JP2005049068A - Grain discharging device - Google Patents

Grain discharging device Download PDF

Info

Publication number
JP2005049068A
JP2005049068A JP2003283692A JP2003283692A JP2005049068A JP 2005049068 A JP2005049068 A JP 2005049068A JP 2003283692 A JP2003283692 A JP 2003283692A JP 2003283692 A JP2003283692 A JP 2003283692A JP 2005049068 A JP2005049068 A JP 2005049068A
Authority
JP
Japan
Prior art keywords
shutter
output
discharge
grain
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003283692A
Other languages
Japanese (ja)
Other versions
JP4241256B2 (en
Inventor
Keiichi Miyazaki
啓市 宮崎
Noriki Nomaru
憲樹 能丸
Masayuki Chikamoto
正幸 近本
Reiji Kojiyou
▲れい▼二 小條
Masashi Yumitate
正史 弓立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2003283692A priority Critical patent/JP4241256B2/en
Publication of JP2005049068A publication Critical patent/JP2005049068A/en
Application granted granted Critical
Publication of JP4241256B2 publication Critical patent/JP4241256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a trouble of a discharge shutter while reducing the number of shutter sensors. <P>SOLUTION: This device comprises the discharge shutter to be opened and closed by a control motor, which is provided in an opening part of a transfer device; and a shutter sensor for detecting that the discharge shutter is in a closed position. This device further comprises a shutter operation confirmation means. The shutter operation confirmation means inputs the presence/absence of shutter "close" output from the shutter sensor by the power-on to a control part or the like by a power input means, outputs a shutter "close" to the control motor when the shutter "close" output cannot be obtained, inputs the presence/absence of shutter "close" output from the shutter sensor after the lapse of a predetermined time t, determines the normality of the shutter when the shutter "close" output is obtained, and outputs an abnormality when the shutter "close" output cannot be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、穀粒を移送する穀粒搬送装置における穀粒排出作動装置に関する。特に循環型穀粒乾燥機の穀粒移送装置に利用しうるものである。   The present invention relates to a grain discharging operation device in a grain transporting apparatus that transports grain. In particular, it can be used for a grain transfer device of a circulation type grain dryer.

例えば循環型穀粒乾燥機において、上部の貯留室に張り込まれた穀粒は、貯留室下位の乾燥室の穀粒流下通路を流下しながら熱風を浴びて乾燥され、機枠下部の集穀室にて集められ、下部移送螺旋、昇降機および貯留室上部の上部移送装置にて還元経路を形成し、再び貯留室に戻すように構成され、この行程を繰り返しながら所定水分値になるまで乾燥する構成である。そして所定水分値に達した穀粒は昇降機で揚穀された後、上部移送装置の始端側に形成する開口部から機外に排出されるものである。   For example, in a circulation type grain dryer, the grains stuck in the upper storage chamber are dried by hot air while flowing down the grain flow passage in the drying chamber at the lower part of the storage chamber. It is collected in the chamber, is configured to form a reduction path by the lower transfer spiral, the elevator and the upper transfer device at the upper part of the storage chamber, and returns to the storage chamber again, and is dried until a predetermined moisture value is reached while repeating this process. It is a configuration. And the grain which reached the predetermined moisture value is discharged | emitted out of the machine from the opening part formed in the starting end side of an upper transfer apparatus, after being raised by an elevator.

従って、上部移送装置には搬送用の移送螺旋、上記開口部を備え、搬送終端部は貯留室にのぞませるものとしている。開口部には開閉シャッタを備え、このシャッタを開くと、穀粒は移送螺旋による移送途中で開口部から排出される。また、このシャッタを閉じると穀粒は適宜接続した排出漏斗、排出シュートを経て機外に取出されるものである。   Therefore, the upper transfer device is provided with a transfer helix for transfer and the opening, and the transfer end portion is placed in the storage chamber. The opening is provided with an opening / closing shutter, and when the shutter is opened, the grain is discharged from the opening during the transfer by the transfer spiral. Moreover, when this shutter is closed, the grain is taken out of the machine through a discharge funnel and a discharge chute that are appropriately connected.

上記開口部の開閉シャッタは、機体の高所にあり、あるいは操作性の向上の要求もあって制御モータによって開閉制御されるものとなっており、また、その開位置及び閉位置の夫々に設けられたシャッタセンサの検知によって確認されていた(特許文献1)。   The opening / closing shutter for the opening is located at the height of the fuselage or is controlled to open and close by a control motor in response to a demand for improved operability, and is provided at each of its open and closed positions. It was confirmed by the detection of the shutter sensor (Patent Document 1).

ところが上記形態では、開・閉夫々の位置にシャッタセンサを設ける結果コスト高となる欠点があった。
特開平11−201644号公報
However, the above-described embodiment has a drawback that the cost is increased as a result of providing the shutter sensor at each of the open and closed positions.
Japanese Patent Laid-Open No. 11-201644

シャッタセンサの個数を低減しながら開閉異常によるトラブルを未然に防止しようとする。   While trying to reduce the number of shutter sensors, it tries to prevent troubles due to abnormal opening and closing.

請求項1に記載の発明は、穀粒の移送装置を備える穀粒処理装置において、この移送装置に設ける開口部には制御モータにより開閉作動する排出シャッタを設け、この排出シャッタが閉位置にあることを検出するシャッタセンサを設け、移送装置等の各部及び当該各部を駆動出力する制御部への電源投入手段を構成し、該制御部には電源投入手段の電源投入によって、シャッタセンサからのシャッタ「閉」出力の有無を入力し、このシャッタ「閉」出力を得られないときには、制御モータにシャッタ「閉」出力し、所定時間t経過後にシャッタセンサからのシャッタ「閉」出力の有無を入力し、シャッタ「閉」出力を得てシャッタ正常の判定をし、このシャッタ「閉」出力を得られないときには異常出力する排出シャッタ作動確認手段を設けた穀粒排出作動装置の構成とした。   The invention described in claim 1 is a grain processing apparatus including a grain transfer device, wherein an opening provided in the transfer device is provided with a discharge shutter that is opened and closed by a control motor, and the discharge shutter is in a closed position. A shutter sensor for detecting this is provided, and power supply means for each part of the transfer device and the control unit for driving and outputting the respective parts is configured, and the shutter from the shutter sensor is supplied to the control part by turning on the power supply means. When the “closed” output is input and the shutter “closed” output cannot be obtained, the shutter “closed” is output to the control motor, and the shutter “closed” output from the shutter sensor is input after the predetermined time t has elapsed. Discharging shutter operation confirmation means is provided for obtaining a shutter "closed" output to determine whether the shutter is normal, and for abnormally outputting the shutter "closed" output. It has a structure of the grain ejection actuation device.

この発明によると、制御部への電源投入動作と共に、シャッタセンサが正規の「閉」出力をしているか否かが判定され、シャッタセンサからシャッタ「閉」出力を得られないときには、制御モータにシャッタ「閉」出力し、一度「閉」動作を試みてからシャッタセンサの出力を確認する。ここで正規の「閉」位置であると、シャッタ「閉」状態のもとでの運転待機状態となる。一方上記制御モータ作動によっても「閉」出力を得られないときは、異常報知する。移送装置の開口部を閉じた状態で作業開始する際に特に有利である。   According to the present invention, it is determined whether or not the shutter sensor outputs a normal “closed” output together with the power-on operation to the control unit, and when the shutter “closed” output cannot be obtained from the shutter sensor, the control motor The shutter “closed” is output, and after the “closed” operation is attempted once, the output of the shutter sensor is confirmed. Here, when the position is in the normal “closed” position, an operation standby state under the shutter “closed” state is set. On the other hand, when the “closed” output cannot be obtained even by the operation of the control motor, an abnormality is notified. This is particularly advantageous when starting work with the opening of the transfer device closed.

