JP2009209016A - Drawing apparatus of optical fiber preform and manufacturing method of optical fiber preform - Google Patents

Drawing apparatus of optical fiber preform and manufacturing method of optical fiber preform Download PDF

Info

Publication number
JP2009209016A
JP2009209016A JP2008055430A JP2008055430A JP2009209016A JP 2009209016 A JP2009209016 A JP 2009209016A JP 2008055430 A JP2008055430 A JP 2008055430A JP 2008055430 A JP2008055430 A JP 2008055430A JP 2009209016 A JP2009209016 A JP 2009209016A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
core tube
furnace
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008055430A
Other languages
Japanese (ja)
Other versions
JP5041425B2 (en
Inventor
Kiyoshi Arima
潔 有馬
Koji Ichikawa
耕次 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008055430A priority Critical patent/JP5041425B2/en
Publication of JP2009209016A publication Critical patent/JP2009209016A/en
Application granted granted Critical
Publication of JP5041425B2 publication Critical patent/JP5041425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/70Draw furnace insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drawing apparatus of an optical fiber preform with which the optical fiber preform can be drawn without occurrence of bending and non-circle; and to provide a manufacturing method of the same. <P>SOLUTION: The drawing apparatus is used for drawing an optical fiber preform by heating and softening it. The drawing apparatus is equipped with: a cylindrical furnace core tube in which the optical fiber preform is arranged; a cylindrical heating body arranged so as to surround the furnace core tube; a heat insulating body arranged at the outer periphery of the furnace core tube and the heating body; and a furnace body for accommodating the furnace core tube, the heating body and the heat insulating body. The heat insulating body and the furnace body each has a through-hole which is formed at a position opposing across the central axis of the furnace core tube. At least one of the furnace core tube and the heating body is formed in such a manner that the length in the longitudinal direction at a part directly above the position where the through-hole is formed becomes longer than the length at a part directly above an orthogonal position forming an angle of 90° in the circumferential direction with the position where the through-hole is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ファイバ母材を加熱、軟化して延伸する延伸装置および光ファイバ母材の製造方法に関するものである。   The present invention relates to a drawing apparatus for heating and softening an optical fiber preform, and a method for manufacturing the optical fiber preform.

近年、光ファイバの生産性の向上、低コスト化等の目的で、光ファイバ母材の大型化が進んでいる。大型の光ファイバ母材を製造する場合、はじめに光ファイバのコア部を含むコア母材を形成し、加熱炉を備えた延伸装置を用いてコア母材を加熱、軟化して延伸し、その外径を小さくするとともに全長を長くしてから、クラッド部となる部分をコア母材の外周に形成し、光ファイバ母材を製造する。また、大型の光ファイバ母材から光ファイバを線引きする場合、延伸装置を用いて光ファイバ母材を加熱、軟化して延伸し、その外径を小さくするとともに全長を長くしてから線引きを行なう(特許文献1〜3参照)。以下、コア母材も含めて光ファイバ母材と記載する。   In recent years, the size of optical fiber preforms has been increasing for the purpose of improving the productivity of optical fibers and reducing costs. When manufacturing a large-sized optical fiber preform, first, a core preform including the core portion of the optical fiber is formed, and the core preform is heated and softened and stretched using a stretching apparatus equipped with a heating furnace. After reducing the diameter and lengthening the entire length, a portion to be a clad portion is formed on the outer periphery of the core preform, and an optical fiber preform is manufactured. Also, when drawing an optical fiber from a large optical fiber preform, the drawing is performed after the optical fiber preform is heated and softened and stretched using a stretching device to reduce its outer diameter and length. (See Patent Documents 1 to 3). Hereinafter, it is referred to as an optical fiber preform including the core preform.

たとえば、特許文献1に開示される光ファイバ母材を延伸する延伸装置においては、光ファイバ母材を所定の外径に延伸するために、延伸する光ファイバ母材の外径をたとえばレーザ方式の外径測定器を用いて測定しながら、外径が一定になるように光ファイバ母材の移動速度、加熱炉内の温度などをフィードバック制御している。   For example, in a stretching apparatus for stretching an optical fiber preform disclosed in Patent Document 1, in order to stretch the optical fiber preform to a predetermined outer diameter, the outer diameter of the stretched optical fiber preform is, for example, that of a laser system. While measuring using an outer diameter measuring device, feedback control is performed on the moving speed of the optical fiber preform and the temperature in the heating furnace so that the outer diameter is constant.

ここで、特許文献1では、外径を正確に制御するために、炉体に欠損部を設け、欠損部において光ファイバ母材のテーパ部すなわちメニスカス部の外径を測定するようにしている。そして、炉体の欠損部に対応する箇所に配置した小窓から炉内の熱が流出するのを防止するために、小窓に断熱性部材を配置できるようにしている。   Here, in patent document 1, in order to control an outer diameter correctly, the defect | deletion part is provided in the furnace body and the outer diameter of the taper part of the optical fiber preform, ie, the meniscus part, is measured in a defect | deletion part. And in order to prevent that the heat in a furnace flows out from the small window arrange | positioned in the location corresponding to the defect | deletion part of a furnace body, it has enabled it to arrange a heat insulation member in a small window.

特許第3159116号公報Japanese Patent No. 3159116 特開平8−310827号公報JP-A-8-310827 特開平3−146432号公報Japanese Patent Laid-Open No. 3-146432

しかしながら、上記のように炉体に欠損部および窓を設けた場合、断熱性部材を配置しても炉内の熱の流出を完全には防止できず、炉内の温度が欠損部に対応する位置において低下するため、周方向で温度の不均一が発生し、延伸した光ファイバ母材が曲がったり、その断面が非円になったりする場合があるという問題があった。   However, when the defect part and the window are provided in the furnace body as described above, even if the heat insulating member is arranged, the outflow of heat in the furnace cannot be completely prevented, and the temperature in the furnace corresponds to the defect part. Since the temperature is lowered at the position, there is a problem that the temperature is uneven in the circumferential direction, and the stretched optical fiber preform may be bent or the cross section thereof may be non-circular.

