JPH08319125A - Production of optical element-forming material - Google Patents

Production of optical element-forming material

Info

Publication number
JPH08319125A
JPH08319125A JP12137595A JP12137595A JPH08319125A JP H08319125 A JPH08319125 A JP H08319125A JP 12137595 A JP12137595 A JP 12137595A JP 12137595 A JP12137595 A JP 12137595A JP H08319125 A JPH08319125 A JP H08319125A
Authority
JP
Japan
Prior art keywords
glass
molten metal
optical element
metal bath
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12137595A
Other languages
Japanese (ja)
Inventor
Hiroaki Negishi
広明 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP12137595A priority Critical patent/JPH08319125A/en
Publication of JPH08319125A publication Critical patent/JPH08319125A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • C03B21/02Severing glass sheets, tubes or rods while still plastic by cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/1045Forming solid beads by bringing hot glass in contact with a liquid, e.g. shattering
    • C03B19/105Forming solid beads by bringing hot glass in contact with a liquid, e.g. shattering the liquid being a molten metal or salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To produce a generally usable optical element-forming material capable of continuously producing a large number of spherical optical element- forming materials by a producing device having a simple structure and easily producing the elements having even different sizes and glass species. CONSTITUTION: This production method of an optical element-forming material is to melt a metal having a melting point lower than the transition temperature of a glass material 5, a boiling point higher than the softening point of the glass material 5 and a specific gravity larger than that of the glass material 5 and nonwetting with the glass material 5, heat and soften the glass material 5 in a molten metal bath 2, obtain glass elements 7 by cutting the softened glass material, heat the glass elements while keeping the temperature in the bath to obtain the objective optical element-forming material by floating the glass elements on the molten metal bath 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ、プリズム、フ
ィルタなどの光学素子を押圧成形により得る、表面が鏡
面である光学素子成形用素材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a material for molding an optical element whose surface is a mirror surface, which is obtained by press molding optical elements such as lenses, prisms and filters.

【0002】[0002]

【従来の技術】近年、レンズ、プリズム、フィルタなど
の光学素子は、研磨処理を施した光学素子成形用素材を
加熱軟化し、一対の成形型によって押圧成形して得られ
るようになった。しかし、この方法は押圧成形する前に
光学素子成形用素材を研磨加工する工程が必要であり、
コスト高の原因になっていた。そこで、切断あるいは研
削により所定の体積に調寸したガラス塊を加熱して表面
を滑らかにかつ球状化する技術として、特開昭61−2
32236号公報所載の「光学素子成形用素材の製造方
法」が開示されている。この技術を図10により説明す
る。図10はこの技術の素材加工装置の縦断面図であ
る。
2. Description of the Related Art In recent years, optical elements such as lenses, prisms and filters have come to be obtained by heating and softening a polished optical element molding material and pressing it with a pair of molding dies. However, this method requires a step of polishing the optical element molding material before press molding,
It was a cause of high cost. Therefore, as a technique for heating a glass gob sized to a predetermined volume by cutting or grinding to make the surface smooth and spherical, Japanese Patent Application Laid-Open No. 61-2
Japanese Patent No. 32236 discloses "a method for producing a material for molding an optical element". This technique will be described with reference to FIG. FIG. 10 is a vertical cross-sectional view of a material processing device of this technique.

【0003】この装置は断熱材で作ったハウジング11
9を包含する。このハウジング119内には、直立した
S字形管116が設置してあり、この管の下端には加熱
気体発生装置120が接続してあり、加熱気体を管11
6内に供給するようになっている。管116の湾曲部下
面には加工済の素材を取り出す蓋117が設けてある。
管116の上部まわりにはヒータ118が設けてある。
作業にあたって、加熱気体発生装置120から加熱気体
を管116内に供給し、この管116内を上昇する加熱
気体の流れを発生させる。
This device has a housing 11 made of heat insulating material.
Including 9. In this housing 119, an upright S-shaped tube 116 is installed, and a heating gas generator 120 is connected to the lower end of this tube to guide the heating gas to the tube 11.
6 is to be supplied. A lid 117 for taking out the processed material is provided on the lower surface of the curved portion of the pipe 116.
A heater 118 is provided around the upper portion of the tube 116.
During the work, the heated gas is supplied from the heated gas generator 120 into the pipe 116, and the flow of the heated gas rising in the pipe 116 is generated.

【0004】次に、ガラス塊115をこの管116内に
入れる。これはハウジング119の外から適当な手段に
よって行ってもよいし、ガラス塊115を管116に入
れてからそのまわりをハウジング119で囲むようにし
てもよい。このとき、加熱気体の流量と管116の管径
を適当に選ぶことによって、ガラス塊115は管116
の内壁面に触れることなく浮いた状態で管116内に保
持される。さらに、加熱気体の温度、流量を適当に選ぶ
ことによりガラス塊115の表面が軟化して滑らかにな
り、表面張力により球状化する。
Next, the glass gob 115 is put into this tube 116. This may be done by any suitable means from outside housing 119, or glass gob 115 may be placed in tube 116 and then surrounded by housing 119. At this time, by appropriately selecting the flow rate of the heating gas and the tube diameter of the tube 116, the glass gob 115 can be changed to the tube 116.
It is held in the tube 116 in a floating state without touching the inner wall surface of the tube. Further, by appropriately selecting the temperature and flow rate of the heated gas, the surface of the glass gob 115 softens and becomes smooth, and the glass lump 115 becomes spherical due to the surface tension.

【0005】一例として、SF14の場合、800℃〜
850℃に加熱すると、ガラス素材自体の表面張力によ
り、ガラス塊は球体に近い形に自己変形し、表面粗さR
max=0.04μ以下の滑らかな表面を持つ。ガラス
塊15が球状の素材になったとき、加熱気体の温度を自
己変形しない温度まで徐々に下げ、流量も徐々に小さく
して、球状の素材を管116内で下降させ、蓋117を
開いて取り出す。
As an example, in the case of SF14, 800 ° C.
When heated to 850 ° C, the glass lump self-deforms into a shape close to a sphere due to the surface tension of the glass material itself, and the surface roughness R
It has a smooth surface of max = 0.04μ or less. When the glass gob 15 becomes a spherical material, the temperature of the heated gas is gradually lowered to a temperature at which it does not self-deform, the flow rate is gradually reduced, the spherical material is lowered in the pipe 116, and the lid 117 is opened. Take it out.

