JPS63295443A - Structure of outflow part for fused glass - Google Patents

Structure of outflow part for fused glass

Info

Publication number
JPS63295443A
JPS63295443A JP12839487A JP12839487A JPS63295443A JP S63295443 A JPS63295443 A JP S63295443A JP 12839487 A JP12839487 A JP 12839487A JP 12839487 A JP12839487 A JP 12839487A JP S63295443 A JPS63295443 A JP S63295443A
Authority
JP
Japan
Prior art keywords
outflow
glass
molten glass
temperature
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12839487A
Other languages
Japanese (ja)
Inventor
Masaaki Yokota
正明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12839487A priority Critical patent/JPS63295443A/en
Publication of JPS63295443A publication Critical patent/JPS63295443A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/094Means for heating, cooling or insulation
    • C03B7/096Means for heating, cooling or insulation for heating
    • C03B7/098Means for heating, cooling or insulation for heating electric
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/082Pneumatic feeders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/086Plunger mechanisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain an outflow part of fused glass which is simple, precise and capable of allowing it to intermittently flow out therethrough by providing an outflow controlling means for adjusting the pressure of gas which is brought into contact with fused glass between the connecting part of a storage tank of fused glass and the tip of the outflow part thereof. CONSTITUTION:The raw material of optical glass is introduced into a storage tank 2 of fused glass and heated with a temp. controlling means 4 to obtain fused optical glass G. Then this glass G is allowed to flow to a first-dthird parts 6a-6c having required cross-sectional areas and heated with the temp. controlling means 8, 10, 12 to adjust it at required viscosity and allowed to successively flow. On the other hand, the pressure of inert gas such as gaseous nitrogen introduced into a pipe 20a is changed with an outflow controlling means 20 consisting of a piston 20e and a bellows 20c or the like and the pressure exerted to glass G in corporated in the second part 6b is adjusted and thereby glass (g) having about logeta=4 viscosity is flowed out intermittently (e.g. interval of 15-60sec) through an outflow port 14 at every required volume (e.g. 5cm<3>).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融ガラス流出部の構造に関し、特に溶融ガラ
スの精密な間欠的流出のE1能な溶融ガラス流出部の構
造に関する。この様な構造はたとえば溶融光学ガラスを
光学素子成形装置へと流出させるのに好適に利用される
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a molten glass outflow section, and more particularly to the structure of a molten glass outflow section capable of precise intermittent outflow of molten glass. Such a structure is suitably used, for example, to flow molten optical glass to an optical element molding apparatus.

[従来の技術及びその問題点] 従来、光学素子製造のためのブランクを得る[1的で、
光学ガラス原料を溶融槽(ルツボ)中で溶融させ、該ル
ツボの流出口から適宜の流量にて溶融ガラスを流出させ
、該流出ガラスを適宜の大きさのブロックに分割して成
形袋とへと供給し、所定の形状にプレス成形する連続的
ブランク製造が行なわれている。
[Prior art and its problems] Conventionally, a blank for manufacturing an optical element is obtained [first,
The optical glass raw material is melted in a melting tank (crucible), the molten glass is flowed out from the outlet of the crucible at an appropriate flow rate, and the flowed glass is divided into blocks of appropriate size and placed in a molding bag. Continuous blank manufacturing is carried out in which blanks are supplied and press-formed into a predetermined shape.

この様な連続製造法では、成形装置側において成形条件
を一定に維持し連続的成形動作を円滑に行なうため及び
更には成形精度を良好に保つために、溶融ガラスの供給
を厳密且つ適正に制御することが好ましい。
In such continuous manufacturing methods, the supply of molten glass must be strictly and appropriately controlled in order to maintain constant molding conditions on the molding equipment side and perform continuous molding operations smoothly, as well as to maintain good molding accuracy. It is preferable to do so.

更に、最近では上記の様にブランクを製造し次いで該ブ
ランクを研摩して光学面を形成し光学素子を得る伝統的
な方法に代って、所定の表面精度を有する成形用金型内
に溶融光学ガラスを収容してプレスすることにより直ち
に光学機能面を含む全体的形状を形成することが行なわ
れる様になってきており、この様なプレス成形を連続的
に行なうために溶融光学ガラスを供給する際には、上記
ブランク製造の場合に比べて更に溶融ガラス供給を厳密
且つ正確に行なうことが要求される。
Furthermore, recently, instead of the traditional method of manufacturing a blank as described above and then polishing the blank to form an optical surface to obtain an optical element, melting in a mold with a predetermined surface accuracy has been used. It has become possible to immediately form the overall shape, including the optical functional surface, by housing and pressing optical glass, and it is necessary to supply molten optical glass to continuously perform such press forming. In this case, it is required to supply the molten glass more strictly and accurately than in the case of blank manufacturing.

このため、従来、ルツボから溶融ガラスを流出させる流
出部を比較的長いパイプ状となし、該流出部の周囲に温
度制御手段(加熱手段)を付し。
For this reason, conventionally, the outflow section through which the molten glass flows out from the crucible is formed into a relatively long pipe shape, and a temperature control means (heating means) is attached around the outflow section.