また、請求項2に記載の発明は、穀粒の移送装置を備える穀粒処理装置において、この移送装置に設ける開口部には制御モータにより開閉作動する排出シャッタを設け、この排出シャッタが閉位置にあることを検出するシャッタセンサを設け、移送装置等の各部及び当該各部を駆動出力する制御部への電源投入手段を構成し、該制御部には電源投入手段の電源投入と上記移送装置への排出モード選択によって、シャッタセンサからのシャッタ「開」出力の有無を入力し、このシャッタ「開」出力に伴い移送装置を駆動出力し、このシャッタ「開」出力を得られないときには、移送装置への駆動出力を停止して制御モータにシャッタ「開」出力し、所定時間t経過後にシャッタセンサからのシャッタ「開」出力の有無を入力し、シャッタ「開」出力を得てシャッタ正常の判定と共に移送装置を駆動出力し、このシャッタ「開」出力を得られないときには異常出力する排出シャッタ作動確認手段を設けた穀粒排出作動装置とする。   According to a second aspect of the present invention, in the grain processing apparatus provided with the grain transfer device, the opening provided in the transfer device is provided with a discharge shutter that is opened and closed by a control motor, and the discharge shutter is in the closed position. A shutter sensor for detecting the presence of the power supply unit, and a power-on unit for each unit of the transfer device and the control unit for driving and outputting the respective unit. When the discharge mode is selected, the presence or absence of the shutter “open” output from the shutter sensor is input, and the transfer device is driven and output along with the shutter “open” output. When the shutter “open” output cannot be obtained, the transfer device The drive output to is stopped and the shutter "open" is output to the control motor. After a predetermined time t has elapsed, the presence or absence of the shutter "open" output from the shutter sensor is input, and the shutter "open" Driven output transfer device with the determination of the shutter normally gain strength, when the shutter is not obtained the "open" output and providing the discharge shutter actuation verification means for abnormal output grain ejection actuation device.

この発明によると、移送装置各部を運転する前の電源投入手段の操作に基づき、正規のシャッタ「開」位置にあるか否かがシャッタセンサからのシャッタ「開」出力の有無によって確認され、シャッタセンサからシャッタ「開」出力を得られないときには、制御モータにシャッタ「開」出力し、一度「開」動作を試みてからシャッタセンサの出力を確認し、正規に「開」しうるか異常かを判別できる。移送装置の開口部を開いて作業開始する際に特に有利である。   According to the present invention, based on the operation of the power-on means before operating each part of the transfer device, whether or not the shutter is in the normal shutter “open” position is confirmed by the presence or absence of the shutter “open” output from the shutter sensor, and the shutter If the shutter “open” output cannot be obtained from the sensor, the shutter “open” output is output to the control motor, the “open” operation is attempted once, the shutter sensor output is checked, and whether it can be normally “open” or not is abnormal. Can be determined. This is particularly advantageous when starting the work by opening the opening of the transfer device.

請求項3に記載の発明は、貯留室上部の上部移送装置に乾燥穀粒を機外に排出する開口部を備え、上部移送装置の終端から貯留室に排出する穀粒乾燥機の穀粒移送装置の当該開口部に排出シャッタを設け、排出シャッタ作動確認手段を構成してなる請求項1又は2に記載の穀粒排出作動装置とする。   The invention according to claim 3 is provided with an opening for discharging dried grains to the outside of the upper transfer device in the upper part of the storage chamber, and the grain transfer of the grain dryer for discharging to the storage chamber from the end of the upper transfer device It is set as the grain discharge | emission operation apparatus of Claim 1 or 2 which provides a discharge shutter in the said opening part of an apparatus, and comprises a discharge shutter operation | movement confirmation means.

穀粒乾燥機の上部移送装置に応用することによって、開口部を閉じて穀粒循環させ、または開口部を開いて穀粒を機外排出する際に、排出シャッタの作動が適性位置にあるか又は異常かをシャッタセンサで確認できる。   Whether the discharge shutter is in the proper position when closing the opening and circulating the grain, or opening the opening and discharging the grain outside the machine by applying it to the upper transfer device of the grain dryer Or whether it is abnormal can be confirmed with a shutter sensor.

この発明は、移送装置各部を運転する前の電源投入手段の操作に基づき、シャッタセンサが開口部「閉」位置であるか、「閉」位置にないかを確認し、当該運転における排出シャッタが正規の位置ではないとされると、制御モータに「開」又は「閉」の正規の状態への移行出力がなされるから、単一のシャッタセンサをもってシャッタ「開
」又はシャッタ「閉」の確認が行え、従来のように開閉位置の夫々にセンサを設けずともよくコストを低減できる。また、電源投入操作に基づいて一連のシャッタ位置の確認を行えるから作業への支障が極めて少ない。
This invention confirms whether the shutter sensor is in the opening “closed” position or not in the “closed” position based on the operation of the power-on means before operating each part of the transfer device. If the position is not in the proper position, the control motor outputs an output to the normal state of "open" or "closed", so it is confirmed whether the shutter is "open" or shutter "closed" with a single shutter sensor. Thus, it is possible to reduce the cost without providing a sensor at each open / close position as in the prior art. In addition, since a series of shutter positions can be confirmed based on the power-on operation, there are very few obstacles to work.

循環型穀粒乾燥機の昇降機からの穀粒を受けて貯留室に供給する上部移送装置の始端部に機外排出用の開口部を設け、この開口部を開閉するシャッタに排出シャッタ作動確認手段を構成する。   An opening for discharging outside the machine is provided at the starting end of the upper transfer device that receives the grain from the elevator of the circulation type grain dryer and supplies it to the storage chamber, and a discharge shutter operation confirmation means for the shutter that opens and closes this opening Configure.

1は穀物乾燥装置の機枠で、内部には貯留室2、乾燥室3、集穀室4の順に積み重ねられ、外部に設ける昇降機5の駆動によって穀物を循環させながら、集穀室4部に設けた遠赤外線放射体6による放射熱、及び遠赤外線放射体6からの排熱風を浴びせて乾燥する構成である。   1 is a machine frame of a grain drying device, which is stacked in the order of a storage chamber 2, a drying chamber 3, and a cereal collection chamber 4, and in the cereal collection chamber 4 while circulating grains by driving an elevator 5 provided outside. In this configuration, the radiant heat from the provided far-infrared radiator 6 and the exhausted hot air from the far-infrared radiator 6 are bathed and dried.

上記遠赤外線放射体6は、集穀室4内にあって、一端をバーナ7に接続し、断面方形状を呈し左右壁面及び下面に遠赤外線放射塗料を塗布するもので、該集穀室4の穀粒流下板8面を流下する穀粒に遠赤外線放射熱を浴びせるよう構成している。該遠赤外線放射体6上面からの排熱気は機体後部側及び前部側から導入する外気と混合しながら上位の乾燥室3における熱風室9a,9b,9bから排風室10,10を流通して傾斜状に形成する穀粒通路11,11…を横断する構成である。なお、該乾燥室3の背面側には吸引ファン12を備えて上記熱風流通に寄与すべく構成する点は公知の構成と同様である。なお、機体背面におけるダクト13を介して中央熱風室9aの熱風を左右側熱風室9b,9bに供給すべく構成されている。14は遠赤外線放射体6の上部に配設する屋根型の排塵板で、上部側からの塵埃の放射体6への落下を防止しながら、排熱風と外気との上記混合風を左右側から迂回して上方に案内する案内部とする。   The far-infrared radiator 6 is located in the cereal collection chamber 4, has one end connected to the burner 7, exhibits a rectangular cross section, and applies far-infrared radiation paint on the left and right wall surfaces and the lower surface. The grain flowing down the 8th grain falling plate is configured to be exposed to far infrared radiation heat. The exhaust heat from the upper surface of the far-infrared radiator 6 flows through the exhaust air chambers 10 and 10 from the hot air chambers 9a, 9b and 9b in the upper drying chamber 3 while mixing with the outside air introduced from the rear and front sides of the airframe. It is the structure which crosses the grain channel | path 11,11 ... formed in a slanting shape. In addition, the point which comprises the suction fan 12 in the back side of this drying chamber 3 and contributes to the said hot air distribution | circulation is the same as that of a well-known structure. The hot air in the central hot air chamber 9a is supplied to the left and right hot air chambers 9b and 9b through the duct 13 on the rear surface of the machine body. Reference numeral 14 denotes a roof-type dust exhaust plate disposed above the far-infrared radiator 6, while preventing the dust from falling from the upper part to the radiator 6, and the mixed air of the exhaust heat air and the outside air from the left and right sides. It is set as the guide part which detours from and guides upwards.