本発明は、上記に鑑みてなされたものであって、曲がりや非円の発生なく光ファイバ母材を延伸できる光ファイバ母材の延伸装置および光ファイバ母材の製造方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an optical fiber preform stretching apparatus and an optical fiber preform manufacturing method capable of stretching an optical fiber preform without occurrence of bending or non-circularity. And

上述した課題を解決し、目的を達成するために、本発明に係る光ファイバ母材の延伸装置は、光ファイバ母材を加熱、軟化して延伸する延伸装置であって、前記光ファイバ母材が配置される円筒形状の炉心管と、前記炉心管を囲繞するように配置した円筒形状の加熱体と、前記炉心管および前記加熱体の外周に配置した断熱体と、前記炉心管と前記加熱体と前記断熱体とを収容する炉体と、を備え、前記断熱体および前記炉体は、前記炉心管の中心軸を挟んで対向する位置に形成された貫通孔をそれぞれ有し、前記炉心管および前記加熱体の少なくとも一方は、前記貫通孔の形成位置の直上部における長手方向の長さが、前記貫通孔の形成位置とは周方向に90度をなす直交位置の直上部における長さよりも長くなるように形成されていることを特徴とする。   In order to solve the above-described problems and achieve the object, an optical fiber preform stretching apparatus according to the present invention is a stretching apparatus that heats and softens an optical fiber preform and stretches the optical fiber preform. A cylindrical furnace core tube, a cylindrical heating body disposed so as to surround the core tube, a heat insulator disposed on the outer periphery of the core tube and the heating body, the core tube and the heating And a furnace body containing the heat insulator, each of the heat insulator and the furnace body having through holes formed at positions facing each other across a central axis of the core tube, At least one of the tube and the heating body has a length in a longitudinal direction immediately above the formation position of the through hole, and a length in a position immediately above the orthogonal position that forms 90 degrees in the circumferential direction with respect to the formation position of the through hole. It is also formed to be long The features.

また、本発明に係る光ファイバ母材の延伸装置は、上記の発明において、前記炉体の外側に配置され、前記貫通孔から前記光ファイバ母材の外径を測定する外径測定器を備えたことを特徴とする。   An optical fiber preform stretching apparatus according to the present invention includes an outer diameter measuring instrument that is disposed outside the furnace body and that measures an outer diameter of the optical fiber preform from the through hole. It is characterized by that.

また、本発明に係る光ファイバ母材の延伸装置は、上記の発明において、前記加熱体および前記炉心管の少なくとも一方は、長手方向の長さが前記形成位置の直上部から前記直交位置の直上部へ連続的に短くなるように形成されていることを特徴とする。   In the optical fiber preform stretching apparatus according to the present invention, in the above invention, at least one of the heating body and the core tube has a length in the longitudinal direction directly above the formation position and directly above the orthogonal position. It is characterized by being formed so as to be continuously shorter toward the top.

また、本発明に係る光ファイバ母材の延伸装置は、上記の発明において、前記貫通孔の中心は、前記光ファイバ母材が延伸する際にメニスカス部が形成される高さ領域に位置することを特徴とする。   In the optical fiber preform stretching apparatus according to the present invention, in the above invention, the center of the through hole is located in a height region where a meniscus portion is formed when the optical fiber preform is stretched. It is characterized by.

また、本発明に係る光ファイバ母材の延伸装置は、上記の発明において、前記貫通穴の中心は、前記メニスカス部の下端から0〜100mmだけ下方に位置することを特徴とする。   The optical fiber preform stretching apparatus according to the present invention is characterized in that, in the above invention, the center of the through hole is located 0 to 100 mm below the lower end of the meniscus portion.

また、本発明に係る光ファイバ母材の製造方法は、上記の発明のいずれかに係る光ファイバ母材の延伸装置の前記炉心管内に光ファイバ母材を配置し、前記加熱体によって前記配置した光ファイバ母材を加熱、軟化して延伸することを特徴とする。   Further, in the method for manufacturing an optical fiber preform according to the present invention, an optical fiber preform is arranged in the furnace core tube of the drawing apparatus for an optical fiber preform according to any of the above inventions, and the arrangement is performed by the heating body. The optical fiber preform is heated, softened and stretched.

本発明によれば、炉心管および加熱体の少なくとも一方は、貫通孔の形成位置の直上部における長手方向の長さが、貫通孔の形成位置とは周方向に90度をなす直交位置の直上部における長さよりも長くなるように形成されているので、貫通孔からの熱の流出があっても、炉心管内の温度分布は周方向で均一に維持されるため、曲がりや非円の発生なく光ファイバ母材を延伸できるという効果を奏する。   According to the present invention, at least one of the core tube and the heating element has a length in the longitudinal direction directly above the position where the through hole is formed, and a position directly perpendicular to the position where the through hole is formed is 90 degrees in the circumferential direction. Since it is formed to be longer than the length at the top, even if heat flows out from the through hole, the temperature distribution in the core tube is maintained uniformly in the circumferential direction, so there is no occurrence of bending or non-circularity. There is an effect that the optical fiber preform can be drawn.

以下に、図面を参照して本発明に係る光ファイバ母材の延伸装置および光ファイバ母材の製造方法の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an optical fiber preform stretching apparatus and an optical fiber preform manufacturing method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態)
はじめに、本発明の実施の形態に係る光ファイバ母材の延伸装置について説明する。図1は、本実施の形態に係る光ファイバ母材の延伸装置の模式的な断面図である。図1に示すように、この延伸装置10は、炉心管1と、加熱体であるヒータ2と、断熱材3と、炉体4と、窓5、5と、外径測定器6、6とを備える。
(Embodiment)
First, an optical fiber preform stretching apparatus according to an embodiment of the present invention will be described. FIG. 1 is a schematic cross-sectional view of an optical fiber preform stretching apparatus according to the present embodiment. As shown in FIG. 1, the stretching apparatus 10 includes a furnace core tube 1, a heater 2 that is a heating body, a heat insulating material 3, a furnace body 4, windows 5 and 5, and outer diameter measuring devices 6 and 6. Is provided.

