JP2005048292A - Carburizing and quenching method - Google Patents
Carburizing and quenching method Download PDFInfo
- Publication number
- JP2005048292A JP2005048292A JP2004302663A JP2004302663A JP2005048292A JP 2005048292 A JP2005048292 A JP 2005048292A JP 2004302663 A JP2004302663 A JP 2004302663A JP 2004302663 A JP2004302663 A JP 2004302663A JP 2005048292 A JP2005048292 A JP 2005048292A
- Authority
- JP
- Japan
- Prior art keywords
- carburizing
- quenching
- heating
- temperature
- tooth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、例えば歯車のような動力伝達部材に適用するのに好適な浸炭焼入れ方法に関する。 The present invention relates to a carburizing and quenching method suitable for application to a power transmission member such as a gear.
自動車のディファレンシャルギヤのピニオン等の歯車としては一般に肌焼き鋼(低炭素鋼)を用い、その表面にガス浸炭焼入れあるいはプラズマ浸炭焼入れ等を施した後、耐疲労強度と耐磨耗性を向上させたうえで使用している。 In general, case-hardened steel (low carbon steel) is used as a gear for pinion of a differential gear of an automobile, and its surface is subjected to gas carburizing quenching or plasma carburizing quenching to improve fatigue resistance and wear resistance. It is used above.
また、浸炭焼入れ処理・焼戻し処理に替わる歯車等の表面効果処理法として、例えばに特許文献1に開示されているような中・高炭素鋼の高周波輪郭焼入れ方法が提案されている。この方法は、中・高炭素鋼からなる素材を加熱してオーステナイト化し、少なくとも温間域において塑性加工を行なって冷却し、次に、該素材にオーステナイト化温度以下で予加熱処理を行ない、その後、オーステナイト化温度の直上まで急速に再加熱し、該組織をオーステナイト化した後、焼入れ・焼戻し処理を施すものである。
ところで、通常行われているガス浸炭焼入れあるいはプラズマ浸炭焼入れでは、浸炭時にワークが長時間高温に加熱されるため、結晶粒界にリンや硫黄等の不純物が偏析し、また炭化物が析出して粒界の強度を低下させている。 By the way, in the usual gas carburizing quenching or plasma carburizing quenching, since the workpiece is heated to a high temperature for a long time during carburizing, impurities such as phosphorus and sulfur are segregated at the grain boundaries, and carbides are precipitated to form grains. The strength of the field is reduced.
そのため、高い曲げ応力が掛かる歯底(図1にAで示す)のエッジ部分に結晶粒界を起点として亀裂が発生しやすく、かつ亀裂の伝播も速くなり、静破壊強度および耐衝撃強度が不足するという問題があった。この問題を軽減するには、浸炭深さを浅くする方法があるが、浸炭深さを浅くすると、高い面圧が掛かる歯当たり面(図1にBで示す)においてもスポーリング強度が低下するという問題がある。 Therefore, cracks are likely to start from the grain boundary at the edge of the tooth bottom (shown by A in FIG. 1) where high bending stress is applied, and the crack propagation is fast, resulting in insufficient static fracture strength and impact strength. There was a problem to do. In order to alleviate this problem, there is a method of reducing the carburizing depth. However, when the carburizing depth is reduced, the spalling strength also decreases on the tooth contact surface (shown by B in FIG. 1) where high surface pressure is applied. There is a problem.
一方、中・高炭素鋼の高周波輪郭焼入れ方法では、ワークの加熱時間が極めて短時間であるから、上記浸炭処理におけるような問題は解決されるが、中・高炭素鋼は肌焼き鋼等の低炭素鋼よりも被削性が劣るため刃具費が高価でとなり、しかも歯車の芯部が中・高炭素鋼からなるため、芯部の靭性が低いという問題がある。 On the other hand, in the high-frequency contour quenching method for medium and high carbon steel, the heating time of the workpiece is extremely short, so the problem as in the carburizing treatment is solved. Since the machinability is inferior to that of low carbon steel, the cost of the cutting tool is high, and the core portion of the gear is made of medium / high carbon steel, so that the toughness of the core portion is low.
さらに、歯車においては、歯底部および歯当たり面の双方において、オーステナイト結晶粒度が微細であることが強度上望ましいが、従来の方法では、鍛造品を除いて、オーステナイト結晶粒度が#10以上の微細な結晶粒からなる炭素鋼は得られなかった。 Furthermore, in a gear, it is desirable in terms of strength that the austenite crystal grain size is fine at both the root portion and the tooth contact surface, but the conventional method has a fine austenite crystal grain size of # 10 or more except for forged products. Carbon steel made of various crystal grains was not obtained.
上述の問題に鑑み、本発明は、低炭素鋼からなる素材の非鍛造品でありながら、粒界粒度を低下させるPSまたは炭化物等の偏析を防止するとともに、オーステナイト結晶粒度が#10以上の炭素鋼を得ることができる浸炭焼入れ方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention is a non-forged product made of a low-carbon steel, while preventing segregation of PS or carbide that lowers the grain boundary grain size, and austenite crystal grain size of # 10 or more. It aims at providing the carburizing and quenching method which can obtain steel.
本発明に係わる浸炭焼入れ方法は、低炭素鋼からなり歯部が等間隔に形成された動力伝達部材の素材をオーステナイト化温度以上(亜共析浸炭ではAc3点以上、過共析浸炭ではAccm点以上、図2参照)に加熱して表面炭素濃度を0.6〜0.9%となる浸炭処理を施す第一工程と、上記第一工程の後、オーステナイト化温度未満に冷却する(焼入れあるいは焼戻し処理を施しても良い。)第二工程と、上記第二工程で冷却された素材の表面浸炭部および素材内部をオーステナイト化温度の直上に急速加熱する第三工程と、上記第三工程に続いて焼入れ処理を施す第四工程と、を含むものである。 In the carburizing and quenching method according to the present invention, the material of the power transmission member made of low carbon steel and having tooth portions formed at equal intervals is set at an austenitizing temperature or higher (Ac 3 or more points for hypoeutectoid carburizing, Accm for hypereutectoid carburizing). 1st step which heats to above point, see FIG. 2 and performs carburizing treatment to surface carbon concentration of 0.6-0.9%, and cools to below austenitizing temperature after said first step (quenching) Alternatively, a tempering treatment may be performed.) The second step, the third step of rapidly heating the surface carburized portion of the material cooled in the second step and the inside of the material immediately above the austenitizing temperature, and the third step And a fourth step of performing a quenching process.