15,15は繰り出しバルブで正逆に回転しながら所定量の穀物を流下させる。16は上記昇降機5に通じる下部移送装置、17は昇降機5上部側に接続する上部移送装置で、貯留室2上部の拡散盤18に穀物供給できる。バーナ7や穀物循環機構等は、乾燥制御に必要な制御プログラムや各種データ等を記憶するメモリを備えるコンピュータによって行なわれる。即ち、操作盤19には液晶形態の表示部20を設け、該表示部20の下縁に沿って5個の押しボタン形態の張込・通風・乾燥・排出及び停止の各モードスイッチ21〜25を配設している。これらスイッチのほか、張込量設定スイッチ26、穀物種類に対応させた乾燥設定スイッチ27、停止水分設定スイッチ28等を備える。29は緊急停止スイッチである。   15 and 15 are feed valves that allow a predetermined amount of grain to flow down while rotating forward and backward. Reference numeral 16 denotes a lower transfer device that communicates with the elevator 5, and reference numeral 17 denotes an upper transfer device that is connected to the upper side of the elevator 5, and can supply grains to the diffusion plate 18 at the upper part of the storage chamber 2. The burner 7, the grain circulation mechanism, and the like are performed by a computer having a memory that stores a control program necessary for drying control, various data, and the like. That is, the operation panel 19 is provided with a liquid crystal display unit 20, and along the lower edge of the display unit 20, there are five push button-type tension, ventilation, drying, discharge and stop mode switches 21-25. Is arranged. In addition to these switches, an overhang setting switch 26, a drying setting switch 27 corresponding to the grain type, a stop moisture setting switch 28, and the like are provided. 29 is an emergency stop switch.

内蔵の制御部31は上記操作盤19面のスイッチ情報や乾燥機機枠1各部に配設したセンサ類からの検出情報等を受けて必要な比較演算のもと、バーナ燃焼量の制御,穀物循環系の起動・停止制御,表示部20の表示内容制御等を行う。上記操作盤19のスイッチ類は、張込・通風・乾燥・排出・通風の各設定のほか、穀物種類、設定水分(仕上げ水分)、張込量、タイマ増・減等を設定できる。   The built-in control unit 31 receives the switch information on the surface of the operation panel 19 and the detection information from the sensors provided in each part of the dryer frame 1 and controls the burner combustion amount, Performs circulation system start / stop control, display content control of the display unit 20, and the like. The switches on the operation panel 19 can set grain type, set moisture (finishing moisture), amount of penetration, timer increase / decrease, etc. in addition to each setting of tension / ventilation / drying / discharge / ventilation.

図5は制御ブロック図を示し、上記操作盤19を有する制御ボックスに内蔵するコンピュータの演算制御部31には上記スイッチ類からの設定情報のほか、水分計32検出情報、昇降機5の投げ出し部に設ける穀物流れ検出器33の穀物検出情報、熱風室8に設ける熱風温度検出器の検出情報、外気温度検出器34の検出情報、外気湿度検出器35の検出情報、穀粒流下板8近傍の温度検出器36の検出情報等が入力される。一方出力情報としては、バーナ7の燃焼系37信号、例えば燃料供給信号,その流量制御信号、あるいは上下移送装置15,16の各移送螺旋,昇降機5,繰出バルブ15等の穀物循環系モータとしての繰出バルブモータ38・昇降機駆動モータ39制御信号、吸引ファン12モータ制御信号,各表示部20への表示出力等がある。   FIG. 5 shows a control block diagram. In addition to the setting information from the switches, the calculation control unit 31 of the computer built in the control box having the operation panel 19 includes the moisture meter 32 detection information and the throwing unit of the elevator 5. Grain detection information of the provided grain flow detector 33, detection information of the hot air temperature detector provided in the hot air chamber 8, detection information of the outside air temperature detector 34, detection information of the outside air humidity detector 35, temperature near the grain flow lower plate 8 Detection information of the detector 36 is input. On the other hand, the output information includes a combustion system 37 signal of the burner 7, for example, a fuel supply signal, a flow rate control signal thereof, a transfer spiral of each of the vertical transfer devices 15 and 16, a lift 5 and a feed valve 15 as a grain circulation motor. There are a feed valve motor 38 / elevator drive motor 39 control signal, a suction fan 12 motor control signal, a display output to each display unit 20, and the like.

昇降機5はバケット式で、無端ベルト40に多数のバケット41,41…を取り付け、外周を側壁5aにより覆った構造で、バケット41により集穀室4より出る穀粒を掬い上げて上昇し貯留室2へと運ぶ構成である。昇降機5の側壁5aの正面内側に、一粒式水分計32の図外穀粒取り込み部の前縁をバケット用無端ベルト40のバケット41の近くまで差し込んで設置し、側壁5aの内側で、穀粒取り込み部下方に、図外穀粒送り螺旋の始端部をのぞませる。   The elevator 5 is a bucket type, and has a structure in which a large number of buckets 41, 41... Are attached to an endless belt 40 and the outer periphery is covered with a side wall 5a. It is the structure which carries to 2. Inside the front side of the side wall 5a of the elevator 5, the front edge of the unillustrated grain intake portion of the single-grain moisture meter 32 is inserted and installed near the bucket 41 of the endless belt 40 for buckets. Under the grain take-in part, the start end part of the unillustrated grain feed spiral is looked over.

水分計32には、一対の電極ロールを備え、穀粒を一粒毎に圧砕しながらその電気抵抗値を水分電圧に換算して水分値を算出する構成であり、水分測定用の制御部を備えており、この制御部では所定粒数の換算水分値を平均処理して平均水分値を出力する構成とし各種乾燥制御あるいは表示出力するものである。   The moisture meter 32 includes a pair of electrode rolls, and is configured to calculate the moisture value by converting the electrical resistance value into a moisture voltage while crushing the grains one by one, and a control unit for moisture measurement. The control unit is configured to average the converted moisture value of a predetermined number of grains and output the average moisture value, and various drying controls or display outputs.

水分計32には、予め設定した測定間隔T(例えば15分)毎に測定信号が出力されるよう構成している。この測定信号を受けると、水分計32は図外モータが起動し一粒繰出機構や一対の電極ロールが回転開始する。1単位の測定は所定粒数x、例えば32粒を取り込み各検出出力電圧を水分値に換算しこれらの単純平均値mをもって行われる。なおこの32粒毎の単純平均値mをX単位実行して単純平均した値Mの算出をもって当該測定における水分算出を終了する。従って測定1回毎の測定粒数はx×X(粒)である。   The moisture meter 32 is configured to output a measurement signal at every preset measurement interval T (for example, 15 minutes). When this measurement signal is received, the moisture meter 32 starts an unillustrated motor and starts rotating the single-feeding mechanism and the pair of electrode rolls. One unit of measurement is carried out by taking a predetermined number of grains x, for example, 32 grains, converting each detected output voltage into a moisture value, and taking these simple average values m. The calculation of moisture in the measurement is completed when the simple average value m for every 32 grains is calculated in units of X and a simple average value M is calculated. Accordingly, the number of grains measured per measurement is x × X (grains).

前記演算制御部31には、乾燥速度制御手段Hを構成している。すなわち、上記水分値Mnと前回の水分値Mn-1との差αと両者の測定,時間間隔tとから、乾燥速度s=α/t(%/時)であらわされ、この乾燥速度sが予め設定した乾燥速度Sと比較され、s<Sの場合には乾燥速度を速めるようにバーナ7への燃料供給を増加すべく信号出力し、逆にs>Sの場合には乾燥速度を抑制すべく燃料供給を低下させるよう構成している。この乾燥速度制御手段Hは、乾燥開始と共に実施されるよう構成しているが、次のように所定条件下では制御中止の構成としている。 The calculation control unit 31 includes drying speed control means H. That is, from the difference α between the moisture value M n and the previous moisture value M n−1 and the measurement and the time interval t, the drying rate s = α / t (% / hour) is expressed. s is compared with a preset drying speed S. When s <S, a signal is output to increase the fuel supply to the burner 7 so as to increase the drying speed. Conversely, when s> S, the drying speed is output. In order to suppress this, the fuel supply is reduced. The drying speed control means H is configured to be implemented with the start of drying, but is configured to stop control under predetermined conditions as follows.

即ち、図 に示すように、乾燥スイッチ23をオンして直後あるいは所定短時間の後、水分測定を開始するが、その際は水分測定間隔Tを短時間T´(例えば5分)に設定し、測定回数も標準回数Yよりも少ない回数Y´(例えば5回)に設定されていて、標準の測定状態よりも短時間に平均水分値を算出できる構成としている。   That is, as shown in the figure, moisture measurement is started immediately after the drying switch 23 is turned on or after a predetermined short time, and in this case, the moisture measurement interval T is set to a short time T ′ (for example, 5 minutes). The number of measurements is also set to a number Y ′ (for example, 5 times) smaller than the standard number Y, and the average moisture value can be calculated in a shorter time than the standard measurement state.

上記の回数Y´の水分値のばらつきを算出する。具体的にはこのY´のうち最大値Msmaxと最小値Msminとを抽出し、これらの差が予め設定した所定値p(例えば1%)と比較され、Msmax−Msmin<p(%)のときは、乾燥速度制御を実行するが、Msmax−Msmin>p(%)のときは乾燥速度制御を中止する。   The variation in the moisture value of the number of times Y ′ is calculated. Specifically, the maximum value Msmax and the minimum value Msmin are extracted from Y ′, and the difference between them is compared with a predetermined value p (for example, 1%) set in advance, and when Msmax−Msmin <p (%). Performs the drying speed control, but stops the drying speed control when Msmax−Msmin> p (%).

上記乾燥速度実行と判定されると、水分測定間隔が標準時間T=15分に設定変更され、測定回数も標準の10回に設定されて乾燥仕上がりまで乾燥速度制御を実行する。一方、乾燥速度制御が中止されたときは、同様のばらつき判定処理が繰り返され(例えば5回)、ばらつき範囲がp%以下に達した時点で標準の乾燥速度制御に移行しうる。   If it is determined that the drying speed is executed, the moisture measurement interval is changed to the standard time T = 15 minutes, the number of measurements is set to the standard 10 times, and the drying speed control is executed until the drying finish. On the other hand, when the drying speed control is stopped, the same variation determination process is repeated (for example, five times), and when the variation range reaches p% or less, the standard drying speed control can be performed.

図7は、上記の水分ばらつき判定に基づき、乾燥速度制御実行出力及び同制御中止出力を行うものにおいて、水分値が所定水分値Mt(17.5%)以下であるときは乾燥速度制御中止の出力後、設定熱風温度Tcを所定温度γ下げて乾燥を継続する構成である。   FIG. 7 shows the case where the drying speed control execution output and the control stop output are performed based on the moisture variation determination described above. When the moisture value is equal to or less than the predetermined moisture value Mt (17.5%), the drying speed control is stopped. After output, the set hot air temperature Tc is lowered by a predetermined temperature γ to continue drying.

前記穀粒流下板8近傍の温度検出器36は、左右の穀粒流下板8,8の裏面にあって前後中央に貼付したサーミスタ型温度センサ42によって構成される。すなわち、適宜外気風を導入しうる通気空間43を形成すべく2重の板体によって構成するうちの上側に位置する穀粒案内板8の裏面側に装着される構成である。もって、左右が所定時間T0(例えば1分)毎に独立的に検出出力され、今回の温度検出値Tnと前回の温度検出値Tn-1との比較による上昇値(Tn―Tn-1)が所定温度δ以上(例えば2℃)であり、かつ連続してn回(例えば2回)検出されるか、又は当該検出温度が所定限界値(例えば100℃)を越えると繰出バルブ15の回転異常等による穀粒詰りと判定して各部に停止出力し(図8(b))、この上昇値が所定以下であってかつ所定限界値未満の場合は正常運転と判定する構成である(図8(a) 又は(c))。温度検出器36は上記のサーミスタ型温度センサを左右の穀粒流下板8,8の前後中央に設けるほか、前後に複数個設置して前後におけるセンサの平均値をもってTn又はTn-1としてもよい。 The temperature detector 36 in the vicinity of the grain lowering plate 8 is constituted by a thermistor type temperature sensor 42 attached to the back and front of the left and right kernel lowering plates 8 and 8 and attached to the front and rear. That is, it is a configuration that is mounted on the back surface side of the grain guide plate 8 that is located on the upper side of the double plate member that is formed by the double plate body so as to form the ventilation space 43 into which the outside air can be appropriately introduced. Accordingly, the left and right sides are detected and output independently at predetermined time T 0 (for example, 1 minute), and an increase value (T n −T) by comparing the current temperature detection value T n with the previous temperature detection value T n−1. n-1 ) is a predetermined temperature δ or more (for example, 2 ° C.) and is detected n times (for example, twice) continuously, or when the detected temperature exceeds a predetermined limit value (for example, 100 ° C.) A configuration in which it is determined that the grain is clogged due to abnormal rotation of the valve 15 and the like is stopped and output to each part (FIG. 8B), and the normal operation is determined when this increased value is less than a predetermined value and less than a predetermined limit value. (FIG. 8 (a) or (c)). Temperature detector 36 except that provided in the longitudinal center of the grain flow-down plate 8, 8 of the left and right of the thermistor type temperature sensor described above, as T n or T n-1 with an average value of the sensor before and after with a plurality placed around Also good.

上記上部移送装置17の乾燥機枠外にあたる移送始端側には開口部45を設け、当該開口部45には螺旋46軸方向と一致する方向の支軸47周りに回動自在な排出シャッタ48を設ける。支軸47の一端部に制御板49を一体的に設け、該制御板49は支軸47部を中心に支点越えスプリング50によって2位置に切り換わる構成であり、リンク51を介して制御モータ52と連動連結され、該制御モータ52の一定方向(イ)回転に伴って上記2位置への切り換えが行われる。なお、2位置の各位置における位置決めは、排出シャッタ48の開口部45を閉じる接当状態及び該排出シャッタ48のストッパ53との接当状態をもって行われる。54は上記制御板49に設けるマグネットで、固定機枠側に設ける非接触型センサ55との接近によって、制御モータ52が作動して上記2位置のうち、該排出シャッタ48「閉」位置に達したことを検出できる。   An opening 45 is provided on the transfer start end side outside the dryer frame of the upper transfer device 17, and a discharge shutter 48 that is rotatable around a support shaft 47 in a direction that coincides with the spiral 46 axis direction is provided in the opening 45. . A control plate 49 is integrally provided at one end portion of the support shaft 47, and the control plate 49 is configured to be switched to two positions by a spring 50 that exceeds the support shaft 47 around the support shaft 47. The control motor 52 is switched to the two positions as the control motor 52 rotates in a certain direction (A). The positioning at each of the two positions is performed in a contact state in which the opening 45 of the discharge shutter 48 is closed and a contact state with the stopper 53 of the discharge shutter 48. 54 is a magnet provided on the control plate 49, and the control motor 52 is actuated by the approach to the non-contact type sensor 55 provided on the fixed machine frame side to reach the “closed” position of the discharge shutter 48 among the two positions. Can be detected.

上記マグネット54と非接触型センサ55の組合せからなるシャッタセンサ56をもって、排出シャッタ48の開状態をも推定しうる構成とし、作業開始にあたっての開・閉作動のチェックを行う排出シャッタ作動確認手段を構成している。即ち、電源投入とともに、シャッタセンサ56がオンか否か判定され(S11)、オンのときは、排出シャッタ48は「閉」位置にある。ここで、一旦排出シャッタ48を「開」出力し(S12)、シャッタセンサ56がオフになると(S13)、排出シャッタ48は「開」と推定する。ここで、シャッタセンサ56がオフにならず、その状態が所定時間t(この実施例ではt=5秒としている)継続してもなおオフにならないときはブザー等によって異常報知する構成である(S14)。上記S13でシャッタセンサ56がオフとなり、正常状態と推定されるときは、引き続くシャッタ「閉」出力を行い(S15)、シャッタセンサ56がオンするか否が確認され(S16)、正常のときはシャッタセンサ56はオンして排出シャッタ「閉」を検知しうるものとなり、待機状態のモードとなる。なお、S16でシャッタセンサ56がオンしないときは、所定時間tの経過を待って異常報知する(S7)。一方、S11でシャッタセンサ56がオフのときは、排出シャッタ48は「閉」でないと判定され、一旦排出シャッタを「閉」出力し(S18)、シャッタセンサ56がオンするか否か判定され(S19)、オンになると正常に作動するものとして待機状態のモードに入る構成である。   A shutter sensor 56 composed of a combination of the magnet 54 and the non-contact type sensor 55 is configured to be able to estimate the open state of the discharge shutter 48, and discharge shutter operation confirmation means for checking the opening / closing operation at the start of work. It is composed. That is, when the power is turned on, it is determined whether or not the shutter sensor 56 is on (S11). When the shutter sensor 56 is on, the discharge shutter 48 is in the “closed” position. Here, the discharge shutter 48 is once output “open” (S12). When the shutter sensor 56 is turned off (S13), the discharge shutter 48 is estimated to be “open”. Here, when the shutter sensor 56 does not turn off and does not turn off even if the state continues for a predetermined time t (in this embodiment, t = 5 seconds), an abnormality is notified by a buzzer or the like ( S14). When the shutter sensor 56 is turned off in S13 and is estimated to be in a normal state, the subsequent shutter “closed” output is performed (S15), and it is confirmed whether the shutter sensor 56 is turned on (S16). The shutter sensor 56 is turned on and can detect the discharge shutter “closed”, and enters a standby mode. If the shutter sensor 56 is not turned on in S16, an abnormality is notified after a lapse of a predetermined time t (S7). On the other hand, when the shutter sensor 56 is off in S11, it is determined that the discharge shutter 48 is not “closed”, the discharge shutter is temporarily output “closed” (S18), and it is determined whether or not the shutter sensor 56 is turned on (S18). S19), when it is turned on, it enters a standby mode as a normal operation.

上記のように、排出シャッタ作動確認手段を構成して電源投入とともに、作動確認を行うため、単一のシャッタセンサ56で開閉作動を検出し得、コストダウンにつながる。
各作業モードを選択したときには、図16(イ)及び同(ロ)のように排出シャッタ作動確認手段を構成すると、単一のシャッタセンサ56で開閉作動を検出し得る。排出シャッタ48を「閉」状態にして作業する工程、即ち張込作業、通風作業、乾燥作業の各工程にあっては、図16(イ)のようにチェックされる。すなわち、各モードスイッチ操作後シャッタセンサ56がオンであるか否かが判定され(S21)、オンのときはそのまま各選択モードに必要な運転各部が起動されるものとなり(S22)、オフであると、シャッタ「開」出力され(S23)、再びシャッタセンサ56がオンであるか否かが判定される(S24)。ここでシャッタセンサ56がオンであると、S22に至り、シャッタセンサ56がオンにならず、その状態が所定時間t(この実施例ではt=5秒としている)継続してもなおオンにならないときはブザー等によって異常報知する構成である(S25)。
As described above, since the discharge shutter operation confirmation means is configured to confirm the operation when the power is turned on, the opening / closing operation can be detected by the single shutter sensor 56, leading to cost reduction.
When each work mode is selected, if the discharge shutter operation confirmation means is configured as shown in FIGS. 16A and 16B, the opening / closing operation can be detected by a single shutter sensor 56. In the process of working with the discharge shutter 48 in the “closed” state, that is, in each process of the tensioning work, the ventilation work, and the drying work, a check is made as shown in FIG. That is, it is determined whether or not the shutter sensor 56 is turned on after each mode switch operation (S21). When the shutter sensor 56 is turned on, the operation units necessary for each selection mode are started as they are (S22) and are turned off. Then, the shutter “open” is output (S23), and it is determined again whether or not the shutter sensor 56 is on (S24). If the shutter sensor 56 is on, the process reaches S22, the shutter sensor 56 is not turned on, and is not turned on even if the state continues for a predetermined time t (in this embodiment, t = 5 seconds). In some cases, an abnormality is notified by a buzzer or the like (S25).

一方、排出モードが選択されると、図16(ロ)のようにチェックされる。即ち、シャッタセンサ56がオフであるか否かが判定され(S31)、オフのときは排出運転に必要な運転各部が起動されるものとなり(S32)、オンであると、シャッタ「閉」出力され(S33)、再びシャッタセンサ56がオフであるか否かが判定される(S34)。ここでシャッタセンサ56がオフであると、S32に至り、シャッタセンサ56がオフにならず、その状態が所定時間t(この実施例ではt=5秒としている)継続してもなおオフにならないときはブザー等によって異常報知する構成である(S35)。   On the other hand, when the discharge mode is selected, a check is made as shown in FIG. That is, it is determined whether or not the shutter sensor 56 is off (S31). When the shutter sensor 56 is off, the operation units necessary for the discharge operation are activated (S32). When the shutter sensor 56 is on, the shutter “closed” output is output. (S33), it is determined again whether or not the shutter sensor 56 is off (S34). If the shutter sensor 56 is off, the process proceeds to S32, the shutter sensor 56 is not turned off, and is not turned off even if the state continues for a predetermined time t (in this embodiment, t = 5 seconds). In some cases, an abnormality is notified by a buzzer or the like (S35).

このように、各選択モードにおいて、各モードにおける排出シャッタ48の状態に対応位置しているかどうかを先ずシャッタセンサ56のオン(又はオフ)で確認し、対応位置していないときは、シャッタ作動の出力をもって正規の位置に移動させると共に再度シャッタセンサ56出力を確認して排出シャッタ位置の確認を行い、依然正規の位置を確認できないときは異常出力してシャッタ点検を促すもので、上記と同様にシャッタセンサの個数低減を図れてコストダウンとなる。   As described above, in each selection mode, whether or not the position corresponding to the state of the discharge shutter 48 in each mode is first checked by turning on (or off) the shutter sensor 56. The output is moved to the normal position, and the output of the shutter sensor 56 is checked again to check the discharge shutter position. If the normal position still cannot be confirmed, an abnormal output is issued to prompt the shutter check. The number of shutter sensors can be reduced and the cost can be reduced.

前記上部移送装置17の乾燥機枠内には、該上部移送装置17の下面を覆う底弁57を長手方向一側にヒンジ58,58…をもって上部移送装置17の側板部に接続して、この移送装置17の底部を開閉自在の構成としている。この底弁57の開閉姿勢の維持構成は、該底弁57の下面の長手方向複数箇所(図例では2箇所)を、当該長手方向に沿わせた作動軸59に支持されたL型の接当部材60によって受け、閉じ姿勢と開放姿勢とに切り換わる構成としている。すなわち、作動軸59は前記排出シャッタ48の支軸47を延長して一体的に回動すべく構成され、該作動軸59の上下に伴って、上昇位置で底弁の下面を支持して底部を閉じ姿勢とし、下降姿勢で底弁の下面を受けて底部所定開放状態に支持すべく構成している。なお、この開閉作動は作動軸59端に設けた底弁作動手段65に連動すべく構成する。すなわち、作動軸59のシャッタ48支軸47に近い側の端部に、リンク66を介在して操作レバー67の上下動作で開閉連動しうる。なお作動軸59は底弁57が閉じ姿勢を維持すべくばね68で付勢されていて、作業者は、操作レバー67の下端側把持部67aにて引き操作すると当該付勢力に抗して底弁57を開作動させる構成である。ところで、操作レバー67の長さは機体高さによって異なるものとされ、例えば最大張込量の多い大型機種では長く、逆に最大張込量の少ない小型機種では短い構成となる。乾燥部や集穀部を共通仕様とし、貯留部の張込量を異ならせて複数の機種構成の設定基準とする場合が多く、このような場合において、前記のように操作レバー67長さが異なることとなるが、引き操作にて底弁57を図外スプリングに抗して開動するが、単に長さを長短にするだけでは、操作荷重が異なる。これは操作レバー67の自重による回転モーメントが当該長さの相違によって異なる補助的に操作荷重を付与する際の操作荷重に加減をしなければならず、大小の機種によって操作荷重が異なるものとなる。そこで工夫した操作レバー67は、その自重にて作動軸59に付与される回転モーメントを略同じとなるように設定するものである。例えば、リンク長L(共通)とし、大小の機種夫々の操作レバー67の単位長さm、nとし、各レバーの単位重量をWm、Wnとすると、
大型機種の回転モーメントMm=リンク長×操作レバー自重−ばね付勢力
=L×m・Wm−S
であり、
同様に小型機種の回転モーメントMn=L×n・Wn−S
となる。ここで、操作荷重を同じ感覚にするためには、
Mm=Mnとするとよいが、具体的にはWmあるいはWnを変更すべくレバー軸径を変更し、または短い操作レバーに適宜にウエイトを付加するものである。
In the dryer frame of the upper transfer device 17, a bottom valve 57 covering the lower surface of the upper transfer device 17 is connected to the side plate portion of the upper transfer device 17 with hinges 58, 58. The bottom of the transfer device 17 is configured to be openable and closable. The configuration for maintaining the opening / closing posture of the bottom valve 57 is such that a plurality of longitudinal positions (two places in the illustrated example) on the lower surface of the bottom valve 57 are connected to an L-shaped contact supported by an operating shaft 59 along the longitudinal direction. The member 60 is configured to receive and switch between a closed posture and an open posture. That is, the operating shaft 59 is configured to extend integrally with the support shaft 47 of the discharge shutter 48, and supports the lower surface of the bottom valve in the raised position with the upper and lower sides of the operating shaft 59. Is in a closed posture, and is configured to receive the lower surface of the bottom valve in a lowered posture and support the bottom in a predetermined open state. This opening / closing operation is configured to be interlocked with the bottom valve operating means 65 provided at the end of the operating shaft 59. That is, the end of the operating shaft 59 on the side close to the shutter 48 support shaft 47 can be linked to open and close by the vertical movement of the operation lever 67 via the link 66. The operating shaft 59 is urged by a spring 68 so that the bottom valve 57 is maintained in a closed position. When the operator pulls the operating shaft 59 with the lower end side gripping portion 67a of the operating lever 67, the bottom of the operating shaft 59 resists the urging force. In this configuration, the valve 57 is opened. By the way, the length of the operation lever 67 is different depending on the height of the machine body. For example, a large model having a large maximum amount of extension is long, and a small model having a small maximum amount of extension has a short configuration. In many cases, the drying section and the cereal collection section have a common specification, and the amount of extension of the storage section is set to be a setting standard for a plurality of model configurations. In such a case, the length of the operation lever 67 is as described above. Although it is different, the bottom valve 57 is opened against the unillustrated spring by a pulling operation, but the operating load differs only by shortening the length. This is because the rotational moment due to the weight of the operating lever 67 differs depending on the length, and the operating load when the operating load is applied in an auxiliary manner must be adjusted. The operating load varies depending on the size of the model. . Thus, the devised operating lever 67 is set so that the rotational moment applied to the operating shaft 59 by its own weight is substantially the same. For example, if the link length is L (common), the unit lengths m and n of the operation levers 67 are large and small, and the unit weight of each lever is Wm and Wn,
Large model rotation moment Mm = Link length x Operating lever weight-Spring biasing force
= L × m · Wm-S
And
Similarly, small model rotational moment Mn = L × n · Wn-S
It becomes. Here, in order to make the operation load the same sense,
Mm = Mn is preferable. Specifically, the lever shaft diameter is changed to change Wm or Wn, or a weight is appropriately added to a short operation lever.

上記のように構成することによって、オペレータが複数の乾燥機の底弁57を開くにあたって、どの操作レバー67からも類似の操作感覚をもって操作できる効果がある。
なお、上記接当部材60は、作動軸59から底部を閉じた姿勢の底弁57までの距離の半径部分60aと、この半径部分60aから略直交方向に延長して該閉じ姿勢の底弁57の下面に線接触する接触部分60bとからなりL型に形成されている。従って、開放姿勢では半径部分60aと接触部分60bとの繋ぎ部にて点接触状態で底弁57を受けるものとなる。図14におけるように、作動軸59は中空とされその前端はピン61で前記支軸47と両者同軸状態に連結される。又、上記接当部材60は該作動軸59を貫通して螺合基部60cを上下側からナット62,62で当該作動軸59に締め付け固定されるものである。63,63は補強兼固定具である。
With the configuration described above, there is an effect that the operator can operate from any operation lever 67 with a similar operation feeling when opening the bottom valves 57 of the plurality of dryers.
The contact member 60 includes a radial portion 60a having a distance from the operating shaft 59 to the bottom valve 57 in a closed position, and a bottom valve 57 in the closed position extending from the radial portion 60a in a substantially orthogonal direction. And a contact portion 60b in line contact with the lower surface of the substrate. Therefore, in the open posture, the bottom valve 57 is received in a point contact state at the connecting portion between the radius portion 60a and the contact portion 60b. As shown in FIG. 14, the operating shaft 59 is hollow, and the front end thereof is connected to the support shaft 47 by a pin 61 in a coaxial state. The contact member 60 penetrates the operating shaft 59 and is fastened and fixed to the operating shaft 59 with nuts 62 and 62 from above and below the screw base 60c. 63 and 63 are reinforcing and fixing tools.

前記排出シャッタ48を覆うように排出漏斗64が上部移送装置17の側壁に接続され、その先には排出シュート(図示せず)が設けられている。80は上部移送装置駆動プーリである。   A discharge funnel 64 is connected to the side wall of the upper transfer device 17 so as to cover the discharge shutter 48, and a discharge chute (not shown) is provided at the end thereof. Reference numeral 80 denotes an upper transfer device driving pulley.

81は、上部移送装置17の始端部上方に接続する排塵ダクトで、この排塵ダクト81は一端が上部移送装置17の上部に接続して設ける排塵ファン胴83に連通し、他端は適宜に機外適所に排出しうるものとし、または吸引ファン12に接続する排風ダクトに接続する構成としている。ところでこの排塵ダクト81の途中部は機体天井部の支持体84にて受けられるが、この支持体84は樋状に形成され側壁部はスリット状の切れ目を所定間隔毎に形成して上下に角度調整自在に構成している。この支持体84は機体天井部と機体側壁を接続するくさび体85の係合を利用して固定支持される構成としている。すなわち、機体側壁上部に突出して設けるホルダ86にはくさび体85の貫通孔86bを設け、該ホルダ86は天井部87に形成するホルダ係合孔87aに係合してくさび体85で固定されるが、上記支持体84にも天井部87と同形状のホルダ係合孔84aを形成し、該天井部87の係合孔87aと共にホルダ86を係合してくさび体85で固定する。このように構成すると、各別の固定手段を必要とせずコストダウンがはかれる。また、天井部87にはホルダ86との係合部を天井部87周囲に複数箇所に設定するものであるから、支持体84の配置箇所も任意に設定できる効果がある。   81 is a dust exhaust duct connected to the upper part of the upper end of the upper transfer device 17. One end of the dust exhaust duct 81 communicates with a dust exhaust fan cylinder 83 connected to the upper portion of the upper transfer device 17, and the other end of the dust exhaust duct 81. It can be appropriately discharged to an appropriate place outside the machine, or is connected to an exhaust duct connected to the suction fan 12. By the way, the middle part of the dust exhaust duct 81 is received by a support body 84 on the ceiling of the machine body. The support body 84 is formed in a bowl shape, and the side wall portion is formed with slit-like cuts at predetermined intervals. The angle is adjustable. The support body 84 is configured to be fixedly supported by using an engagement of a wedge body 85 that connects the body ceiling and the body side wall. That is, the holder 86 provided protruding from the upper side of the machine body is provided with a through hole 86b of the wedge body 85, and the holder 86 is engaged with the holder engagement hole 87a formed in the ceiling portion 87 and fixed by the wedge body 85. However, a holder engagement hole 84 a having the same shape as the ceiling portion 87 is also formed in the support body 84, and the holder 86 is engaged together with the engagement hole 87 a of the ceiling portion 87 and fixed by the wedge body 85. If comprised in this way, a cost reduction will be achieved, without requiring a separate fixing means. Moreover, since the engaging part with the holder 86 is set to the ceiling part 87 in multiple places around the ceiling part 87, the arrangement | positioning location of the support body 84 can also be set arbitrarily.

図19は上記天井部と側壁との接合構成を利用して防音板88を支持する構成を示すものである。すなわち、防音板88の上部をU型に折り曲げ、下方には内壁との間に隙間を形成すべく接当部材89を設けている。なお、防音板88の場合も、前記天井部87と排塵ダクト81の支持体84との兼用固定手段と同様に該防音板88にホルダ86の係合孔88aを形成して同時にくさび体85で固定できる構成としている。   FIG. 19 shows a configuration in which the soundproof plate 88 is supported by using the joint configuration between the ceiling and the side wall. That is, the upper part of the soundproof plate 88 is bent into a U shape, and a contact member 89 is provided below the inner wall to form a gap with the inner wall. In the case of the soundproof plate 88 as well, the wedge hole 85 is formed by simultaneously forming the engagement hole 88a of the holder 86 in the soundproof plate 88 in the same manner as the combined fixing means of the ceiling portion 87 and the support 84 of the dust discharge duct 81. It can be fixed with.

このように構成すると、拡散盤によって飛散される穀粒の衝突音を低減する一方、貯留室2の内壁と防音板88との間に下方側ほど内壁から離れる隙間90が形成されるから、隙間に侵入しようとする塵埃類が下方にすり抜けできる効果がある。   If comprised in this way, while reducing the collision sound of the grain scattered by the diffusion board, since the clearance gap 90 which leaves | separates from an inner wall is formed between the inner wall of the storage chamber 2, and the sound-insulation board 88, a clearance gap is formed. The dust that tries to invade can be passed through downward.

上例の作用について説明する。
張込スイッチ21を操作し張込ホッパから昇降機11を利用して貯留室2に所定量の穀粒を張り込む。次いで、穀粒種類、仕上げ水分等を設定して乾燥作業を開始する。乾燥スイッチ23をオンすると、バーナ7を起動し、また繰出バルブモータ38、昇降機駆動モータ39の起動によって繰出バルブ15,15、下部移送装置16,昇降機5,上部移送装置17及び拡散盤18の循環系を起動し、並びに吸引ファン12を回転駆動する。したがって、バーナ熱風は遠赤外線放射体6を加熱して遠赤外線を放射し、繰出バルブ15の回転によって傾斜通路11部を流下する穀粒に遠赤外線が照射され穀粒内部の水分に作用して乾燥を促進する。
The operation of the above example will be described.
The tension switch 21 is operated and a predetermined amount of grain is tensioned in the storage chamber 2 from the tension hopper using the elevator 11. Next, the grain type, finish moisture, etc. are set and the drying operation is started. When the drying switch 23 is turned on, the burner 7 is activated, and the circulation of the feeding valves 15, 15, the lower transfer device 16, the elevator 5, the upper transfer device 17, and the diffusion plate 18 is activated by starting the feeding valve motor 38 and the elevator drive motor 39. The system is activated and the suction fan 12 is driven to rotate. Therefore, the hot air from the burner heats the far-infrared radiator 6 to emit far-infrared rays, and the far-infrared rays are irradiated to the grains flowing down the inclined passage 11 by the rotation of the feeding valve 15 to act on the moisture in the grains. Promotes drying.

なお、吸引ファン12の起風に伴い機枠1内部を流通する廃熱気は適宜外気と混合され熱風室9a,及び9b、9bに供給されて乾燥室を通過する穀粒に作用させて乾燥する。このように廃熱風の横断と遠赤外線照射にて穀物を乾燥し、所定水分値に達するまでこの乾燥を繰返すものである。   In addition, the waste heat air which distribute | circulates inside the machine frame 1 with the wind of the suction fan 12 is mixed with external air suitably, is supplied to the hot air chamber 9a, 9b, 9b, is made to act on the grain which passes a drying chamber, and dries. . In this way, the grain is dried by crossing waste hot air and irradiating far infrared rays, and this drying is repeated until a predetermined moisture value is reached.

乾燥行程途中においては、所定時間間隔で水分算出が行われ、乾燥速度が算出されて予め設定した乾燥速度と比較され所定乾燥速度を維持すべくバーナの燃料供給量が制御される。ところで、この乾燥速度制御手段による制御出力は、所定の条件では中断制御される。すなわち、図6のように、乾燥スイッチ23をオンして直後あるいは所定短時間の後、水分測定を開始し、その際は水分測定間隔Tを短時間T´(例えば5分)に設定し、測定回数も標準回数Yよりも少ない回数、Y´(例えば5回)に設定して、標準の測定状態よりも短時間に平均水分値を算出する(ステップ103〜105)。   During the drying process, moisture is calculated at predetermined time intervals, the drying speed is calculated and compared with a preset drying speed, and the fuel supply amount of the burner is controlled to maintain the predetermined drying speed. By the way, the control output by the drying speed control means is interrupted under predetermined conditions. That is, as shown in FIG. 6, immediately after turning on the drying switch 23 or after a predetermined short period of time, moisture measurement is started. In this case, the moisture measurement interval T is set to a short time T ′ (for example, 5 minutes), The number of measurements is also set to Y ′ (for example, 5 times) less than the standard number Y, and the average moisture value is calculated in a shorter time than the standard measurement state (steps 103 to 105).

上記の回数Y´の水分値のばらつきを算出するが、具体的にはこのY´の水分測定のうち最大値Msmaxと最小値Msminとを抽出し、これらの差が予め設定した所定値p(例えば1%)と比較され(ステップ106)、Msmax−Msmin<p(%)のときは、乾燥速度制御を実行する(ステップ108)が、Msmax−Msmin>p(%)のときは乾燥速度制御を中止する(ステップ109)。   The variation in the moisture value of the number of times Y ′ is calculated. Specifically, the maximum value Msmax and the minimum value Msmin are extracted from the moisture measurement of Y ′, and the difference between them is a predetermined value p ( For example, when Msmax-Msmin <p (%), the drying speed control is executed (step 108). When Msmax-Msmin> p (%), the drying speed control is performed. Is canceled (step 109).

ステップ106において乾燥速度実行と判定されると、水分測定間隔が標準時間T=15分に設定変更され(ステップ110)、測定回数も標準の10回に設定されて乾燥仕上がりまで乾燥速度制御を実行する(ステップ112)。一方、乾燥速度制御が中止されたときは(ステップ108)、同様のばらつき判定処理が繰り返され(例えば5回)(ステップ109)、ばらつき範囲がp%以下に達した時点で標準の乾燥速度制御に移行しうる。   If it is determined in step 106 that the drying speed is to be executed, the moisture measurement interval is changed to the standard time T = 15 minutes (step 110), the number of measurements is also set to the standard 10 times, and the drying speed control is executed until the drying finish. (Step 112). On the other hand, when the drying speed control is stopped (step 108), the same variation determination process is repeated (for example, 5 times) (step 109), and the standard drying speed control is performed when the variation range reaches p% or less. Can move on.

水分ばらつき判定に基づき、乾燥速度制御実行出力及び同制御中止出力を行う場合において、水分値が所定水分値Mt(17.5%)以下であるときは(ステップ215)、乾燥速度制御中止の出力後、設定熱風温度Tcを所定温度γ下げて(ステップ17)、乾燥を継続する構成である。   In the case where the drying speed control execution output and the control stop output are performed based on the moisture variation determination, if the moisture value is equal to or less than the predetermined moisture value Mt (17.5%) (step 215), the output of the drying speed control stop is output. Thereafter, the set hot air temperature Tc is lowered by a predetermined temperature γ (step 17), and drying is continued.

なお上記の実施例では、乾燥速度制御を行なうための乾燥手段としてバーナ熱風を導入して遠赤外線放射体6からの放射による乾燥及び排熱風を熱風室9に導入しての通風による乾燥の相乗によって穀粒を乾燥すべく構成するが、乾燥手段としては遠赤外線、通風のいすれか一方でもよく、乾燥強度の変更にあたっては、本実施例ではバーナの燃料供給量としたが、乾燥手段が単体の遠赤外線である場合には、例えば照射量を変更できる赤外線ランプを用いてもよい。   In the above embodiment, the synergism between the drying by the radiation from the far-infrared radiator 6 and the drying by the ventilation by introducing the exhaust hot air into the hot air chamber 9 as the drying means for controlling the drying speed is introduced. However, the drying means may be either far-infrared ray or ventilation. In changing the drying strength, the fuel supply amount of the burner is used in this embodiment. In the case of a single far infrared ray, for example, an infrared lamp capable of changing the irradiation amount may be used.

前記穀粒乾燥機は工場出荷に際しては、各部に分けて梱包し現地で組立する。併せて試運転を行なうが、その要領は以下のとおりである。すなわち、制御部の既存スイッチのうち、2つのスイッチを同時に押す(例えば、停止スイッチと乾燥スイッチとを同時にオンする)と、試運転モードに入る。この試運転モードでは、運転時間が所定時間(例えば15分間)に設定され、張込量が最低張込量に強制設定されて各部が起動する。バーナ7は燃焼状態に入るが、遠赤外線放射体を内装する場合には、燃焼量の上限を設けている。例えば、最大燃焼量の約1/2に設定する。これによって、試運転モードに入ると、熱風室温度検出に基づいて燃焼量が増加して加温しようとするが、最大燃焼量の上記制限値1/2に達すると、それ以上には燃焼量が増加しない構成となっている。従って、遠赤外線放射体が過熱する恐れがなく、塗装が解けたり、機体各部の熱変形を防止する。   At the time of factory shipment, the grain dryer is divided into parts and packed and assembled on site. At the same time, a trial run is performed, and the procedure is as follows. That is, when two switches among the existing switches of the control unit are simultaneously pressed (for example, the stop switch and the drying switch are simultaneously turned on), the test operation mode is entered. In this trial operation mode, the operation time is set to a predetermined time (for example, 15 minutes), the tension amount is forcibly set to the minimum tension amount, and each unit is activated. The burner 7 enters a combustion state, but when the far-infrared radiator is installed, an upper limit of the combustion amount is provided. For example, it is set to about ½ of the maximum combustion amount. As a result, when the trial operation mode is entered, the combustion amount increases based on the detection of the hot air chamber temperature and attempts to warm up. However, when the limit value ½ of the maximum combustion amount is reached, the combustion amount exceeds that. The structure does not increase. Therefore, there is no fear that the far-infrared radiator is overheated, and the paint can be unwound and thermal deformation of each part of the machine body is prevented.