該流出部内の溶融ガラスの温度調節を行なうことにより
ガラスの粘度を調整し、かくして流出端部から制御され
た流量にて所望の粘度の溶融ガラスを流出させることが
行なわれている。
By controlling the temperature of the molten glass in the outflow section, the viscosity of the glass is adjusted, thereby allowing molten glass of a desired viscosity to flow out from the outflow end at a controlled flow rate.

第3図はこの様な従来の溶融ガラス流出部構造の一例を
示す断面図である。
FIG. 3 is a sectional view showing an example of such a conventional molten glass outlet structure.

第3図において、2は溶融ガラス収容槽であり、該槽の
周囲にはガラス溶融及び保温のための温度側91手段(
発熱量調節手段をもつ加熱手段)4が付設されている。
In FIG. 3, 2 is a molten glass storage tank, and around the tank there is a temperature side 91 means for melting the glass and keeping it warm.
A heating means (4) having a calorific value adjusting means is attached.

該溶融ガラス収容槽2の下部には流出部6が接続されて
いる。該流出部は上下方向に細長いパイプからなり、そ
の上部、中央部及び下部にはそれぞれ温度制御手段8,
10゜12が付設されている。これら温度制御手段はそ
れぞれ独立に温度調節が可能である。尚、14は流出部
最下端部の流出口である。一方、溶融ガラス収容槽2内
にはプランジャ15が配こされている。該プランジャは
不図示の駆動手段により上下方向に往復移動せしめられ
る。
An outflow section 6 is connected to the lower part of the molten glass storage tank 2. The outflow section consists of a vertically elongated pipe, and temperature control means 8,
10°12 is attached. These temperature control means can each independently adjust the temperature. Note that 14 is an outlet at the lowest end of the outlet. On the other hand, a plunger 15 is arranged inside the molten glass storage tank 2. The plunger is reciprocated in the vertical direction by a driving means (not shown).

溶融ガラス収容槽2内で溶融されたガラスGは、自重に
より流出部6内を下方へと流下し、流出[114からg
として流出する。この際、上記温度制御手段8,10.
12をそれぞれ適宜の温度に設定することで、溶融ガラ
ス収容槽2との接続端部から流出口14までの溶融ガラ
スに適正な温度勾配を付し、これにより溶融ガラスの流
出量や粘度が制御される。また、上記プランジャ15を
適宜の周期で上下方向に往復移動させることにより、ガ
ラス流出量が調整される。
The glass G melted in the molten glass storage tank 2 flows downward in the outflow part 6 due to its own weight, and flows out [114 to g
It flows out as. At this time, the temperature control means 8, 10.
12 to appropriate temperatures, an appropriate temperature gradient is applied to the molten glass from the connection end with the molten glass storage tank 2 to the outlet 14, thereby controlling the flow rate and viscosity of the molten glass. be done. Further, by reciprocating the plunger 15 in the vertical direction at an appropriate period, the amount of glass flowing out is adjusted.

しかるに、以上の様な従来の流出部構造では所望の温度
勾配を付するためには流出部6の長さをかなり大きくす
る必要があり、このため装置スペースが大さくなるとい
う難点があった。即ち、流山部6の長さが短いと該流出
部内の溶融ガラス流通による熱伝導に基づき設定温度勾
配がそこなわれるからである。
However, in the conventional outlet structure as described above, it is necessary to increase the length of the outlet part 6 considerably in order to create a desired temperature gradient, which has the disadvantage of increasing the space of the apparatus. That is, if the length of the flow ridge portion 6 is short, the set temperature gradient will be impaired due to heat conduction due to the flow of molten glass within the flow portion.

特開昭61−146721号公報には、溶融ガラス収容
槽との接続端部側の径を比較的大きくし且つ流出口側の
径を比較的小さくした流山部の構造が開示されているが
、この様な構造でも上記と同様である。
JP-A-61-146721 discloses a structure of a flowing mountain portion in which the diameter on the side of the connection end with the molten glass storage tank is relatively large and the diameter on the side of the outlet side is relatively small. Such a structure is also similar to the above.

更に、流出部が長いためにプランジャ15の作用が上方
に流出口14まで到達せず、このため良好な流量調部は
困難であった。
Furthermore, since the outflow portion is long, the action of the plunger 15 does not reach upward to the outflow port 14, making it difficult to properly regulate the flow rate.

従って、従来のガラス流出部構造では所望の流出条件を
満たすことができず、このため溶融ガラスの流出状態に
適合する様に制御しながらプレス成形を行なわねばなら
ない。
Therefore, the conventional glass outflow part structure cannot satisfy the desired outflow conditions, and therefore, press forming must be performed while controlling the molten glass to suit the outflow condition.

他方、高温下で行なわれるプランジャ15の作動を維持
するため強度及び駆動部精度等を十分に高めなければな
らず、このため装置全体をかなり大型化させねばならな
いという難点もある。
On the other hand, in order to maintain the operation of the plunger 15 under high temperatures, the strength and precision of the driving part must be sufficiently increased, and therefore the entire device must be considerably larger.

そこで、本発明は、比較的簡単な構成で精密な間欠的流
出の可能な溶融ガラス流出部構造を提供することを目的
とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a molten glass outflow section structure that has a relatively simple configuration and is capable of precise intermittent outflow.

