JP2005053754A - Method of forming glass material - Google Patents

Method of forming glass material Download PDF

Info

Publication number
JP2005053754A
JP2005053754A JP2003287879A JP2003287879A JP2005053754A JP 2005053754 A JP2005053754 A JP 2005053754A JP 2003287879 A JP2003287879 A JP 2003287879A JP 2003287879 A JP2003287879 A JP 2003287879A JP 2005053754 A JP2005053754 A JP 2005053754A
Authority
JP
Japan
Prior art keywords
glass
glass material
tube
shape
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003287879A
Other languages
Japanese (ja)
Inventor
Takaaki Onoe
高明 尾上
Takashi Kasuya
喬史 糟谷
Masashi Amatsu
正史 天津
Teru Azumi
輝 安積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fhp Engineering Kk
Fujitsu Ltd
Original Assignee
Fhp Engineering Kk
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fhp Engineering Kk, Fujitsu Ltd filed Critical Fhp Engineering Kk
Priority to JP2003287879A priority Critical patent/JP2005053754A/en
Publication of JP2005053754A publication Critical patent/JP2005053754A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/055Re-forming tubes or rods by rolling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/07Re-forming tubes or rods by blowing, e.g. for making electric bulbs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/07Re-forming tubes or rods by blowing, e.g. for making electric bulbs
    • C03B23/073Vacuum-blowing
    • C03B23/076Shrinking the glass tube on to a mandrel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a glass material by which the glass material is formed to have a small cross section similar to that of the glass material while keeping the surface state of the glass material. <P>SOLUTION: A preform before re-draw forming is shown by 10 in the figure, the cross section of the preform 10 has a cross sectional shape similar to a desired shape and the one end part of the preform 10 is fixed to a preform folder 20. The preform 10 is heated to have the viscosity ranging 10<SP>6</SP>-10<SP>8</SP>poise by a heater 30 arranged in a path of the preform 10 with the downward movement of the preform folder 20 in the vertical direction and further is pulled by a pulling roller 40 provided at a lower position to be formed into a small material 11 having cross section similar to that of the preform 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はガラス材の成形方法に関し、より具体的にはガラス材を小さな断面に成形するガラス材の成形方法に関する。   The present invention relates to a glass material molding method, and more specifically to a glass material molding method for molding a glass material into a small cross section.

近年、液晶表示装置の普及には目覚ましいものがあるが、液晶表示装置の重要品質である輝度(明るさ)を向上する手段の一つとしてバックライトの高効率化があげられる。バックライトは、蛍光体材料を塗布したガラス管内にXe等を含有する放電ガスが封入されており、ガラス管内で放電を発生させ、この放電によって放電ガス中のXeと衝突して紫外線が放出し、放出した紫外線は蛍光体材料にて可視光に励起されて発光する照明装置である。バックライト用のガラス管には、バックライトを薄型にするために外径寸法の小さなガラス管が用いられる。   In recent years, there has been a remarkable spread of liquid crystal display devices, but as one means for improving luminance (brightness), which is an important quality of liquid crystal display devices, high efficiency of the backlight can be mentioned. In the backlight, a discharge gas containing Xe or the like is enclosed in a glass tube coated with a phosphor material. A discharge is generated in the glass tube, and this discharge collides with Xe in the discharge gas and emits ultraviolet rays. The emitted ultraviolet light is an illuminating device that emits light when excited by visible light by a phosphor material. As the glass tube for the backlight, a glass tube having a small outer diameter is used in order to make the backlight thin.

また、複数のガス放電管を並列に配置して、画像を表示する表示装置が知られている。この表示装置用のガス放電管には、直径0.5〜5.0mm程度のガラス管が用いられる(例えば、特許文献1参照。)。   There is also known a display device that displays an image by arranging a plurality of gas discharge tubes in parallel. As the gas discharge tube for the display device, a glass tube having a diameter of about 0.5 to 5.0 mm is used (for example, see Patent Document 1).

ところで、ガラス管を成形する方法の一つとしてリドロー成形法があり、断面が大きなガラス管(母材)から小さなガラス管に成形する方法として広く知られている(例えば、特許文献2参照。)。リドロー成形法は、標準管又は標準管を加工したものを母材にして、母材の一方の端部を母材ホルダに固定しておき、加熱ヒータにて他方の端部から順に加熱するとともに、引っ張りローラを利用して母材の長軸方向に延伸して、より断面の小さなガラス管に成形するというものである。
特開2003−86141号公報 特開2003−92059号公報
By the way, there is a redraw molding method as one method of forming a glass tube, and it is widely known as a method of forming a glass tube (base material) having a large cross section into a small glass tube (for example, see Patent Document 2). . The redraw molding method uses a standard tube or a processed standard tube as a base material, and fixes one end of the base material to a base material holder and heats it sequentially from the other end with a heater. The glass tube is stretched in the long axis direction of the base material by using a pulling roller and formed into a glass tube having a smaller cross section.
JP 2003-86141 A JP 2003-92059 A

しかしながら、従来のリドロー成形法では、加熱温度が低すぎるとガラスが高粘度となり、連続した均一成形が困難となり、場合によってはガラス管が引きちぎられ、逆に加熱温度が高すぎると低粘度となり、加熱された領域においてガラス管の不規則変形が生じ、母材の表面状態及び形状が維持できず相似形状を有するガラス管が得られないという問題があった。   However, in the conventional redraw molding method, if the heating temperature is too low, the glass becomes highly viscous, making continuous uniform molding difficult, and in some cases, the glass tube is torn, and conversely if the heating temperature is too high, the viscosity becomes low, There is a problem that irregular deformation of the glass tube occurs in the heated region, the surface state and shape of the base material cannot be maintained, and a glass tube having a similar shape cannot be obtained.

また、ガラス管の断面形状を従来のような円形ではなく四角形、楕円形等に成形することにより、バックライトの輝度をさらに向上させることができるが、従来のリドロー成形法では、断面形状が四角形、楕円形等のガラス管を高精度かつ安価に成形することは困難であった。   Moreover, the brightness of the backlight can be further improved by forming the cross-sectional shape of the glass tube into a quadrangle, ellipse, etc. instead of the conventional circular shape. However, in the conventional redraw molding method, the cross-sectional shape is square. It has been difficult to form an elliptical glass tube with high accuracy and low cost.

