。例えば、
オキサゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、イミダゾール誘導体、ペリレンテトラカルボン酸、フレオレニリデンメタン誘導体、アントロン誘導体、フタロシアニン誘導体、金属錯体(8−キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体等)が挙げられるが、これらに限定されるものではない。
The electron injecting material used in the present invention has the ability to transport electrons, has a hole injecting effect from the cathode, an excellent electron injecting effect for the light emitting layer or the light emitting material, and the excitation generated in the light emitting layer. Examples thereof include compounds that prevent migration of a child to a hole injection zone and have an excellent thin film forming ability. For example,
Oxazole derivatives, triazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, diphenoquinone derivatives, thiopyrandioxide derivatives, imidazole derivatives, perylenetetracarboxylic acid, fluorenylidenemethane derivatives, anthrone derivatives, phthalocyanine derivatives, metals Complexes (metal complexes of 8-quinolinol derivatives, metal phthalocyanines, metal complexes having benzoxazole or benzothiazole as a ligand, etc.) may be mentioned, but are not limited thereto.

本発明の有機電界発光素子用材料の成膜方法としては、塗布する方法(例えばインクジェット法、スプレイ法、印刷法、スピンコーテング法、キャスティング法、ディッピング法、バーコート法、ロールコート法など)などを用いることが出来る。塗布方式で成膜する場合に用いる溶媒としては、ジクロロエタン、ジクロロメタン、クロロホルム、などの有機ハロゲン系溶媒、テトラヒドロフラン、1.4-ジオキサンなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、酢酸エチル、酢酸ブチルなどのエステル系溶媒、またはこれらの混合溶媒であっても良い。高分子の構造、分子量によっても異なるが、通常溶媒の0.01から10重量%、好ましくは0.1から5重量%溶解した溶液を用いて成膜する。   As a film forming method of the organic electroluminescent element material of the present invention, a coating method (for example, an inkjet method, a spray method, a printing method, a spin coating method, a casting method, a dipping method, a bar coating method, a roll coating method, etc.), etc. Can be used. Solvents used in the coating method include organic halogen solvents such as dichloroethane, dichloromethane and chloroform, ether solvents such as tetrahydrofuran and 1.4-dioxane, aromatic hydrocarbon solvents such as toluene and xylene, dimethyl An amide solvent such as formamide and dimethylacetamide, an ester solvent such as ethyl acetate and butyl acetate, or a mixed solvent thereof may be used. Although it depends on the structure and molecular weight of the polymer, the film is usually formed using a solution of 0.01 to 10% by weight, preferably 0.1 to 5% by weight, of a solvent.

有機EL素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素子である。
一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔、もしくは陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料もしくは電子注入材料を含有する。多層型は、(陽極/正孔注入帯域/発光層/陰極)、(陽極/発光層/電子注入帯域/陰極)、(陽極/正孔注入帯域/発光層/電子注入帯域/陰極)の多層構成で積層した有機EL素子がある。
An organic EL element is an element in which a single-layer or multilayer organic thin film is formed between an anode and a cathode.
In the case of the single layer type, a light emitting layer is provided between the anode and the cathode. The light emitting layer contains a light emitting material, and in addition, contains a hole injecting material or an electron injecting material in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. The multi-layer type includes (anode / hole injection band / light emitting layer / cathode), (anode / light emitting layer / electron injection band / cathode), and (anode / hole injection band / light emitting layer / electron injection band / cathode). There are organic EL elements stacked in a configuration.

有機EL素子の陽極に使用される導電性物質としては、4eVより大きな仕事関数を持つものが好適であり、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板と称される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。   As the conductive material used for the anode of the organic EL element, those having a work function larger than 4 eV are preferable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, etc. Further, alloys thereof, ITO substrates, metal oxides such as tin oxide and indium oxide called NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used.

陰極に使用される導電性物質としては、4.0eVより小さな仕事関数を持つものが好適であり、マグネシウム、バリウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン等およびそれらの合金が用いられるが、これらに限定されるものではない。陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い。   As the conductive material used for the cathode, those having a work function smaller than 4.0 eV are preferable. Magnesium, barium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, etc. and alloys thereof However, it is not limited to these. If necessary, the anode and the cathode may be formed of two or more layers.

本発明の有機EL素子は、壁掛けテレビ等のフラットパネルディスプレイや、平面発光体として、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等へ応用が考えられ、その工業的価値は非常に大きい。   The organic EL device of the present invention can be applied to flat panel displays such as wall-mounted TVs, flat light emitters, light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights. The industrial value is very large.

以下、本発明を実施例に基づきさらに詳細に説明する。
実施例1
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、表2記載の化合物(16)、表1記載の化合物(1)、下記化合物(41)、表3記載の化合物(31)を重量%で52:8:37:3の割合で混合し、0.75wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子1を作製した。この素子の輝度−電圧曲線を、図1に示す。
化合物(41)
Hereinafter, the present invention will be described in more detail based on examples.
Example 1
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Furthermore, the compound (16) shown in Table 2, the compound (1) shown in Table 1, the following compound (41), and the compound (31) shown in Table 3 were mixed at a ratio of 52: 8: 37: 3 by weight%. Then, a solution dissolved in 1,2-dichloroethane at a concentration of 0.75 wt% was formed to a thickness of 80 nm on the previously prepared PEDOT layer by a spin coating method to obtain a light emitting layer. An electrode was formed on the coated substrate by a vacuum deposition method with a film thickness of Ca of 40 nm and Al of 120 nm to produce an organic EL element 1. The luminance-voltage curve of this element is shown in FIG.
Compound (41)

Figure 2005054075
Figure 2005054075

実施例2
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、表2記載の化合物(17)、表1記載の化合物(1)、化合物(41)、表3記載の化合物(31)を重量%で52:8:37:3の割合で混合し、0.75wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子2を作製した。この素子の輝度−電圧曲線を、図2に示す。
Example 2
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Furthermore, the compound (17) described in Table 2, the compound (1) described in Table 1, the compound (41), and the compound (31) described in Table 3 were mixed at a ratio of 52: 8: 37: 3 by weight%, A solution dissolved in 1,2-dichloroethane at a concentration of 0.75 wt% was formed to a thickness of 80 nm on the previously prepared PEDOT layer by a spin coating method to obtain a light emitting layer. An electrode was formed on the coated substrate by a vacuum deposition method with a film thickness of Ca of 40 nm and Al of 120 nm, thereby producing an organic EL element 2. The luminance-voltage curve of this element is shown in FIG.

実施例3
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、表2記載の化合物(18)、表1記載の化合物(1)、下記化合物(42)、表3記載の化合物(31)を重量%で52:8:37:3の割合で混合し、0.75wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子3を作製した。この素子の輝度−電圧曲線を、図3に示す。
化合物(42)
Example 3
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Further, the compound (18) shown in Table 2, the compound (1) shown in Table 1, the following compound (42), and the compound (31) shown in Table 3 were mixed at a ratio of 52: 8: 37: 3 by weight%. Then, a solution dissolved in 1,2-dichloroethane at a concentration of 0.75 wt% was formed to a thickness of 80 nm on the previously prepared PEDOT layer by a spin coating method to obtain a light emitting layer. An electrode was formed on the coated substrate by a vacuum vapor deposition method with a film thickness of Ca of 40 nm and Al of 120 nm to produce an organic EL element 3. The luminance-voltage curve of this element is shown in FIG.
Compound (42)

Figure 2005054075
Figure 2005054075

比較例1
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、表2記載の化合物(16)、化合物(41)、表3記載の化合物(31)を重量%で60:37:3の割合で混合し、0.75wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子4を作製した。この素子の輝度−電圧曲線を、図1に示す。
Comparative Example 1
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Further, the compound (16), the compound (41) described in Table 2 and the compound (31) described in Table 3 were mixed at a ratio of 60: 37: 3 by weight%, and 1,2-at a concentration of 0.75 wt%. A solution dissolved in dichloroethane was formed to a thickness of 80 nm on the previously prepared PEDOT layer by a spin coating method to obtain a light emitting layer. An electrode was formed on the coated substrate by a vacuum deposition method with a film thickness of Ca of 40 nm and Al of 120 nm, thereby producing an organic EL element 4. The luminance-voltage curve of this element is shown in FIG.