[問題点を解決するための手段] 本発明によれば、以上の如き目的を達成するものとして
、 溶融ガラス収容槽から溶融ガラスを流出させる流出部の
構造において、収容槽接続部と流出先端部との間に溶融
ガラスに対し気体を接触させ且つ該気体の圧力を調節す
る流山部m手段が付設されていることを特徴とする、溶
融ガラス流出部の構造。
[Means for Solving the Problems] According to the present invention, in order to achieve the above-mentioned objects, in the structure of the outflow part for flowing out molten glass from the molten glass storage tank, the storage tank connection part and the outflow tip part are provided. A structure of a molten glass outflow section, characterized in that a flow ridge section (m) means is provided between the molten glass and the molten glass to bring the gas into contact with the gas and adjust the pressure of the gas.

が提供される。is provided.

[実施例1 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Embodiment 1] Hereinafter, a specific embodiment of the present invention will be described with reference to the drawings.

第1図は本発明による溶融ガラス流出部構造の第1の実
施例を示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a molten glass outlet structure according to the present invention.

第1図において、2は溶融ガラス収容槽であり、該槽の
周囲には温度制御手段4が付設されている。これら溶融
ガラス収容槽2及び温度制御手段4はL配給3図におけ
ると同様である。
In FIG. 1, 2 is a molten glass storage tank, and a temperature control means 4 is attached around the tank. These molten glass storage tank 2 and temperature control means 4 are the same as in the L distribution 3 diagram.

溶融ガラス収容槽2の下部には流出部6が付されている
。該流出部は上方の第1の部分6aと中央の第2の部分
6bと下方の第3の部分6Cとからなり、該第1部分6
aの上端が上記溶融ガラス収容槽2との接続部となって
おり、上記第3部分6Cの下端が流出口14となってい
る。
An outflow portion 6 is provided at the bottom of the molten glass storage tank 2 . The outflow portion consists of an upper first portion 6a, a central second portion 6b, and a lower third portion 6C.
The upper end of the third portion 6C serves as the connection portion with the molten glass storage tank 2, and the lower end of the third portion 6C serves as the outlet 14.

L2第1部分6aは直径がIllで上下方向であり、上
記第3部分6Cは直径がD3で上下方向であり、上記w
S2部分6bは第1部分6aと第3部分6cとを斜めに
接続している。該第2部分6bは第1部分6a及び第3
部分6Cに比べてかなり拡張した形状を有する。上記第
1部分、第2部分及び第3部分の周囲にはそれぞれ温度
制御手段8. to 、 12が付設されている。これ
ら温度制御手段はそれぞれ独立に温度調整が可能である
The L2 first portion 6a has a diameter of Ill and extends in the vertical direction, and the third portion 6C has a diameter of D3 and extends in the vertical direction.
The S2 portion 6b diagonally connects the first portion 6a and the third portion 6c. The second portion 6b is connected to the first portion 6a and the third portion 6b.
It has a considerably expanded shape compared to the portion 6C. Temperature control means 8. are provided around the first, second and third parts, respectively. to, 12 are attached. These temperature control means can each independently adjust the temperature.

上記第2部分6bには流出制御手段2Gが付設されてい
る。該手段は第2部分6bの上側に一端が接続されたパ
イプ20aと、該パイプの他端に接続されたチャンバ2
0bと、該チャンバ内に設けられたベローズ20cと、
上記チャンバ20bに接続されたエアシリンダ20dと
、該エアシリンダに接続されたピストン20eとを含ん
でなる。
Outflow control means 2G is attached to the second portion 6b. The means includes a pipe 20a having one end connected to the upper side of the second portion 6b, and a chamber 2 connected to the other end of the pipe.
0b, a bellows 20c provided in the chamber,
It includes an air cylinder 20d connected to the chamber 20b and a piston 20e connected to the air cylinder.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

溶融ガラス収容槽2内に光学ガラスの原料を入れ、該原
料を温度制御手段4により加熱し必要に応じて適宜攪拌
しながら所定時間維持することにより、溶融した光学ガ
ラスGが得られる。
A raw material for optical glass is placed in the molten glass storage tank 2, and the raw material is heated by the temperature control means 4 and maintained for a predetermined period of time with appropriate stirring as necessary, thereby obtaining a molten optical glass G.

次に、溶融ガラスGを流山部6へと流下させる。該流出
部内において、溶融ガラスは順次第1部分、第2部分、
第3部分を進行する。この進行の駆動力は主として重力
である。
Next, the molten glass G is caused to flow down to the flowing mountain portion 6. In the outflow section, the molten glass is sequentially divided into a first part, a second part,
Proceed with the third part. The driving force for this progression is primarily gravity.

溶融ガラスは先ず、第1部分6aにおいて、所定の径D
Iに絞られることにより、流出部6に流入する量即ち溶
融ガラス収容槽2からの流出量を設定される。ここでは
、ガラス温度は温度制御手段8により比較的低く維持さ
れ、たとえばガラスの粘度がlogη=3.5〜6とな
る様に温度が調節される。該第1部分6aの直径DIは
比較的小さいので、温度調部により十分に効率良く粘度
調節が可能で、これにより流出量の微小11節ができる
The molten glass first has a predetermined diameter D in the first portion 6a.
By narrowing down to I, the amount flowing into the outflow portion 6, that is, the amount flowing out from the molten glass storage tank 2 is set. Here, the glass temperature is maintained relatively low by the temperature control means 8, and is adjusted so that the viscosity of the glass is, for example, log η=3.5 to 6. Since the diameter DI of the first portion 6a is relatively small, the viscosity can be controlled sufficiently efficiently by the temperature control section, thereby creating 11 small nodes of the outflow amount.