穀粒乾燥機の正断面図である。It is a front sectional view of a grain dryer. 穀粒乾燥機の側断面図である。It is a sectional side view of a grain dryer. 穀粒乾燥機の平断面図である。It is a plane sectional view of a grain dryer. 制御盤正面図である。It is a front view of a control panel. 制御ブロック図である。It is a control block diagram. フローチャート図である。It is a flowchart figure. フローチャート図である。It is a flowchart figure. 熱風温度検出器設置一例を示す正断面図である。It is a front sectional view showing an example of hot air temperature detector installation. 同上の平面図である。It is a top view same as the above. 燃焼量−検出温度差関係グラフである。It is a combustion amount-detected temperature difference relationship graph. 上部移送装置部の拡大側面図である。It is an enlarged side view of an upper transfer apparatus part. 同上の正面図である。It is a front view same as the above. 図11におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図11におけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. フローチャートである。It is a flowchart. (イ)(ロ)フローチャートである。(A) (B) It is a flowchart. 底弁レバーの斜視図である。It is a perspective view of a bottom valve lever. 排塵装置部の斜視図である。It is a perspective view of a dust removal apparatus part. 貯留室の一部側断面図である。It is a partial sectional side view of a storage chamber.

符号の説明Explanation of symbols

1…乾燥機枠、2…貯留室、3…乾燥室、4…集穀室、5…昇降機、6…赤外線放射体、7…穀粒流下通路、8…熱風室、10…排風室、11…バーナ、17…上部移送装置、18…拡散盤、21…張込スイッチ、23…乾燥スイッチ、24…排出スイッチ、32…水分計、45…開口部、46…螺旋、47…支軸、48…排出シャッタ、49…制御板、50…支点越えスプリング、51…リンク、52…制御モータ
DESCRIPTION OF SYMBOLS 1 ... Dryer frame, 2 ... Storage room, 3 ... Drying room, 4 ... Grain collection room, 5 ... Elevator, 6 ... Infrared radiator, 7 ... Grain flow passage, 8 ... Hot air room, 10 ... Exhaust room, DESCRIPTION OF SYMBOLS 11 ... Burner, 17 ... Upper transfer device, 18 ... Spreading plate, 21 ... Tension switch, 23 ... Drying switch, 24 ... Discharge switch, 32 ... Moisture meter, 45 ... Opening, 46 ... Spiral, 47 ... Spindle, 48 ... discharge shutter, 49 ... control plate, 50 ... fulcrum spring, 51 ... link, 52 ... control motor

Claims (3)

穀粒の移送装置を含む装置において、この移送装置に設ける開口部には制御モータにより開閉作動する排出シャッタを設け、この排出シャッタが閉位置にあることを検出するシャッタセンサを設け、移送装置等の各部及び当該各部を駆動出力する制御部への電源投入手段を構成し、該制御部には電源投入手段の電源投入によって、シャッタセンサからのシャッタ「閉」出力の有無を入力し、このシャッタ「閉」出力を得られないときには、制御モータにシャッタ「閉」出力し、所定時間t経過後にシャッタセンサからのシャッタ「閉」出力の有無を入力し、シャッタ「閉」出力を得てシャッタ正常の判定をし、このシャッタ「閉」出力を得られないときには異常出力する排出シャッタ作動確認手段を設けた穀粒排出作動装置。 In an apparatus including a grain transfer device, an opening provided in the transfer device is provided with a discharge shutter that is opened and closed by a control motor, and a shutter sensor that detects that the discharge shutter is in a closed position is provided. And a control unit that drives and outputs each unit. The control unit inputs whether or not a shutter “closed” output is output from the shutter sensor when the power is supplied. When the “closed” output cannot be obtained, the shutter “closed” is output to the control motor. After a predetermined time t has elapsed, the presence / absence of the shutter “closed” output from the shutter sensor is input. A grain discharge operation device provided with a discharge shutter operation confirmation means for making an abnormal output when the shutter “closed” output cannot be obtained. 穀粒の移送装置を含む装置において、この移送装置に設ける開口部には制御モータにより開閉作動する排出シャッタを設け、この排出シャッタが閉位置にあることを検出するシャッタセンサを設け、移送装置等の各部及び当該各部を駆動出力する制御部への電源投入手段を構成し、該制御部には電源投入手段の電源投入と上記移送装置への排出モード選択によって、シャッタセンサからのシャッタ「開」出力の有無を入力し、このシャッタ「開」出力に伴い移送装置を駆動出力し、このシャッタ「開」出力を得られないときには、移送装置への駆動出力を停止して制御モータにシャッタ「開」出力し、所定時間t経過後にシャッタセンサからのシャッタ「開」出力の有無を入力し、シャッタ「開」出力を得てシャッタ正常の判定と共に移送装置を駆動出力し、このシャッタ「開」出力を得られないときには異常出力する排出シャッタ作動確認手段を設けた穀粒排出作動装置。 In an apparatus including a grain transfer device, an opening provided in the transfer device is provided with a discharge shutter that is opened and closed by a control motor, and a shutter sensor that detects that the discharge shutter is in a closed position is provided. And a control unit that drives and outputs each unit. The control unit is configured to turn on the power of the power-on unit and select a discharge mode to the transfer device. Input the presence or absence of output, and drive output of the transfer device with this shutter “open” output. If this shutter “open” output cannot be obtained, stop the drive output to the transfer device and open the shutter “open” to the control motor. , And whether or not the shutter "open" output from the shutter sensor is input after the predetermined time t has elapsed, and the shutter "open" output is obtained to determine whether the shutter is normal and transfer equipment. The drive outputs, the shutter "open" grain ejection actuation device provided with a discharge shutter actuation verification means for abnormal output when the obtained no output. 貯留室上部の上部移送装置に乾燥穀粒を機外に排出する開口部を備え、上部移送装置の終端から貯留室に排出する穀粒乾燥機の穀粒移送装置の当該開口部に排出シャッタを設け、排出シャッタ作動確認手段を構成してなる請求項1又は2に記載の穀粒排出作動装置。
The upper transfer device at the upper part of the storage chamber is provided with an opening for discharging dried grains outside the machine, and a discharge shutter is provided at the opening of the grain transfer device of the grain dryer for discharging from the end of the upper transfer device to the storage chamber The grain discharge operation device according to claim 1, wherein the operation is a discharge shutter operation confirmation means.
JP2003283692A 2003-07-31 2003-07-31 Circulating grain dryer Expired - Fee Related JP4241256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283692A JP4241256B2 (en) 2003-07-31 2003-07-31 Circulating grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283692A JP4241256B2 (en) 2003-07-31 2003-07-31 Circulating grain dryer

Publications (2)

Publication Number Publication Date
JP2005049068A true JP2005049068A (en) 2005-02-24
JP4241256B2 JP4241256B2 (en) 2009-03-18

Family

ID=34268499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283692A Expired - Fee Related JP4241256B2 (en) 2003-07-31 2003-07-31 Circulating grain dryer

Country Status (1)

Country Link
JP (1) JP4241256B2 (en)

Also Published As

Publication number Publication date
JP4241256B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4241256B2 (en) Circulating grain dryer
JP4241367B2 (en) Grain dryer
JP2005188878A5 (en)
JP3821068B2 (en) Grain dryer
JP2006038407A (en) Grain drier
JP4301018B2 (en) Grain dryer
JP2004177002A (en) Grain drier
JP2004263921A (en) Grain drier
JP3610652B2 (en) Rotation control method of burner moda in grain dryer.
JP4985064B2 (en) Grain dryer
JPH06273039A (en) Grain drying control method for grain dryer
JP3577726B2 (en) Operating device for grain dryer
JP3089852B2 (en) Shutdown method for grain dryers, etc.
JP3743045B2 (en) Grain dryer
JPH09196562A (en) Dryer control device for grain dryer
JP5011983B2 (en) Grain dryer
JP2005291614A (en) Sealing device of delivery valve in grain drier
JPS6011435Y2 (en) Paddy circulation discharge control device in paddy dryer
JP4168571B2 (en) General-purpose dryer
JPH07239181A (en) Operation device of grain drier
JPH0510668A (en) Dry temperature control device for grain dryer
JP2000111255A (en) Delivery amount controller in grain drying apparatus
JPH0480588A (en) Drying operation control system for grain dryer
JP2000346556A (en) Grain dryer
JPH02168812A (en) Overload detector for motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees