JP2005050920A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2005050920A
JP2005050920A JP2003204142A JP2003204142A JP2005050920A JP 2005050920 A JP2005050920 A JP 2005050920A JP 2003204142 A JP2003204142 A JP 2003204142A JP 2003204142 A JP2003204142 A JP 2003204142A JP 2005050920 A JP2005050920 A JP 2005050920A
Authority
JP
Japan
Prior art keywords
internal electrode
via conductor
capacitor
conductor
multilayer body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204142A
Other languages
Japanese (ja)
Inventor
Hisashi Sato
恒 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003204142A priority Critical patent/JP2005050920A/en
Publication of JP2005050920A publication Critical patent/JP2005050920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor provided with a low inductance and a large electrostatic capacity and having high reliability. <P>SOLUTION: A capacitor 10 is provided with a first inner electrode 3 and a second inner electrode 4 opposed by sandwiching a dielectric layer 2 on the inside of a laminate 1 formed by laminating a plurality of the dielectric layers 2, a plurality of first via conductors 5 connected to the first inner electrode 3, a first blank part 7 arranging a plurality of second via conductors 6 connected to the second inner electrode 4 having no conductor material between the first via conductor 5 and the second inner electrode 4, and a second blank part 8 having no conductor material between the second via conductor 6 and the first inner electrode 3. The first via conductor 5 and the second via conductor 6 are annularly arranged along the outer periphery of the laminate 1, and the first via conductor 5 and the second via conductor 6 are arranged proximately in such a manner that the first blank part 7 and the second blank part 8 are partly overlapped in the lamination direction of the laminate 1 are arranged proximately. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はICに電源を供給する回路に接続されるデカップリングコンデンサ等のコンデンサに関するものである。
【0002】
【従来の技術】
従来のコンデンサとしては、例えば図5に示す如く、複数個の誘電体層52を積層した積層体51の内部に、誘電体層52を挟んで対向する第1内部電極53及び第2内部電極54と、第1内部電極53に接続される複数個の第1ビア導体55と、第2内部電極54に接続される複数個の第2ビア導体56とを配設した構造のものが知られている。かかるコンデンサは、第1内部電極53と第2内部電極54との間に所定の電圧を印加することによって、両内部電極間に配されている誘電体層に所定の静電容量を形成するとともに、隣接した第1ビア導体55と第2ビア導体56は、発生する磁束を互いに打ち消し合うことによって、低インダクタンスのコンデンサ50として機能する(例えば、特許文献1参照。)。
【0003】
また、上述した従来のコンデンサ50は、第1ビア導体55及び第2内部電極54間に導体材料の存在しない第1空白部57を、第2ビア導体56及び第1内部電極53間に導体材料の存在しない第2空白部58を設けており、これら第1空白部57及び第2空白部58によって、第1内部電極53と第2内部電極54とは電気的に絶縁されていた。
【0004】
【特許文献1】
特開平2001−185442号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来のコンデンサ50は、第1ビア導体55と第2ビア導体56との間で、積層体51の厚み方向において、第1内部電極53及び第2内部電極54が存在する領域に歪みが集中し、この領域を起点にクラックが発生しやすいという欠点を有している。
【0006】
即ち、従来のコンデンサ50は、第1ビア導体55及び第2ビア導体56が金属材料であり、セラミック等からなる誘電体層に比べると熱膨張収縮が大きいので、隣接する第1ビア導体55及び第2ビア導体56との間では、熱膨張収縮の応力歪みが集中する構造となっている。それに加えて、上述した従来のコンデンサ50は、第1ビア導体55と第2ビア導体56との間には、積層体51の厚み方向において、第1内部電極53のみが存在する領域と、第2内部電極54のみが存在する領域と、第1内部電極53及び第2内部電極54がともに存在する領域とがある。従って、積層体の厚み方向において、第1内部電極53及び第2内部電極54がともに存在する領域は、他の領域に比べて熱膨張収縮量が大きいため、このような領域は、第1内部電極53及び第2内部電極54の間においても、特に応力歪みが集中する領域となる。
【0007】
また、上述した従来のコンデンサにおいては、第1空白部57と第2空白部58とが静電容量の形成領域を少なくしており、静電容量を大きくすることを妨げていた。