上記浸炭処理時の表面炭素濃度は、0.6%未満では表面硬さを確保できず、1.2%を超えると粒界にネット状の炭化物が析出するから0.6〜1.2%の範囲に設定するが、特に表面炭素濃度を共析点S付近(0.6〜0.9%)に設定することが望ましい。 If the surface carbon concentration during the carburizing process is less than 0.6%, the surface hardness cannot be secured, and if it exceeds 1.2%, a net-like carbide precipitates at the grain boundary, so that 0.6 to 1.2%. In particular, it is desirable to set the surface carbon concentration in the vicinity of the eutectoid point S (0.6 to 0.9%).
さらに、上記急速加熱の途中で、上記素材の表面に冷媒を供給して、素材の表面を例えば共析点温度(723℃)よりも低い温度に冷却することが望ましい。 Furthermore, it is desirable to supply a coolant to the surface of the material during the rapid heating to cool the surface of the material to a temperature lower than the eutectoid temperature (723 ° C.), for example.
具体的には、上記動力伝達部材としては、例えば、歯車、スプロケット、スプライン等が挙げられ、素材としては肌焼き鋼が使用される。浸炭処理手段としては、ガス浸炭あるいはプラズマ浸炭等が適宜利用され、浸炭処理能率および浸炭の均一性の観点からはプラズマ浸炭が望ましいが、プラズマ浸炭は真空中で行われるためコストと量産性の点から言えばガス浸炭が望ましい。 Specifically, examples of the power transmission member include gears, sprockets, splines, and the like, and case-hardened steel is used as a material. As a carburizing treatment means, gas carburizing or plasma carburizing is appropriately used, and plasma carburizing is desirable from the viewpoint of carburizing efficiency and carburizing uniformity. However, since plasma carburizing is performed in a vacuum, cost and mass productivity are pointed out. Therefore, gas carburization is desirable.
上記焼入れ処理時の加熱は、高周波焼入れであることが望ましい。 The heating during the quenching process is desirably induction quenching.
また、上記浸炭処理をプラズマ浸炭処理により行うと共に、上記焼入れ時に、歯底部の加熱温度が歯当り面の加熱温度より高くなるように上記動力伝達部材の素材を加熱してもよい。上記焼入れ時の加熱は、昇温から均熱、本加熱に亘って歯底部の加熱温度が歯当り面の加熱温度よりも高くなるように設定することが望ましく、また、上記焼入れ時の加熱により浸炭層の最表面部を脱炭し、該最表面部の炭素濃度をその下の炭素濃度より低下させることが望ましい。特に、歯底部における浸炭層の最表面部の炭素濃度がその下の炭素濃度よりも低下せしめられていることが好ましい。そして、上記焼入れの加熱も、高周波焼入れであることが望ましい。 Moreover, while performing the said carburizing process by a plasma carburizing process, the raw material of the said power transmission member may be heated so that the heating temperature of a tooth bottom part may become higher than the heating temperature of a tooth contact surface at the time of the said hardening. The heating at the time of quenching is desirably set so that the heating temperature at the bottom of the tooth becomes higher than the heating temperature at the tooth contact surface from temperature rise to soaking and main heating. It is desirable to decarburize the outermost surface portion of the carburized layer and lower the carbon concentration of the outermost surface portion from the carbon concentration below it. In particular, it is preferable that the carbon concentration of the outermost surface portion of the carburized layer in the tooth bottom portion is lower than the carbon concentration below it. And it is desirable that the heating of the quenching is also an induction quenching.
浸炭処理を施した素材では、浸炭時には炭素の粒界偏析が生じフィルム状のセメンタイトが存在して粒界強度を低下させると考えられるが、本発明に係わる浸炭焼入れ方法におけるように、浸炭処理後例えば高周波加熱によりオーステナイト化温度以上に急速加熱しているため、再結晶により新しい粒界が形成されて粒界強度が向上し、かつオーステナイト結晶粒の微粒化(オーステナイト結晶粒度が#10以上)が実現できるから、スポーリング強度を低下させることなく静破壊強度および耐衝撃強度を向上させることができる。 In carburized materials, it is thought that segregation of carbon grain boundaries occurs during carburizing, and film-like cementite is present, reducing the grain boundary strength. However, as in the carburizing and quenching method according to the present invention, For example, since it is rapidly heated above the austenitizing temperature by high-frequency heating, a new grain boundary is formed by recrystallization, the grain boundary strength is improved, and austenite grain size is reduced (austenite grain size is # 10 or more). Since it is realizable, static fracture strength and impact strength can be improved without reducing the spalling strength.
また、従来のガス浸炭では、表面炭素濃度0.9〜1.0%を目標にしていたが、共析点付近に目標を設定すると、浸炭焼入れ品で比較して約19%の強度向上が図られており、同じ高周波焼入れ条件で比較しても5〜19%の強度向上が確認された。 Further, in the conventional gas carburizing, the target was a surface carbon concentration of 0.9 to 1.0%. However, when the target is set near the eutectoid point, the strength improvement is about 19% compared with the carburized and quenched product. Even when compared under the same induction hardening conditions, an improvement in strength of 5 to 19% was confirmed.
また、亜共析浸炭の場合、急速加熱温度がAc3点未満では素材内部にフェライトが析出して強度が低下し、過共析浸炭の場合、急速加熱温度がAccm点未満では表面浸炭層にセメンタイトが析出して強度が低下し、急速加熱温度が1100℃を超えるとオーステナイト結晶粒が成長して強度が低下するが、本発明の方法では、急速加熱温度をオーステナイト化温度の直上に設定することにより、さらに該急速加熱により、上記素材の表面浸炭部および素材内部がともにオーステナイト化温度以上に加熱されるようにしているので、オーステナイト結晶粒の微細化が図られるとともに、素材内部まで焼入れがなされ、素材内部の硬度も高くなる効果がある。 In the case of hypoeutectoid carburization, when the rapid heating temperature is less than Ac 3 point, ferrite precipitates inside the material and the strength is lowered. In the case of hypereutectoid carburization, if the rapid heating temperature is less than Accm point, the surface carburized layer is formed. Cementite precipitates and the strength decreases, and when the rapid heating temperature exceeds 1100 ° C., austenite crystal grains grow and the strength decreases. In the method of the present invention, the rapid heating temperature is set immediately above the austenitizing temperature. In addition, since the surface carburized portion and the inside of the material are both heated to the austenitizing temperature or more by the rapid heating, the austenite crystal grains can be refined and the inside of the material can be quenched. It has the effect of increasing the hardness inside the material.