比較例2
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、表2記載の化合物(17)、化合物(41)、表3記載の化合物(31)を重量%で60:37:3の割合で混合し、0.75wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子5を作製した。この素子の輝度−電圧曲線を、図2に示す。
Comparative Example 2
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Further, the compound (17), the compound (41) and the compound (31) described in Table 2 were mixed at a weight ratio of 60: 37: 3, and 1,2- A solution dissolved in dichloroethane was formed to a thickness of 80 nm on the previously prepared PEDOT layer by a spin coating method to obtain a light emitting layer. On this coated substrate, an electrode was formed with a film thickness of Ca of 40 nm and Al of 120 nm by a vacuum deposition method, and an organic EL element 5 was produced. The luminance-voltage curve of this element is shown in FIG.

比較例3
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、表2記載の化合物(18)、化合物(42)、表3記載の化合物(31)を重量%で60:37:3の割合で混合し、0.75wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子6を作製した。この素子の輝度−電圧曲線を、図3に示す。
Comparative Example 3
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Further, the compound (18), the compound (42) described in Table 2 and the compound (31) described in Table 3 were mixed at a ratio of 60: 37: 3 by weight%, and 1,2- A solution dissolved in dichloroethane was formed to a thickness of 80 nm on the previously prepared PEDOT layer by a spin coating method to obtain a light emitting layer. An electrode was formed on the coated substrate by a vacuum deposition method with a film thickness of Ca of 40 nm and Al of 120 nm, thereby producing an organic EL element 6. The luminance-voltage curve of this element is shown in FIG.

比較例4
洗浄したITO電極付きガラス板上に、PEDOTをスピンコート法で50nmの膜厚に製膜し、100℃にて真空乾燥した。さらに、下記化合物(43)を0.5wt%の濃度で1,2−ジクロロエタンに溶解させた溶液を、スピンコーティング法により、先に作成したPEDOT層の上に80nmの膜厚の製膜して発光層を得た。この塗布基板に真空蒸着法によりCaを40nm、Alを120nmの膜厚で電極を形成させ、有機EL素子7を作製した。この素子の輝度−電圧曲線を、図4に示す。
化合物(43)
Comparative Example 4
On the washed glass plate with an ITO electrode, PEDOT was formed into a film thickness of 50 nm by a spin coat method, and vacuum-dried at 100 ° C. Further, a solution in which the following compound (43) was dissolved in 1,2-dichloroethane at a concentration of 0.5 wt% was formed into a film with a thickness of 80 nm on the previously prepared PEDOT layer by spin coating. A light emitting layer was obtained. An electrode was formed on this coated substrate with a film thickness of Ca of 40 nm and Al of 120 nm by a vacuum deposition method, and an organic EL element 7 was produced. The luminance-voltage curve of this element is shown in FIG.
Compound (43)