【0006】[0006]

【発明が解決しようとする課題】しかるに、上記従来技
術では、光学素子成形用素材を前加工で切断加工しなけ
ればならないため、工程数が増加するという問題点があ
った。また、下方から流れている加熱気体により光学ガ
ラス塊を浮遊した状態で加熱軟化させ、その後加熱気体
の温度を徐々に下げるという方法であるため、それぞれ
に掛かる時間が長く、一つの光学素子成形用素材を得る
ために必要になる時間が長くなり、コストが高くなると
いう問題点があった。さらに、ガラス塊を管内で浮かす
ために、加熱気体の流量と管径を選ぶ必要があり、特に
ガラス塊の大きさによって管径を選ぶ点では汎用性が無
いという問題点があった。
However, in the above-mentioned prior art, there is a problem that the number of steps is increased because the optical element molding material must be cut and processed in the preprocessing. In addition, since it is a method of heating and softening an optical glass block in a suspended state by heating gas flowing from below and then gradually lowering the temperature of the heating gas, it takes a long time for each, and one optical element molding There is a problem that the time required to obtain the material becomes long and the cost becomes high. Further, in order to float the glass gob inside the tube, it is necessary to select the flow rate of the heating gas and the tube diameter, and there is a problem that it is not versatile in selecting the tube diameter depending on the size of the glass gob.

【0007】本発明は、上記従来の問題点に鑑みてなさ
れたもので、請求項1、2または3に係る発明の目的
は、簡単な構造の製造装置により、多数の球状の光学素
子成形用素材を連続して製造するとともに、大きさ、硝
種の異なるものでも容易に製造可能な汎用性のある光学
素子成形用素材の製造方法を提供することである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the invention according to claim 1, 2 or 3 is to mold a large number of spherical optical elements by a manufacturing apparatus having a simple structure. It is an object of the present invention to provide a versatile method for producing a material for optical element molding, which is capable of continuously producing materials and easily producing materials having different sizes and glass types.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1、2または3に係る発明は、光学素子成形
用素材の製造方法において、融点がガラス素材の転移点
よりも低く、沸点がガラス素材の軟化点よりも高い金属
で、かつ比重がガラス素材よりも大きく、ガラス素材に
濡れない金属を溶融し、該溶融金属浴中でガラス素材を
加熱軟化させた後切断してガラス素子を得、該ガラス素
子を保温加熱後、溶融金属浴液面に浮上させて光学素子
成形用素材を得ることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1, 2 or 3 is a method for producing an optical element molding material, wherein the melting point is lower than the transition point of the glass material, A metal whose boiling point is higher than the softening point of the glass material and whose specific gravity is larger than that of the glass material and which does not wet the glass material is melted, and the glass material is heated and softened in the molten metal bath and then cut into glass. An element is obtained, and after heating the glass element while keeping it warm, it is floated on the liquid surface of the molten metal bath to obtain a material for forming an optical element.

【0009】[0009]

【作用】請求項1、2または3に係る発明の作用では、
溶融金属浴中にてガラス素材を加熱軟化後切断してガラ
ス素子を得、該ガラス素子を保温加熱後、溶融金属浴液
面に浮上させるので、切断されたガラス素子は表面張力
による自己変形で球状化し、溶融金属浴との比重の違い
により溶融金属浴の液面に向かって浮上していく。ガラ
ス素子の表面は溶融金属浴としか接触しないため鏡面と
なる。溶融金属浴の液面で外気に触れた球状のガラス素
子は冷却固化されて光学素子成形用素材が得られる。請
求項2に係る発明の作用では、上記作用に加え、溶融金
属浴の液面とその下方とに温度勾配を持たせたので、ガ
ラス素子が軟化点以上の温度領域から転移点以下の温度
領域に浮上していく過程で、球状化と共に徐々に冷却さ
れていく。請求項3に係る発明の作用では、上記作用に
加え、ガラス素材の初期形状が棒状に形成されているの
で、棒状の先端部分を加熱軟化させた後切断し、続いて
切断された長さ分を送り込んで、つぎの先端部分を同様
に取扱い、連続して作業を続行することが可能である。
In the operation of the invention according to claim 1, 2 or 3,
A glass element is obtained by heating and softening the glass material in a molten metal bath to obtain a glass element, and after heating the glass element while heating, the glass element is floated on the liquid surface of the molten metal bath, so that the cut glass element is self-deformed by surface tension. It becomes spherical and floats toward the liquid surface of the molten metal bath due to the difference in specific gravity from the molten metal bath. The surface of the glass element is a mirror surface because it only contacts the molten metal bath. The spherical glass element exposed to the outside air on the liquid surface of the molten metal bath is cooled and solidified to obtain an optical element molding material. In the operation of the invention according to claim 2, in addition to the above operation, since the liquid surface of the molten metal bath and the lower part thereof have a temperature gradient, the glass element has a temperature range from the softening point or higher to the transition point or lower. In the process of ascending to, it is gradually cooled with spheroidization. In the operation of the invention according to claim 3, in addition to the above operation, since the initial shape of the glass material is formed into a rod shape, the rod-shaped tip portion is heated and softened and then cut, and then the cut length is cut. It is possible to feed in, handle the next tip portion in the same manner, and continue the work continuously.

【0010】[0010]

【実施例1】図1〜図5は実施例1を示し、図1は光学
素子成形用素材の製造装置の正面断面図、図2は光学素
子成形用素材の製造装置の側面断面図、図3は製造装置
のシャーの斜視図、図4は製造装置のガイドの平面図、
図5は光学素子成形用素材の製造方法の工程図である。
[Embodiment 1] FIGS. 1 to 5 show Embodiment 1, FIG. 1 is a front sectional view of an optical element molding material manufacturing apparatus, and FIG. 2 is a side sectional view of an optical element molding material manufacturing apparatus. 3 is a perspective view of a shear of the manufacturing apparatus, FIG. 4 is a plan view of a guide of the manufacturing apparatus,
FIG. 5 is a process diagram of a method for manufacturing a material for molding an optical element.