さらに、上記急速加熱に際して、素材内部まで焼入れして硬度を高めようとすると、全体加熱を行なうため、素材の表面が比較的長時間高温となり、オーステナイト結晶粒の成長が進み過ぎ、靭性が低下するが、本発明の方法では、上記急速加熱の途中で、上記素材の表面に冷媒を供給して、素材の表面を例えば共析点温度(723℃)よりも低い温度に冷却することにより、素材内部の温度をオーステナイト化温度以上に保ちながら、表面が長時間高温になるのを防止することができ、これにより、素材表面のオーステナイト結晶粒が微細化して(非鍛造品であってもオーステナイト結晶粒度が#10以上)、かつ素材内部まで焼入れがなされ、強靭性が向上する効果がある。 Furthermore, in the above rapid heating, if the hardness is increased by quenching to the inside of the material, the entire surface is heated, so that the surface of the material becomes a high temperature for a relatively long time, the austenite crystal grains grow too much, and the toughness decreases. However, in the method of the present invention, in the course of the rapid heating, a coolant is supplied to the surface of the material, and the surface of the material is cooled to a temperature lower than the eutectoid temperature (723 ° C.), for example. While maintaining the internal temperature at or above the austenitizing temperature, it is possible to prevent the surface from becoming hot for a long time, and as a result, the austenite crystal grains on the surface of the material are refined (even if it is a non-forged product, an austenite crystal) The particle size is # 10 or more) and the material is quenched to improve the toughness.
また、本発明の方法を歯車のような動力伝達部材に適用するに際し、プラズマ浸炭後の焼入れ時に、歯底部の加熱温度が歯当り面の加熱温度よりも高くなるように設定されているので、歯底部の浸炭層において粒界に沿って析出していた炭化物がより多く母相に固溶し、その部分の炭素濃度が高くなることから、焼入れ後の残留オーステナイト量が歯底部で相対的に多くなる。また、歯底部の加熱温度が歯当り面より高く設定されているため、歯底部において該加熱温度からマルテンサイト変態温度にまで冷却される間の時間が長くなり、これも残留オーステナイト量が多くなる原因となる。 In addition, when applying the method of the present invention to a power transmission member such as a gear, at the time of quenching after plasma carburization, the heating temperature of the tooth bottom is set to be higher than the heating temperature of the tooth contact surface. More carbides precipitated along the grain boundaries in the carburized layer at the bottom of the tooth are dissolved in the matrix, and the carbon concentration in that part increases, so the amount of retained austenite after quenching is relatively low at the bottom of the tooth. Become more. Further, since the heating temperature of the tooth bottom portion is set higher than the tooth contact surface, the time during which the tooth bottom portion is cooled from the heating temperature to the martensite transformation temperature becomes longer, which also increases the amount of retained austenite. Cause.
歯底部の浸炭層における適量の残留オーステナイト量は、エッジ部分の耐曲げ破壊強度を向上させる効果を有し、目安として面積率で25〜35%程度残留するのが好ましい。残留オーステナイト量がこれより少ない場合、組織自体の靭性が不足するほか、母相に固溶しきれない炭化物が破壊の起点として多く存在することにもなり、逆にこれより多い場合、組織自体の強度が下がりエッジ部分が変形しやすくなるという問題が生じる。なお、残留オーステナイト量は焼入れ時の加熱温度および高温域での保持時間により適宜調整することができる(高温域での保持時間が長くなるほど炭化物の固溶が進み、残留オーステナイト量が多くなる)。 An appropriate amount of retained austenite in the carburized layer at the bottom of the tooth has an effect of improving the bending fracture strength of the edge portion, and as a guideline, it preferably remains about 25 to 35% in terms of area ratio. If the amount of retained austenite is less than this, the toughness of the structure itself will be insufficient, and there will be many carbides that cannot be dissolved in the matrix as a starting point of fracture. There arises a problem that the strength is lowered and the edge portion is easily deformed. The amount of retained austenite can be adjusted as appropriate according to the heating temperature during quenching and the holding time in the high temperature range (the longer the holding time in the high temperature range, the more solid carbide dissolves and the more the amount of retained austenite increases).
一方、歯当り面における加熱温度は歯底部より低く設定されているので、炭化物の母相への固溶量が少なく、その部分の炭素濃度が歯底部ほど高くならないことから、焼入れ後の残留オーステナイト量が相対的に少ない。また、同じく歯当り面の加熱温度は歯底部より低く設定されているため、歯当り面において該加熱温度からマルテンサイト変態温度にまで冷却される間の時間が短くなり、これも残留オーステナイト量が少なくなる原因となる。 On the other hand, since the heating temperature at the tooth contact surface is set lower than that at the bottom of the tooth, the amount of solid solution of carbide in the parent phase is small and the carbon concentration in that part is not as high as that at the bottom of the tooth. The amount is relatively small. Similarly, since the heating temperature of the tooth contact surface is set lower than the bottom of the tooth, the time during which the tooth contact surface is cooled from the heating temperature to the martensite transformation temperature is shortened, and this also reduces the amount of retained austenite. Causes to decrease.
歯当り面の浸炭層においては、スポーリング強度を確保するため、残留オーステナイト量が少なく所定量の炭化物が粒状に分散した組織であることが好ましく、目安として面積率で5〜15%の残留オーステナイト量となるようにするとよい。残留オーステナイト量がこれより少ないということは、浸炭時に析出した炭化物がほとんど固溶せず網状のまま存在するという可能性が大きいということであり、逆にこれより多いということは、炭化物の固溶が多く析出炭化物量が減るということであり、いずれもスポーリング強度の低下の原因となる。 In the carburized layer on the tooth contact surface, in order to ensure the spalling strength, the amount of retained austenite is preferably small and a structure in which a predetermined amount of carbide is dispersed in a granular form, and as a guide, retained austenite having an area ratio of 5 to 15%. It is good to make it quantity. If the amount of retained austenite is less than this, it means that there is a high possibility that the carbides precipitated during carburizing will hardly dissolve and remain in a net form. This means that the amount of precipitated carbide is reduced, and both cause a decrease in the spalling strength.