次に、溶融ガラスは第2部分6bに流入する。The molten glass then flows into the second portion 6b.

この部分は拡張した形状であり断面積が第1部分6aの
たとえば2〜18倍とされているので十分な熱vf看を
もつ、この部分では温度制御手段10によりL2第1部
分6aと同一かそれより高い温度に加熱され、たとえば
ガラスの粘度がlogη=3〜4.5となる様に温度が
!1節される。流出部6全体の)^準となる温度はこの
部分での加熱により設定される0図示される様に、tI
t出制御手段のパイプ20a内には不図示の手段により
窒素ガス等の不活性ガスが導入されている。そして、E
配給2部分6bの1側部分にも上記不活性ガスが侵入し
ている。従って、溶融ガラスは第2部分6bの下側を伝
わって第3all1分6Cへと向かって流れる。この際
、該第2部分6bの下側は斜めになっているので溶融ガ
ラス中に気泡を巻込んだり溶融ガラスを不均質にしたり
することなしに良好に流動する。
This part has an expanded shape and has a cross-sectional area, for example, 2 to 18 times that of the first part 6a, so it has sufficient thermal VF. Heated to a higher temperature, for example, the temperature is such that the viscosity of glass is log η = 3 to 4.5! One verse is said. The standard temperature of the entire outlet part 6 is set by heating in this part, and as shown in the figure, tI
An inert gas such as nitrogen gas is introduced into the pipe 20a of the output control means by means not shown. And E
The inert gas also penetrates into one side of the second distribution section 6b. Therefore, the molten glass flows along the lower side of the second portion 6b toward the third all1 portion 6C. At this time, since the lower side of the second portion 6b is slanted, the molten glass flows well without introducing bubbles into the molten glass or making the molten glass non-uniform.

次に、ガラスは第3部分6Cに流入する。この部分は直
径D3が最も小さく(断面積が上記第2部分6bのたと
えば174〜1/20)なっており、温度制御手段12
による加熱で容易に、たとえばガラスの粘度がlogη
=2〜4.5となる様に温度が調節される。ここでは、
所定の温度設定により流出口14から流出する溶融ガラ
スに要求される所定の粘度を設定する。
Next, the glass flows into the third portion 6C. This portion has the smallest diameter D3 (the cross-sectional area is, for example, 174 to 1/20 of the second portion 6b), and the temperature control means 12
For example, the viscosity of glass can be easily reduced by heating by logη
The temperature is adjusted so that the temperature is 2 to 4.5. here,
By setting a predetermined temperature, a predetermined viscosity required for the molten glass flowing out from the outlet 14 is set.

上記第3部分6cの直径D3は要求される流出ガラス径
により適宜設定されるが、たとえば3〜15mmである
The diameter D3 of the third portion 6c is appropriately set depending on the required outflow glass diameter, and is, for example, 3 to 15 mm.

以上の様な本実施例においては、流出制御手段のピスト
ン20eを上下方向に移動させることにより、ベローズ
20cを介してパイプ20a内の不活性ガスの圧力を変
化させ、かくして第2部分6b内のガラスにかかる圧力
を調節することができる。これにより、第1部分6a内
の溶融ガラスより粘度が低い第:BjlS分6C内の溶
融ガラスに対し有効に圧力変化が作用し、流出口14か
らのガラス流出量を適宜設定することができる。たとえ
ば、ピストン20eを上方へと移動させるとパイプ20
a内の不活性ガスの圧力が低下せしめられ、第3部分6
C内の溶融ガラスの流出を一時的に停止することができ
る。そして1次いでピストン20eを下方へと移動させ
るとパイプ20a内の不活性ガスの圧力が上昇せしめら
れ、第3部分6cからの溶融ガラスの流出を開始するこ
とができる。
In this embodiment as described above, by moving the piston 20e of the outflow control means in the vertical direction, the pressure of the inert gas in the pipe 20a is changed via the bellows 20c, and thus the pressure in the second portion 6b is changed. The pressure applied to the glass can be adjusted. As a result, a pressure change effectively acts on the molten glass in the first part 6C, which has a lower viscosity than the molten glass in the first part 6a, and the amount of glass flowing out from the outlet 14 can be set appropriately. For example, when the piston 20e is moved upward, the pipe 20e
The pressure of the inert gas in a is reduced and the third part 6
The outflow of the molten glass in C can be temporarily stopped. When the piston 20e is then moved downward, the pressure of the inert gas within the pipe 20a is increased, and the molten glass can start flowing out from the third portion 6c.