本発明者らは、様々な温度条件でガラス管をリドロー成形し、成形したガラス管の形状を調べた結果、ガラス管の粘度が106 ポアズ(Poise)より低い領域では不規則な変形が生じ、完全な相似形状を有するガラス管に成形することができず、ガラス管の粘度が108 ポアズより高い領域ではガラス管が硬すぎて延伸が困難となるが、ガラス管の粘度が106 〜108 ポアズを呈する領域まで加熱するとともに、引っ張り速度を制御すれば、表面状態を維持しつつ、完全な相似形状を有するガラス管に成形できることを見出した。 As a result of redraw molding a glass tube under various temperature conditions and examining the shape of the molded glass tube, the inventors have found that irregular deformation occurs in a region where the viscosity of the glass tube is lower than 10 6 poise. In a region where the glass tube cannot be formed into a completely similar shape and the viscosity of the glass tube is higher than 10 8 poise, the glass tube is too hard to be stretched, but the viscosity of the glass tube is 10 6 to It was found that by heating to a region exhibiting 10 8 poise and controlling the pulling speed, a glass tube having a completely similar shape can be formed while maintaining the surface state.

本発明は斯かる事情に鑑みてなされたものであり、ガラス材を加熱して粘度が106 〜108 ポアズとなる領域にてリドロー成形することにより、ガラス材の表面状態を維持しつつ、ガラス材と相似形状を有する小さな断面に成形することができるガラス材の成形方法の提供を目的とする。 The present invention has been made in view of such circumstances, and while maintaining the surface state of the glass material by heating the glass material and performing redraw molding in a region where the viscosity is 10 6 to 10 8 poise, An object of the present invention is to provide a method for forming a glass material that can be formed into a small cross section having a shape similar to that of a glass material.

また本発明は、その断面が円形のみならず所望する形状と相似する形状にガラス材を予め成形し、成形したガラス材を加熱して粘度が106 〜108 ポアズとなる領域にてリドロー成形することにより、ガラス材の表面状態を維持しつつ、所望の形状に成形することができるガラス材の成形方法の提供を目的とする。 In addition, the present invention is not limited to a circular cross section, and a glass material is previously formed into a shape similar to a desired shape, and the formed glass material is heated to redraw in a region where the viscosity is 10 6 to 10 8 poise. Thus, an object of the present invention is to provide a method for forming a glass material that can be formed into a desired shape while maintaining the surface state of the glass material.

さらに本発明は、ガラス材を回転しながら、粘度が106 〜108 ポアズとなる領域にてリドロー形成することにより、カラス材にスパイラル加工を施すことができるガラス材の成形方法の提供を目的とする。 Another object of the present invention is to provide a glass material molding method capable of spiraling a crow material by redrawing it in a region where the viscosity is 10 6 to 10 8 poise while rotating the glass material. And

第1発明に係るガラス材の成形方法は、ガラス材をリドロー成形法により熱延するに際し、ガラス材を加熱して所定の粘度にするとともに、ガラス材の引っ張り速度を制御することにより、ガラス材を成形するガラス材の成形方法において、前記所定の粘度が、106 〜108 ポアズであることを特徴とする。 The glass material molding method according to the first aspect of the present invention is a method of heating a glass material by a redraw molding method, heating the glass material to a predetermined viscosity, and controlling the pulling speed of the glass material, In the method for forming a glass material, the predetermined viscosity is 10 6 to 10 8 poise.

第1発明に係るガラス材の成形方法にあっては、その粘度が106 〜108 ポアズを呈する領域までガラス材を加熱し、該領域にてガラス材を延伸する。この領域にてガラス材を延伸することにより、均一性に優れた小さな断面を有するガラス材が高精度かつ安価に成形される。 In the method for molding a glass material according to the first invention, the glass material is heated to a region where the viscosity exhibits 10 6 to 10 8 poise, and the glass material is stretched in the region. By stretching the glass material in this region, a glass material having a small cross section with excellent uniformity is formed with high accuracy and low cost.

第2発明に係るガラス材の成形方法は、第1発明において、ガラス材を所望の形状と相似する断面形状に予め成形し、成形したガラス材をリドロー成形法により、所望の形状に成形することを特徴とする。   A glass material molding method according to a second invention is the glass material according to the first invention, wherein the glass material is previously molded into a cross-sectional shape similar to a desired shape, and the molded glass material is molded into a desired shape by a redraw molding method. It is characterized by.

第2発明に係るガラス材の成形方法にあっては、まず、ガラス材を所望する形状と相似する断面形状に予め成形し、次に、成形したガラス材を、その粘度が106 〜108 ポアズとなる領域まで加熱し、該領域にてガラス材を延伸して表面状態を継承する相似形状に成形する。これにより、リドロー成形前のガラス材は断面が大きいために成形(加工)が容易であるため、リドロー成形前に、所望の形状と相似する形状にガラス材を加工すればよい。 In the method for molding a glass material according to the second invention, first, the glass material is previously molded into a cross-sectional shape similar to the desired shape, and then the viscosity of the molded glass material is 10 6 to 10 8. It heats to the area | region used as a poise, stretches a glass material in this area | region, and shape | molds it in the similar shape which inherits a surface state. Thereby, since the glass material before redraw molding has a large cross section, it is easy to form (process). Therefore, the glass material may be processed into a shape similar to a desired shape before redraw molding.

第3発明に係るガラス材の成形方法は、第2発明において、前記ガラス材は管状のガラス管であり、該ガラス管の両端を加熱して内部に気体を封入する工程と、気体を封入したガラス管を、内面が所望の形状に加工された鋳型に配置する工程と、前記ガラス管の内部圧より低い圧力下にて、ガラスの軟化点まで加熱する工程とを備え、前記ガラス管を鋳型の内面の形状に予め成形することを特徴とする。   The glass material molding method according to a third aspect of the present invention is the glass material according to the second aspect, wherein the glass material is a tubular glass tube, the step of heating the both ends of the glass tube to enclose the gas, and enclosing the gas A step of disposing the glass tube in a mold whose inner surface is processed into a desired shape; and a step of heating to a glass softening point under a pressure lower than the internal pressure of the glass tube, the glass tube being a mold It shape | molds previously in the shape of the inner surface of this.