Figure 2005054075
Figure 2005054075

本実施例で示された図1の実施例1および比較例1の輝度−電圧曲線より、実用電圧である6Vにて、実施例1では300cd/m2の輝度が出ているが、比較例1は30cd/m2と約1/10の輝度である。同様に、図2の実施例2および比較例2の輝度−電圧曲線より、実用電圧域である8Vにて、実施例2では300cd/m2の輝度が出ているが、比較例2は1cd/m2未満とこれもまた約1/100の輝度である。さらに、図3の実施例3および比較例3の輝度−電圧曲線より、実用電圧域である10Vにて、実施例3では1000cd/m2の輝度が出ているが、比較例3は10cd/m2と約1/100の輝度である。これらの結果より、本発明の有機EL素子は、低駆動電圧化が達成された。また、図4の比較例4は、ポリフェニレンビニレン骨格を有する発光材料を使用している為、この輝度−電圧曲線より、実用電圧域である6Vにて、20000cd/m2の輝度が出ているが、電流値が非常に高い為、発光効率は1.5cd/Aと、実施例1−3の発光効率10−20cd/Aに比較して非常に低い。 From the luminance-voltage curves of Example 1 and Comparative Example 1 shown in FIG. 1 in this Example, the luminance of 300 cd / m 2 is obtained in Example 1 at 6 V which is a practical voltage. 1 is 30 cd / m 2 and a luminance of about 1/10. Similarly, from the luminance-voltage curves of Example 2 and Comparative Example 2 in FIG. 2, the luminance of 300 cd / m 2 is obtained in Example 2 at 8 V, which is a practical voltage range. Less than / m 2 , this is also about 1/100 of the brightness. Further, from the luminance-voltage curves of Example 3 and Comparative Example 3 in FIG. 3, the luminance of 1000 cd / m 2 is obtained in Example 3 at 10 V, which is a practical voltage range. The brightness is m 2 and about 1/100. From these results, the organic EL device of the present invention achieved a low driving voltage. Further, since Comparative Example 4 in FIG. 4 uses a light emitting material having a polyphenylene vinylene skeleton, a luminance of 20000 cd / m 2 is obtained from this luminance-voltage curve at 6 V which is a practical voltage range. However, since the current value is very high, the light emission efficiency is 1.5 cd / A, which is very low compared to the light emission efficiency 10-20 cd / A of Example 1-3.

本実施例で示された全ての有機EL素子について、連続発光させたところ、1000時間以上初期輝度の50%以上の輝度を観測出来たが、比較例1の素子を同様の条件で連続発光させたところ、20時間で初期輝度の50%以下の輝度になり、ダークスポットの数も極めて多くなった。本発明の正孔輸送材料は高分子量化されているので、有機EL素子としての耐熱性が極めて向上している。本発明の全ての化合物のガラス転移温度や融点は、それぞれ100℃以上であり、本発明の発光材料が大きく改良されていることがわかる。   When all the organic EL devices shown in this example were continuously emitted, a luminance of 50% or more of the initial luminance could be observed for 1000 hours or more. However, the device of Comparative Example 1 was allowed to continuously emit light under the same conditions. As a result, the luminance was 50% or less of the initial luminance in 20 hours, and the number of dark spots was extremely large. Since the hole transport material of the present invention has a high molecular weight, the heat resistance as an organic EL device is extremely improved. All of the compounds of the present invention have glass transition temperatures and melting points of 100 ° C. or more, indicating that the luminescent material of the present invention is greatly improved.

本発明の有機EL素子は発光効率、発光輝度の向上と長寿命化を達成するものであり、併せて使用される発光物質、発光補助材料、正孔輸送材料、電子輸送材料、増感剤、樹脂、電極材料等および素子作製方法を限定するものではない。   The organic EL device of the present invention achieves improvement in luminous efficiency, luminous luminance and longevity, and is used together with a luminescent substance, a luminescent auxiliary material, a hole transport material, an electron transport material, a sensitizer, The resin, the electrode material, etc. and the element manufacturing method are not limited.