【0008】
本発明は上記欠点に鑑み案出されたもので、その目的は、低いインダクタンスと大きな静電容量を備えるとともに、信頼性の高いコンデンサを提供することにある。
【0009】
【課題を解決するための手段】
本発明のコンデンサは、複数個の誘電体層を積層した積層体の内部に、前記誘電体層を挟んで対向する第1内部電極及び第2内部電極と、前記第1内部電極に接続される複数個の第1ビア導体と、前記第2内部電極に接続される複数個の第2ビア導体とを配設するとともに、第1ビア導体及び第2内部電極間に導体材料の存在しない第1空白部を、第2ビア導体及び第1内部電極間に導体材料の存在しない第2空白部を設けてなるコンデンサにおいて、前記第1ビア導体及び第2ビア導体が前記積層体の外周に沿って環状に配置されており、かつ前記第1空白部と前記第2空白部とが前記積層体の積層方向に一部重なり合うように隣接する第1ビア導体及び第2ビア導体を近接配置させたことを特徴とするものである。
【0010】
また本発明のコンデンサは、前記第1ビア導体が前記第1内部電極の外周部で第1内部電極に接続され、前記第2ビア導体が前記第2内部電極の外周部で第2内部電極に接続されていることを特徴とするものである。
【0011】
更に本発明のコンデンサは、前記第1ビア導体及び第2ビア導体の各一端が前記積層体の下面に導出されているとともに、該導出部に外部端子が設けられていることを特徴とするものである。
【0012】
そして本発明のコンデンサは、前記第1ビア導体及び第2ビア導体が前記積層体の外周に沿って交互に配置されており、個々の空白部に対して、その両側に配されている2個の空白部が前記積層体の積層方向に一部重なり合うように配置されていることを特徴とするものである。
【0013】
本発明によれば、前記第1空白部と前記第2空白部とが前記積層体の積層方向に一部重なり合うように隣接する第1ビア導体及び第2ビア導体を近接配置させたことにより、第1ビア導体と第2ビア導体との間で、積層体の厚み方向において、第1内部電極及び第2内部電極が存在する領域が少なくなるので、歪みが集中しにくくなり、クラックの発生を低減させることが可能となる。
【0014】
また本発明によれば、前記第1ビア導体が前記第1内部電極の外周部で第1内部電極に接続され、前記第2ビア導体が前記第2内部電極の外周部で第2内部電極に接続されていることにより、第1空白部及び第2空白部の領域の略半分が、第1内部電極及び第2内部電極の非形成領域と重なるので、第1内部電極と第2内部電極とが対向する領域の面積を効率的に確保することとなり、静電容量をより大きくすることが可能となる。
【0015】
更に本発明によれば、前記第1ビア導体及び第2ビア導体の各一端が前記積層体の下面に導出されているとともに、該導出部に外部端子が設けられていることにより、バンプ接続で基板に搭載することができるので、半田のフィレットを形成する必要が無くなり、コンデンサの実装面積を小さくすることが可能となる。
【0016】
また更に本発明によれば、前記第1ビア導体及び第2ビア導体を前記積層体の外周に沿って交互に配置し、個々の空白部に対して、その両側に配されている2個の空白部が前記積層体の積層方向に一部重なり合うように配置することで、隣接するビア導体同士が、より効率的に、発生する磁束を互いに打ち消し合うことによって、低インダクタンスのコンデンサとすることができる。
【0017】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。
【0018】
図1は本発明の一実施形態に係るコンデンサを下方から見た外観斜視図、図2は図1のコンデンサの断面図、図3は図1のコンデンサを上方から見た透視図であり、1は積層体、2は誘電体層、3は第1の内部電極、4は第2の内部電極、5は第1ビア導体、6は第2ビア導体、7は第1空白部、8は第2空白部、11、12は外部端子である。
【0019】
同図に示すコンデンサは、矩形状を成す複数個の誘電体層2を積層して略直方体状の積層体1を形成するとともに、該積層体1の内部で、各誘電体層間2−2に、第1内部電極3及び第2内部電極4を一部対向させた状態で交互に介在させた構造を有している。
【0020】
前記誘電体層2は、例えば、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等を主成分とする誘電体材料によって1層あたり1μm〜3μmの厚みに形成されており、かかる誘電体層2を、例えば、70層〜600層だけ積層することによって積層体1が形成される。尚、図2においては本実施形態を簡略化して説明するために誘電体層2の積層数を5層とした例について示している。
【0021】
上述した誘電体層2は、例えば、チタン酸バリウムを主成分とする誘電体材料から成る場合、チタン酸バリウムの粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して泥漿状になすとともに、これを従来周知のドクターブレード法等によって所定形状、所定厚みのセラミックグリーンシートと成し、しかる後、得られたセラミックグリーンシートを従来周知のグリーンシート積層法等にて所定の枚数だけ積層・圧着させることによりセラミックグリーンシートの積層体を形成し、これを個々のコンデンサに対応する個片の積層体に切断分離して、最後に個片の積層体を、例えば、1100℃〜1400℃の温度で焼成することによって製作される。尚、この工程において使用されるセラミックグリーンシートの焼成に伴う収縮率は、例えば、10%〜20%程度に設定される。
【0022】
一方、誘電体層2間に介在されている第1内部電極3及び第2内部電極4は、ニッケル、銅、ニッケル/銅、銀/パラジウム等の金属を主成分とする導体材料によって、例えば0.5μm〜2.0μmの厚みに形成され、両内部電極の対向面積は、例えば、各誘電体層2の面積が3.3mmである場合、2.7mm〜3.0mmに設定される。
【0023】
積層体1の内部に埋設されている複数個の第1内部電極3は、積層体1の内部に埋設されている複数個の第1ビア導体5を介して積層体下面の外部端子11に、また複数個の第2内部電極4は、積層体1の内部に埋設されている複数個の第2ビア導体6を介して積層体下面の外部端子12に共通接続されており、これら外部端子11と外部端子12との間に所定の電界が印加されると、第1内部電極3と第2内部電極4との間に位置する誘電体層2の誘電率、厚み、対向面積及び層数に対応した所定の静電容量が形成されるようになっている。
【0024】
上述した第1内部電極3及び第2内部電極4は、ニッケル/銅から成る場合、例えば、ニッケル/銅の粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して得た導体ペーストを、上述したセラミックグリーンシートの積層前に各セラミックグリーンシートの一主面に従来周知のスクリーン印刷法等によって所定パターンに印刷・塗布しておくことにより各セラミックグリーンシート間に介在され、セラミックグリーンシートの積層体を焼成する際に同時焼成されて第1内部電極3、第2内部電極4となる。
【0025】