なお、歯当り面と歯底部を均一に加熱する通常の焼入れ方法を適用した場合、本発明とは逆に、歯底部における残留オーステナイト量が歯当り面におけるよりも一般的に低くなる。つまり、歯車のような部材に浸炭処理を施す場合、単純な平面形状に近い歯当り面では浸炭層の炭素濃度が相対的に高く、歯底部のように内に入ったような形状の部位では炭素濃度が相対的に低くなり勝ちなためである。 When a normal quenching method for uniformly heating the tooth contact surface and the tooth bottom portion is applied, the amount of retained austenite at the tooth bottom portion is generally lower than that at the tooth contact surface, contrary to the present invention. In other words, when carburizing a member such as a gear, the carbon concentration of the carburized layer is relatively high on the tooth contact surface that is close to a simple planar shape, and in a portion of the shape such as the inside of the tooth bottom, This is because the carbon concentration tends to be relatively low.
焼入れ時の加熱を、昇温から、均熱、本加熱に亘って歯底部の加熱温度が歯当り面の加熱温度よりも高くなるように設定するのは、歯底部の温度を相対的に長い時間高い温度に保つことになり、歯底部の浸炭層における炭化物の固溶を促進する作用を有する。 The heating at the time of quenching is set so that the heating temperature of the bottom of the tooth becomes higher than the heating temperature of the tooth contact surface from the temperature rise to the soaking and the main heating. The temperature is kept high for a long time, and has an action of promoting solid solution of carbide in the carburized layer at the bottom of the tooth.
また、通常、浸炭層の最表面部は過剰浸炭される傾向にあり、浸炭後の最表面部の炭素濃度はその下の炭素濃度より高くなっているが、焼入れ時の高温域での保持がある程度長い時間継続して行われると浸炭層の最表面部が脱炭され、その部分では炭素濃度の低下に伴い粒界脆化が起きにくくなる。したがって、最表面部の脱炭を進める場合は、高温域での保持時間が長くなるように加熱条件を設定する。 Usually, the outermost surface portion of the carburized layer tends to be excessively carburized, and the carbon concentration of the outermost surface portion after carburizing is higher than the carbon concentration below it, but it is retained in a high temperature range during quenching. When it is carried out for a certain long time, the outermost surface portion of the carburized layer is decarburized, and grain boundary embrittlement is less likely to occur as the carbon concentration decreases in that portion. Therefore, when the decarburization of the outermost surface portion is advanced, the heating condition is set so that the holding time in the high temperature region becomes long.
そして、焼入れ時の加熱を、昇温から、均熱、本加熱に亘って歯底部の加熱温度が歯当り面の加熱温度よりも高くなるように設定する場合、歯底部の方が高い温度に長時間保持されることになり、特に歯底部浸炭層の最表面部において炭素濃度の低下が大きく、歯底部のエッジ部分の破壊強度が向上する。脱炭は例えば表面から20μmまでの最表面部の炭素濃度が共析点未満、特に0.6〜0.75%程度になるようにするとよい。 When the heating at the time of quenching is set so that the heating temperature of the tooth bottom portion is higher than the heating temperature of the tooth contact surface from the temperature rise to the soaking and the main heating, the tooth bottom portion is set to a higher temperature. It will be held for a long time, and in particular, the carbon concentration is greatly reduced at the outermost surface portion of the bottom carburized layer, and the fracture strength of the edge portion of the bottom is improved. Decarburization is preferably performed such that the carbon concentration in the outermost surface portion from the surface to 20 μm is less than the eutectoid point, particularly about 0.6 to 0.75%.
歯底部の加熱温度が歯当り面の加熱温度よりも高くなるようにするための具体的加熱手段としては、焼入れの分やで周知の高周波誘導加熱が好ましく、その周波数および出力等を調整することにより、1本のコイルで上記部位別の加熱温度設定を容易に実現することができる。なお、高周波誘導加熱においては、部材表面は比較的短時間で所定の温度に上昇して再結晶を起こし、これに伴い結晶粒が微細化されるとともに、加熱前に結晶粒界に偏析していた不純物が粒内に固溶し、炭化物も粒内に固溶するが固溶しない分は分断され粒状になる。 As specific heating means for making the heating temperature of the tooth bottom portion higher than the heating temperature of the contact surface, well-known high-frequency induction heating is preferable for the amount of quenching, and adjusting the frequency, output, etc. Thus, the heating temperature setting for each region can be easily realized with one coil. In high-frequency induction heating, the surface of the member rises to a predetermined temperature in a relatively short time and causes recrystallization. As a result, the crystal grains are refined and segregated at the grain boundaries before heating. The impurities are dissolved in the grains, and the carbides are also dissolved in the grains, but the parts that are not dissolved are divided and become granular.
本発明によれば、浸炭処理後オーステナイト化温度の直上に急速加熱しているため、再結晶により新しい粒界が形成されて粒界強度が向上し、かつオーステナイト結晶粒の微粒化(オーステナイト結晶粒度が#10以上)が実現できる。その結果、スポーリング強度を低下させることなく静破壊強度および耐衝撃強度を向上させることができる。 According to the present invention, after the carburizing treatment, rapid heating is performed immediately above the austenitizing temperature, so that a new grain boundary is formed by recrystallization, the grain boundary strength is improved, and austenite grain size is reduced (austenite grain size). Is # 10 or higher). As a result, the static fracture strength and the impact resistance strength can be improved without reducing the spalling strength.
また、上記素材の表面浸炭部および素材内部がともにオーステナイト化温度以上に加熱されるようにしているので、素材内部まで焼入れがなされ、素材内部の硬度も高くなる効果がある。 Further, since both the surface carburized portion of the material and the inside of the material are heated to the austenitizing temperature or higher, the inside of the material is quenched, and the hardness inside the material is increased.
さらに、浸炭処理における表面炭素濃度を共析点付近(0.6〜0.9%)に設定しているので、浸炭焼入れ品で比較して強度向上を図ることができる。 Furthermore, since the surface carbon concentration in the carburizing treatment is set in the vicinity of the eutectoid point (0.6 to 0.9%), the strength can be improved as compared with carburized and quenched products.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
使用した素材は、C:0.20%,Si:0.08%,Mn:0.75%,P:0.016%,S:0.026%,Cr:1.02%,Mo:0.42%,Al:0.024%,残部Feの肌焼き鋼素材からなる非鍛造品であるが、結晶粒微細化元素としてNbを添加した方が良い。そして、実機でのバラツキ要因(歯当り状態、他部品の破損)の影響を回避するために、図3に示すような寸法を有する試験片について基礎的試験(三点曲げ試験)により評価を行なった。 The materials used were C: 0.20%, Si: 0.08%, Mn: 0.75%, P: 0.016%, S: 0.026%, Cr: 1.02%, Mo: 0 .42%, Al: 0.024%, non-forged product made of case-hardened steel material with the remaining Fe, but it is better to add Nb as a grain refinement element. Then, in order to avoid the influence of variation factors (tooth contact state, damage to other parts) in the actual machine, a test piece having dimensions as shown in FIG. 3 is evaluated by a basic test (three-point bending test). It was.
先ず上記試験片に対して、オーステナイト化温度以上の温度でのガス浸炭処理および焼入れを施す。浸炭深さはスポーリング強度を確保するため1.2mmを目標とし、表面炭素濃度は、共析点以下の0.7%(図4の条件a)と、従来の浸炭焼入れと同様の1.0%(図4の条件b)を目標とした。 First, the test specimen is subjected to gas carburization treatment and quenching at a temperature equal to or higher than the austenitizing temperature. The carburization depth is set to 1.2 mm in order to ensure the spalling strength, and the surface carbon concentration is 0.7% below the eutectoid point (condition a in FIG. 4), which is the same as in conventional carburizing and quenching. The target was 0% (condition b in FIG. 4).
次に高周波焼入れを施すが、素材の表面および内部を焼入れ組織とし、かつ表面のオーステナイト結晶粒度を変化させるため、図5に示すようなヒートパターンを設定した。高周波処理設備は400kHzマシンと10kHzマシンとを用意し、出力と時間の調整により得られた温度測定結果を下記の表1に示す。 Next, induction hardening was performed, but a heat pattern as shown in FIG. 5 was set in order to change the surface and inside of the material to a quenched structure and change the austenite grain size of the surface. Table 1 below shows the temperature measurement results obtained by adjusting the output and time by preparing a 400 kHz machine and a 10 kHz machine.
このようにして浸炭処理と高周波焼入れとを施された試験片に対して、図6に示す三点曲げ試験機を用いて破断荷重を測定した。試験条件を下記の表2に示す。 With respect to the test piece subjected to the carburizing treatment and induction hardening in this way, the breaking load was measured using a three-point bending tester shown in FIG. The test conditions are shown in Table 2 below.
浸炭処理と高周波焼入れの組み合わせごとの試験片の冶金学的特性の調査結果および三点曲げ試験(N=3)における破断荷重平均値を下記の表3に示す。 Table 3 below shows the investigation results of the metallurgical characteristics of the test pieces for each combination of the carburizing treatment and the induction hardening and the average breaking load in the three-point bending test (N = 3).
(1) 基礎試験結果:オーステナイト結晶粒度と三点曲げ破断荷重との関係を図7示す。従来の浸炭焼入れ品に対して最大50%の破断荷重の向上が認められた。 (1) Basic test results: FIG. 7 shows the relationship between the austenite grain size and the three-point bending fracture load. An improvement in breaking load of up to 50% over the conventional carburized and quenched product was observed.
(2) 浸炭条件検討結果:表面炭素濃度を1%から、粒界脆化原因となるセメンタイトの析出しない共析点以下の0.7%とすることにより、浸炭焼入れ品の強度は約19%向上しており、同じ高周波条件においても5〜19%の強度向上が確認された。 (2) Results of carburizing condition examination: By setting the surface carbon concentration from 1% to 0.7% below the eutectoid point at which cementite that causes grain boundary embrittlement does not precipitate, the carburized and quenched product has a strength of about 19%. It was confirmed that the strength was improved by 5 to 19% even under the same high frequency conditions.
(3) 高周波焼入れ条件検討結果:高周波加熱最高温度とオーステナイト結晶粒度との関係を図8に示す。短時間加熱においても加熱温度の上昇にしたがって結晶粒の粗大化は避けられないが、加熱温度をオーステナイト化温度直上の温度領域に設定した場合、浸炭焼入れでは困難なオーステナイト結晶粒度が#10以上の結晶粒の微細化が可能になった。そして、この試験片は、芯部(素材内部)が低炭素鋼からなり、表面部(表面浸炭部)が浸炭処理により中・高炭素鋼と同様の炭素濃度を有している。 (3) Induction quenching examination results: Fig. 8 shows the relationship between the maximum induction heating temperature and the austenite grain size. Even in short-time heating, the coarsening of crystal grains is inevitable as the heating temperature rises. However, when the heating temperature is set in the temperature range immediately above the austenitizing temperature, the austenite grain size, which is difficult to be carburized and quenched, is # 10 or more. Crystal grain refinement became possible. And as for this test piece, a core part (material inside) consists of low carbon steel, and the surface part (surface carburized part) has the carbon concentration similar to medium and high carbon steel by carburizing process.
次に、図1に示すようなワークW(ピニオン)に対して浸炭処理を施した後、高周波焼入れを施す場合の方法について説明する。 Next, a method in the case of subjecting the workpiece W (pinion) as shown in FIG. 1 to carburizing and then induction hardening will be described.
高周波焼入れは短時間急速加熱であるから、オーステナイト結晶粒が微細であるが、芯部まで硬度を必要とするものに対しては表面のみでなく全体加熱を行なうため、ワークWの表面が比較的長時間高温となり、結晶粒の成長が進み過ぎ、靭性が低下する。そこで、本実施例では、予熱工程と本加熱工程との間に、ガス(Ar,N2)による表面急冷工程を追加することにより、図9に示すように、芯部はオーステナイト化温度直上の温度を保ちつつ、表面のオーステナイト結晶粒の微細化を図っている。これによって、芯部まで焼入れされるとともに、オーステナイト結晶粒度が#10以上の表面結晶粒が得られる。そして、このワークWは、芯部が低炭素鋼からなり、表面部が浸炭処理により中・高炭素鋼と同様の炭素濃度を有している。 Since induction hardening is rapid heating for a short time, the austenite crystal grains are fine. However, the surface of the workpiece W is relatively comparative because not only the surface but also the entire surface is heated for those requiring hardness to the core. It becomes a high temperature for a long time, the crystal grain grows too much, and the toughness decreases. Therefore, in this embodiment, by adding a surface quenching step with gas (Ar, N 2 ) between the preheating step and the main heating step, the core portion is just above the austenitizing temperature as shown in FIG. While maintaining the temperature, the surface austenite crystal grains are miniaturized. Thus, surface crystal grains having an austenite grain size of # 10 or more are obtained while quenching to the core. And as for this workpiece | work W, a core part consists of low carbon steel, and the surface part has the carbon concentration similar to medium and high carbon steel by carburizing process.