【0011】図1および図2において、1は金属溶融槽
で、内部に溶融金属浴2が充満している。溶融金属浴2
には、Sn(融点:232℃、沸点:2260℃)を使
用している。金属溶融槽1の裏面および下方外側面に
は、Snを溶融し、溶融金属浴2の温度を維持するため
のヒータ3A、3Bが配設されている。また、金属溶融
槽1の上方外側面には、溶融金属浴2の液面近傍の温度
を、底面の温度よりも低い温度にするための冷却水を循
環させている冷却水管4が配設されている。さらに、溶
融金属浴2の中で、光学ガラス棒5を切断するためのシ
ャー6A,6Bが配設されている。
In FIG. 1 and FIG. 2, reference numeral 1 denotes a metal melting tank, which is filled with a molten metal bath 2. Molten metal bath 2
For this, Sn (melting point: 232 ° C., boiling point: 2260 ° C.) is used. Heaters 3 </ b> A and 3 </ b> B for melting Sn and maintaining the temperature of the molten metal bath 2 are provided on the rear surface and the lower outer surface of the metal melting tank 1. A cooling water pipe 4 is provided on the upper outer surface of the metal melting tank 1 for circulating cooling water to bring the temperature near the liquid surface of the molten metal bath 2 to a temperature lower than the temperature of the bottom surface. ing. Further, shears 6A and 6B for cutting the optical glass rod 5 are provided in the molten metal bath 2.

【0012】図3の(a)に示すように、シャー6A
は、下面がシャー保持部材10Aの長手方向と垂直にな
るように、シャー保持部材10Aの下端に固着されてい
る。また、シャー6Aは、上面が先端に向かって傾斜
し、切断刃6Aaを形成している。一方、シャー6B
は、図3の(b)に示すように、上面がシャー保持部材
10Bの長手方向と垂直になるように、シャー保持部材
10Bの下端に固着されている。また、シャー6Bは、
下面が先端に向かって傾斜し、切断刃6Baを形成して
いる。シャー6A,6Bの先端の切断刃6Aa,6Ba
が互いに接近して交差することによって、光学ガラス棒
5を切断する。シャー6A,6Bを下端に固着したシャ
ー保持部材10A,10Bは、金属溶融槽1の上方に
て、図示を省略したシャー駆動装置に連結されており、
水平方向に互いに接近離反自在、かつ上下動自在に駆動
される。これにより、シャー6A,6Bは互いに接近し
て交差することができる。
As shown in FIG. 3A, the shear 6A
Is fixed to the lower end of the shear holding member 10A so that its lower surface is perpendicular to the longitudinal direction of the shear holding member 10A. The shear 6A has an upper surface inclined toward the tip to form a cutting blade 6Aa. On the other hand, shear 6B
Is fixed to the lower end of the shear holding member 10B so that the upper surface thereof is perpendicular to the longitudinal direction of the shear holding member 10B, as shown in FIG. Also, the shear 6B is
The lower surface is inclined toward the tip to form the cutting blade 6Ba. Cutting blades 6Aa, 6Ba at the tips of the shears 6A, 6B
The optical glass rods 5 are cut when the two intersect close to each other. The shear holding members 10A and 10B having the shears 6A and 6B fixed to the lower ends are connected to a shear drive device (not shown) above the metal melting tank 1.
They are driven so that they can move toward and away from each other in the horizontal direction and can move up and down. As a result, the shears 6A and 6B can approach and intersect each other.

【0013】光学ガラス棒5は、金属溶融槽1の上方に
て、シャー6A,6Bの間に挿入できるように、かつシ
ャー保持部材10A,10Bの長手方向と平行になるよ
うに、光学ガラス棒5を上下に移動させるための図示を
省略したガラス棒駆動装置に保持されている。ガラス棒
駆動装置は、前記シャー駆動装置とは独立して上下動自
在に構成されている。光学ガラス棒5は、硝材として、
SF11(転移点:467℃、軟化点:568℃)を用
いている。さらに、光学ガラス棒5を上下動する際、シ
ャー6A,6Bからずれないように、ガイド8A,8B
がシャー6A,6Bの先端から上方に若干離れた位置
で、それぞれシャー保持部材10A,10Bに嵌着され
ている。ガイド8A,8Bは、図4の(a)に示すよう
に、それぞれ10A,10Bに向かってV溝8Aa,8
Baが設けてある。図4の(b),(c)に示すよう
に、ガイド閉鎖時(b)は勿論、ガイド開放時(c)に
おいても、光学ガラス棒5がシャー6A,6Bから外れ
ることがないように案内されている。
The optical glass rod 5 is provided above the metal melting tank 1 so as to be inserted between the shears 6A and 6B and parallel to the longitudinal direction of the shear holding members 10A and 10B. It is held by a glass rod driving device (not shown) for moving 5 up and down. The glass rod driving device is vertically movable independently of the shear driving device. The optical glass rod 5 is made of a glass material.
SF11 (transition point: 467 ° C., softening point: 568 ° C.) is used. Further, when the optical glass rod 5 is moved up and down, the guides 8A and 8B are prevented from shifting from the shears 6A and 6B.
Are fitted to the shear holding members 10A and 10B at positions slightly apart from the tips of the shears 6A and 6B upward. As shown in FIG. 4 (a), the guides 8A and 8B face the V-grooves 8Aa and 8B toward 10A and 10B, respectively.
Ba is provided. As shown in FIGS. 4B and 4C, the optical glass rod 5 is guided so as not to come off from the shears 6A and 6B not only when the guide is closed (b) but also when the guide is opened (c). Has been done.

【0014】つぎに、上述の光学素子成形用素材の製造
装置を用いた製造方法について説明する。まず、溶融金
属たるSnを金属溶融槽1に投入し、ヒータ3A,3B
によって加熱溶融し、溶融金属浴2を形成する。金属溶
融槽1の底部付近の温度が850℃(ガラスの軟化点以
上の温度)になるまで加熱し、この温度を維持する。さ
らに、金属溶融槽1の上部の冷却水管4に冷却水を流
し、溶融金属浴2の上部の温度が450℃でかつ250
℃以上になるように、冷却水を調整し、この温度を維持
する。本実施例では溶融金属浴2の上部の温度を300
℃に設定している。これにより、溶融金属浴2は、金属
溶融槽1の下部から上部まで傾斜的な温度分布になって
いる。また、シャー6A,6Bの先端部が、溶融金属浴
の温度で630℃付近にくるように位置出しされてい
る。
Next, a manufacturing method using the above-described manufacturing apparatus for the optical element molding material will be described. First, Sn, which is a molten metal, is charged into the metal melting tank 1, and the heaters 3A and 3B are
And melted by heating to form a molten metal bath 2. Heating is performed until the temperature near the bottom of the metal melting tank 1 reaches 850 ° C. (temperature above the softening point of glass), and this temperature is maintained. Further, cooling water is caused to flow through the cooling water pipe 4 above the metal melting tank 1 so that the temperature of the upper part of the molten metal bath 2 is 450 ° C. and 250
The cooling water is adjusted so that the temperature becomes ℃ or more, and this temperature is maintained. In this embodiment, the temperature of the upper part of the molten metal bath 2 is set to 300
Set to ℃. As a result, the molten metal bath 2 has an inclined temperature distribution from the lower portion to the upper portion of the metal melting tank 1. Further, the tips of the shears 6A and 6B are positioned so as to come close to 630 ° C. at the temperature of the molten metal bath.

【0015】つぎに、光学ガラス棒5を前記ガラス棒駆
動装置によってシャー6A,6Bの先端部付近まで挿入
していく。光学ガラス棒5の先端が軟化点温度以上にな
るまで一定時間保ち。光学ガラス棒5を前記ガラス棒駆
動装置によって一定量下降させる(図5の(a)参
照)。続いてシャー保持部材10A,10Bが光学ガラ
ス棒5を挟み込むように移動し、シャー6A,6Bが交
差することによって、光学ガラス棒5を切断する(図5
の(b)参照)。その後、光学ガラス棒5を残して、シ
ャー6A,6Bをシャー保持部材10A,10Bを介し
て金属溶融槽1のさらに下部まで下降させる。これによ
り、切断されたガラス素子7は、シャー6A,6Bに残
されたままで、溶融金属浴2の温度が850℃の領域ま
で下降する。ここで、自由に変形できる程度の粘度にな
るまで、一定時間保持された後、シャー6A,6Bを開
放し、ガラス素子7をシャー6A,6Bから離脱させる
(図5の(c)参照)。
Next, the optical glass rod 5 is inserted by the glass rod driving device up to the vicinity of the tips of the shears 6A, 6B. Hold for a certain period of time until the tip of the optical glass rod 5 reaches or exceeds the softening point temperature. The optical glass rod 5 is lowered by a certain amount by the glass rod driving device (see (a) of FIG. 5). Subsequently, the shear holding members 10A and 10B move so as to sandwich the optical glass rod 5, and the shears 6A and 6B intersect with each other to cut the optical glass rod 5 (FIG. 5).
(B)). Then, leaving the optical glass rod 5, the shears 6A and 6B are lowered to the lower portion of the metal melting tank 1 through the shear holding members 10A and 10B. As a result, the cut glass element 7 is left in the shears 6A and 6B, and the temperature of the molten metal bath 2 is lowered to a region of 850 ° C. Here, after being held for a certain period of time until the viscosity becomes such that it can be freely deformed, the shears 6A and 6B are opened and the glass element 7 is detached from the shears 6A and 6B (see (c) of FIG. 5).

【0016】ここで、溶融金属浴2のSnの比重は7.
29で、光学ガラス棒5のSF11の比重は4.79で
あるため、シャー6A,6Bから離脱したガラス素子7
は浮上して行き、軟化状態にあるガラス素子7は表面張
力により球状化する。さらに浮上を続けると、溶融金属
浴2の上部は転移点温度以下になっているため、ガラス
素子7は固化して、溶融金属浴の液面に浮かぶ。これに
より、光学素子成形用素材を得ることができる。シャー
6A,6Bは、開放後に上昇して光学ガラス棒5の切断
前の位置に戻り、光学ガラス棒5は前記ガラス棒駆動装
置によって、前回光学ガラス棒5が停止した位置に停止
させる(図5の(a)参照)。その後上述の作業を繰り
返すことにより、光学素子成形用素材を連続して製造す
ることができる。
Here, the specific gravity of Sn in the molten metal bath 2 is 7.
29, since the specific gravity of SF11 of the optical glass rod 5 is 4.79, the glass element 7 separated from the shears 6A and 6B.
Fluctuates and the glass element 7 in the softened state becomes spherical due to surface tension. When the levitation is further continued, the upper part of the molten metal bath 2 is below the transition point temperature, so that the glass element 7 is solidified and floats on the liquid surface of the molten metal bath. As a result, a material for molding an optical element can be obtained. The shears 6A and 6B rise after opening and return to the position before the cutting of the optical glass rod 5, and the optical glass rod 5 is stopped by the glass rod driving device at the position where the optical glass rod 5 was previously stopped (FIG. 5). (A)). After that, by repeating the above-mentioned operation, the optical element molding material can be continuously manufactured.

【0017】本実施例によれば、簡単な構造の製造装置
により、多数の球状の光学素子成形用素材を連続して製
造するすることができる。また、ガラスの軟化点の温度
よりも高い溶融金属浴の中で、光学ガラス棒を切断する
するので、切断が容易に行われる。さらに、溶融金属浴
はガラスに比べ比重が大きいためガラス素子は浮力によ
り上昇し、軟化状態にあるガラス素子は表面張力で球状
化し、整った形状となる。さらにまた、光学素子成形用
素材は溶融金属浴としか接触しないため、表面は鏡面に
仕上げられる。また、光学ガラス棒を素材としているた
め、光学ガラス棒を変えるだけで、他の硝材も容易に光
学素子成形用素材にすることができ、さらに、光学ガラ
ス棒の下降量で正確に所望量を計量切断できるという効
果もある。また、溶融金属浴に予め温度分布をつけてあ
るためガラス素子が軟化状態から固化状態まで変化する
ことができ、溶融金属浴の下方からガラス素子を浮上さ
せるだけで、光学素子成形用素材を製造することがで
き、製造時間短縮の効果もある。
According to this embodiment, a large number of spherical optical element molding materials can be continuously manufactured by a manufacturing apparatus having a simple structure. Further, since the optical glass rod is cut in the molten metal bath having a temperature higher than the softening point of the glass, the cutting can be performed easily. Furthermore, since the molten metal bath has a larger specific gravity than glass, the glass element rises due to buoyancy, and the glass element in the softened state is spherical due to surface tension and has a regular shape. Furthermore, since the optical element molding material only comes into contact with the molten metal bath, the surface is mirror-finished. Also, since the optical glass rod is used as the material, other glass materials can be easily used as the optical element forming material by simply changing the optical glass rod, and the desired amount can be accurately determined by the descending amount of the optical glass rod. There is also the effect that it can be cut by measuring. In addition, since the molten metal bath has a temperature distribution beforehand, the glass element can change from the softened state to the solidified state, and by simply levitating the glass element from below the molten metal bath, the optical element molding material is manufactured. The manufacturing time can be shortened.

【0018】本実施例では、図4に示したように、ガイ
ド8A,8Bには、V溝8Aa,8Baが形成されてい
るが、これに替えて、光学ガラス棒の長手方向の案内を
するように、光学ガラス棒の外径と適宜に内径を合わせ
た半円筒形としてもよく、こうすると、光学ガラス棒の
外径が細いときに有利である。
In this embodiment, as shown in FIG. 4, V-grooves 8Aa and 8Ba are formed in the guides 8A and 8B, but instead of this, the optical glass rod is guided in the longitudinal direction. As described above, a semi-cylindrical shape in which the outer diameter of the optical glass rod and the inner diameter are appropriately matched may be used, which is advantageous when the outer diameter of the optical glass rod is small.

【0019】また、本実施例では、溶融金属浴の上下間
に温度分布を付与しているが、必ずしも必要ではなく、
光学ガラス棒の軟化点以上の温度にほぼ均一としてもよ
く、切断されたガラス素子が浮上して、液面にて冷却さ
れるので、光学素子成形用素材となるまでの時間は掛か
るものの、実用上は可能となる。この場合、光学ガラス
棒は、ガラス素子を切断後、溶融金属浴から引き上げ
て、原型を崩すことのない適当な温度に保持することが
必要である。
In this embodiment, the temperature distribution is provided between the upper and lower portions of the molten metal bath, but it is not always necessary.
The temperature may be almost equal to or higher than the softening point of the optical glass rod, and the cut glass element floats and is cooled at the liquid surface, so it takes time until it becomes a material for optical element molding, but it is practical. The above is possible. In this case, the optical glass rod needs to be pulled out of the molten metal bath after cutting the glass element and kept at an appropriate temperature so as not to destroy the original shape.

【0020】さらに、本実施例では、光学ガラス棒を用
いたが、必ずしも、棒状でなくともよく、板状または帯
状のガラス素材であっても、これに対応するガイドとシ
ャーを用いることにより、光学素子成形用素材を得るこ
とができる。
Further, although the optical glass rod is used in the present embodiment, it is not necessarily required to be rod-shaped, and even if it is a plate-shaped or band-shaped glass material, by using a guide and a shear corresponding thereto, A material for molding an optical element can be obtained.

【0021】[0021]

【実施例2】実施例2の光学素子成形用素材の製造方法
に用いる製造装置は実施例1と同一のため、図と説明を
省略する。製造方法の説明を理解するには、図1〜図5
を参照されたい。なお、本実施例では、光学ガラス棒5
は、硝材として、LaSF03(転移点:730℃、軟
化点:808℃)を用いている。
[Embodiment 2] Since the manufacturing apparatus used in the method for manufacturing the optical element molding material of Embodiment 2 is the same as that of Embodiment 1, the illustration and description thereof are omitted. 1 to 5 to understand the explanation of the manufacturing method.
Please refer to. In this embodiment, the optical glass rod 5
Uses LaSF03 (transition point: 730 ° C., softening point: 808 ° C.) as a glass material.

【0022】つぎに、本実施例の光学素子成形用素材の
製造方法について説明する。まず、溶融金属たるSnを
金属溶融槽1に投入し、ヒータ3A,3Bによって加熱
溶融し、溶融金属浴2を形成する。金属溶融槽1の底部
付近の温度が1100℃(ガラスの軟化点以上の温度)
になるまで加熱し、この温度を維持する。さらに、金属
溶融槽1の上部の冷却水管4に冷却水を流し、溶融金属
浴2の上部の温度が730℃でかつ250℃以上になる
ように、冷却水を調整し、この温度を維持する。本実施
例では溶融金属浴2の上部の温度を300℃に設定して
いる。これにより、溶融金属浴2は、金属溶融槽1の下
部から上部まで傾斜的な温度分布になっている。また、
シャー6A,6Bの先端部が、溶融金属浴の温度で87
0℃付近にくるように位置出しされている。
Next, a method for manufacturing the optical element molding material of this embodiment will be described. First, Sn, which is a molten metal, is put into the metal melting tank 1 and heated and melted by the heaters 3A and 3B to form a molten metal bath 2. The temperature near the bottom of the metal melting tank 1 is 1100 ° C (temperature above the softening point of glass)
Heat to and maintain this temperature. Further, cooling water is caused to flow through the cooling water pipe 4 above the metal melting tank 1, and the cooling water is adjusted so that the temperature above the molten metal bath 2 is 730 ° C. and 250 ° C. or higher, and this temperature is maintained. . In this embodiment, the temperature of the upper portion of the molten metal bath 2 is set to 300 ° C. As a result, the molten metal bath 2 has an inclined temperature distribution from the lower portion to the upper portion of the metal melting tank 1. Also,
The tips of the shears 6A and 6B are 87 at the temperature of the molten metal bath.
It is positioned so that it is near 0 ° C.

【0023】実施例1と同様にして、光学ガラス棒5を
切断する。切断されたガラス素子7は、シャー6A,6
Bに残されたままで、溶融金属浴2の温度が1100℃
の領域まで下降する。ここで、自由に変形できる程度の
粘度になるまで、一定時間保持された後、シャー6A,
6Bを開放し、ガラス素子7をシャー6A,6Bから離
脱させる。
The optical glass rod 5 is cut in the same manner as in Example 1. The cut glass element 7 has shears 6A and 6A.
The temperature of the molten metal bath 2 remains 1100 ° C.
Descend to the area. Here, after being held for a certain period of time until the viscosity becomes such that it can be freely deformed, the shear 6A,
6B is opened, and the glass element 7 is separated from the shears 6A and 6B.

【0024】ここで、溶融金属浴2のSnの比重は7.
29で、光学ガラス棒5のLaSF03の比重は5.5
2であるため、シャー6A,6Bから離脱したガラス素
子7は浮上して行き、軟化状態にあるガラス素子7は表
面張力により球状化する。さらに浮上を続けると、溶融
金属浴2の上部は転移点温度以下になっているため、ガ
ラス素子7は固化して、溶融金属浴の液面に浮かぶ。こ
れにより、光学素子成形用素材を得ることができる。そ
の他の光学素子成形用素材の製造方法は実施例1と同様
である。
Here, the specific gravity of Sn in the molten metal bath 2 is 7.
29, the specific gravity of LaSF03 of the optical glass rod 5 is 5.5.
Since it is 2, the glass element 7 separated from the shears 6A and 6B floats, and the glass element 7 in the softened state is spherical due to the surface tension. When the levitation is further continued, the upper part of the molten metal bath 2 is below the transition point temperature, so that the glass element 7 is solidified and floats on the liquid surface of the molten metal bath. As a result, a material for molding an optical element can be obtained. The other methods for manufacturing the optical element molding material are the same as in Example 1.

【0025】本実施例によれば、実施例1の効果に加
え、光学ガラス棒としてLaSF03を用いているが、
溶融金属浴の温度を変えるだけで、実施例1と同様に光
学素子成形用素材をうることができる。
According to this embodiment, in addition to the effect of the first embodiment, LaSF03 is used as the optical glass rod.
A material for molding an optical element can be obtained as in Example 1 only by changing the temperature of the molten metal bath.

【0026】本実施例および後述の実施例3において
も、実施例1にて記述した変形例は同様に適用すること
ができ、同様の効果を得ることができる。
The modified example described in the first embodiment can be similarly applied to the present embodiment and the third embodiment described later, and the same effect can be obtained.

【0027】[0027]

【実施例3】図6〜図9は実施例3を示し、図6は光学
素子成形用素材の製造装置の切断機構の正面図、図7お
よび図8はそれぞれ切断機構のシャーおよびシャー受け
の詳細図、図9は光学素子成形用素材の製造方法を示す
工程図である。本実施例の光学素子成形用素材の製造装
置の構成は、切断機構が一部異なるのみで、他は実施例
1と同一である。従って、異なる部分のみ説明し、他の
図と説明を省略する。
Third Embodiment FIGS. 6 to 9 show a third embodiment, FIG. 6 is a front view of a cutting mechanism of an optical element molding material manufacturing apparatus, and FIGS. 7 and 8 show shear and shear receivers of the cutting mechanism, respectively. FIG. 9 is a detailed view, and FIG. 9 is a process drawing showing a method for manufacturing a material for molding an optical element. The configuration of the optical element molding material manufacturing apparatus of this embodiment is the same as that of the first embodiment except that the cutting mechanism is partially different. Therefore, only different parts will be described, and the description with other drawings will be omitted.

【0028】図6において、切断機構20は、半カップ
状のシャー9Aと平板状のシャー受け9Bとからなり、
それぞれシャー保持部材11A,11Bに固着されてい
る。シャー保持部材11A,11Bの上方は実施例1と
同様に図示を省略したシャー駆動装置に連結され、シャ
−9Aとシャー受け9Bとは互いに近接離反して光学ガ
ラス棒5を切断し、かつ上下動自在に移動できるように
構成されている。図7はシャー9Aの詳細を示し、
(a)は側面図、(b)は正面図である。シャー9Aの
半カップ状の内面9Aaと外周の円錐面9Abとにより
半円状の切断刃9Acを形成している。内面9Aaは切
断されたガラス素子7が確実にシャー9Aに滞留する機
能を有する(図9参照)。図8はシャー受け9Bの詳細
を示し、(a)は側面図、(b)は正面図である。シャ
−受け9Bの受け面9Baは平面状をなし、シャー9A
の半円状の切断刃9Acが突き当てられて、ガラス棒5
が切断される(図9参照)。なお、本実施例では、ガラ
ス棒5に、硝材としてSK11(移転点:535℃、軟
化点:639℃)を使用している。
In FIG. 6, the cutting mechanism 20 comprises a half cup-shaped shear 9A and a flat shear receiver 9B.
They are fixed to the shear holding members 11A and 11B, respectively. The upper portions of the shear holding members 11A and 11B are connected to a shear driving device (not shown) as in the first embodiment, and the shear 9A and the shear receiver 9B are moved away from each other to cut the optical glass rod 5 and It is configured so that it can move freely. FIG. 7 shows the details of the shear 9A,
(A) is a side view and (b) is a front view. A semi-circular cutting blade 9Ac is formed by the half cup-shaped inner surface 9Aa and the outer peripheral conical surface 9Ab of the shear 9A. The inner surface 9Aa has a function of reliably retaining the cut glass element 7 in the shear 9A (see FIG. 9). FIG. 8 shows details of the shear receiver 9B, (a) is a side view and (b) is a front view. The receiving surface 9Ba of the shear receiver 9B has a flat shape, and the shear 9A
The semicircular cutting blade 9Ac of the
Is cut (see FIG. 9). In this example, SK11 (transfer point: 535 ° C, softening point: 639 ° C) is used as the glass material for the glass rod 5.

【0029】つぎに、本実施例の光学素子成形用素材の
製造方法について説明する。まず、溶融金属たるSnを
金属溶融槽1に投入し、ヒータ3A,3Bによって加熱
溶融し、溶融金属浴2を形成する。金属溶融槽1の底部
付近の温度が950℃(ガラスの軟化点以上の温度)に
なるまで加熱し、この温度を維持する。さらに、金属溶
融槽1の上部の冷却水管4に冷却水を流し、溶融金属浴
2の上部の温度が639℃でかつ250℃以上になるよ
うに、冷却水を調整し、この温度を維持する。本実施例
では溶融金属浴2の上部の温度を300℃に設定してい
る。これにより、溶融金属浴2は、金属溶融槽1の下部
から上部まで傾斜的な温度分布になっている。また、シ
ャー9Aおよびシャー受け9Bの先端部が、溶融金属浴
の温度で870℃付近にくるように位置出しされてい
る。
Next, a method of manufacturing the optical element molding material of this embodiment will be described. First, Sn, which is a molten metal, is put into the metal melting tank 1 and heated and melted by the heaters 3A and 3B to form a molten metal bath 2. Heating is performed until the temperature near the bottom of the metal melting tank 1 reaches 950 ° C. (the temperature equal to or higher than the softening point of glass), and this temperature is maintained. Further, cooling water is caused to flow in the cooling water pipe 4 above the metal melting tank 1, and the cooling water is adjusted so that the temperature above the molten metal bath 2 is 639 ° C. and 250 ° C. or higher, and this temperature is maintained. . In this embodiment, the temperature of the upper portion of the molten metal bath 2 is set to 300 ° C. As a result, the molten metal bath 2 has an inclined temperature distribution from the lower portion to the upper portion of the metal melting tank 1. Further, the tip ends of the shear 9A and the shear receiver 9B are positioned so as to come close to 870 ° C. at the temperature of the molten metal bath.

【0030】実施例1と同様に、シャー保持部材11
A,11Bで、光学ガラス棒5を挟み込むように移動さ
せ、シャー9Aおよびシャー受け9Bを当て付けること
によって光学ガラス棒5を切断する(図9の(a)参
照)。つぎに、切断されたガラス素子7は半カップ状の
シャー9Aとシャー受け9Bとの間に滞留したままで、
溶融金属浴2の温度が950℃の領域まで下降させる。
ここで、自由に変形できる程度の粘度になるまで、一定
時間保持された後、シャー9Aおよびシャー受け9Bを
開放し、ガラス素子7をシャー6Aおよびシャー受け6
Bから離脱させる。
As in the first embodiment, the shear holding member 11
The optical glass rod 5 is moved so as to be sandwiched between A and 11B, and the shear glass 9A and the shear receiver 9B are applied to cut the optical glass rod 5 (see (a) of FIG. 9). Next, the cut glass element 7 remains retained between the half cup-shaped shear 9A and the shear receiver 9B,
The temperature of the molten metal bath 2 is lowered to a region of 950 ° C.
Here, after being held for a certain period of time until the viscosity becomes such that it can be freely deformed, the shear 9A and the shear receiver 9B are opened, and the glass element 7 is sheared 6A and the shear receiver 6
Separate from B.

【0031】ここで、溶融金属浴2のSnの比重は7.
29で、光学ガラス棒5のSK11の比重は2.78で
あるため、シャー9Aおよびシャー受け9Bから離脱し
たガラス素子7は浮上して行き、軟化状態にあるガラス
素子7は表面張力により球状化する。さらに浮上を続け
ると、溶融金属浴2の上部は転移点温度以下になってい
るため、ガラス素子7は固化して、溶融金属浴の液面に
浮かぶ。これにより、光学素子成形用素材を得ることが
できる。その他の光学素子成形用素材の製造方法は実施
例1と同様である。
Here, the specific gravity of Sn in the molten metal bath 2 is 7.
In 29, since the specific gravity of SK11 of the optical glass rod 5 is 2.78, the glass element 7 separated from the shear 9A and the shear receiver 9B floats up, and the glass element 7 in the softened state is spherical due to the surface tension. To do. When the levitation is further continued, the upper part of the molten metal bath 2 is below the transition point temperature, so that the glass element 7 is solidified and floats on the liquid surface of the molten metal bath. As a result, a material for molding an optical element can be obtained. The other methods for manufacturing the optical element molding material are the same as in Example 1.

【0032】本実施例によれば、実施例1の効果に加
え、シャーの先端部を半カップ状に形成したことによ
り、切断されたガラス素子はシャー内の上部に滞留し、
シャーを下降させる際に、誤って浮上することはない。
また、ガラス素子はシャーの開放によって、内面に沿っ
て上昇し、確実にかつ速やかに離脱するので、シャー内
にガラス素子が残留することはない。
According to the present embodiment, in addition to the effect of the first embodiment, since the tip of the shear is formed in a half cup shape, the cut glass element stays in the upper part of the shear,
When lowering the shear, you will not accidentally ascend.
Further, since the glass element rises along the inner surface by the opening of the shear and is reliably and promptly released, the glass element does not remain in the shear.

【0033】[0033]

【発明の効果】請求項1、2または3に係る発明によれ
ば、簡単な構造の製造装置により、多数の球状の光学素
子成形用素材を連続して製造するすることができる。ま
た、大きさ、硝種の異なるものでも容易に製造すること
ができる。請求項2に係る発明によれば、上記効果に加
え、溶融金属浴に予め温度分布をつけてあるためガラス
素子が軟化状態から固化状態まで変化することができ、
溶融金属浴の下方からガラス素子を浮上させるだけで、
光学素子成形用素材を製造することができ、これにより
製造時間を短縮することができる。請求項3に係る発明
によれば、上記効果に加え、光学ガラス棒を変えるだけ
で、他の硝材も容易に光学素子成形用素材にすることが
でき、さらに、光学ガラス棒の下降量で正確に所望量を
計量切断することができる。
According to the invention of claim 1, 2 or 3, a large number of spherical optical element molding materials can be continuously manufactured by a manufacturing apparatus having a simple structure. In addition, it is possible to easily manufacture products having different sizes and glass types. According to the invention of claim 2, in addition to the above effect, since the temperature distribution is given to the molten metal bath in advance, the glass element can change from the softened state to the solidified state,
Just float the glass element from the bottom of the molten metal bath,
A material for molding an optical element can be manufactured, which can shorten the manufacturing time. According to the invention of claim 3, in addition to the above effect, other glass materials can be easily used as a material for optical element molding only by changing the optical glass rod. The desired amount can be measured and cut.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の光学素子成形用素材の製造装置の正
面断面図である。
FIG. 1 is a front cross-sectional view of an optical element molding material manufacturing apparatus of Example 1.

【図2】実施例1の光学素子成形用素材の製造装置の側
面断面図である。
FIG. 2 is a side sectional view of an apparatus for manufacturing a material for molding an optical element of Example 1.

【図3】実施例1の製造装置のシャーの斜視図である。FIG. 3 is a perspective view of a shear of the manufacturing apparatus according to the first embodiment.

【図4】実施例1の製造装置のガイドの平面図である。FIG. 4 is a plan view of a guide of the manufacturing apparatus according to the first embodiment.

【図5】実施例1の光学素子成形用素材の製造方法の工
程図である。
FIG. 5 is a process drawing of the method for manufacturing the optical element molding material of Example 1.

【図6】実施例3の光学素子成形用素材の製造装置の切
断機構の正面図である。
FIG. 6 is a front view of a cutting mechanism of an optical element molding material manufacturing apparatus according to a third exemplary embodiment.

【図7】実施例3の切断機構のシャーの詳細図である。FIG. 7 is a detailed view of a shear of the cutting mechanism according to the third embodiment.

【図8】実施例3の切断機構のシャー受けの詳細図であ
る。
FIG. 8 is a detailed view of a shear receiver of the cutting mechanism of the third embodiment.

【図9】実施例3の光学素子成形用素材の製造方法を示
す工程図である。
FIG. 9 is a process drawing showing the method for manufacturing the optical element molding material of Example 3.

【図10】従来技術の素材加工装置の縦断面図である。FIG. 10 is a vertical sectional view of a conventional material processing apparatus.

【符号の説明】[Explanation of symbols]

1 金属溶融槽 2 溶融金属浴 3A,3B ヒータ 4 冷却水管 5 光学ガラス棒 6A,6B シャー 7 ガラス素子 8A,8B シャーガイド 10A,10B シャー保持部材 1 Metal Melt Tank 2 Molten Metal Bath 3A, 3B Heater 4 Cooling Water Pipe 5 Optical Glass Rod 6A, 6B Shear 7 Glass Element 8A, 8B Shear Guide 10A, 10B Shear Holding Member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 融点がガラス素材の転移点よりも低く、
沸点がガラス素材の軟化点よりも高い金属で、かつ比重
がガラス素材よりも大きく、ガラス素材に濡れない金属
を溶融し、該溶融金属浴中でガラス素材を加熱軟化させ
た後切断してガラス素子を得、該ガラス素子を保温加熱
後、溶融金属浴液面に浮上させて光学素子成形用素材を
得ることを特徴とする光学素子成形用素材の製造方法。
1. The melting point is lower than the transition point of the glass material,
A metal whose boiling point is higher than the softening point of the glass material and whose specific gravity is larger than that of the glass material and which does not wet the glass material is melted, and the glass material is heated and softened in the molten metal bath and then cut into glass. A method for producing an optical element forming material, which comprises obtaining an element, heating the glass element while keeping it warm, and then levitating it to the liquid surface of a molten metal bath to obtain an optical element forming material.
【請求項2】 前記溶融金属浴は、液面付近ではガラス
素材の転移点よりも低い温度とし、かつ、前記液面付近
より下方に、ガラス素材の軟化点よりも高い温度になる
ように温度勾配をもたせたことを特徴とする請求項1記
載の光学素子成形用素材の製造方法。
2. The temperature of the molten metal bath is lower than the transition point of the glass material near the liquid surface and higher than the softening point of the glass material below the liquid surface. The method for producing an optical element molding material according to claim 1, wherein the material has a gradient.
【請求項3】 前記溶融金属浴中で切断するガラス素材
の初期形状は、棒状であることを特徴とする請求項1記
載の光学素子成形用素材の製造方法。
3. The method for producing an optical element molding material according to claim 1, wherein the glass material cut in the molten metal bath has a rod-shaped initial shape.
JP12137595A 1995-05-19 1995-05-19 Production of optical element-forming material Withdrawn JPH08319125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12137595A JPH08319125A (en) 1995-05-19 1995-05-19 Production of optical element-forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12137595A JPH08319125A (en) 1995-05-19 1995-05-19 Production of optical element-forming material

Publications (1)

Publication Number Publication Date
JPH08319125A true JPH08319125A (en) 1996-12-03

Family

ID=14809678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12137595A Withdrawn JPH08319125A (en) 1995-05-19 1995-05-19 Production of optical element-forming material

Country Status (1)

Country Link
JP (1) JPH08319125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872171A (en) * 2019-11-30 2020-03-10 中建材蚌埠玻璃工业设计研究院有限公司 Method for spheroidizing meltable powder
WO2022157340A1 (en) * 2021-01-21 2022-07-28 Tobii Ab Improvements relating to lenses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872171A (en) * 2019-11-30 2020-03-10 中建材蚌埠玻璃工业设计研究院有限公司 Method for spheroidizing meltable powder
CN110872171B (en) * 2019-11-30 2022-02-18 中建材蚌埠玻璃工业设计研究院有限公司 Method for spheroidizing meltable powder
WO2022157340A1 (en) * 2021-01-21 2022-07-28 Tobii Ab Improvements relating to lenses
US12097674B2 (en) 2021-01-21 2024-09-24 Tobii Ab Relating to lenses

Similar Documents

Publication Publication Date Title
KR20010049665A (en) Method of producing glass products, method of producing press-molded products, and apparatus for producing glass mass products
JP4445419B2 (en) Method for producing glass molded body, method for producing glass material for press molding, and method for producing optical element
JPH08337427A (en) Apparatus and method for forming rod of glassy material and glass rod formed thereby
JPH08319125A (en) Production of optical element-forming material
JPH08319124A (en) Formation of glass gob
JP2007186392A (en) Method of molding thermoplastic base material
JPS62292635A (en) Molding method for glass lens
JP3630829B2 (en) Manufacturing method of optical element molding material
JPH06206730A (en) Production of glass gob
JPS61146721A (en) Production of glass gob
JP2000233934A (en) Method for press-forming glass product and device therefor
JP4747039B2 (en) Method for producing glass molded body, method for producing glass material for press molding, and method for producing optical element
JPH11171555A (en) Production of blank for forming optical element
WO2015137457A1 (en) Optical element manufacturing method
JPH05286728A (en) Production of glass lens
JP2004284847A (en) Method of manufacturing glass lump and method of manufacturing optical element
JP2501585B2 (en) Optical element molding method
JP5684249B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JPH06321566A (en) Production of raw material for forming optical element
JP3673554B2 (en) Glass gob molding method and molding apparatus
JPH0692654A (en) Method for molding glass lens
JPH1179762A (en) Manufacture of glass optical element
JPH0710558A (en) Production of blank material for molding optical element
JP3614902B2 (en) Preform for glass molded lens and manufacturing method thereof
JPS63295443A (en) Structure of outflow part for fused glass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806