尚、前述した導体ペースト中には、セラミックグリーンシート中に含有されている誘電体材料を別途、添加・混合させておくようにしても構わない。
【0026】
一方、上述した第1ビア導体5及び第2ビア導体6は、その下端が積層体1の下面まで延在されるようにして誘電体層2の積層方向と平行に配されており、先に述べた第1の内部電極3や第2の内部電極4と同様の導体材料によって、例えば、直径80μm〜150μmの円柱状をなすように形成される。
【0027】
尚、上述した第1ビア導体5及び第2ビア導体6は、複数個のセラミックグリーンシートを積層してなる積層体に対して、焼成前の段階で、レーザ照射やマイクロドリル,パンチング等によって所定の貫通孔を穿設するとともに、これら貫通孔内に従来周知のスクリーン印刷等によって導体ペーストを印刷・充填し、該充填した導体ペーストをセラミックグリーンシートの焼成時に内部電極3、4等と共に同時焼成することによって形成される。
【0028】
また、第1ビア導体及び第2内部電極間には、導体材料の存在しない第1空白部7が、第2ビア導体及び第1内部電極間には、導体材料の存在しない第2空白部8がそれぞれ設けてあり、これら第1空白部7及び第2空白部8によって、第1内部電極3と第2内部電極4とは電気的に絶縁されている。
【0029】
本実施形態のコンデンサは、第1ビア導体5及び第2ビア導体6は、積層体1の外周に沿って環状に配置されており、図3に示すように、第1ビア導体5が第1内部電極3の外周部で第1内部電極3に接続され、第2ビア導体6が第2内部電極4の外周部で第2内部電極4に接続されていることにより、第1空白部7及び第2空白部8の領域の略半分が、第1内部電極3及び第2内部電極4の非形成領域と重なるので、第1内部電極3と第2内部電極4とが対向する領域の面積を効率的に確保することとなり、静電容量をより大きくすることが可能となる。
【0030】
一方、本実施形態のコンデンサは、第1空白部7と第2空白部8とが積層体1の積層方向に一部重なり合うように、隣接する第1ビア導体5及び第2ビア導体6を近接配置させたことにより、第1ビア導体5と第2ビア導体6との間で、積層体1の厚み方向において、第1内部電極3及び第2内部電極4が存在する領域が少なくなるので、歪みが集中しにくくなり、クラックの発生を低減させることが可能となる。特に、本実施形態においては、第1ビア導体5と第2ビア導体6の直線上において、第1空白部7と第2空白部8とが積層体1の積層方向に重なり合うようにすることで、歪みの低減を実現している。
【0031】
尚、第1内部電極3及び第2内部電極4は、第1ビア導体5と第2ビア導体6との対向領域内で重ならないように配置されていることが好ましい。
【0032】
また、第1ビア導体7及び第2ビア導体8は、積層体1の外周に沿って交互に配置され、個々の空白部に対して、その両側に配されている2個の空白部が積層体1の積層方向に一部重なり合うように配置されており、隣接するビア導体同士が、効率的に、発生する磁束を互いに打ち消し合うことによって、より低インダクタンスのコンデンサとすることができる。
【0033】
また、上述した積層体1の下面に設けられている外部端子11、12は、コンデンサをマザーボード等の配線基板上に搭載する際、配線基板の接続パッドに半田等の導電性接着剤を介して電気的に接続される外部接続用の端子として機能するものである。積層体1の下面には、前記第1ビア導体及び第2ビア導体の各一端が前記積層体の下面に導出されており、この導出部に、例えば、ニッケルや金等の半田濡れ性が良好な金属を従来周知の電解めっき法等によって所定厚みに被着させることによって形成される。
【0034】
このように、本実施形態のコンデンサ10は、バンプ接続で基板に搭載することができるので、半田のフィレットを形成する必要が無くなり、コンデンサの実装面積を小さくすることが可能となる。
【0035】
かくして、上述したコンデンサは、IC等に電源を供給する回路に接続されるデカップリングコンデンサ等に用いられ、低いインダクタンスと大きな静電容量を備えることで、IC等の急激な電力供給に対応するとともに、IC等の発熱により、熱膨張を繰り返す中においても高い信頼性を有するコンデンサとして機能する。
【0036】
尚、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
【0037】
例えば、上述した実施形態においては、積層体は直方体を成しているが、円柱であっても構わない。この場合においても、第1ビア導体及び第2ビア導体は、積層体の外周に沿って環状に配置することが可能である。
【0038】
また、上述した実施形態においては、1個のコンデンサを単独で製造する場合を例にとって説明したが、これに代えて、いわゆる‘複数個取り’の手法を採用して、大型の積層体より切り出した複数個の個片を焼成することにより複数個のコンデンサを同時に得ても良いことは言うまでもない。
【0039】
【発明の効果】
本発明によれば、前記第1空白部と前記第2空白部とが前記積層体の積層方向に一部重なり合うように隣接する第1ビア導体及び第2ビア導体を近接配置させたことにより、第1ビア導体と第2ビア導体との間で、積層体の厚み方向において、第1内部電極及び第2内部電極が存在する領域が少なくなるので、歪みが集中しにくくなり、クラックの発生を低減させることが可能となる。
【0040】
また本発明によれば、前記第1ビア導体が前記第1内部電極の外周部で第1内部電極に接続され、前記第2ビア導体が前記第2内部電極の外周部で第2内部電極に接続されていることにより、第1空白部及び第2空白部の領域の略半分が、第1内部電極及び第2内部電極の非形成領域と重なるので、第1内部電極と第2内部電極とが対向する領域の面積を効率的に確保することとなり、静電容量をより大きくすることが可能となる。
【0041】
更に本発明によれば、前記第1ビア導体及び第2ビア導体の各一端が前記積層体の下面に導出されているとともに、該導出部に外部端子が設けられていることにより、バンプ接続で基板に搭載することができるので、半田のフィレットを形成する必要が無くなり、コンデンサの実装面積を小さくすることが可能となる。
【0042】
また更に本発明によれば、前記第1ビア導体及び第2ビア導体を前記積層体の外周に沿って交互に配置し、個々の空白部に対して、その両側に配されている2個の空白部が前記積層体の積層方向に一部重なり合うように配置することで、隣接するビア導体同士が、より効率的に、発生する磁束を互いに打ち消し合うことによって、低インダクタンスのコンデンサとすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るコンデンサの下方からの外観斜視図である。
【図2】図1のコンデンサの断面図である。
【図3】図1のコンデンサを上方から見た透視図である。
【図4】従来のコンデンサの断面図である。
【図5】従来のコンデンサを上方から見た透視図である。
【符号の説明】
1・・・積層体
2・・・誘電体層
3・・・第1内部電極
4・・・第2内部電極
5・・・第1ビア導体
6・・・第2ビア導体
7・・・第1空白部
8・・・第2空白部
10・・・コンデンサ