実施例1および比較例1の輝度−電圧曲線Luminance-voltage curves of Example 1 and Comparative Example 1 実施例2および比較例2の輝度−電圧曲線Luminance-voltage curves of Example 2 and Comparative Example 2 実施例3および比較例3の輝度−電圧曲線Luminance-voltage curves of Example 3 and Comparative Example 3 比較例4の輝度−電圧曲線Luminance-voltage curve of Comparative Example 4

Claims (7)

非共役ポリマー、アミン化合物、およびリン光発光性化合物を含んでなる有機電界発光素子用材料。 A material for an organic electroluminescent device comprising a non-conjugated polymer, an amine compound, and a phosphorescent compound. さらに、電子輸送性化合物を含有する請求項1記載の有機電界発光素子用材料。 Furthermore, the material for organic electroluminescent elements of Claim 1 containing an electron transport compound. 非共役ポリマーが、下記一般式[1]で表されるユニットを少なくとも1つ含む請求項1または2記載の有機電界発光素子用材料。
一般式[1]
Figure 2005054075
[式中Aは非共役の3価の有機残基を表し、
Bは置換もしくは未置換のアリーレン基および置換もしくは未置換のヘテロアリーレン基からなる群より一つまたは二つ以上選ばれてなる2価の有機残基、または直接結合を表し、
Cは下記一般式[2]で表される一価の有機残基を表す。]
一般式[2]
Figure 2005054075
[式中R1〜R7は、結合部位、水素原子もしくは置換基を表し、
Xは直接結合、−O−、−S−、−Se−、−NH−、−NR8−(Rはアルキル基またはアリール基を表す。)、−S (=O)2−、−(CO)−、−COO−、−OCO−、−CH2−を表し、
R〜R7は互いに結合してアリール環を形成しても良く、さらにそのアリール環に置換基を有しても良い。]
The organic electroluminescent element material according to claim 1 or 2, wherein the non-conjugated polymer contains at least one unit represented by the following general formula [1].
General formula [1]
Figure 2005054075
[Wherein A represents a non-conjugated trivalent organic residue,
B represents a divalent organic residue selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group, or a direct bond;
C represents a monovalent organic residue represented by the following general formula [2]. ]
General formula [2]
Figure 2005054075
[Wherein R 1 to R 7 represent a bonding site, a hydrogen atom or a substituent,
X is a direct bond, —O—, —S—, —Se—, —NH—, —NR 8 — (R 8 represents an alkyl group or an aryl group), —S (═O) 2 —, — ( CO) -, - COO -, - OCO -, - CH 2 - represents,
R 1 to R 7 may be bonded to each other to form an aryl ring, and further the aryl ring may have a substituent. ]
一般式[2]が、下記一般式[3]で表される一価の有機残基である請求項3記載の有機電界発光素子用材料。
一般式[3]
Figure 2005054075
[式中R18〜R26は、結合部位、水素原子もしくは置換基を表す。]
The organic electroluminescent element material according to claim 3, wherein the general formula [2] is a monovalent organic residue represented by the following general formula [3].
General formula [3]
Figure 2005054075
[Wherein R 18 to R 26 represent a bonding site, a hydrogen atom or a substituent. ]
電子輸送性化合物が、オキサジアゾール誘導体である請求項2記載の有機電界発光素子用材料。 The organic electroluminescent element material according to claim 2, wherein the electron transporting compound is an oxadiazole derivative. リン光発光性化合物が、イリジウム錯体である請求項1〜5いずれか記載の有機電界発光素子用材料。 The material for an organic electroluminescent element according to claim 1, wherein the phosphorescent compound is an iridium complex. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機電界発光素子において、前記発光層中が、請求項1〜6いずれか記載の有機電界発光素子用材料を含有する有機電界発光素子。 7. The organic electroluminescent element material according to claim 1, wherein the light emitting layer is an organic electroluminescent element formed by forming a light emitting layer or a plurality of organic compound thin films including a light emitting layer between a pair of electrodes. Organic electroluminescent device containing
JP2003286944A 2003-08-05 2003-08-05 Material for organic electroluminescent element, and organic electroluminescent element using the same Pending JP2005054075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286944A JP2005054075A (en) 2003-08-05 2003-08-05 Material for organic electroluminescent element, and organic electroluminescent element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286944A JP2005054075A (en) 2003-08-05 2003-08-05 Material for organic electroluminescent element, and organic electroluminescent element using the same

Publications (1)

Publication Number Publication Date
JP2005054075A true JP2005054075A (en) 2005-03-03

Family

ID=34366094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286944A Pending JP2005054075A (en) 2003-08-05 2003-08-05 Material for organic electroluminescent element, and organic electroluminescent element using the same

Country Status (1)

Country Link
JP (1) JP2005054075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054077A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JP2005054076A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JPWO2005022961A1 (en) * 2003-08-05 2007-10-11 東洋インキ製造株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299059A (en) * 2001-03-29 2002-10-11 Ricoh Co Ltd Organic electroluminescence element for optical wiring, and method of manufacture
JP2004022544A (en) * 2002-06-20 2004-01-22 Samsung Sdi Co Ltd Polymeric organic electroluminescent element using mixture of phosphate rock material as luminescent material
JP2004526284A (en) * 2001-03-14 2004-08-26 ザ、トラスティーズ オブ プリンストン ユニバーシティ Materials and devices for blue phosphorescence based on organic light emitting diodes
JP2005054077A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JP2005054079A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the same
JP2005054076A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
WO2005022961A1 (en) * 2003-08-05 2005-03-10 Toyo Ink Manufacturing Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526284A (en) * 2001-03-14 2004-08-26 ザ、トラスティーズ オブ プリンストン ユニバーシティ Materials and devices for blue phosphorescence based on organic light emitting diodes
JP2002299059A (en) * 2001-03-29 2002-10-11 Ricoh Co Ltd Organic electroluminescence element for optical wiring, and method of manufacture
JP2004022544A (en) * 2002-06-20 2004-01-22 Samsung Sdi Co Ltd Polymeric organic electroluminescent element using mixture of phosphate rock material as luminescent material
JP2005054077A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JP2005054079A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the same
JP2005054076A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
WO2005022961A1 (en) * 2003-08-05 2005-03-10 Toyo Ink Manufacturing Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054077A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JP2005054076A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JPWO2005022961A1 (en) * 2003-08-05 2007-10-11 東洋インキ製造株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
JP4591652B2 (en) * 2003-08-05 2010-12-01 東洋インキ製造株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
JP4635873B2 (en) * 2003-08-05 2011-02-23 東洋インキ製造株式会社 Material for organic electroluminescent device and organic electroluminescent device using the same

Similar Documents

Publication Publication Date Title
KR101447961B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR101401639B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP4780696B2 (en) Phosphorescent polymer compound and organic light emitting device using the same
KR20150022615A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP3079909B2 (en) Hole transport material and its use
JP2014011437A (en) Organic semiconductor device and chemical compound
JP4635873B2 (en) Material for organic electroluminescent device and organic electroluminescent device using the same
JP4591652B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4093083B2 (en) Organic electroluminescent element material and organic electroluminescent element using the same
KR20160041223A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2006269472A (en) Organic electroluminescence element
WO2012115219A1 (en) Compounds having bipyridyl group and carbazole ring, and organic electroluminescent element
JP2004269696A (en) Organic electroluminescent device material and electroluminescent device using the same
JP4089472B2 (en) Organic electroluminescent element material and organic electroluminescent element using the same
JP2004176024A (en) Light-emitting material and organic electroluminescent element using the same
KR101438080B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2007201219A (en) Organic electroluminescence element
JP2004277568A (en) Polymer material for organic electroluminescent device and electroluminescent device using the same
JP2005054079A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
JP2005054075A (en) Material for organic electroluminescent element, and organic electroluminescent element using the same
JP2006253251A (en) Organic electroluminescence element
JP2005054076A (en) Material for organic electroluminescent element, and organic electroluminescent element using the same
JP2005179488A (en) Luminescent material for organic electroluminescent device and organic electroluminescent device using it
KR101516279B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2005225978A (en) Material for organic electroluminescent element and organic electroluminescent element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629