第3発明に係るガラス材の成形方法にあっては、ガラス材が管状のガラス管の場合に、ガラス管の両端を加熱して内部に気体を封入し、気体を封入したガラス管を、内面が所望の形状に加工された鋳型に配置し、ガラス管の内部圧より低い圧力下にて、ガラスの軟化点まで加熱する。これにより、ガラス管の温度が上昇するにしたがってガラス管を構成するガラスの管壁が軟化し、ガラス管内外の圧力差によって、管壁が鋳型の内面方向に膨張してガラス管は鋳型の内面の形状に成形される。   In the glass material molding method according to the third aspect of the invention, when the glass material is a tubular glass tube, both ends of the glass tube are heated to enclose the gas therein, Is placed in a mold processed into a desired shape and heated to the softening point of the glass under a pressure lower than the internal pressure of the glass tube. As a result, the glass tube wall constituting the glass tube softens as the temperature of the glass tube rises, and the glass wall expands toward the inner surface of the mold due to the pressure difference between the inside and outside of the glass tube. It is formed into a shape.

第4発明に係るガラス材の成形方法は、第2発明において、前記ガラス材は管状のガラス管であり、該ガラス管の内側に、外面が所望の形状に加工されたマンドレルを配置する工程と、マンドレルを配置したガラス管の両端を加熱して封止する工程と、封止したガラス管の内部圧より高い圧力下にて、ガラスの軟化点まで加熱する工程とを備え、前記ガラス管をマンドレルの外面の形状に予め成形することを特徴とする。   According to a fourth aspect of the present invention, there is provided a glass material forming method according to the second aspect, wherein the glass material is a tubular glass tube, and a mandrel whose outer surface is processed into a desired shape is disposed inside the glass tube. A step of heating and sealing both ends of the glass tube on which the mandrel is disposed, and a step of heating to a glass softening point under a pressure higher than the internal pressure of the sealed glass tube, It is characterized in that it is molded in advance into the shape of the outer surface of the mandrel.

第4発明に係るガラス材の成形方法にあっては、ガラス材が管状のガラス管の場合に、ガラス管の内側に、外面が所望の形状に加工されたマンドレルを配置し、マンドレルを配置したガラス管の両端を加熱して封止し、封止したガラス管の内部圧より高い圧力下にて、ガラスの軟化点まで加熱する。これにより、ガラス管の温度が上昇するにしたがってガラス管を構成するガラスの管壁が軟化し、ガラス管内外の圧力差によって、管壁がマンドレルの外面方向に収縮してガラス管はマンドレルの外面の形状に成形される。   In the glass material molding method according to the fourth aspect of the invention, when the glass material is a tubular glass tube, a mandrel whose outer surface is processed into a desired shape is disposed inside the glass tube, and the mandrel is disposed. Both ends of the glass tube are heated and sealed, and heated to a softening point of the glass under a pressure higher than the internal pressure of the sealed glass tube. As a result, the glass tube wall constituting the glass tube softens as the temperature of the glass tube rises, and due to the pressure difference between the inside and outside of the glass tube, the tube wall shrinks in the direction of the outer surface of the mandrel, and the glass tube becomes the outer surface of the mandrel. It is formed into a shape.

第5発明に係るガラス材の成形方法は、第1発明において、ガラス材を回転することにより、ガラス材にスパイラル加工を施すことを特徴とする。   A glass material forming method according to a fifth invention is characterized in that, in the first invention, the glass material is spirally processed by rotating the glass material.

第5発明に係るガラス材の成形方法にあっては、ガラス材を回転しながら、その粘度が106 〜108 ポアズとなる領域まで加熱し、該領域にてガラス材を延伸してガラス材に一様なスパイラル加工を施す。この領域では連続した均一成形が容易であり、スパイラル加工されたガラス材が高精度かつ安価に成形される。 In the glass material molding method according to the fifth aspect of the invention, while rotating the glass material, the glass material is heated to a region where the viscosity is 10 6 to 10 8 poises, and the glass material is stretched in the region. A uniform spiral process is applied. In this region, continuous uniform molding is easy, and a spiral-processed glass material is molded with high accuracy and at low cost.

本発明のガラス材の成形方法によれば、その粘度が106 〜108 ポアズを呈する領域までガラス材を加熱し、該領域にてガラス材を延伸することにより、均一性に優れた小さな断面を有するガラス材を高精度かつ安価に製造することができる。また、リドロー形成前のガラス材は断面が大きいために成形(加工)が容易であるため、リドロー成形前に、所望の形状と相似する形状にガラス材を予め加工し、加工したガラス材をリドロー形成法により熱延して、所望の形状を有するガラス材を製造することができる。または、ガラス材を回転しながらリドロー形成法により熱延すれば、スパイラル加工されたガラス材を製造することができる等、優れた効果を奏する。 According to the method for molding a glass material of the present invention, the glass material is heated to a region exhibiting a viscosity of 10 6 to 10 8 poise, and the glass material is stretched in the region, whereby a small cross section excellent in uniformity. It is possible to manufacture a glass material having a high accuracy and at a low cost. In addition, since the glass material before redrawing has a large cross section, it is easy to form (process). Therefore, before redraw molding, the glass material is pre-processed into a shape similar to the desired shape, and the processed glass material is redrawn. A glass material having a desired shape can be produced by hot rolling by a forming method. Alternatively, if the glass material is hot-rolled by the redraw forming method while rotating, the glass material processed in a spiral manner can be produced, and thus excellent effects can be obtained.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.