11、12・・・外部端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor such as a decoupling capacitor connected to a circuit that supplies power to an IC.
[0002]
[Prior art]
As a conventional capacitor, for example, as shown in FIG. 5, a first internal electrode 53 and a second internal electrode 54 facing each other with a dielectric layer 52 sandwiched inside a laminated body 51 in which a plurality of dielectric layers 52 are laminated. And a plurality of first via conductors 55 connected to the first internal electrode 53 and a plurality of second via conductors 56 connected to the second internal electrode 54 are known. Yes. Such a capacitor applies a predetermined voltage between the first internal electrode 53 and the second internal electrode 54 to form a predetermined capacitance in the dielectric layer disposed between the internal electrodes. The first via conductor 55 and the second via conductor 56 adjacent to each other function as a low-inductance capacitor 50 by canceling out the generated magnetic fluxes (see, for example, Patent Document 1).
[0003]
Further, in the conventional capacitor 50 described above, the first blank portion 57 where no conductor material exists between the first via conductor 55 and the second internal electrode 54 is provided between the second via conductor 56 and the first internal electrode 53. The second blank portion 58 is provided, and the first blank portion 57 and the second blank portion 58 are electrically insulated from each other by the first blank portion 57 and the second blank portion 58.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-185442
[Problems to be solved by the invention]
However, the above-described conventional capacitor 50 is located in a region where the first internal electrode 53 and the second internal electrode 54 exist between the first via conductor 55 and the second via conductor 56 in the thickness direction of the multilayer body 51. Distortion is concentrated, and cracks tend to occur starting from this region.
[0006]
That is, in the conventional capacitor 50, the first via conductor 55 and the second via conductor 56 are made of a metal material, and the thermal expansion / shrinkage is larger than that of a dielectric layer made of ceramic or the like. Between the second via conductor 56, the stress strain due to thermal expansion and contraction is concentrated. In addition, the conventional capacitor 50 described above includes a region where only the first internal electrode 53 exists in the thickness direction of the multilayer body 51 between the first via conductor 55 and the second via conductor 56, and There are a region where only the two internal electrodes 54 exist and a region where both the first internal electrode 53 and the second internal electrode 54 exist. Therefore, in the thickness direction of the multilayer body, the region where both the first internal electrode 53 and the second internal electrode 54 exist has a larger amount of thermal expansion and contraction than the other regions. Also between the electrode 53 and the second internal electrode 54, it is a region where stress strain is particularly concentrated.
[0007]
Further, in the above-described conventional capacitor, the first blank portion 57 and the second blank portion 58 reduce the capacitance formation region, which prevents the capacitance from being increased.
[0008]
The present invention has been devised in view of the above drawbacks, and an object thereof is to provide a highly reliable capacitor having a low inductance and a large capacitance.
[0009]
[Means for Solving the Problems]
The capacitor of the present invention is connected to the first internal electrode, the first internal electrode and the second internal electrode, which are opposed to each other with the dielectric layer sandwiched inside the multilayer body in which a plurality of dielectric layers are stacked. A plurality of first via conductors and a plurality of second via conductors connected to the second internal electrode are disposed, and a first conductor material is not present between the first via conductor and the second internal electrode. In the capacitor in which the blank portion is provided with a second blank portion in which no conductor material exists between the second via conductor and the first internal electrode, the first via conductor and the second via conductor are arranged along the outer periphery of the multilayer body. An adjacent first via conductor and second via conductor are arranged close to each other so that the first blank portion and the second blank portion are partially overlapped in the stacking direction of the multilayer body. It is characterized by.
[0010]
In the capacitor of the present invention, the first via conductor is connected to the first internal electrode at the outer peripheral portion of the first internal electrode, and the second via conductor is connected to the second internal electrode at the outer peripheral portion of the second internal electrode. It is characterized by being connected.
[0011]
Furthermore, the capacitor of the present invention is characterized in that each end of the first via conductor and the second via conductor is led out to the lower surface of the multilayer body, and an external terminal is provided in the lead-out portion. It is.
[0012]
In the capacitor according to the present invention, the first via conductor and the second via conductor are alternately arranged along the outer periphery of the multilayer body, and each of the two blank portions is arranged on both sides of the blank portion. Are disposed so as to partially overlap in the stacking direction of the stacked body.
[0013]
According to the present invention, by arranging the first via conductor and the second via conductor adjacent to each other so that the first blank portion and the second blank portion partially overlap in the stacking direction of the multilayer body, Between the first via conductor and the second via conductor, the region where the first internal electrode and the second internal electrode are present in the thickness direction of the multilayer body is reduced. It can be reduced.
[0014]
According to the invention, the first via conductor is connected to the first internal electrode at the outer peripheral portion of the first internal electrode, and the second via conductor is connected to the second internal electrode at the outer peripheral portion of the second internal electrode. By being connected, approximately half of the regions of the first blank portion and the second blank portion overlap the non-formation region of the first internal electrode and the second internal electrode, so the first internal electrode and the second internal electrode Therefore, it is possible to efficiently secure the area of the regions facing each other, and to increase the capacitance.
[0015]
Furthermore, according to the present invention, each end of the first via conductor and the second via conductor is led out to the lower surface of the multilayer body, and an external terminal is provided in the lead-out portion. Since it can be mounted on a substrate, it is not necessary to form a solder fillet, and the mounting area of the capacitor can be reduced.
[0016]
Furthermore, according to the present invention, the first via conductors and the second via conductors are alternately arranged along the outer periphery of the multilayer body, and two blanks arranged on both sides of each blank portion. By arranging the blank portion so as to partially overlap in the stacking direction of the stacked body, adjacent via conductors can more efficiently cancel generated magnetic fluxes to each other, thereby forming a low-inductance capacitor. it can.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0018]
1 is an external perspective view of a capacitor according to an embodiment of the present invention as viewed from below, FIG. 2 is a sectional view of the capacitor of FIG. 1, and FIG. 3 is a perspective view of the capacitor of FIG. Is a laminated body, 2 is a dielectric layer, 3 is a first internal electrode, 4 is a second internal electrode, 5 is a first via conductor, 6 is a second via conductor, 7 is a first blank, and 8 is a first 2 blank parts, 11 and 12 are external terminals.
[0019]
The capacitor shown in FIG. 1 is formed by laminating a plurality of rectangular dielectric layers 2 to form a substantially rectangular parallelepiped laminated body 1, and in each of the dielectric layers 2-2 within the laminated body 1. The first internal electrode 3 and the second internal electrode 4 are alternately disposed in a state of being partially opposed to each other.
[0020]
The dielectric layer 2 is formed to a thickness of 1 μm to 3 μm per layer by a dielectric material mainly composed of, for example, barium titanate, calcium titanate, strontium titanate, and the like. For example, the laminated body 1 is formed by laminating only 70 to 600 layers. Note that FIG. 2 shows an example in which the number of stacked dielectric layers 2 is five in order to simplify this embodiment.
[0021]
For example, when the dielectric layer 2 is made of a dielectric material mainly composed of barium titanate, an appropriate organic solvent, glass frit, organic binder, or the like is added to and mixed with the barium titanate powder. In addition, this is formed into a ceramic green sheet having a predetermined shape and thickness by a conventionally known doctor blade method or the like, and then a predetermined number of ceramic green sheets are obtained by a conventionally known green sheet laminating method or the like. By laminating and crimping only, a ceramic green sheet laminate is formed, and this is cut and separated into individual laminates corresponding to individual capacitors. Finally, the individual laminates, for example, from 1100 ° C. It is manufactured by firing at a temperature of 1400 ° C. In addition, the shrinkage rate accompanying baking of the ceramic green sheet used in this process is set to about 10% to 20%, for example.
[0022]
On the other hand, the first internal electrode 3 and the second internal electrode 4 interposed between the dielectric layers 2 are made of a conductive material mainly composed of a metal such as nickel, copper, nickel / copper, silver / palladium, for example, 0. is formed to a thickness of .5Myuemu~2.0Myuemu, opposing areas of both the internal electrodes, for example, when the area of the dielectric layers 2 is 3.3 mm 2, is set to 2.7 mm 2 ~3.0Mm 2 The
[0023]
The plurality of first internal electrodes 3 embedded in the multilayer body 1 are connected to the external terminals 11 on the bottom surface of the multilayer body via the plurality of first via conductors 5 embedded in the multilayer body 1. The plurality of second internal electrodes 4 are commonly connected to the external terminals 12 on the bottom surface of the multilayer body through the plurality of second via conductors 6 embedded in the multilayer body 1. When a predetermined electric field is applied between the first internal electrode 3 and the external terminal 12, the dielectric constant, thickness, facing area, and number of layers of the dielectric layer 2 located between the first internal electrode 3 and the second internal electrode 4 are increased. A corresponding predetermined capacitance is formed.
[0024]
When the first internal electrode 3 and the second internal electrode 4 are made of nickel / copper, for example, a conductor obtained by adding and mixing an appropriate organic solvent, glass frit, organic binder, etc. to nickel / copper powder. The paste is interposed between the ceramic green sheets by printing and applying the paste in a predetermined pattern on the main surface of each ceramic green sheet by a conventionally known screen printing method or the like before laminating the ceramic green sheets. When the green sheet laminate is fired, the first internal electrode 3 and the second internal electrode 4 are simultaneously fired.
[0025]
It should be noted that a dielectric material contained in the ceramic green sheet may be added and mixed separately in the above-described conductor paste.
[0026]
On the other hand, the first via conductor 5 and the second via conductor 6 described above are arranged in parallel to the stacking direction of the dielectric layer 2 so that the lower ends thereof extend to the lower surface of the stacked body 1. The conductive material similar to that of the first internal electrode 3 and the second internal electrode 4 described above is formed in a columnar shape with a diameter of 80 μm to 150 μm, for example.
[0027]
The first via conductor 5 and the second via conductor 6 described above are predetermined by laser irradiation, microdrilling, punching, or the like at a stage before firing with respect to a laminate formed by laminating a plurality of ceramic green sheets. Through-holes and printed and filled with conductive paste in these through-holes by screen printing or the like, and the filled conductive paste is simultaneously fired together with the internal electrodes 3 and 4 at the time of firing the ceramic green sheet. It is formed by doing.
[0028]
Further, the first blank portion 7 in which no conductor material exists between the first via conductor and the second internal electrode, and the second blank portion 8 in which no conductor material exists between the second via conductor and the first internal electrode. Are provided, and the first internal electrode 3 and the second internal electrode 4 are electrically insulated by the first blank portion 7 and the second blank portion 8.
[0029]
In the capacitor according to the present embodiment, the first via conductor 5 and the second via conductor 6 are annularly arranged along the outer periphery of the multilayer body 1, and as shown in FIG. 3, the first via conductor 5 is the first via conductor 5. The outer periphery of the internal electrode 3 is connected to the first internal electrode 3, and the second via conductor 6 is connected to the second internal electrode 4 at the outer periphery of the second internal electrode 4. Since almost half of the region of the second blank portion 8 overlaps with the non-formation region of the first internal electrode 3 and the second internal electrode 4, the area of the region where the first internal electrode 3 and the second internal electrode 4 face each other is reduced. It is ensured efficiently, and the capacitance can be further increased.
[0030]
On the other hand, in the capacitor of this embodiment, adjacent first via conductor 5 and second via conductor 6 are close to each other so that the first blank portion 7 and the second blank portion 8 partially overlap in the stacking direction of the multilayer body 1. By arranging, the area where the first internal electrode 3 and the second internal electrode 4 are present in the thickness direction of the multilayer body 1 is reduced between the first via conductor 5 and the second via conductor 6. It becomes difficult for the strain to concentrate, and the generation of cracks can be reduced. In particular, in the present embodiment, the first blank portion 7 and the second blank portion 8 are overlapped in the stacking direction of the multilayer body 1 on the straight line of the first via conductor 5 and the second via conductor 6. , To reduce distortion.
[0031]
In addition, it is preferable that the first internal electrode 3 and the second internal electrode 4 are arranged so as not to overlap in a region where the first via conductor 5 and the second via conductor 6 are opposed to each other.
[0032]
The first via conductors 7 and the second via conductors 8 are alternately arranged along the outer periphery of the multilayer body 1, and two blank portions arranged on both sides of each blank portion are laminated. Since the via conductors are arranged so as to partially overlap each other in the stacking direction of the body 1 and the generated magnetic fluxes cancel each other efficiently, a capacitor having a lower inductance can be obtained.
[0033]
In addition, the external terminals 11 and 12 provided on the lower surface of the laminate 1 described above are connected to connection pads of the wiring board via a conductive adhesive such as solder when the capacitor is mounted on the wiring board such as a mother board. It functions as a terminal for external connection that is electrically connected. One end of each of the first via conductor and the second via conductor is led to the lower surface of the multilayer body on the lower surface of the multilayer body 1, and the lead-out portion has good solder wettability such as nickel or gold. It is formed by depositing an appropriate metal to a predetermined thickness by a conventionally known electrolytic plating method or the like.
[0034]
As described above, the capacitor 10 according to this embodiment can be mounted on the substrate by bump connection, so that it is not necessary to form a solder fillet, and the mounting area of the capacitor can be reduced.
[0035]
Thus, the above-described capacitor is used as a decoupling capacitor connected to a circuit that supplies power to an IC or the like, and has a low inductance and a large capacitance, thereby responding to a rapid power supply of the IC or the like. The capacitor functions as a highly reliable capacitor even during repeated thermal expansion due to heat generated by the IC or the like.
[0036]
The present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention.
[0037]
For example, in the above-described embodiment, the stacked body is a rectangular parallelepiped, but may be a cylinder. Even in this case, the first via conductor and the second via conductor can be annularly arranged along the outer periphery of the multilayer body.
[0038]
Further, in the above-described embodiment, the case where one capacitor is manufactured alone has been described as an example, but instead of this, a so-called 'multiple picking' technique is adopted to cut out from a large-sized laminate. It goes without saying that a plurality of capacitors may be obtained simultaneously by firing a plurality of individual pieces.
[0039]
【The invention's effect】
According to the present invention, by arranging the first via conductor and the second via conductor adjacent to each other so that the first blank portion and the second blank portion partially overlap in the stacking direction of the multilayer body, Between the first via conductor and the second via conductor, the region where the first internal electrode and the second internal electrode are present in the thickness direction of the multilayer body is reduced. It can be reduced.
[0040]
According to the invention, the first via conductor is connected to the first internal electrode at the outer peripheral portion of the first internal electrode, and the second via conductor is connected to the second internal electrode at the outer peripheral portion of the second internal electrode. By being connected, approximately half of the regions of the first blank portion and the second blank portion overlap the non-formation region of the first internal electrode and the second internal electrode, so the first internal electrode and the second internal electrode Therefore, it is possible to efficiently secure the area of the regions facing each other, and to increase the capacitance.
[0041]
Furthermore, according to the present invention, each end of the first via conductor and the second via conductor is led out to the lower surface of the multilayer body, and an external terminal is provided in the lead-out portion. Since it can be mounted on a substrate, it is not necessary to form a solder fillet, and the mounting area of the capacitor can be reduced.
[0042]
Furthermore, according to the present invention, the first via conductors and the second via conductors are alternately arranged along the outer periphery of the multilayer body, and two blanks arranged on both sides of each blank portion. By arranging the blank portion so as to partially overlap in the stacking direction of the stacked body, adjacent via conductors can more efficiently cancel generated magnetic fluxes to each other, thereby forming a low-inductance capacitor. it can.
[Brief description of the drawings]
FIG. 1 is an external perspective view from below of a capacitor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the capacitor of FIG.
FIG. 3 is a perspective view of the capacitor of FIG. 1 as viewed from above.
FIG. 4 is a cross-sectional view of a conventional capacitor.
FIG. 5 is a perspective view of a conventional capacitor as viewed from above.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Dielectric layer 3 ... 1st internal electrode 4 ... 2nd internal electrode 5 ... 1st via conductor 6 ... 2nd via conductor 7 ... 1st 1 blank part 8 ... second blank part 10 ... capacitors 11, 12 ... external terminals

Claims (4)

複数個の誘電体層を積層した積層体の内部に、前記誘電体層を挟んで対向する第1内部電極及び第2内部電極と、前記第1内部電極に接続される複数個の第1ビア導体と、前記第2内部電極に接続される複数個の第2ビア導体とを配設するとともに、第1ビア導体及び第2内部電極間に導体材料の存在しない第1空白部を、第2ビア導体及び第1内部電極間に導体材料の存在しない第2空白部を設けてなるコンデンサにおいて、
前記第1ビア導体及び第2ビア導体が前記積層体の外周に沿って環状に配置されており、かつ前記第1空白部と前記第2空白部とが前記積層体の積層方向に一部重なり合うように隣接する第1ビア導体及び第2ビア導体を近接配置させたことを特徴とするコンデンサ。
A first internal electrode and a second internal electrode facing each other with the dielectric layer interposed therebetween, and a plurality of first vias connected to the first internal electrode, in a stacked body in which a plurality of dielectric layers are stacked. A conductor and a plurality of second via conductors connected to the second internal electrode are disposed, and a first blank portion in which no conductive material exists between the first via conductor and the second internal electrode In a capacitor in which a second blank portion having no conductor material is provided between the via conductor and the first internal electrode,
The first via conductor and the second via conductor are annularly arranged along the outer periphery of the multilayer body, and the first blank portion and the second blank portion partially overlap in the stacking direction of the multilayer body. Thus, the capacitor | condenser which adjoined and arrange | positioned the adjacent 1st via conductor and 2nd via conductor.