炉心管1は、円筒形状を有し、たとえばカーボンからなる。また、ヒータ2は、円筒形状を有し、炉心管1を囲繞するように配置している。また、断熱体3は、炉心管1および加熱体2の外周に配置されている。また、炉体4は、円筒形状を有し、炉心管1、ヒータ2、断熱体3とを収容している。また、炉体4は、上下蓋部に開口部4a、4bを有しており、光ファイバ母材が挿通できるようになっている。   The core tube 1 has a cylindrical shape and is made of, for example, carbon. The heater 2 has a cylindrical shape and is disposed so as to surround the core tube 1. The heat insulator 3 is disposed on the outer periphery of the furnace core tube 1 and the heating body 2. The furnace body 4 has a cylindrical shape and houses the furnace core tube 1, the heater 2, and the heat insulator 3. Moreover, the furnace body 4 has openings 4a and 4b in the upper and lower lid portions, so that an optical fiber preform can be inserted.

また、断熱体3および炉体4は、炉心管1の中心軸を挟んで対向する位置に形成された貫通孔3a、3a、4c、4cをそれぞれ有している。炉体4の貫通孔4c、4cには、透明の窓5、5がそれぞれ取り付けられている。さらに、炉体4の外側には、レーザ方式の外径測定器6、6が設けられている。この外径測定器6、6は、一方がレーザ光を出力し、出力したレーザ光が窓5、貫通孔4c、3a、炉心管1の下方、貫通孔3a、4c、窓5を順次通過して、他方に到達するように配置されている。   The heat insulator 3 and the furnace body 4 have through holes 3 a, 3 a, 4 c, and 4 c formed at positions facing each other across the central axis of the core tube 1. Transparent windows 5 and 5 are attached to the through holes 4c and 4c of the furnace body 4, respectively. Further, laser type outer diameter measuring devices 6 and 6 are provided outside the furnace body 4. One of the outer diameter measuring devices 6 and 6 outputs laser light, and the outputted laser light sequentially passes through the window 5, the through holes 4 c and 3 a, the lower part of the core tube 1, the through holes 3 a and 4 c, and the window 5. And arranged so as to reach the other.

ここで、炉心管1は、貫通孔3a、3a、4c、4cの形成位置の直上の部分1aが、この形成位置とは周方向に90度をなす直交位置の直上の部分1bよりも矩形状に下方に延びて形成されている。すなわち、炉心管1は、貫通孔3a、3a、4c、4cの形成位置の直上部における長手方向の長さが、直交位置の直上部における長さよりも長くなるように形成されている。図2は、図1に示す炉心管1の模式的な展開図である。図2に示す部分1aが部分1bから延伸している長さL1はたとえば10〜50mmである。なお、長さL1は、貫通孔4c、4cの中心の高さでの炉心管壁近傍における温度の最大値と最小値との差が、5℃以下となるように適宜選択する。   Here, in the core tube 1, the portion 1 a immediately above the formation position of the through holes 3 a, 3 a, 4 c, and 4 c is more rectangular than the portion 1 b immediately above the orthogonal position that forms 90 degrees in the circumferential direction with respect to this formation position. And extending downward. That is, the core tube 1 is formed such that the length in the longitudinal direction immediately above the formation position of the through holes 3a, 3a, 4c, and 4c is longer than the length directly above the orthogonal position. FIG. 2 is a schematic development view of the core tube 1 shown in FIG. The length L1 in which the part 1a shown in FIG. 2 extends from the part 1b is, for example, 10 to 50 mm. The length L1 is appropriately selected so that the difference between the maximum value and the minimum value in the vicinity of the core tube wall at the center height of the through holes 4c, 4c is 5 ° C. or less.

本実施の形態に係る延伸装置1は、炉心管1が上記のように形成されているので、貫通孔3a、3a、4c、4cからの熱の流出があっても、炉心管1内の周方向で温度の均一性が維持される。以下、具体的に説明する。   In the stretching apparatus 1 according to the present embodiment, since the core tube 1 is formed as described above, even if heat flows out from the through holes 3a, 3a, 4c, and 4c, the circumference in the core tube 1 is increased. Uniformity of temperature is maintained in the direction. This will be specifically described below.

図3は、図1に示す延伸装置1を貫通孔3a、3aの方向に沿って切断した断面と、この断面における炉心管1内での高さ方向位置と温度分布との関係を示す図である。なお、図3では、炉体4、窓5、外径測定器6の記載を省略している。図3に示すように、炉心管1は、部分1aにおいて長手方向に長いため、ヒータ2が炉心管1内に形成する温度分布は、破線で示す曲線C1で示すように下方まで延びた形状となるはずであるが、断熱体3に形成された貫通孔3a、3aから外部へ熱が流出するため、実際の温度分布は、実線で示す曲線C2で示すような、下方の温度分布が曲線C1よりも狭い分布形状となっている。   FIG. 3 is a diagram showing a cross section obtained by cutting the stretching apparatus 1 shown in FIG. 1 along the direction of the through holes 3a and 3a, and the relationship between the height direction position in the core tube 1 and the temperature distribution in this cross section. is there. In addition, in FIG. 3, description of the furnace body 4, the window 5, and the outer diameter measuring device 6 is abbreviate | omitted. As shown in FIG. 3, since the core tube 1 is long in the longitudinal direction in the portion 1a, the temperature distribution formed in the core tube 1 by the heater 2 has a shape extending downward as indicated by a curve C1 indicated by a broken line. However, since heat flows out from the through holes 3a and 3a formed in the heat insulator 3, the actual temperature distribution is such that the lower temperature distribution is the curve C1 as shown by the curve C2 indicated by the solid line. Narrower distribution shape.

一方、図4は、図1に示す延伸装置1を貫通孔3a、3aの方向と直交する方向に沿って切断した断面と、この断面における炉心管1内での高さ方向位置と温度分布との関係を示す図である。図4に示すように、炉心管1は、部分1bにおいて長手方向に短いため、ヒータ2が炉心管1内に形成する温度分布は、曲線C3で示すように、図3に示す曲線C2とほぼ同様な分布形状となっている。その結果、炉心管1内の温度分布は周方向で均一に維持されることとなる。   On the other hand, FIG. 4 shows a cross section of the stretching apparatus 1 shown in FIG. 1 cut along a direction orthogonal to the direction of the through holes 3a and 3a, and the height direction position and temperature distribution in the core tube 1 in this cross section. It is a figure which shows the relationship. As shown in FIG. 4, since the core tube 1 is short in the longitudinal direction in the portion 1b, the temperature distribution formed in the core tube 1 by the heater 2 is almost the same as the curve C2 shown in FIG. The distribution shape is similar. As a result, the temperature distribution in the core tube 1 is maintained uniformly in the circumferential direction.

図5は、図3に示したA−A線断面における炉心管1の直下の温度分布を模式的に示した図である。矢印A1、A2は貫通孔3a、3aの形成方向を示し、色の濃淡が温度の高低を示している。図5に示すように、延伸装置1においては、炉心管1の直下においても、その温度分布は周方向で均一に維持される。   FIG. 5 is a view schematically showing a temperature distribution immediately below the core tube 1 in the cross section along the line AA shown in FIG. Arrows A1 and A2 indicate the direction in which the through holes 3a and 3a are formed, and the shade of color indicates the temperature. As shown in FIG. 5, in the stretching apparatus 1, the temperature distribution is maintained uniformly in the circumferential direction even immediately below the core tube 1.

一方、図6は、長手方向の長さが周方向で同一の炉心管を用いた場合の炉心管の直下での温度分布を模式的に示した図である。矢印A3、A4は貫通孔の形成方向を示している。図6に示すように、長手方向の長さが周方向で同一の炉心管を用いた場合は、貫通孔からの熱の流出のため、矢印A3、A4の方向で温度が低くなり、これと直交する方向で温度が高くなっている。   On the other hand, FIG. 6 is a diagram schematically showing the temperature distribution immediately below the core tube when the core tube having the same longitudinal length in the circumferential direction is used. Arrows A3 and A4 indicate the through hole formation direction. As shown in FIG. 6, when the same core tube is used in the circumferential direction in the longitudinal direction, the temperature decreases in the directions of arrows A3 and A4 due to the outflow of heat from the through holes. The temperature is high in the orthogonal direction.

つぎに、延伸装置10を用いて光ファイバ母材を製造する方法について説明する。図7は、図1に示す延伸装置10を用いて光ファイバ母材を製造する方法について説明する説明図である。なお、図7では、炉体4、窓5の記載を省略している。   Next, a method for manufacturing an optical fiber preform using the stretching apparatus 10 will be described. FIG. 7 is an explanatory view for explaining a method of manufacturing an optical fiber preform using the stretching apparatus 10 shown in FIG. In addition, in FIG. 7, description of the furnace body 4 and the window 5 is abbreviate | omitted.

はじめに、たとえば石英ガラス製の光ファイバ母材7の上下端に石英ガラス製の支持棒を溶着し、その上下端をそれぞれチャックで支持しながら炉心管1内に配置する。つぎに、ヒータ2により炉心管1内を最高温度が2000℃以上になるように加熱し、光ファイバ母材7の下端近傍を加熱、軟化する。すると、光ファイバ母材7の外径が徐々に縮径してメニスカス部7aが形成され、延伸した光ファイバ母材8が製造される。延伸装置10は、炉心管1内の温度分布が周方向で均一に維持されているため、曲がりや非円のない光ファイバ母材8を製造できる。   First, for example, quartz glass support rods are welded to the upper and lower ends of an optical fiber preform 7 made of quartz glass, for example, and the upper and lower ends are arranged in the core tube 1 while being supported by chucks. Next, the inside of the core tube 1 is heated by the heater 2 so that the maximum temperature becomes 2000 ° C. or higher, and the vicinity of the lower end of the optical fiber preform 7 is heated and softened. Then, the outer diameter of the optical fiber preform 7 is gradually reduced to form the meniscus portion 7a, and the stretched optical fiber preform 8 is manufactured. Since the temperature distribution in the furnace core tube 1 is uniformly maintained in the circumferential direction, the drawing apparatus 10 can manufacture the optical fiber preform 8 that is free from bending and non-circularity.

なお、光ファイバ母材7、8を支持するチャックは、光ファイバ母材7、8に張力を加えるように上昇または下降させる。このチャックの上昇、下降速度およびヒータ2の温度等は、断熱材3の貫通孔3a、3aを介して外径測定器6によって測定された光ファイバ母材8の外径が一定になるようにフィードバック制御される。   The chuck that supports the optical fiber preforms 7 and 8 is raised or lowered so as to apply tension to the optical fiber preforms 7 and 8. The chuck rising and lowering speed, the temperature of the heater 2 and the like are set so that the outer diameter of the optical fiber preform 8 measured by the outer diameter measuring device 6 through the through holes 3a and 3a of the heat insulating material 3 is constant. Feedback controlled.

以上説明したように、本実施の形態に係る延伸装置10によれば、曲がりや非円の発生なく光ファイバ母材を延伸でき、曲がりや非円のない光ファイバ母材を製造できる。   As described above, according to the stretching apparatus 10 according to the present embodiment, the optical fiber preform can be stretched without generation of bending or non-circle, and the optical fiber preform without bending or non-circle can be manufactured.

なお、本発明の実施例として、本実施の形態に係る延伸装置10の構造を有し、図2に示す部分1a、1bの長さがそれぞれ80mm、110mmであり、長さL1が30mmである延伸装置を用いて、外径90mmの光ファイバ母材から外径が約50mmの光ファイバ母材を製造した。一方、本発明の比較例として、延伸装置10と同様の構造を有するが、長さL1が0mmである延伸装置を用いて実施例と同様の光ファイバ母材を作製した。なお、いずれの場合も、炉心管内の最高温度は2000℃とし、最高温度となる位置が炉体4に形成された貫通孔4c、4cの上端から90mm程度の位置になるようにした。   In addition, it has the structure of the extending | stretching apparatus 10 which concerns on this Embodiment as an Example of this invention, the length of the parts 1a and 1b shown in FIG. 2 is 80 mm and 110 mm, respectively, and length L1 is 30 mm An optical fiber preform having an outer diameter of about 50 mm was manufactured from an optical fiber preform having an outer diameter of 90 mm using a stretching apparatus. On the other hand, as a comparative example of the present invention, an optical fiber preform similar to that of the example was manufactured using a stretching apparatus having the same structure as the stretching apparatus 10 but having a length L1 of 0 mm. In either case, the maximum temperature in the furnace core tube was 2000 ° C., and the position where the maximum temperature was reached was about 90 mm from the upper end of the through holes 4 c and 4 c formed in the furnace body 4.

このとき貫通孔4c、4cの中心の高さで、炉心管壁近傍の炉心管内の温度を外周にわたって測定したところ、温度の最大値と最小値との差は、比較例の場合は10℃であったが、実施例の場合は1℃以下であった。なお、炉心管壁近傍の炉心管内の温度の測定は以下のようにして行った。まず、石英ガラス製の支持棒の下端をチャックで支持し、さらにその上端に、延伸前の光ファイバ母材とほぼ同径のカーボン製円盤を、その中心軸が支持棒の中心軸と一致するように設置する。この状態で円盤が貫通孔4c、4cの少し上の高さに位置するように加熱炉内に円盤付きの支持棒を配置し、この状態で炉心管壁近傍の炉心管内の温度を測定した。   At this time, when the temperature in the core tube near the core tube wall was measured over the outer circumference at the center height of the through holes 4c and 4c, the difference between the maximum value and the minimum value was 10 ° C in the case of the comparative example. However, in the case of the example, it was 1 ° C. or lower. The temperature in the core tube near the core tube wall was measured as follows. First, the lower end of a quartz glass support rod is supported by a chuck, and a carbon disk having the same diameter as that of the optical fiber preform before stretching is formed on the upper end thereof, and its central axis coincides with the central axis of the support rod. Install as follows. In this state, a support rod with a disk was placed in the heating furnace so that the disk was positioned slightly above the through holes 4c and 4c, and the temperature in the core tube near the core tube wall was measured in this state.

そして、製造した光ファイバ母材の曲がりについては、比較例の場合は触れ回り半径(母材をその長手方向を中心軸として回転させたときの、回転中心軸からの母材中心軸のずれ量)で5mmであったが、実施例の場合は2mm以下であった。さらに、製造した光ファイバ母材の外径については、比較例の場合は円周方向で最大50±0.3mmであり、大きな非円が発生していたが、実施例の場合は円周方向で最大50±0.1mmであり、非円の発生が抑制されていた。   For the bending of the manufactured optical fiber preform, in the case of the comparative example, the radius of contact (the amount of deviation of the preform center axis from the rotation center axis when the preform is rotated about its longitudinal direction as the center axis) ) Was 5 mm, but in the example, it was 2 mm or less. Furthermore, the outer diameter of the manufactured optical fiber preform was 50 ± 0.3 mm at the maximum in the circumferential direction in the comparative example, and a large non-circular occurred, but in the circumferential direction in the example The maximum was 50 ± 0.1 mm, and the occurrence of non-circle was suppressed.

(変形例)
つぎに、上記実施の形態の変形例について説明する。この変形例に係る延伸装置20は、炉心管が実施の形態に係る延伸装置10よりも短くなっている。さらに、炉体および断熱材に形成される貫通孔も、より上方のメニスカス部が形成される高さ領域に位置している。
(Modification)
Next, a modification of the above embodiment will be described. In the stretching apparatus 20 according to this modification, the core tube is shorter than the stretching apparatus 10 according to the embodiment. Furthermore, the through holes formed in the furnace body and the heat insulating material are also located in the height region where the upper meniscus portion is formed.

図8は、実施の形態の変形例に係る延伸装置の構成およびこの延伸装置を用いて光ファイバ母材を製造する方法について説明する説明図である。図8に示すように、この延伸装置20は、炉心管11と、ヒータ12と、断熱材13と、外径測定器6、6と、不図示の炉体および窓とを備える。外径測定器6、6、炉体、窓は延伸装置10と同様のものである。一方、炉心管11と、ヒータ12とは、メニスカス部17aの長さを短くするために、延伸装置10のものよりも短くなっている。また、断熱材13は、貫通孔13a、13aが、延伸装置10のものよりも高い、メニスカス部17aが形成される高さ領域に位置している。また、外径測定器6、6も貫通孔13a、13aに対応する位置に配置されている。   FIG. 8 is an explanatory diagram for explaining a configuration of a stretching apparatus according to a modification of the embodiment and a method for manufacturing an optical fiber preform using the stretching apparatus. As shown in FIG. 8, the stretching device 20 includes a furnace core tube 11, a heater 12, a heat insulating material 13, outer diameter measuring devices 6 and 6, and a furnace body and a window (not shown). The outer diameter measuring devices 6 and 6, the furnace body, and the window are the same as those of the stretching device 10. On the other hand, the core tube 11 and the heater 12 are shorter than those of the stretching device 10 in order to shorten the length of the meniscus portion 17a. Moreover, the heat insulating material 13 is located in the height area | region where the through-holes 13a and 13a are higher than the thing of the extending | stretching apparatus 10, and the meniscus part 17a is formed. Moreover, the outer diameter measuring devices 6 and 6 are also arranged at positions corresponding to the through holes 13a and 13a.

この延伸装置20によれば、光ファイバ母材17のメニスカス部17aの外径を測定し、この外径に基づいてフィードバック制御を行うことができる。メニスカス部17aは粘度が低いので、光ファイバ母材17の昇降速度を変化させたときの外径の変化の度合いが大きい。したがって、メニスカス部17aの外径に基づいてフィードバック制御を行うことによって、より制御応答性の高いフィードバック制御を行うことができ、延伸した光ファイバ母材18をより高精度に所望の外径にすることができる。さらに、この延伸装置20では、炉心管11とヒータ12との長さを短くしてメニスカス部17aの長さを短くしているので、制御応答性がさらに高くなっている。   According to the stretching device 20, the outer diameter of the meniscus portion 17a of the optical fiber preform 17 can be measured, and feedback control can be performed based on the outer diameter. Since the meniscus portion 17a has a low viscosity, the degree of change in the outer diameter when the raising / lowering speed of the optical fiber preform 17 is changed is large. Therefore, by performing feedback control based on the outer diameter of the meniscus portion 17a, feedback control with higher control responsiveness can be performed, and the stretched optical fiber preform 18 is made to have a desired outer diameter with higher accuracy. be able to. Furthermore, in this drawing apparatus 20, since the length of the core tube 11 and the heater 12 is shortened and the length of the meniscus portion 17a is shortened, the control response is further enhanced.

なお、制御応答性を高くするために、外径測定の位置は、ヒータ12の下端から0〜100mmの高さが好ましく、0〜50mmの高さがより好ましい。したがって、貫通孔13a、13aの位置も同様の高さとするのが好ましい。   In addition, in order to make control responsiveness high, the height of the outer diameter measurement is preferably 0 to 100 mm from the lower end of the heater 12, and more preferably 0 to 50 mm. Therefore, it is preferable that the positions of the through holes 13a and 13a have the same height.

以下、最適な外径測定の位置についてさらに具体的に説明する。外径測定の位置は、よりヒータ12に近いほうが、制御応答性が高くなる。ここで、特許文献3にも記載のとおり、最適な外径測定の位置は、メニスカス部17aの傾きに依存する。すなわち、ある位置でのメニスカス部17aの勾配をA[mm/mm]、外径をD[mm]とすると、A/D≧0.2×10−2[mm−1]となる位置で外径を測定するのが、外径の制御性を高くするためには好ましい。 Hereinafter, the optimum outer diameter measurement position will be described more specifically. The control responsiveness is higher when the outer diameter measurement position is closer to the heater 12. Here, as described in Patent Document 3, the optimum position for outer diameter measurement depends on the inclination of the meniscus portion 17a. That is, when the gradient of the meniscus portion 17a at a certain position is A [mm / mm] and the outer diameter is D [mm], the outer diameter is A / D ≧ 0.2 × 10 −2 [mm −1 ]. Measuring the diameter is preferable in order to increase the controllability of the outer diameter.

しかしながら、特許文献3にも記載のとおり、外径測定の位置が、メニスカス部17aの下端部からあまり離れると、外径測定の位置の下流でもメニスカス部17aが縮径するため、外径の測定値と最終的な外径との差が大きくなる。さらに、フィードバック制御によって下側のチャックの移動速度が変わると、光ファイバ母材8にかかる張力が変化する。そのため、最終的な外径の変動が、測定値の変動よりも大きくなる場合があり、好ましくない。したがって、メニスカス部17aの下端部をA/Dが0.5×10−3[mm−1]となる位置と定義すると、外径測定の位置は、メニスカス部17aの下端部から100mm以内が好ましく、50mm以内がより好ましい。なお、メニスカス部17aの下端部と外径測定の位置を近づけるためには、メニスカス部17aの勾配を大きくして、メニスカス部17aの長さを短くすればよい。 However, as described in Patent Document 3, if the outer diameter measurement position is too far from the lower end of the meniscus portion 17a, the meniscus portion 17a is reduced in diameter even downstream of the outer diameter measurement position. The difference between the value and the final outer diameter increases. Further, when the moving speed of the lower chuck is changed by feedback control, the tension applied to the optical fiber preform 8 is changed. For this reason, the final fluctuation of the outer diameter may be larger than the fluctuation of the measured value, which is not preferable. Therefore, when the lower end portion of the meniscus portion 17a is defined as a position where A / D is 0.5 × 10 −3 [mm −1 ], the outer diameter measurement position is preferably within 100 mm from the lower end portion of the meniscus portion 17a. More preferably, it is within 50 mm. In order to bring the lower end portion of the meniscus portion 17a closer to the position of the outer diameter measurement, the meniscus portion 17a may be increased in gradient to shorten the length of the meniscus portion 17a.

上記のような、メニスカス部17aの下端部から好ましい範囲であり、しかもA/D≧0.2×10−2[mm−1]を満たすような外径測定の位置を実現するためには、炉心管11内の最高温度の85%の温度となる位置が、最高温度位置から120mm以内になるようにするのが好ましく、70mm以内にすることがより好ましい。 In order to realize the position of the outer diameter measurement that satisfies the A / D ≧ 0.2 × 10 −2 [mm −1 ], which is a preferable range from the lower end portion of the meniscus portion 17a as described above, The position where the temperature in the core tube 11 is 85% of the maximum temperature is preferably within 120 mm from the maximum temperature position, and more preferably within 70 mm.

(その他の変形例)
なお、上記実施の形態およびその変形例では、炉心管が貫通孔の形成位置の直上の部分において矩形状に延びて形成されていることによって、炉心管の長手方向の長さがその位置によって異なるようになっていたが、本発明はこれに限られない。図9は、本発明の実施形態の別の変形例に係る延伸装置に備えた炉心管の模式的な展開図である。図9に示すように、本変形例における炉心管31は、長手方向の長さが正弦波状に形成されており、部分31aから、部分31aと直交する位置にある部分31bへ連続的に短くなっている。この炉心管31を、部分31aが貫通孔の形成位置の直上に位置するように延伸装置内に配置することによって、炉心管内の温度分布を周方向でより均一に維持することができる。
(Other variations)
In the above-described embodiment and its modification, the length of the core tube in the longitudinal direction varies depending on the position of the core tube extending in a rectangular shape immediately above the position where the through hole is formed. However, the present invention is not limited to this. FIG. 9 is a schematic development view of a core tube provided in a stretching apparatus according to another modification of the embodiment of the present invention. As shown in FIG. 9, the core tube 31 in this modification is formed in a sine wave length in the longitudinal direction, and continuously shortens from the portion 31a to the portion 31b at a position orthogonal to the portion 31a. ing. By disposing the core tube 31 in the stretching apparatus so that the portion 31a is positioned immediately above the formation position of the through hole, the temperature distribution in the core tube can be maintained more uniformly in the circumferential direction.

さらに、上記実施の形態およびその変形例では、炉心管の長手方向の長さがその位置によって異なるように形成されていたが、ヒータの長手方向の長さがその位置によって異なっていてもよい。図10は、本発明の実施形態のさらに別の変形例に係る延伸装置に備えた炉心管の模式的な展開図である。図10に示すように、本変形例におけるヒータ42は、貫通孔の形成位置の直上に配置する部分42aが、これと直交する位置にある部分42bに対して矩形状に延びて形成されている。図10に示す部分42aが部分42bから延伸している長さL2は10〜50mmである。これによって、上記実施の形態およびその変形例と同様に、炉心管内の温度分布を周方向で均一に維持することができる。なお、さらなる変形例として、ヒータの長手方向の長さを図9のように正弦波状に形成してもよい。さらに、炉心管とヒータの両方の長手方向の長さがその位置によって異なるように形成されていてもよい。   Furthermore, in the said embodiment and its modification, it formed so that the length of the longitudinal direction of a core tube might differ with the position, However, The length of the longitudinal direction of a heater may differ with the position. FIG. 10 is a schematic development view of a core tube provided in a stretching apparatus according to still another modification of the embodiment of the present invention. As shown in FIG. 10, the heater 42 in this modification is formed such that a portion 42 a disposed immediately above the formation position of the through hole extends in a rectangular shape with respect to a portion 42 b at a position orthogonal to the position. . The length L2 that the portion 42a shown in FIG. 10 extends from the portion 42b is 10 to 50 mm. As a result, the temperature distribution in the core tube can be maintained uniformly in the circumferential direction, as in the above-described embodiment and modifications thereof. As a further modification, the length of the heater in the longitudinal direction may be formed in a sine wave shape as shown in FIG. Further, the lengths of both the core tube and the heater in the longitudinal direction may be formed so as to differ depending on their positions.

実施の形態に係る光ファイバ母材の延伸装置の模式的な断面図である。It is typical sectional drawing of the extending | stretching apparatus of the optical fiber preform which concerns on embodiment. 図1に示す炉心管の模式的な展開図である。FIG. 2 is a schematic development view of the core tube shown in FIG. 1. 図1に示す延伸装置を貫通孔の方向に沿って切断した断面と、この断面における炉心管内での高さ方向位置と温度分布との関係を示す図である。It is a figure which shows the relationship between the cross section which cut | disconnected the extending | stretching apparatus shown in FIG. 1 along the direction of a through-hole, and the height direction position in a core tube in this cross section, and temperature distribution. 図1に示す延伸装置を貫通孔の方向と直交する方向に沿って切断した断面と、この断面における炉心管内での高さ方向位置と温度分布との関係を示す図である。It is a figure which shows the relationship between the cross section which cut | disconnected the extending | stretching apparatus shown in FIG. 1 along the direction orthogonal to the direction of a through-hole, and the height direction position in a core tube in this cross section, and temperature distribution. 図3に示したA−A線断面における炉心管の直下の温度分布を模式的に示した図である。It is the figure which showed typically the temperature distribution just under the core tube in the AA cross section shown in FIG. 長手方向の長さが周方向で同一の炉心管を用いた場合の炉心管の直下での温度分布を模式的に示した図である。It is the figure which showed typically the temperature distribution just under a core tube when the length of a longitudinal direction uses the same core tube in the circumferential direction. 図1に示す延伸装置を用いて光ファイバ母材を製造する方法について説明する説明図である。It is explanatory drawing explaining the method to manufacture an optical fiber preform using the extending | stretching apparatus shown in FIG. 実施の形態の変形例に係る延伸装置の構成およびこの延伸装置を用いて光ファイバ母材を製造する方法について説明する説明図である。It is explanatory drawing explaining the structure of the extending | stretching apparatus which concerns on the modification of embodiment, and the method of manufacturing an optical fiber preform | base_material using this extending | stretching apparatus. 実施の形態の別の変形例に係る延伸装置に備えた炉心管の模式的な展開図である。It is a typical expanded view of the core tube provided in the extending | stretching apparatus which concerns on another modification of embodiment. 実施の形態のさらに別の変形例に係る延伸装置に備えたヒータの模式的な展開図である。It is a typical expanded view of the heater with which the extending | stretching apparatus which concerns on another modification of embodiment was equipped.

符号の説明Explanation of symbols

1、11、31 炉心管
1a、1b、31a、31b、42a、42b 部分
2、12、42 ヒータ
3、13 断熱材
3a、4c、13a 貫通孔
4 炉体
4a、4b 開口部
5 窓
6 外径測定器
7、8、17、18 光ファイバ母材
7a、17a メニスカス部
10、20 延伸装置
1, 11, 31 Core tube 1a, 1b, 31a, 31b, 42a, 42b Portion 2, 12, 42 Heater 3, 13 Heat insulating material 3a, 4c, 13a Through hole 4 Furnace body 4a, 4b Opening 5 Window 6 Outer diameter Measuring device 7, 8, 17, 18 Optical fiber preform 7a, 17a Meniscus part 10, 20 Stretching device

Claims (6)

光ファイバ母材を加熱、軟化して延伸する延伸装置であって、
前記光ファイバ母材が配置される円筒形状の炉心管と、
前記炉心管を囲繞するように配置した円筒形状の加熱体と、
前記炉心管および前記加熱体の外周に配置した断熱体と、
前記炉心管と前記加熱体と前記断熱体とを収容する炉体と、
を備え、前記断熱体および前記炉体は、前記炉心管の中心軸を挟んで対向する位置に形成された貫通孔をそれぞれ有し、前記炉心管および前記加熱体の少なくとも一方は、前記貫通孔の形成位置の直上部における長手方向の長さが、前記貫通孔の形成位置とは周方向に90度をなす直交位置の直上部における長さよりも長くなるように形成されていることを特徴とする光ファイバ母材の延伸装置。
A drawing device that heats, softens and stretches an optical fiber preform,
A cylindrical core tube in which the optical fiber preform is disposed;
A cylindrical heating element disposed so as to surround the furnace core tube;
A heat insulator disposed on the outer periphery of the furnace tube and the heating body;
A furnace body containing the furnace tube, the heating body, and the heat insulator;
The heat insulator and the furnace body each have through holes formed at positions facing each other across the central axis of the core tube, and at least one of the core tube and the heating body is the through hole The length in the longitudinal direction immediately above the formation position is formed so as to be longer than the length immediately above the orthogonal position that forms 90 degrees in the circumferential direction with respect to the formation position of the through hole. An optical fiber preform stretching device.
前記炉体の外側に配置され、前記貫通孔から前記光ファイバ母材の外径を測定する外径測定器を備えたことを特徴とする請求項1に記載の光ファイバ母材の延伸装置。   The apparatus for stretching an optical fiber preform according to claim 1, further comprising an outer diameter measuring device that is disposed outside the furnace body and measures an outer diameter of the optical fiber preform from the through hole. 前記加熱体および前記炉心管の少なくとも一方は、長手方向の長さが前記形成位置の直上部から前記直交位置の直上部へ連続的に短くなるように形成されていることを特徴とする請求項1または2に記載の光ファイバ母材の延伸装置。   The at least one of the heating body and the furnace core tube is formed so that a length in a longitudinal direction is continuously shortened from an immediately upper portion of the forming position to an immediately upper portion of the orthogonal position. 3. An apparatus for stretching an optical fiber preform according to 1 or 2. 前記貫通孔の中心は、前記光ファイバ母材が延伸する際にメニスカス部が形成される高さ領域に位置することを特徴とする請求項1〜3のいずれか1つに記載の光ファイバ母材の延伸装置。   4. The optical fiber preform according to claim 1, wherein the center of the through hole is located in a height region where a meniscus portion is formed when the optical fiber preform is stretched. Material stretching device. 前記貫通孔の中心は、前記メニスカス部の下端から0〜100mmだけ下方に位置することを特徴とする請求項4に記載の光ファイバ母材の延伸装置。   5. The optical fiber preform stretching apparatus according to claim 4, wherein the center of the through hole is located 0 to 100 mm below the lower end of the meniscus portion. 請求項1〜5のいずれか一つに記載の光ファイバ母材の延伸装置の前記炉心管内に光ファイバ母材を配置し、前記加熱体によって前記配置した光ファイバ母材を加熱、軟化して延伸することを特徴とする光ファイバ母材の製造方法。   An optical fiber preform is disposed in the core tube of the optical fiber preform stretching apparatus according to any one of claims 1 to 5, and the disposed optical fiber preform is heated and softened by the heating body. A method of manufacturing an optical fiber preform characterized by stretching.
JP2008055430A 2008-03-05 2008-03-05 Optical fiber preform stretching apparatus and optical fiber preform manufacturing method Active JP5041425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055430A JP5041425B2 (en) 2008-03-05 2008-03-05 Optical fiber preform stretching apparatus and optical fiber preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055430A JP5041425B2 (en) 2008-03-05 2008-03-05 Optical fiber preform stretching apparatus and optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2009209016A true JP2009209016A (en) 2009-09-17
JP5041425B2 JP5041425B2 (en) 2012-10-03

Family

ID=41182538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055430A Active JP5041425B2 (en) 2008-03-05 2008-03-05 Optical fiber preform stretching apparatus and optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP5041425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195102A1 (en) * 2014-06-17 2015-12-23 Heraeus Tenevo Llc Apparatus and method for measurement of transparent cylindrical articles
CN114212990A (en) * 2021-12-30 2022-03-22 中国建筑材料科学研究总院有限公司 Optical fiber drawing furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291677B (en) * 2014-09-23 2016-07-06 中天科技光纤有限公司 A kind of fibre drawing furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195102A1 (en) * 2014-06-17 2015-12-23 Heraeus Tenevo Llc Apparatus and method for measurement of transparent cylindrical articles
CN107076544A (en) * 2014-06-17 2017-08-18 赫罗伊斯·坦尼沃有限公司 Device and method for measuring transparent tubular article
US10388028B2 (en) 2014-06-17 2019-08-20 Heraeus Quartz North America Llc Apparatus and method for measurement of transparent cylindrical articles
CN114212990A (en) * 2021-12-30 2022-03-22 中国建筑材料科学研究总院有限公司 Optical fiber drawing furnace
CN114212990B (en) * 2021-12-30 2023-08-15 中国建筑材料科学研究总院有限公司 Optical fiber drawing furnace

Also Published As

Publication number Publication date
JP5041425B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US9328012B2 (en) Glass base material elongating method
EP3180293B1 (en) Method for forming a quartz glass optical component and system
JP5041425B2 (en) Optical fiber preform stretching apparatus and optical fiber preform manufacturing method
US4602926A (en) Optical fibre fabrication
JP5255306B2 (en) Optical fiber drawing method
US8181487B2 (en) Optical fiber preform manufacturing method
EP3243804B1 (en) Elongation method for producing an optical glass component
JP2009001471A (en) Method for manufacturing drawn glass body
JP3812357B2 (en) Optical fiber preform stretching method and stretching apparatus
JPWO2018101228A1 (en) Optical fiber drawing furnace seal structure, optical fiber manufacturing method
JP5229827B2 (en) GRIN lens fiber drawing method
JP2007272070A (en) Leakage optical fiber and method for manufacturing leakage optical fiber
CN111018327B (en) Capillary tube and method for manufacturing the same
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
GB2148874A (en) Optical fibre fabrication by the rod-in-tube method
JP2015202967A (en) Apparatus and method for producing optical fiber
JP2017088471A (en) Optical fiber manufacturing device and optical fiber manufacturing method
JP7012411B2 (en) A method for stretching a core base material, a method for manufacturing an optical fiber base material, and a method for manufacturing an optical fiber.
JP2004091304A (en) Aligning method for optical fiber preform
JP2004244261A (en) Method for drawing glass preform
JP5250377B2 (en) Optical fiber preform manufacturing apparatus and manufacturing method
JP2001048565A (en) Method for drawing optical fiber preform
JP2001247326A (en) Method for producing optical fiber preform
JP6402471B2 (en) Optical fiber manufacturing method
JPH01197340A (en) Production of optical fiber and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

R151 Written notification of patent or utility model registration

Ref document number: 5041425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350