(実施の形態1)
図1は本発明の実施の形態1に係るガラス材の成形方法を説明するための説明図である。図中10はリドロー成形前のガラス材(以下、母材という)であり、母材10の断面(母材径φ1)は、成形したい形状と相似する断面形状を有する。なお、母材10の加工方法の詳細については後述するが、母材径φ1が大きいために加工が容易であり、リドロー成形後での加工が困難な四角形状、楕円形状、半円形状等の形状に予め加工されている。
(Embodiment 1)
FIG. 1 is an explanatory diagram for explaining a glass material forming method according to Embodiment 1 of the present invention. In the figure, reference numeral 10 denotes a glass material before redraw molding (hereinafter referred to as a base material), and the cross section (base material diameter φ1) of the base material 10 has a cross-sectional shape similar to the shape to be formed. Although details of the processing method of the base material 10 will be described later, since the base material diameter φ1 is large, processing is easy, and it is difficult to process after redraw molding, such as a rectangular shape, an elliptical shape, a semicircular shape, and the like. Pre-processed into shape.

母材10の一方の端部は母材フォルダ20に固定され、母材フォルダ20は降下速度V1で鉛直方向に降下するように設定されている。つまり、母材10は、母材フォルダ20により降下速度V1で降下する。なお、本実施形態では縦置きタイプを示したが、横置きタイプであってもよいことはいうまでもない。   One end of the base material 10 is fixed to the base material folder 20, and the base material folder 20 is set to descend in the vertical direction at the descending speed V1. That is, the base material 10 is lowered at the lowering speed V <b> 1 by the base material folder 20. In addition, although the vertical installation type was shown in this embodiment, it cannot be overemphasized that a horizontal installation type may be sufficient.

そして、母材10は、降下に際してその経路に配置された加熱ヒータ30にて加熱される。加熱ヒータ30は複数のバーナ31,31,…を備えており、各バーナ31には図示しない温度センサが設けられている。温度センサは、バーナ31により加熱される母材10の当該位置における温度を検出する。また、加熱ヒータ30には、図示しない制御部が接続されており、制御部は前述した温度センサにて検出した温度に基づいて、後述する粘度(図3)となるように各バーナ31の出力を適宜調整する。より具体的には、燃焼ガスの量及び燃焼ガスに混合する酸素の割合を制御することにより、バーナ31から発生する炎の大きさ及び温度を調整することができ、例えば、酸素の割合を高めた燃焼ガスを用いることにより当該位置における母材10の温度を高めることができる。   The base material 10 is heated by the heater 30 disposed in the path when the base material 10 is lowered. The heater 30 includes a plurality of burners 31, 31,..., And each burner 31 is provided with a temperature sensor (not shown). The temperature sensor detects the temperature at the position of the base material 10 heated by the burner 31. Further, a controller (not shown) is connected to the heater 30, and the controller outputs the output of each burner 31 so as to have a viscosity (FIG. 3) described later based on the temperature detected by the temperature sensor described above. Adjust as appropriate. More specifically, by controlling the amount of combustion gas and the proportion of oxygen mixed with the combustion gas, the size and temperature of the flame generated from the burner 31 can be adjusted. For example, the proportion of oxygen is increased. By using the burned gas, the temperature of the base material 10 at the position can be increased.

このようにして、母材10は加熱されて母材温度が軟化点を超過し、さらに下方に設けた引っ張りローラ40により引っ張られることにより、断面が母材10より小さいガラス材(以下、細材という)11に成形される。引っ張りローラ40は、半径Rの一対のローラ40a,40bから構成されている。また、引っ張りローラ40には、図示しない制御部が接続されており、制御部は母材径φ1、細材径φ2、及び降下速度V1を用いて、引っ張り速度V2を、それ自体公知の計算式(V2=V1×(φ1/φ2)2 …(式1))により算出して、引っ張りローラ40の動作を制御する。より詳細には、各ローラ40a,40bは、その回転速度V3がV3=V2/(2πR)となるように制御部により適宜調整される。 In this way, the base material 10 is heated so that the base material temperature exceeds the softening point, and is further pulled by the pulling roller 40 provided below, so that the glass material (hereinafter referred to as a fine material) whose cross section is smaller than that of the base material 10. 11). The pulling roller 40 is composed of a pair of rollers 40a and 40b having a radius R. Further, a control unit (not shown) is connected to the pulling roller 40, and the control unit uses the base material diameter φ1, the fine material diameter φ2, and the descending speed V1 to calculate the pulling speed V2 per se. (V2 = V1 × (φ1 / φ2) 2 (Equation 1)) is calculated, and the operation of the pulling roller 40 is controlled. More specifically, the rollers 40a and 40b are appropriately adjusted by the control unit so that the rotation speed V3 is V3 = V2 / (2πR).

ところで、ガラスにはグリフィスフローと呼ばれる微細なクラックが無数に存在し、そのクラックの内の一つに力が集中すると、そこからクラックが伸長してガラスが破壊されるため、各ローラ40a,40bの細材11との接触面が、細材11の形状と合致するようなものを用いて、引っ張りローラ40が細材11に及ぼす力を分散させることが望ましい。   By the way, there are innumerable fine cracks called Griffith Flow in the glass, and when the force concentrates on one of the cracks, the crack extends and the glass is broken, so that each of the rollers 40a and 40b. It is desirable to disperse the force exerted on the fine material 11 by the pulling roller 40 using a material whose contact surface with the fine material 11 matches the shape of the fine material 11.

図2は引っ張りローラの上面図である。細材11の断面形状が円形状である場合(図2(a))には、ローラ40a,40bをともに半円状を有する凹形状にし、細材11の断面形状が半円形状である場合(図2(b))には、ローラ40aを半円状を有する凹形状に、40bを半円状を有する凸形状にすれば、引っ張りローラ40が細材11に及ぼす力を分散させることができる。もちろん、細材11の断面形状が四角形、楕円形等の場合には、その外形に合うローラ40a,40bを用いればよい。   FIG. 2 is a top view of the pulling roller. When the cross-sectional shape of the fine material 11 is a circular shape (FIG. 2A), the rollers 40a and 40b are both concave shapes having a semicircular shape, and the cross-sectional shape of the fine material 11 is a semicircular shape. In FIG. 2 (b), if the roller 40a is formed in a concave shape having a semicircular shape and the roller 40a is formed in a convex shape having a semicircular shape, the force exerted on the fine material 11 by the pulling roller 40 can be dispersed. it can. Of course, when the cross-sectional shape of the thin material 11 is a quadrangle, an ellipse or the like, rollers 40a and 40b matching the outer shape may be used.