前記第1ビア導体が前記第1内部電極の外周部で第1内部電極に接続され、前記第2ビア導体が前記第2内部電極の外周部で第2内部電極に接続されていることを特徴とする請求項1に記載のコンデンサ。The first via conductor is connected to the first internal electrode at an outer peripheral portion of the first internal electrode, and the second via conductor is connected to the second internal electrode at an outer peripheral portion of the second internal electrode. The capacitor according to claim 1. 前記第1ビア導体及び第2ビア導体の各一端が前記積層体の下面に導出されているとともに、該導出部に外部端子が設けられていることを特徴とする請求項1または請求項2に記載のコンデンサ。The one end of each of the first via conductor and the second via conductor is led out to a lower surface of the multilayer body, and an external terminal is provided in the lead-out portion. The capacitor described. 前記第1ビア導体及び第2ビア導体が前記積層体の外周に沿って交互に配置されており、個々の空白部に対して、その両側に配されている2個の空白部が前記積層体の積層方向に一部重なり合うように配置されていることを特徴とする請求項1乃至請求項3のいずれかに記載のコンデンサ。The first via conductors and the second via conductors are alternately arranged along the outer periphery of the multilayer body, and two blank portions arranged on both sides of each blank portion are the multilayer body. The capacitor according to claim 1, wherein the capacitor is disposed so as to partially overlap in the stacking direction.
JP2003204142A 2003-07-30 2003-07-30 Capacitor Pending JP2005050920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204142A JP2005050920A (en) 2003-07-30 2003-07-30 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204142A JP2005050920A (en) 2003-07-30 2003-07-30 Capacitor

Publications (1)

Publication Number Publication Date
JP2005050920A true JP2005050920A (en) 2005-02-24

Family

ID=34263225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204142A Pending JP2005050920A (en) 2003-07-30 2003-07-30 Capacitor

Country Status (1)

Country Link
JP (1) JP2005050920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207885A (en) * 2006-01-31 2007-08-16 Tdk Corp Laminated ceramic electronic component
JP2018019066A (en) * 2016-07-27 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer capacitor and mounting board thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207885A (en) * 2006-01-31 2007-08-16 Tdk Corp Laminated ceramic electronic component
JP2018019066A (en) * 2016-07-27 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer capacitor and mounting board thereof
JP7114839B2 (en) 2016-07-27 2022-08-09 サムソン エレクトロ-メカニックス カンパニーリミテッド. Multilayer capacitor and its mounting substrate

Similar Documents

Publication Publication Date Title
JP4953988B2 (en) Multilayer capacitor and capacitor mounting board
JP2012253245A (en) Multilayer electronic component and manufacturing method of the same
JP4637674B2 (en) Multilayer capacitor
CN108364785B (en) Multilayer capacitor and electronic component device
KR20140081360A (en) Multi-layered ceramic capacitor, manufacturing method of the same and circuit board for mounting the same
JP2009021512A (en) Multilayer capacitor
JP4925779B2 (en) Multilayer capacitor
JP4965237B2 (en) Wiring board built-in capacitor and wiring board
JP4953989B2 (en) Multilayer capacitor and capacitor mounting board
JP2000252131A (en) Laminated chip component
JP4704866B2 (en) Wiring board built-in capacitor and wiring board
JP6232836B2 (en) Capacitor element
JP2004153502A (en) Laminated lc composite component
JP2007005694A (en) Stacked capacitor
JP2005050920A (en) Capacitor
JP2007123505A (en) Stacked capacitor
JP2006147793A (en) Multilayer capacitor
JP2008160164A (en) Laminated type capacitor and packaging method thereof
JP2006066443A (en) Surface-mounting multiple capacitor
JP2006041319A (en) Surface-mounted multiple capacitor and mounting structure thereof
JPH05347227A (en) Laminated thin film capacitor
JP2009027044A (en) Multi-layer capacitor and wiring board with built-in capacitor
JP6064044B2 (en) MULTILAYER DEVICE HAVING EXTERNAL CONNECTIONS AND METHOD FOR PRODUCING MULTILAYER DEVICE HAVING EXTERNAL CONNECTION
JP2017120877A (en) Multilayer electronic component and method of manufacturing the same
JP2012146940A (en) Electronic component and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020