図10はその場合の高周波焼入れ装置を概略的に示す図で、加熱用高周波コイル1、2の間に、図11に示すような多数の冷却用ガスの噴射ノズル3を取り付けたノズルホルダ4が、絶縁性セラミック材5、5を介して装着されている。そして、ワークWをその軸線を中心に回転させながら、図9のヒートパターンに従って高周波焼入れを行なう。
FIG. 10 is a diagram schematically showing an induction hardening apparatus in that case. A nozzle holder 4 having a number of cooling
このように、本実施例では、浸炭処理後高周波加熱によりオーステナイト化温度以上に急速加熱しているため、再結晶により新しい粒界が形成されて粒界強度が向上し、かつオーステナイト結晶粒の微粒化(オーステナイト結晶粒度が#10以上)が実現できるから、スポーリング強度を低下させることなく静破壊強度および耐衝撃強度を向上させることができる。
As described above, in this example, since rapid heating to the austenitizing temperature or higher by high-frequency heating after carburizing treatment, a new grain boundary is formed by recrystallization, the grain boundary strength is improved, and the fine grains of austenite crystal grains (Austenite
本実施例はプラズマ浸炭を前提とした浸炭焼入れ方法に関するものである。 The present embodiment relates to a carburizing and quenching method based on plasma carburizing.
本実施例で使用したワークは、C:0.18%,Si:0.09%,Mn:0.69%,P:0.006%,S:0.021%,Cr:1.02%,Mo:0.39%,Al:0.35%,Nb:0.035%、残部Feの肌焼き鋼素材からなる、外径41mmφ、高さ17.6mm、孔径15mmのディファレンシャルギヤのピニオン(図1)であり、これをガス浸炭焼入れしたものを従来例、プラズマ浸炭後高周波焼入れしたものを実施例として、それぞれに対し静破壊試験およびスポーリング試験を行なった。 The workpiece used in this example is C: 0.18%, Si: 0.09%, Mn: 0.69%, P: 0.006%, S: 0.021%, Cr: 1.02% , Mo: 0.39%, Al: 0.35%, Nb: 0.035%, differential gear pinion (outer diameter 41mmφ, height 17.6mm, hole diameter 15mm, made of case-hardened steel material of Fe Fig. 1). A static carburization test and a spalling test were performed on a gas carburized and quenched steel as a conventional example and a plasma carburized and induction hardened steel as an example.
なお、上記従来のガス浸炭焼入れは、表面炭素濃度0.9%を目標とし、(1)920℃、5時間のガス浸炭処理、(2)引き続き860℃で1時間保持後120℃の油焼入れ処理、(3)180℃で再加熱し2時間の焼戻し処理、の各工程からなる。 The above-mentioned conventional gas carburizing and quenching targets a surface carbon concentration of 0.9%, (1) gas carburizing treatment at 920 ° C. for 5 hours, and (2) oil quenching at 120 ° C. after holding at 860 ° C. for 1 hour. It consists of the following steps: (3) reheating at 180 ° C. and tempering for 2 hours.
一方、上記実施例では、プラズマ浸炭は、同じく表面炭素濃度0.9%を目標とし、(1)真空炉内へワークを収容し、真空中で1000℃、10分間の均熱処理、(2)真空炉内へH2ガスを導入して炉内圧を2Torrに調整し、400V,1.5Aの条件でグロー放電し、20分間のクリーンアップ処理、(3)H2ガスを抜きC3H8ガスを導入して炉内圧を3Torrに調整し、360V,2Aの条件でグロー放電し、50分間の浸炭処理、(4)炉内を真空とし72分間の拡散処理後、徐冷、という手順で行ない、冷却後高周波表面焼入れを施し、最後に180℃、2時間の焼戻しを施した。 On the other hand, in the above example, plasma carburization is similarly targeted for a surface carbon concentration of 0.9%, and (1) a workpiece is placed in a vacuum furnace and soaked in a vacuum at 1000 ° C. for 10 minutes, (2) H 2 gas was introduced into the vacuum furnace, the furnace pressure was adjusted to 2 Torr, glow discharge was performed under the conditions of 400 V and 1.5 A, cleanup treatment for 20 minutes, (3) H 2 gas was extracted and C 3 H 8 Introduce gas, adjust furnace pressure to 3 Torr, glow discharge under conditions of 360V, 2A, carburize for 50 minutes, (4) vacuum in the furnace and diffuse for 72 minutes, followed by slow cooling After cooling, induction surface quenching was performed, and finally tempering was performed at 180 ° C. for 2 hours.
実施例の高周波焼入れは、図12に示すように、図示しないモータに接続されて回転自在な治具11と従動回転する治具12との間にワークWを挟持し、その外周位置に高周波コイル13を配置し、下記の表4に示す条件で計42秒間加熱し、加熱後は80℃のオイルを35秒間噴射して冷却した。また、ワークWの表面の温度を調べるため、ワークWの表面各部位A〜E(図13参照)に熱電対14を取り付け、その検出値をスリップリング15および固定支持部16を通じてペンレコーダに記録できるようにした。なお、ワークWの表面部位Aはピニオンギヤのヒール側歯底部(図1のAに対応)、Bはピッチ面(図1のBに対応)、Cは歯底部中央、Dはトウ側歯底部、Eは歯先である。
In the induction hardening according to the embodiment, as shown in FIG. 12, a work W is sandwiched between a
温度測定結果を示す図14を見ると、歯底部の最高加熱温度が高く、特にエッジ部分に高い曲げ応力が掛かるヒール側歯底部Aにおいては、ピッチ面Bに比較すると、余熱、均熱、本加熱の全体に亘り高温に加熱されている。参考までに、ヒール側歯底部Aの温度と時間との関係およびピッチ面Bの温度と時間との関係を単純化して示すと、図15のようになる。 As shown in FIG. 14 showing the temperature measurement results, the maximum heating temperature of the tooth bottom part is high, and particularly in the heel side tooth bottom part A where a high bending stress is applied to the edge part, compared to the pitch surface B, residual heat, soaking, It is heated to a high temperature throughout the heating. For reference, the relationship between the temperature of the heel side tooth bottom portion A and time and the relationship between the temperature of the pitch surface B and time are shown in a simplified manner as shown in FIG.