かくして、流出制御手段20を適宜制御することにより
、流出口14から所望の体積ごとに間欠的に所望粘度の
溶融ガラスgを流出させることができる。尚、第3部分
6cの径は小さいので、流出制御手段20を作用させて
減圧し流出を停止させている間においても流出口14か
らrf43部分6C内に大気が侵入することはない。
Thus, by appropriately controlling the outflow control means 20, it is possible to intermittently cause the molten glass g of a desired viscosity to flow out from the outflow port 14 in desired volumes. Furthermore, since the diameter of the third portion 6c is small, the atmosphere will not enter into the RF43 portion 6C from the outlet 14 even while the outflow control means 20 is activated to reduce the pressure and stop the outflow.

尚、本実施例によれば、流出部の第2部分6bとして拡
張部分が形成されているので、該部分の温度を基準温度
に設定し、第1部分6a及び第3部分6cの温度を該基
準温度から適宜具なる温度に設定して流量調整及び粘度
調整の双方を行なっても、第2部分6bの熱容量が大き
いので第1部分6a及び第3部分6cが温度干渉するこ
とはなく、従って流出ガラスの流量及び粘度の双方の調
節を極めて良好に行なうことができる。
According to this embodiment, since the expanded portion is formed as the second portion 6b of the outflow portion, the temperature of this portion is set to the reference temperature, and the temperatures of the first portion 6a and the third portion 6c are set to the reference temperature. Even if both the flow rate adjustment and the viscosity adjustment are performed by setting an appropriate temperature from the reference temperature, the first portion 6a and the third portion 6c will not interfere in temperature because the second portion 6b has a large heat capacity. Both the flow rate and the viscosity of the outflow glass can be very well controlled.

本実施例においては、流出部6の第1部分湯度T(6a
)、流出部6の第2部分湯度T(6b)及び流出部6の
第3部発温度T(6c)は、T(6a) <T (6b
) <T (6c)となる様に設定されており、低い温
度の第1部分6aと高い温度の第3部分6cとの間に大
断面積で溶融ガラス収容量の大きな第2部分6bが介在
しているので、第3部分6Cの高い温度が直接低い温度
の第1部分6aに伝わることがなく、第3部分先端の流
出口14からのガラス流出量の制御を正確に行なうこと
ができる。即ち1本実施例において、溶融ガラス収容槽
2内のガラスGの温度は高く、第1部分6aの温度を低
くして該第1部分以降のガラス流;義を制御するのであ
るが、拡張部たる第2部分6bが設けられているので、
第3部分6Cの温度は直接第1部分6aに伝わることは
なく、第2部分6b内のガラスによって温度上昇が押え
られるので、第1部分6a内のガラス温度は上昇しない
、従って、第3部分6Cを通るガラスは第2部分6C内
のガラスを引張る様にして流れ、更に該第2部分内のガ
ラスは第1部分6a内のガラスを引張る様に流れるので
、流出口14からのガラス流出量は結局第1部分6a内
のガラスの粘度に依存することになる。それ故、拡張部
たる第2部分6bの存在により第3部分6Cの温度が第
1部分6aの温度に干渉するのを防ぐことは、ガラス流
出量の正確な制御のために極めて有利なことである。
In this embodiment, the first part hot water temperature T (6a
), the second part hot water temperature T(6b) of the outflow part 6 and the third part hot water temperature T(6c) of the outflow part 6 are T(6a) <T(6b
) <T (6c), and a second portion 6b with a large cross-sectional area and a large capacity for molten glass is interposed between the first portion 6a having a low temperature and the third portion 6c having a high temperature. Therefore, the high temperature of the third portion 6C is not directly transmitted to the low temperature first portion 6a, and the amount of glass flowing out from the outlet 14 at the tip of the third portion can be accurately controlled. That is, in this embodiment, the temperature of the glass G in the molten glass storage tank 2 is high, and the temperature of the first portion 6a is lowered to control the glass flow after the first portion. Since the barrel second portion 6b is provided,
The temperature of the third part 6C is not directly transmitted to the first part 6a, and the temperature rise is suppressed by the glass in the second part 6b, so the temperature of the glass in the first part 6a does not rise. The glass passing through 6C flows as if pulling the glass in the second part 6C, and the glass in the second part flows as if pulling the glass in the first part 6a, so the amount of glass flowing out from the outlet 14 is ultimately depends on the viscosity of the glass in the first portion 6a. Therefore, it is extremely advantageous to prevent the temperature of the third portion 6C from interfering with the temperature of the first portion 6a due to the presence of the second portion 6b, which is an extension, for accurately controlling the amount of glass flowing out. be.

尚、L2第3図の流出部6(直径10mm、長さ800
mm)の場合に粘度logη=4のガラスを12cm3
/分で流出させていたが、上記本発明第1実施例の流出
部6(第1部分6aの直径及び第3部分6Cの直径を1
0mmとし、第2部分6bの体積を第3部分6Cの約5
倍とした)の場合に、流出制御手段20を作用させるこ
とにより該手段のパイプ20a内の絶対圧力を適宜の時
間間隔で約0.93Kg/cm2の減圧と約1.1Kg
/cm2の加圧とを交互に変化させることで、粘度lo
gη=4のガラスを5cm3として15〜60秒の任意
の間隔で間欠的に流出させることができた、これは、た
とえばカメラ用レンズ(直径40 m m、厚さ2〜3
mm)を連続的にプレス成形する場合に適用できる。
In addition, the outflow part 6 (diameter 10 mm, length 800 mm
mm), 12 cm3 of glass with viscosity logη=4
/min, but the diameter of the outflow part 6 (the diameter of the first part 6a and the diameter of the third part 6C of the first embodiment of the present invention was changed to 1/min).
0 mm, and the volume of the second portion 6b is approximately 5 mm of that of the third portion 6C.
), by operating the outflow control means 20, the absolute pressure inside the pipe 20a of said means is reduced to about 0.93 Kg/cm2 at appropriate time intervals and to about 1.1 Kg/cm2.
By alternating the pressure of /cm2, the viscosity lo
It was possible to intermittently flow out 5 cm of glass with gη = 4 at arbitrary intervals of 15 to 60 seconds.
Applicable to continuous press molding.

第2図は未発Illによる溶融ガラス流出部構造の第2
の実施例を示す断面図である。
Figure 2 shows the second structure of the molten glass outlet due to unexploited Ill.
FIG.

第2図において、上記第1図におけると同様の部材には
同一の符号が付さ°れており、これらについては説明を
省略する。
In FIG. 2, the same members as in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

本実施例は、第1部分6aと第2部分6bとの間に温度
干渉を防止するための断熱材16が配はされており且つ
第2部分6bと第3部分6Cとの間に温度干渉を防止す
るための断熱材18が配こされている点が上記第1実施
例と異なり、更に第2部分6bの形状が」−配給1実施
例と異なり、パイプ20aの周囲に温度制御手段22が
付設されている点も上記第1実施例と異なる。
In this embodiment, a heat insulating material 16 is disposed between the first part 6a and the second part 6b to prevent temperature interference, and the temperature interference is prevented between the second part 6b and the third part 6C. This differs from the first embodiment in that a heat insulating material 18 is disposed to prevent the above-mentioned. Furthermore, the shape of the second portion 6b differs from the first embodiment in that a temperature control means 22 is provided around the pipe 20a. The second embodiment is also different from the first embodiment in that .

本実施例では常時パイプ20a内にまで第2部分6b内
のガラスが入り込んでおり、この部分のガラスは温度制
御手段22により温度調節される。この様に、本実施例
では、不活性ガスと接触するガラス面積が小さいので、
高鉛含有ガラス等の高温下で表面からの成分揮発の多い
ガラスの場合でも該揮発を最小限とすることができ、屈
折率変化等にノフづ〈不良発生を防止することができる
。 本実施例においては、断熱材16.18はL記拡張
部たる第21分6bの上下位置に配置さ−れており、第
1部分の温度制御手段8、第2部分の温度制御手段lO
及び第3部分の温度制御子段12の間の対流及び輻射に
よる温度制御の誤差を防止するものである。即ち、上記
断熱材16.18を配置しない場合には、各部分6a、
6b、6Cの長さを短くした場合に温度制御手段はかな
り接近して配置されることになり、該温度制御手段の温
度には差異があるので、温度制御手段8より高い温度の
温度制御手段lOの熱により該温度制御子段lOの周囲
の空気は対流によって上記温度制御手段8の方へと流れ
、この空気温度によって第1部分6a及びその内部のガ
ラスの温度は温度制御手段8のみによる制御が困難にり
やすい、また、温度制御手段lOの輻射熱により直接第
1部分6a及びその内部のガラスが加熱されて同様に制
御困難となりやすい、この様な対流作用及び輻射作用に
よる第1部分6aと第2部分6bとの間の関係は、第2
部分6bと第3部分6cとの間においても同様であり、
結局流出部の各部分6a。
In this embodiment, the glass in the second portion 6b always enters into the pipe 20a, and the temperature of the glass in this portion is controlled by the temperature control means 22. In this way, in this example, since the glass area that comes into contact with the inert gas is small,
Even in the case of glasses such as high-lead-containing glasses whose components volatilize from the surface in large quantities at high temperatures, the volatilization can be minimized, and defects caused by changes in refractive index can be prevented. In this embodiment, the heat insulating materials 16, 18 are placed above and below the 21st portion 6b, which is the extended portion L, and the temperature control means 8 of the first portion and the temperature control means lO of the second portion are arranged.
This is to prevent errors in temperature control due to convection and radiation between the third temperature control child stage 12 and the third part. That is, when the heat insulating material 16.18 is not arranged, each portion 6a,
If the lengths of 6b and 6C are shortened, the temperature control means will be placed quite close to each other, and there will be a difference in temperature between the temperature control means, so the temperature control means whose temperature is higher than that of temperature control means 8 Due to the heat of the temperature control element 1O, the air around the temperature control stage 1O flows toward the temperature control means 8 by convection, and this air temperature causes the temperature of the first portion 6a and the glass inside thereof to be controlled only by the temperature control means 8. The first portion 6a due to such convection and radiation effects tends to be difficult to control, and also tends to be difficult to control as the first portion 6a and the glass inside thereof are directly heated by the radiant heat of the temperature control means IO. The relationship between the second portion 6b and the second portion 6b is
The same applies between the portion 6b and the third portion 6c,
After all, each part 6a of the outflow part.

6b、6cの温度制御を正確には行ないにくくなる。こ
れに対し、本実施例では第1部分6aと拡張部たる第2
部分6bとの間及び該第2部分と第3部分6Cとの間に
それぞれ断熱材を配置しているので、熱の対流及び輻射
作用の発生を防ぐことができ、各温度制御手段ごとの温
度制御を正確に行なうことができるのである。
It becomes difficult to accurately control the temperatures of 6b and 6c. On the other hand, in this embodiment, the first part 6a and the second part which is the extension part are
Since a heat insulating material is placed between the portion 6b and the second portion and the third portion 6C, it is possible to prevent the occurrence of heat convection and radiation, and the temperature of each temperature control means can be controlled. This allows for accurate control.

かくして、本実施例によれば、温度制御手段による各部
分6a〜6cの温度設定が極め、て正確となり、各部分
の長さをより短くすることができる。
Thus, according to this embodiment, the temperature setting of each portion 6a to 6c by the temperature control means is extremely accurate, and the length of each portion can be made shorter.

尚、上記第3図の流出部6(直径5mm、長さ800m
m)の場合に、粘度logη=3.5のガラスを3cm
3/分で流出させていたが、上記本発明第2実施例の流
出部6(第1部分6aの直径及び第3部分6cの直径を
5mmとし、第2部分6bの体積を第3部分6cの約4
倍とした)の場合に、流出制御手段20を作用させるこ
とにより該手段のパイプ20a内の絶対圧力を適宜の時
間間隔で約0.93Kg/cm2の減圧と約1.1Kg
/cm2の加圧とを交互に変化させることで、粘度1o
gη= 2のガラスを0.1〜1cm3として5〜30
秒の任意の間隔で間欠的に流出させることができた。
In addition, the outflow part 6 (diameter 5 mm, length 800 m
m), 3 cm of glass with viscosity log η = 3.5
3/min, but the outflow portion 6 of the second embodiment of the present invention (the diameter of the first portion 6a and the diameter of the third portion 6c are 5 mm, and the volume of the second portion 6b is about 4
), by operating the outflow control means 20, the absolute pressure inside the pipe 20a of said means is reduced to about 0.93 Kg/cm2 at appropriate time intervals and to about 1.1 Kg/cm2.
By alternating the pressure of /cm2, the viscosity is 1o.
5 to 30 with gη = 2 glass as 0.1 to 1 cm3
It could be drained intermittently at arbitrary intervals of seconds.

尚、上記第1図及び第2図には示されていないが、流出
口14から流出した溶融ガラスgは適宜の連続成形装置
に供給され、ここで連続成形される。
Although not shown in FIGS. 1 and 2 above, the molten glass g flowing out from the outlet 14 is supplied to a suitable continuous molding device, where it is continuously molded.

[発明の効果] 以上の様な本発明によれば、流出部に溶融ガラスに対し
気体を接触させ且つ該気体の圧力を調節する流出制御手
段が付設されているので、所望の゛粘性の溶融ガラスを
所望の量だけ所望の間隔で間欠的に流出させることかで
さる。
[Effects of the Invention] According to the present invention as described above, since the outflow portion is provided with an outflow control means for bringing the gas into contact with the molten glass and adjusting the pressure of the gas, the molten glass can be melted to a desired viscosity. This is achieved by intermittently causing the desired amount of glass to flow out at desired intervals.

また1本発明によれば、溶融ガラス中にプランジャ等の
機械的手段を設けていないので、異物混入や脈理発生を
防止でき、均質な溶融ガラスが流出される。
Further, according to the present invention, since no mechanical means such as a plunger is provided in the molten glass, it is possible to prevent foreign matter from entering and the generation of striae, and a homogeneous molten glass is flowed out.

更に、流出部の中間部に断面積の大きな拡張部を形成し
該中間部に上記流出制御手段を付設することにより、該
中間部内の溶融ガラスの熱容量を大きくして該拡張部の
上下量で溶融ガラスの熱の干渉を十分に防止でき、従っ
て所望の条件にて正確にガラス流出を行なうことができ
る。
Furthermore, by forming an extended part with a large cross-sectional area in the middle part of the outflow part and attaching the above-mentioned outflow control means to the middle part, the heat capacity of the molten glass in the middle part is increased and the vertical amount of the extended part is increased. Thermal interference of the molten glass can be sufficiently prevented, and therefore the glass can be flowed out accurately under desired conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による溶融ガラス流出部構造
を示す断面図である。 第3図は貨来の溶融ガラス流出部構造を示す断面図であ
る。 2:溶融ガラス収容槽、 4.8,10,12,22:温度制御手段。 6流出部、    6b=拡張部、 14:流出口、   16.18:断熱材。 20:流出制御手段。 第1図 第2図 第3図 手続補正書 昭和62年 7月 6日 特許庁長官 小 川 邦 夫  殿 1 事件の表示 特願昭62−128394号 2 発明の名称 溶融ガラス流出部の構造 3 補正をする者 事件との関係  特許出願人 名称  (100)  キャノン株式会社4 代理人 図面 第1図
FIGS. 1 and 2 are cross-sectional views showing the structure of a molten glass outlet according to the present invention. FIG. 3 is a sectional view showing the structure of the conventional molten glass outlet. 2: Molten glass storage tank, 4.8, 10, 12, 22: Temperature control means. 6 Outlet, 6b=Expansion, 14: Outlet, 16.18: Insulation. 20: Outflow control means. Figure 1 Figure 2 Figure 3 Procedural amendment July 6, 1988 Director General of the Patent Office Kunio Ogawa 1 Indication of the case Patent application No. 128394/1982 2 Name of the invention Structure of molten glass outflow section 3 Amendment Relationship with the case of a person who does

Claims (3)

【特許請求の範囲】[Claims] (1)溶融ガラス収容槽から溶融ガラスを流出させる流
出部の構造において、収容槽接続部と流出先端部との間
に溶融ガラスに対し気体を接触させ且つ該気体の圧力を
調節する流出制御手段が付設されていることを特徴とす
る、溶融ガラス流出部の構造。
(1) In the structure of the outflow part for flowing out molten glass from the molten glass storage tank, outflow control means for bringing gas into contact with the molten glass between the storage tank connection part and the outflow tip part and adjusting the pressure of the gas. A structure of a molten glass outflow part, characterized in that a molten glass outflow part is attached.
(2)収容槽接続部と流出先端部との間に該先端部より
も断面積の大きな拡張部を有し、該拡張部に流出制御手
段が付設されている、特許請求の範囲第1項の溶融ガラ
ス流出部の構造。
(2) An expanded portion having a larger cross-sectional area than the leading end is provided between the storage tank connecting portion and the outflow tip, and an outflow control means is attached to the expanded portion. Structure of molten glass outflow part.
(3)収容槽接続部、先端部及び拡張部にそれぞれ独立
に温度制御手段が付されている、特許請求の範囲第2項
の溶融ガラス流出部の構造。
(3) The structure of the molten glass outflow section according to claim 2, wherein the storage tank connection section, the tip section, and the expansion section are each independently provided with temperature control means.
JP12839487A 1987-05-27 1987-05-27 Structure of outflow part for fused glass Pending JPS63295443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12839487A JPS63295443A (en) 1987-05-27 1987-05-27 Structure of outflow part for fused glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12839487A JPS63295443A (en) 1987-05-27 1987-05-27 Structure of outflow part for fused glass

Publications (1)

Publication Number Publication Date
JPS63295443A true JPS63295443A (en) 1988-12-01

Family

ID=14983721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12839487A Pending JPS63295443A (en) 1987-05-27 1987-05-27 Structure of outflow part for fused glass

Country Status (1)

Country Link
JP (1) JPS63295443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234734A (en) * 2001-02-05 2002-08-23 Ishikawajima Harima Heavy Ind Co Ltd Glass fusion furnace
JP2008120667A (en) * 2006-10-20 2008-05-29 Ohara Inc Nozzle and method for producing optical glass gob using it
CN102627388A (en) * 2012-03-31 2012-08-08 彩虹(合肥)液晶玻璃有限公司 Control method for glass melting pull of substrate of thin-film field effect transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234734A (en) * 2001-02-05 2002-08-23 Ishikawajima Harima Heavy Ind Co Ltd Glass fusion furnace
JP4501285B2 (en) * 2001-02-05 2010-07-14 株式会社Ihi Glass melting furnace
JP2008120667A (en) * 2006-10-20 2008-05-29 Ohara Inc Nozzle and method for producing optical glass gob using it
TWI414498B (en) * 2006-10-20 2013-11-11 Ohara Kk Nozzle and method for producing optical glass gob using the nozzle
CN102627388A (en) * 2012-03-31 2012-08-08 彩虹(合肥)液晶玻璃有限公司 Control method for glass melting pull of substrate of thin-film field effect transistor

Similar Documents

Publication Publication Date Title
US4023953A (en) Apparatus and method for producing composite glass tubing
ES534949A0 (en) PROCEDURE AND DEVICE FOR MERGING, TUNING AND HOMOGENIZATION OF GLASS
US2398952A (en) Apparatus for manufacturing silica glass
JP2001080922A (en) Supply method and supply device for molten glass
JP2001031434A (en) Forming of plate glass and forming apparatus
US5250099A (en) Glass molding process and molding apparatus for the same
JP4537281B2 (en) Method and apparatus for making a flame polished gob
JPS63295443A (en) Structure of outflow part for fused glass
JP2798208B2 (en) Glass gob molding method
JPS63190722A (en) Structure of section for discharging molten glass
TWI304051B (en) Press forming machine for glass
US3068671A (en) Method of making bifocal lenses
WO2015137457A1 (en) Optical element manufacturing method
JPH08319125A (en) Production of optical element-forming material
JP3673554B2 (en) Glass gob molding method and molding apparatus
JP2583592B2 (en) Optical element molding method
JP2004010404A5 (en)
JP2664658B2 (en) Glass forming method
SU1252306A1 (en) Method of manufacturing optical components
US812399A (en) Manufacture of silica glass.
JP2664657B2 (en) Glass forming method
JP2505851B2 (en) Molten glass supply device and molten glass supply method
JPS62119129A (en) Forming device for optical element
JP3176714B2 (en) Melting and cutting method for glass rods
JPH11171557A (en) Production of large-size preformed part made of glass and apparatus therefor