図3は本発明に係るガラス材の粘度変化の一例を示すグラフである。図中横軸は加熱ヒータ30の入側を原点、母材の進行方向(本例では下方)を正方向と定義した場合のガラス材の位置を示し、縦軸は当該位置におけるガラス材の粘度を示す。なお、ガラス材の温度と粘度との関係は図4のグラフに示すように、その関係が一意性(ガラス材の粘度は温度が高くなるとともに減少する)を有するため、縦軸に温度ではなく粘度を示した。例えば、ホウケイ酸ガラス(SiO2 −B2 3 −Na2 O系)では略800〜950℃の温度領域、ソーダ石灰ガラスでは略700〜850℃の温度領域のときにガラス材の粘度が106 〜108 ポアズを呈する。 FIG. 3 is a graph showing an example of a change in viscosity of the glass material according to the present invention. In the figure, the horizontal axis indicates the position of the glass material when the entrance side of the heater 30 is defined as the origin and the traveling direction of the base material (downward in this example) is defined as the positive direction, and the vertical axis indicates the viscosity of the glass material at the position. Indicates. As shown in the graph of FIG. 4, the relationship between the temperature and the viscosity of the glass material is unique (the viscosity of the glass material decreases as the temperature increases). Viscosity was shown. For example, when the borosilicate glass (SiO 2 —B 2 O 3 —Na 2 O system) has a temperature range of about 800 to 950 ° C. and soda lime glass has a temperature range of about 700 to 850 ° C., the viscosity of the glass material is 10. It exhibits 6 to 10 8 poise.

図示したグラフは、加熱ヒータ30の炉長が300mmである場合の一例であり、加熱ヒータ30による加熱により、加熱ヒータ30の入側から110mm〜250mmの領域にて、ガラス材を本発明に係る106 〜108 ポアズを呈する温度領域にさせることを特徴とする。 The illustrated graph is an example when the furnace length of the heater 30 is 300 mm, and the glass material according to the present invention is heated by the heater 30 in the region of 110 mm to 250 mm from the entrance side of the heater 30. The temperature range is 10 6 to 10 8 poise.

また、ガラス材を急激に加熱又は冷却すると、熱衝撃のためにガラス材が破壊する虞があるため、加熱ヒータ30の入側から0mm〜100mmの領域にて穏やかに加熱する予熱領域と、加熱ヒータ30の入側から250mm〜300mmの領域にて穏やかに冷却する徐冷領域とを設けている。   In addition, if the glass material is heated or cooled rapidly, the glass material may be destroyed due to thermal shock, and therefore, a preheating region that heats gently in the region of 0 mm to 100 mm from the entrance side of the heater 30, and heating A slow cooling region for gently cooling in the region of 250 mm to 300 mm from the entrance side of the heater 30 is provided.

さらに、実際にガラスを軟化させる最高温度(最低粘度に相当する)のキープ温度領域Tを極力狭くするよう、急峻な温度分布を作ることが重要であり、本例では、キープ温度領域Tの幅を50mmにまで局在化させている。   Furthermore, it is important to create a steep temperature distribution so as to make the keep temperature region T of the highest temperature (corresponding to the lowest viscosity) that actually softens the glass as narrow as possible. In this example, the width of the keep temperature region T Is localized to 50 mm.

このような粘度変化となるようにガラス材を加熱し、式1を満足するように降下速度V1及び引っ張り速度V2を制御することにより、ガラス材の粘度が106 〜108 ポアズを呈する領域において、細材径φ2がφ1/10〜φ1(すなわち、相似比が1/10〜1)となる母材10と完全に相似形状を有するガラス材に成形することが可能であることを確認した。例えば、ホウケイ酸ガラス管(パイレックス管)の場合、35〜45mm/minの降下速度V1で母材10を降下させ、3500〜4500mm/minの引っ張り速度V2で細材11を引っ張り、略800〜950℃の加熱温度にて加熱すれば、粘度が106 〜108 ポアズを呈することになり、母材径φ1に対し略1/10の径を持つ任意形状の成形が可能であり、温度と引っ張り速度とを制御部により制御することにより極めて高い精度でリドロー成形を行うことができる。換言すれば、ガラス材の粘度が106 ポアズより低い場合には、ガラス材の不規則変形が生じ、リドロー成形された細材は、表面状態及び形状が維持できず相似形状とはならず、ガラス材の粘度が108 ポアズより高い場合には、ガラス材が硬すぎて延伸が困難となる。 In a region where the viscosity of the glass material exhibits 10 6 to 10 8 poises by heating the glass material so as to achieve such a viscosity change and controlling the descent speed V1 and the pulling speed V2 so as to satisfy Equation 1. It was confirmed that it was possible to form a glass material having a completely similar shape to the base material 10 in which the fine material diameter φ2 was φ1 / 10 to φ1 (that is, the similarity ratio was 1/10 to 1). For example, in the case of a borosilicate glass tube (pyrex tube), the base material 10 is lowered at a lowering speed V1 of 35 to 45 mm / min, and the fine material 11 is pulled at a pulling speed V2 of 3500 to 4500 mm / min, approximately 800 to 950. When heated at a heating temperature of 0 ° C., the viscosity will be 10 6 to 10 8 poise, and can be molded into an arbitrary shape having a diameter of about 1/10 of the base material diameter φ1, and the temperature and tension By controlling the speed by the control unit, redraw molding can be performed with extremely high accuracy. In other words, when the viscosity of the glass material is lower than 10 6 poise, irregular deformation of the glass material occurs, and the redraw molded fine material cannot maintain the surface state and shape and does not have a similar shape, When the viscosity of the glass material is higher than 10 8 poise, the glass material is too hard and stretching becomes difficult.

次に、母材10の加工方法について説明する。図5は本発明に係る母材の加工方法を説明するための説明図である。ここでは、一例として、パイレックス管(ガラス標準管)の断面を円形から四角形に加工する場合について説明することにする。   Next, a method for processing the base material 10 will be described. FIG. 5 is an explanatory diagram for explaining a method of processing a base material according to the present invention. Here, as an example, a case where the cross section of a Pyrex tube (glass standard tube) is processed from a circle to a quadrangle will be described.

図5(a)は鋳型を用いて断面形状が四角形を有する母材を形成する方法である。まず、大気中にてガラス標準管50の両端をバーナで加熱することにより、その両端を封止して内部空間を完全な気密状態にする。そして、内面を所望の形状(本例では四角形)に加工したカーボン、SiC等の鋳型51の中に、両端を封止したガラス標準管50を配置し、真空炉内にてガラスが軟化する温度(軟化点)である650〜750℃まで加熱する。ガラス標準管50の管内には大気が充填され、管外は真空状態であるため、温度が上昇するにしたがって管内の圧力が上昇するとともに、ガラス標準管50を構成するガラスの管壁が軟化し、ガラス標準管50の内外の圧力差によって、管壁が鋳型51の内面方向(同図矢印)に膨張する。そして、ガラス標準管50は鋳型51の内面の形状に成形される。   FIG. 5A shows a method of forming a base material having a square cross-sectional shape using a mold. First, both ends of the glass standard tube 50 are heated with a burner in the atmosphere to seal both ends and make the internal space completely airtight. Then, a glass standard tube 50 sealed at both ends is placed in a mold 51 made of carbon, SiC or the like whose inner surface is processed into a desired shape (quadrature in this example), and the glass is softened in a vacuum furnace. It heats to 650-750 degreeC which is (softening point). Since the inside of the glass standard tube 50 is filled with air and the outside of the tube is in a vacuum state, the pressure in the tube increases as the temperature rises, and the glass tube wall constituting the glass standard tube 50 softens. Due to the pressure difference between the inside and outside of the glass standard tube 50, the tube wall expands toward the inner surface of the mold 51 (arrow in the figure). The glass standard tube 50 is formed into the shape of the inner surface of the mold 51.

図5(b)はマンドレルを用いて断面形状が四角形を有する母材を形成する方法である。まず、外面を所望の形状(本例では四角形)に加工したカーボン、SiC等のマンドレル53をガラス標準管52の管内に配置し、内部空間を完全な真空状態にてガラス標準管52の両端を封止する。そして、真空状態にしたガラス標準管52を大気炉にてガラスが軟化する温度(軟化点)である650〜750℃まで加熱する。ガラス標準管52の管内は真空状態であり、管外には大気が充填されているため、温度が上昇するにしたがって管外の圧力が上昇するとともに、ガラス標準管52を構成するガラスの管壁が軟化し、ガラス標準管52の内外の圧力差によって、管壁がマンドレル53の外面方向(同図矢印)に収縮する。そして、ガラス標準管52はマンドレル53の外面の形状に成形される。   FIG. 5B shows a method of forming a base material having a quadrangular cross-section using a mandrel. First, a mandrel 53 such as carbon, SiC or the like whose outer surface is processed into a desired shape (quadrature in this example) is placed in the tube of the glass standard tube 52, and both ends of the glass standard tube 52 are placed in a completely vacuum state in the inner space. Seal. And the glass standard tube 52 made into the vacuum state is heated to 650-750 degreeC which is the temperature (softening point) at which glass softens in an atmospheric furnace. Since the inside of the glass standard tube 52 is in a vacuum state and the atmosphere is filled outside the tube, the pressure outside the tube rises as the temperature rises, and the glass tube wall constituting the glass standard tube 52 Is softened, and the tube wall contracts in the direction of the outer surface of the mandrel 53 (arrow in the figure) due to the pressure difference between the inside and outside of the glass standard tube 52. Then, the glass standard tube 52 is formed into the shape of the outer surface of the mandrel 53.

このように、母材10は細材11より大きいために、成形用の鋳型51又はマンドレル53を用いた加工が容易であり、所望する形状を有する鋳型51又はマンドレル53を用いることにより、細材状態での加工が困難な四角形状、楕円形状、半円形状等の任意の形状に加工することができる。従って、このように任意の形状に加工した母材10を、前述したリドロー形成法により延伸すれば、目的の形状を有する細材11を高精度かつ安価に製造することができる。   Thus, since the base material 10 is larger than the fine material 11, it is easy to process using the molding mold 51 or the mandrel 53. By using the mold 51 or the mandrel 53 having a desired shape, the fine material can be obtained. It can be processed into an arbitrary shape such as a rectangular shape, an elliptical shape, or a semicircular shape, which is difficult to process in a state. Therefore, if the base material 10 processed into an arbitrary shape in this way is stretched by the above-described redraw forming method, the fine material 11 having the target shape can be manufactured with high accuracy and at low cost.

(実施の形態2)
図6は本発明の実施の形態2に係るガラス材の成形方法を説明するための説明図である。図中60は棒状の母材であり、母材60の一方の端部は母材フォルダ70に固定され、母材フォルダ70は降下速度V1で鉛直方向に降下するように設定されている。さらに、母材フォルダ70は鉛直方向を軸に所定の回転速度で回転するように設定されている。
(Embodiment 2)
FIG. 6 is an explanatory diagram for explaining a glass material forming method according to Embodiment 2 of the present invention. In the figure, reference numeral 60 denotes a bar-shaped base material. One end of the base material 60 is fixed to a base material folder 70, and the base material folder 70 is set to descend in the vertical direction at a descending speed V1. Further, the base material folder 70 is set to rotate at a predetermined rotational speed with the vertical direction as an axis.

そして、母材60は、降下に際してその経路に配置された加熱ヒータ30にて加熱され、母材60の温度が軟化点を超過し、さらに下方に設けた引っ張りローラ40により引っ張られることにより細材61に成形される。加熱ヒータ30による加熱の際には、実施の形態1と同様に、その粘度が106 〜108 ポアズを呈する温度領域となるように各バーナ31の出力を適宜調整する。その他の構成は図1と同様であるので、対応する部分には同一の符号を付してその詳細な説明を省略する。 The base material 60 is heated by the heater 30 disposed in the path when descending, the temperature of the base material 60 exceeds the softening point, and is further pulled by the pulling roller 40 provided below, so that the thin material is obtained. 61 is formed. When heating by the heater 30, as in the first embodiment, the output of each burner 31 is appropriately adjusted so that the viscosity becomes a temperature region exhibiting 10 6 to 10 8 poise. Since other configurations are the same as those in FIG. 1, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.

このように、母材60を106 〜108 ポアズとなる温度領域にさせるとともに、母材フォルダ70を回転することにより、細材61に一様なスパイラル加工を施すことができる。特に、この温度領域では、連続した均一成形が容易であり、スパイラル加工された細材を高精度かつ安価に製造することができる。 As described above, the base material 60 is brought to a temperature range of 10 6 to 10 8 poises, and the base material folder 70 is rotated, whereby the thin material 61 can be subjected to uniform spiral processing. In particular, in this temperature range, continuous uniform molding is easy, and a spiral processed fine material can be manufactured with high accuracy and at low cost.

なお、各実施の形態では、母材ホルダー20が降下速度V1で鉛直方向に降下して、母材10(60)が加熱ヒータ30により順次加熱される形態について説明したが、母材ホルダーが固定され、加熱ヒータが鉛直方向に上昇して母材を下端から順次加熱するような形態であってもよいことはいうまでもない。   In each embodiment, the base material holder 20 descends in the vertical direction at the lowering speed V1 and the base material 10 (60) is sequentially heated by the heater 30. However, the base material holder is fixed. Needless to say, the heater may rise in the vertical direction to sequentially heat the base material from the lower end.

また、ガラス材としては、実施の形態で示したホウケイ酸ガラス、ソーダ石灰ガラスに限定されるものではなく、鉛ガラス、石英ガラス等のガラス材一般においても、その粘度が106 〜108 ポアズとなる温度領域にさせることにより、所望する形状のものを高精度かつ安価に製造することができる。 Further, the glass material is not limited to the borosilicate glass and soda lime glass shown in the embodiment, and in general glass materials such as lead glass and quartz glass, the viscosity is 10 6 to 10 8 poise. By making the temperature range to be, a desired shape can be manufactured with high accuracy and at low cost.

近年、ガラスチップの中にマイクロマシン技術により微細な流路を形成し、その流路における試薬の流れを利用してDNA分析及び血液分析を行ったり、様々な物質の反応及び合成を行うマイクロチップが盛んに研究されており、そのチップへの定速注液機構の実現が強く望まれている。本発明に係る成形方法によれば、任意の径を有する細材61(ガラス棒)の表面に一様なスパイラル加工を施すことができるため、図7に示すように、この細材61の表面にチューブ81を高精度で嵌合することにより、細材61とチューブ81とから生じるスパイラル状の孔82の断面を一様にでき、試薬を一様な速度で流せる注液ポンプ80を製造することができる。   In recent years, microchips that form fine flow paths in a glass chip by micromachine technology, perform DNA analysis and blood analysis using the flow of reagents in the flow paths, and perform reactions and synthesis of various substances have been developed. It has been actively researched, and there is a strong demand for the realization of a constant-rate injection mechanism for the chip. According to the forming method according to the present invention, since the surface of the fine material 61 (glass rod) having an arbitrary diameter can be subjected to uniform spiral processing, as shown in FIG. By fitting the tube 81 with high accuracy, the cross section of the spiral hole 82 generated from the thin material 61 and the tube 81 can be made uniform, and the injection pump 80 capable of flowing the reagent at a uniform speed is manufactured. be able to.

本発明の実施の形態1に係るガラス材の成形方法を説明するための説明図である。It is explanatory drawing for demonstrating the shaping | molding method of the glass material which concerns on Embodiment 1 of this invention. 引っ張りローラの上面図である。It is a top view of a pulling roller. 本発明に係るガラス材の粘度変化の一例を示すグラフである。It is a graph which shows an example of the viscosity change of the glass material which concerns on this invention. ガラス材の粘度特性を示すグラフである。It is a graph which shows the viscosity characteristic of a glass material. 本発明に係る母材の加工方法を説明するための説明図である。It is explanatory drawing for demonstrating the processing method of the base material which concerns on this invention. 本発明の実施の形態2に係るガラス材の成形方法を説明するための説明図である。It is explanatory drawing for demonstrating the shaping | molding method of the glass material which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るガラス材の成形方法により成形された細材(ガラス棒)を用いた注液ポンプの断面図である。It is sectional drawing of the liquid injection pump using the fine material (glass rod) shape | molded by the shaping | molding method of the glass material which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

10,60 母材
11,61 細材
20,70 母材フォルダ
30 加熱ヒータ
31 バーナ
40 引っ張りローラ
40a,40b ローラ
51 鋳型
53 マンドレル
10, 60 Base material 11, 61 Fine material 20, 70 Base material folder 30 Heater 31 Burner 40 Pulling roller 40a, 40b Roller 51 Mold 53 Mandrel

Claims (5)

ガラス材をリドロー成形法により熱延するに際し、ガラス材を加熱して所定の粘度にするとともに、ガラス材の引っ張り速度を制御することにより、ガラス材を成形するガラス材の成形方法において、
前記所定の粘度が、106 〜108 ポアズであることを特徴とするガラス材の成形方法。
In hot-rolling a glass material by a redraw molding method, the glass material is heated to a predetermined viscosity, and the glass material is molded by controlling the pulling speed of the glass material.
The method for molding a glass material, wherein the predetermined viscosity is 10 6 to 10 8 poise.
ガラス材を所望の形状と相似する断面形状に予め成形し、
成形したガラス材をリドロー成形法により、所望の形状に成形することを特徴とする請求項1に記載のガラス材の成形方法。
Pre-form a glass material into a cross-sectional shape similar to the desired shape,
The method for molding a glass material according to claim 1, wherein the molded glass material is formed into a desired shape by a redraw molding method.
前記ガラス材は管状のガラス管であり、
該ガラス管の両端を加熱して内部に気体を封入する工程と、
気体を封入したガラス管を、内面が所望の形状に加工された鋳型に配置する工程と、
前記ガラス管の内部圧より低い圧力下にて、ガラスの軟化点まで加熱する工程とを備え、
前記ガラス管を鋳型の内面の形状に予め成形することを特徴とする請求項2に記載のガラス材の成形方法。
The glass material is a tubular glass tube,
Heating both ends of the glass tube and enclosing a gas inside;
Placing the glass tube enclosing the gas in a mold whose inner surface is processed into a desired shape; and
Heating to the softening point of the glass under a pressure lower than the internal pressure of the glass tube,
3. The method for molding a glass material according to claim 2, wherein the glass tube is previously molded into the shape of the inner surface of the mold.
前記ガラス材は管状のガラス管であり、
該ガラス管の内側に、外面が所望の形状に加工されたマンドレルを配置する工程と、
マンドレルを配置したガラス管の両端を加熱して封止する工程と、
封止したガラス管の内部圧より高い圧力下にて、ガラスの軟化点まで加熱する工程とを備え、
前記ガラス管をマンドレルの外面の形状に予め成形することを特徴とする請求項2に記載のガラス材の成形方法。
The glass material is a tubular glass tube,
Placing a mandrel whose outer surface is processed into a desired shape inside the glass tube;
Heating and sealing both ends of the glass tube on which the mandrel is disposed;
A step of heating to a softening point of the glass under a pressure higher than the internal pressure of the sealed glass tube,
The method for molding a glass material according to claim 2, wherein the glass tube is previously molded into a shape of an outer surface of a mandrel.
ガラス材を回転することにより、ガラス材にスパイラル加工を施すことを特徴とする請求項1に記載のガラス材の成形方法。   The glass material forming method according to claim 1, wherein the glass material is spirally processed by rotating the glass material.
JP2003287879A 2003-08-06 2003-08-06 Method of forming glass material Pending JP2005053754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287879A JP2005053754A (en) 2003-08-06 2003-08-06 Method of forming glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287879A JP2005053754A (en) 2003-08-06 2003-08-06 Method of forming glass material

Publications (1)

Publication Number Publication Date
JP2005053754A true JP2005053754A (en) 2005-03-03

Family

ID=34366737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287879A Pending JP2005053754A (en) 2003-08-06 2003-08-06 Method of forming glass material

Country Status (1)

Country Link
JP (1) JP2005053754A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294440A (en) * 2005-04-12 2006-10-26 Shinetsu Quartz Prod Co Ltd Deformed synthetic quartz tube for excimer uv lamp, and its manufacturing method
WO2008061891A2 (en) * 2006-11-22 2008-05-29 Heraeus Quarzglas Gmbh & Co. Kg Method and device for producing a cylindrical profiled element consisting of quartz glass, and use of such a profiled element
JP2008270101A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Manufacturing method of bulb for electrodeless lamp
WO2009052902A1 (en) 2007-10-26 2009-04-30 Ingo Hilgenberg Method and apparatus for producing glass bodies by means of redrawing methods
US9139464B2 (en) 2012-08-09 2015-09-22 Schott Ag Method and apparatus for shaping an elongated glass body
JP2017532556A (en) * 2014-10-14 2017-11-02 ヘレーウス テネーヴォ エルエルシーHeraeus Tenevo Llc Equipment and method for drawing a base material or tube based on its viscosity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294440A (en) * 2005-04-12 2006-10-26 Shinetsu Quartz Prod Co Ltd Deformed synthetic quartz tube for excimer uv lamp, and its manufacturing method
WO2008061891A2 (en) * 2006-11-22 2008-05-29 Heraeus Quarzglas Gmbh & Co. Kg Method and device for producing a cylindrical profiled element consisting of quartz glass, and use of such a profiled element
WO2008061891A3 (en) * 2006-11-22 2008-08-14 Heraeus Quarzglas Method and device for producing a cylindrical profiled element consisting of quartz glass, and use of such a profiled element
JP2008270101A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Manufacturing method of bulb for electrodeless lamp
WO2009052902A1 (en) 2007-10-26 2009-04-30 Ingo Hilgenberg Method and apparatus for producing glass bodies by means of redrawing methods
US9139464B2 (en) 2012-08-09 2015-09-22 Schott Ag Method and apparatus for shaping an elongated glass body
JP2017532556A (en) * 2014-10-14 2017-11-02 ヘレーウス テネーヴォ エルエルシーHeraeus Tenevo Llc Equipment and method for drawing a base material or tube based on its viscosity
US11454580B2 (en) 2014-10-14 2022-09-27 Heraeus Quartz North America Llc Method for preform or tube drawing based on its viscosity

Similar Documents

Publication Publication Date Title
KR20030078718A (en) Method for making flat elliptic thin glass tube for discharge tube
CN101626987B (en) Ultra thin glass drawing and blowing
US4023953A (en) Apparatus and method for producing composite glass tubing
JP5395440B2 (en) Method and apparatus for drawing tubular quartz glass strands
US20160168005A1 (en) Method for producing a large quartz-glass tube
EP3502066A1 (en) Glass tube production method
JP2005053754A (en) Method of forming glass material
CN111453975A (en) Flexible glass forming method and forming device
KR101853035B1 (en) Method for forming opaque quartz glass components
TWI782151B (en) Manufacturing method and manufacturing apparatus of glass article
EP3686167A1 (en) Preform for producing an optical glass component
JP2006190664A (en) Light-emitting device having molded body, and method of manufacturing light-emitting device
TW200415130A (en) Refining chamber made of PGM materials
JP2006315919A (en) Apparatus and method for molding glass tube
US2462808A (en) Manufacture of tubular glassware
JPH07109137A (en) Method for molding flat glass tube
CN101367603B (en) Secondary bending and molding method and device for fluorescent lamp slice pipe
JP3071420B1 (en) Method and apparatus for stretching glass base material
JP2009209016A (en) Drawing apparatus of optical fiber preform and manufacturing method of optical fiber preform
JP2005317522A (en) Manufacturing method and apparatus of bent lamp, bent lamp, and backlight unit
KR100430406B1 (en) Apparatus for manufacturing high heat-resistant quartz glass
EP4023614A1 (en) Method for producing glass article and device for producing glass article
JP2005154259A (en) Glass composition and its manufacturing method
JPH08319125A (en) Production of optical element-forming material
JP2005243540A (en) Manufacturing method of curved type fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081106

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A02