静破壊試験は、ワークWをディファレンシャルギヤのギヤユニット21に組み込み(図16参照)、出力軸22、23を固定し、ギヤケース24を回転させて捩じり、ワークが破壊するときのトルクを測定するもので、下記の表5に示すように、実施例では従来例に比較して高い静破壊強度(いずれも3個の平均値)が得られた。これは、実施例において、歯底部、特にヒール側歯底部Aが高温に長時間維持されることから炭化物が固溶し、その部分の残留オーステナイトの量が多く炭化物が少なくなり、エッジ部分の靭性が向上し亀裂の伝播が遅れるためと考えられ、また、後述するように最表面部の炭素濃度が低下し亀裂の起点が少なくなっていることも理由の1つと考えられる。なお、ヒール側歯底部Aにおける残留オーステナイトの面積率は平均30%、ピッチ面Bでは平均約10%であった。
In the static fracture test, the workpiece W is incorporated in the differential gear unit 21 (see FIG. 16), the
スポーリング試験は、同じくワークWをディファレンシャルギヤのギヤユニットに組み込み、これをトランスミッションを介してエンジンに連結し、ユニットの一方の出力軸を固定し、トランスミッションへの入力回転数が262rpm、入力トルクが117〜123N・m、ユニットの他方の出力軸の回転数が50rpm、その出力軸トルクが459〜471N・mの条件で行なった。そして、ユニットの振動を常時検出し、振動がある基準値を超えるようになるまでの時間をからそのときのサイクル数を算出し、これをスポーリング寿命とした。表5に示すように、実施例では従来例に比較し大きいスポーリング寿命(いずれも2個の平均値)が得られている。 In the spalling test, similarly, the work W is incorporated into a gear unit of a differential gear, this is connected to the engine via the transmission, one output shaft of the unit is fixed, the input rotation speed to the transmission is 262 rpm, and the input torque is The measurement was performed under the conditions of 117 to 123 N · m, the rotation speed of the other output shaft of the unit was 50 rpm, and the output shaft torque was 459 to 471 N · m. And the vibration of the unit was always detected, the number of cycles at that time was calculated from the time until the vibration exceeded a certain reference value, and this was used as the spalling life. As shown in Table 5, in the example, compared to the conventional example, a spalling life (both average values of both) is obtained.
また、本実施例において、歯底部Aの表面からの深さと炭素濃度との関係を調べたところ、図17(a)に示すように、表面から50μm付近までの最表面部の炭素濃度が低下している。これは、本実施例では、歯底部において炭化物の固溶を促進するため、高周波焼入れの際の加熱としては異例なほど長時間高温度に保持したことから、表面からの脱炭が進むためである。 Further, in this example, when the relationship between the depth from the surface of the root A and the carbon concentration was examined, as shown in FIG. 17A, the carbon concentration in the outermost surface portion from the surface to around 50 μm decreased. is doing. This is because, in this example, in order to promote solid solution of carbides at the bottom of the tooth, it was kept at a high temperature for a long time, which is unusual for heating during induction hardening, so that decarburization from the surface proceeds. is there.
なお、比較例として、実施例の高周波加熱条件に代えて、周波数8.2kHz、出力40kW、加熱時間9秒の条件(この種のピニオンに通常適用されている表面焼入れ条件)で高周波加熱したものでは、高温に保持されている時間が短くなるためか、図7(b)に示すように表面からの脱炭が生じていない。 As a comparative example, instead of the high-frequency heating conditions of the examples, high-frequency heating was performed under conditions of a frequency of 8.2 kHz, an output of 40 kW, and a heating time of 9 seconds (surface quenching conditions normally applied to this kind of pinion). Then, since the time kept at high temperature is shortened, as shown in FIG. 7B, decarburization from the surface has not occurred.
本実施例によれば、歯車等の動力伝達部材を表面焼入れする際、歯底部の加熱温度が歯当り面の加熱温度よりも高くなるように設定することにより、歯底部においてはその靭性を高めエッジ部分の破壊強度を向上させることができ、一方、歯当り面においてはそのスポーリング強度を向上させることができる。 According to the present embodiment, when the power transmission member such as a gear is subjected to surface quenching, the toughness is increased at the bottom of the tooth by setting the heating temperature at the bottom of the tooth to be higher than the heating temperature of the tooth contact surface. The breaking strength of the edge portion can be improved, while the spalling strength can be improved on the tooth contact surface.
また、表面焼入れ時の高温加熱をある程度長い時間継続して浸炭層の最表面部を脱炭する場合、特に高い温度に保持された歯底部において脱炭が進行しやすく、エッジ部分の破壊強度を向上させることができる。 Also, when decarburizing the outermost surface portion of the carburized layer by continuing high-temperature heating during surface quenching for a certain length of time, decarburization tends to proceed especially at the bottom of the tooth maintained at a high temperature, and the fracture strength of the edge portion is increased. Can be improved.
1,2 加熱用高周波コイル
3 冷却用ガスの噴射ノズル
4 ノズルホルダ
5 絶縁性セラミック材
11,12 ワークを保持する治具
13 高周波コイル
14 熱電対
15 スリップリング
21 ディファレンシャルギヤのユニット
22,23 出力軸
24 ディファレンシャルギヤのギヤケース
W ワーク(ディファレンシャルギヤのピニオン)
DESCRIPTION OF
Claims (6)
上記第一工程の後、オーステナイト化温度未満に冷却する第二工程と、
上記第二工程で冷却された素材の表面浸炭部および素材内部をオーステナイト化温度の直上に急速加熱する第三工程と、
上記第三工程に続いて焼入れ処理を施す第四工程と、を含むことを特徴とする浸炭焼入れ方法。 A first step of performing a carburizing process in which the material of the power transmission member made of low-carbon steel and having tooth portions formed at equal intervals is heated to an austenitizing temperature or higher so that the surface carbon concentration becomes 0.6 to 0.9%. ,
After the first step, a second step of cooling below the austenitizing temperature,
A third step of rapidly heating the surface carburized portion of the material cooled in the second step and the inside of the material immediately above the austenitizing temperature;
A carburizing and quenching method comprising: a fourth step of performing a quenching process subsequent to the third step.
6. The carburizing and quenching method according to claim 5, wherein the outermost surface portion of the carburized layer in the tooth bottom portion is decarburized by heating at the time of quenching, and the carbon concentration of the outermost surface portion is made lower than the carbon concentration below it. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004302663A JP4079139B2 (en) | 1994-03-29 | 2004-10-18 | Carburizing and quenching method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8413594 | 1994-03-29 | ||
JP2004302663A JP4079139B2 (en) | 1994-03-29 | 2004-10-18 | Carburizing and quenching method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22660394A Division JP3697725B2 (en) | 1994-03-29 | 1994-09-21 | Carburized and hardened power transmission member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005048292A true JP2005048292A (en) | 2005-02-24 |
JP4079139B2 JP4079139B2 (en) | 2008-04-23 |
Family
ID=34276902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004302663A Expired - Lifetime JP4079139B2 (en) | 1994-03-29 | 2004-10-18 | Carburizing and quenching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4079139B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119825A (en) * | 2005-10-26 | 2007-05-17 | High Frequency Heattreat Co Ltd | Surface-quenched steel and method for quenching surface of steel |
WO2007102306A1 (en) * | 2006-03-09 | 2007-09-13 | Ntn Corporation | Method of high-frequency quenching, high-frequency quenching apparatus, and product of high-frequency quenching |
WO2008105209A1 (en) | 2007-02-27 | 2008-09-04 | Ntn Corporation | Component for constant velocity universal joint and method for manufacturing the component |
JP2008280610A (en) * | 2007-04-09 | 2008-11-20 | Daido Steel Co Ltd | Carburized and high-frequency hardened part having high strength |
WO2014203610A1 (en) * | 2013-06-20 | 2014-12-24 | アイシン・エィ・ダブリュ株式会社 | Gear and process for producing same |
CN108396113A (en) * | 2018-04-17 | 2018-08-14 | 桐乡市恒泰精密机械有限公司 | The heat treatment special and its heat treatment process of automobile air conditioner compressor eccentric shaft |
JP2020007603A (en) * | 2018-07-06 | 2020-01-16 | マツダ株式会社 | Carburized quenching device and carburized quenching method |
CN114058827A (en) * | 2021-11-26 | 2022-02-18 | 西安煤矿机械有限公司 | Method for controlling hardness of spline after gear carburization integral quenching |
-
2004
- 2004-10-18 JP JP2004302663A patent/JP4079139B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119825A (en) * | 2005-10-26 | 2007-05-17 | High Frequency Heattreat Co Ltd | Surface-quenched steel and method for quenching surface of steel |
JP4708158B2 (en) * | 2005-10-26 | 2011-06-22 | 高周波熱錬株式会社 | Surface hardened steel and surface hardening method of steel |
WO2007102306A1 (en) * | 2006-03-09 | 2007-09-13 | Ntn Corporation | Method of high-frequency quenching, high-frequency quenching apparatus, and product of high-frequency quenching |
WO2008105209A1 (en) | 2007-02-27 | 2008-09-04 | Ntn Corporation | Component for constant velocity universal joint and method for manufacturing the component |
US8273188B2 (en) | 2007-02-27 | 2012-09-25 | Ntn Corporation | Constant velocity universal joint component and manufacturing method thereof |
JP2008280610A (en) * | 2007-04-09 | 2008-11-20 | Daido Steel Co Ltd | Carburized and high-frequency hardened part having high strength |
WO2014203610A1 (en) * | 2013-06-20 | 2014-12-24 | アイシン・エィ・ダブリュ株式会社 | Gear and process for producing same |
JPWO2014203610A1 (en) * | 2013-06-20 | 2017-02-23 | アイシン・エィ・ダブリュ株式会社 | Gear and manufacturing method thereof |
CN108396113A (en) * | 2018-04-17 | 2018-08-14 | 桐乡市恒泰精密机械有限公司 | The heat treatment special and its heat treatment process of automobile air conditioner compressor eccentric shaft |
JP2020007603A (en) * | 2018-07-06 | 2020-01-16 | マツダ株式会社 | Carburized quenching device and carburized quenching method |
JP7163642B2 (en) | 2018-07-06 | 2022-11-01 | マツダ株式会社 | Carburizing and quenching equipment and carburizing and quenching method |
CN114058827A (en) * | 2021-11-26 | 2022-02-18 | 西安煤矿机械有限公司 | Method for controlling hardness of spline after gear carburization integral quenching |
CN114058827B (en) * | 2021-11-26 | 2023-05-26 | 西安煤矿机械有限公司 | Method for controlling hardness of spline after gear carburization integral quenching |
Also Published As
Publication number | Publication date |
---|---|
JP4079139B2 (en) | 2008-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014077198A (en) | Method for manufacturing carburization steel member | |
JP5135558B2 (en) | Induction hardened steel, induction hardened rough shape, method for producing the same, and induction hardened steel parts | |
JP3697725B2 (en) | Carburized and hardened power transmission member | |
JP2000239744A (en) | Heat treatment method for hollow cylindrical work | |
JP2005163173A (en) | Gear part and method of producing thereof | |
JP4771745B2 (en) | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft | |
JP4079139B2 (en) | Carburizing and quenching method | |
JP4676993B2 (en) | Bush making | |
JP3699773B2 (en) | Induction hardening method | |
KR100317712B1 (en) | Carburizing heat treatment method and carburizing heat transfer member | |
JP4208426B2 (en) | Induction hardening method and bearing parts | |
JP5582855B2 (en) | Manufacturing method of machine structural parts | |
JP2000129347A (en) | Production of high strength parts | |
JPH06172867A (en) | Production of gear excellent in impact fatigue life | |
JPH11131176A (en) | Induction hardened parts and production thereof | |
JP7270343B2 (en) | Method for manufacturing mechanical parts | |
JP2001011533A (en) | Heat treatment of heat resistant steel | |
JP4757831B2 (en) | Induction hardening part and manufacturing method thereof | |
JP5130150B2 (en) | Induction hardening method and bearing parts | |
JP6447064B2 (en) | Steel parts | |
JPH08267167A (en) | Production of cast iron gear | |
JPH0770646A (en) | Production of gear | |
JPH1018020A (en) | Heat treatment for steel | |
JP7532846B2 (en) | Manufacturing method of steel parts | |
JPH09235620A (en) | Induction hardening method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140215 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |