JP2005044677A - Conductive particle of detailed particle size - Google Patents
Conductive particle of detailed particle size Download PDFInfo
- Publication number
- JP2005044677A JP2005044677A JP2003278686A JP2003278686A JP2005044677A JP 2005044677 A JP2005044677 A JP 2005044677A JP 2003278686 A JP2003278686 A JP 2003278686A JP 2003278686 A JP2003278686 A JP 2003278686A JP 2005044677 A JP2005044677 A JP 2005044677A
- Authority
- JP
- Japan
- Prior art keywords
- plating layer
- buffer
- alloy
- particles
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Wire Bonding (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、表面に金属を被覆した導電性粒子であって、特に積層間隔の小さい積層型電子部品や、電極間距離の短い液晶等の電極部を構成する導電フィラーとして好適に使用できる微細粒径の導電性粒子に関する。 The present invention is a conductive particle whose surface is coated with metal, and in particular, a fine particle that can be suitably used as a conductive filler constituting an electrode part of a laminated electronic component having a small lamination interval or a liquid crystal having a short inter-electrode distance. Relates to conductive particles having a diameter.
小型化の進む電子機器には積層型電子部品が多く用いられている。この積層型電子部品の代表的なものとして、積層型コンデンサーやインダクタがある。これらは、磁性体層を導電性粉末からなる導電体層とともに積層し、一体焼結することによって作られる。また、液晶等の電極部には、導電性粒子を圧着によって電極間で変形させ、特定の電極間あるいは方向で通電させる異方性導電フィラーが使用される。圧着変形を受ける導電性粒子の場合、基材を変形能の良好な物質で構成するとともに、その最外層には、圧着時に割れや剥離が起こらないような導電性皮膜を形成する必要がある。 Many stacked electronic components are used in electronic devices that are becoming smaller. Typical examples of such multilayer electronic components include multilayer capacitors and inductors. These are produced by laminating a magnetic layer together with a conductive layer made of a conductive powder and integrally sintering. In addition, an anisotropic conductive filler is used for an electrode portion of liquid crystal or the like, in which conductive particles are deformed between electrodes by pressure bonding, and current is passed between specific electrodes or directions. In the case of conductive particles that undergo crimping deformation, it is necessary to form the base material with a material having good deformability and to form a conductive film on the outermost layer so that cracking and peeling do not occur during crimping.
下記特許文献1には、耐圧着性に優れた導電性粒子として、樹脂を含む基材粒子と、その上に被覆された厚さ0.01〜0.1μmのNi,Ag,Cu,Alまたはそれらの合金(Ni−Pを除く)を含む緩衝層と、その上に被覆されたAu層とを有する導電性粒子が記載されている。緩衝層を介在させることで最外層の高価なAuの膜厚を低減することができ、かつ、圧着時においてAu層の割れや剥離を効果的に防止できるという。この被覆構造は、下記特許文献2に開示された粉末スパッタリング法によって実現された。従来の無電解めっき法の場合には、絶縁物である樹脂層と最外層のAu層との間にNi−P層を介在させる必要があり、このNi−P層は脆いため、耐圧着性が要求される用途への適用に問題があった。この点、特許文献1の導電性粒子は耐圧着性の問題を解消し、積層型電子部品の信頼性向上に寄与したものである。 In the following Patent Document 1, as conductive particles having excellent pressure adhesion, Ni, Ag, Cu, Al having a thickness of 0.01 to 0.1 μm coated with base particles containing a resin, or Conductive particles are described having a buffer layer containing these alloys (except Ni-P) and an Au layer coated thereon. By interposing the buffer layer, it is possible to reduce the thickness of the expensive Au of the outermost layer, and to effectively prevent the Au layer from cracking and peeling at the time of pressure bonding. This coating structure was realized by the powder sputtering method disclosed in Patent Document 2 below. In the case of the conventional electroless plating method, it is necessary to interpose a Ni-P layer between the insulating resin layer and the outermost Au layer, and since this Ni-P layer is brittle, it is pressure resistant. However, there was a problem in the application to the use that is required. In this regard, the conductive particles of Patent Document 1 have solved the problem of pressure-resistant adhesion and contributed to improving the reliability of the multilayer electronic component.
昨今では、電子部品の小型化・高密度化の要求により、積層間隔あるいは電極間隔の更なる低減が求められている。これに伴い、粒径が5μm,4μm,あるいは3μm以下といった極めて微細な導電性粒子の出現が待たれている。特許文献1に記載の導電性粒子は導電性および耐食性が非常に良好なAuを最表層に有している。Auは比重が重いため、比重の軽い樹脂からなる基材粒子の粒径を小さくすると、均一なめっきを施すのに多量のAuが必要となり、経済性を損なう。発明者の検討の結果、平均粒径が5μm以下の樹脂粒子粉末に特許文献1の技術を適用することは実用的に困難であることがわかった。 In recent years, due to the demand for miniaturization and higher density of electronic components, further reduction of the stacking interval or the electrode spacing is required. Along with this, the appearance of extremely fine conductive particles having a particle size of 5 μm, 4 μm, or 3 μm or less is awaited. The conductive particles described in Patent Document 1 have Au with very good conductivity and corrosion resistance on the outermost layer. Since Au has a high specific gravity, if the particle diameter of the base particles made of a resin having a low specific gravity is made small, a large amount of Au is required to perform uniform plating, which impairs economic efficiency. As a result of the inventors' investigation, it has been found that it is practically difficult to apply the technique of Patent Document 1 to resin particle powder having an average particle size of 5 μm or less.
本発明は、上記した電子部品の小型化・高密度化のニーズに対応できる微細粒径の導電性粒子であって、圧着して用いても割れや剥離が起こりにくく安定した導電性を示すものを提供することを目的とする。 The present invention is a conductive particle having a fine particle size that can meet the needs for downsizing and increasing the density of electronic components as described above, and exhibits stable conductivity that is resistant to cracking and peeling even when used under pressure. The purpose is to provide.
発明者の検討の結果、粒径が5μm以下、あるいは4μm以下、更には3μm以下という微細な基材粒子表面に導電性物質を被覆する場合、Auのような比重の重い金属ではなく、比較的比重の軽い金属を用いると被覆厚さをあまり大きくすることなく均一な被覆が可能であることがわかった。しかし、Auは本来耐食性,加工性,導電性に極めて優れた金属であり、最外層のAuを単に他の貴金属に置き換えるだけでは耐食性,導電性,耐圧着性の全てに優れた微細な導電性粒子を安定して得ることは困難であった。そこで発明者は詳細な研究を行い、「Fe基またはNi基耐食合金からなる緩衝めっき層 + Pd(パラジウム)またはPd合金からなる最外層」という被覆構造を採用したとき、上記のような微細粒子を基材に用いた場合にも、優れた耐食性,導電性,耐圧着性を付与することができることを見出した。本発明はこの知見に基づいて完成したものである。 As a result of the inventor's study, when a conductive material is coated on the surface of a fine substrate particle having a particle size of 5 μm or less, or 4 μm or less, and further 3 μm or less, it is not a heavy metal such as Au, It was found that uniform coating is possible without increasing the coating thickness when using a metal with a light specific gravity. However, Au is inherently excellent in corrosion resistance, workability, and conductivity. By simply replacing Au in the outermost layer with other noble metals, fine conductivity with excellent corrosion resistance, conductivity, and pressure resistance is achieved. It was difficult to obtain particles stably. Therefore, when the inventor conducted detailed research and adopted a coating structure of “buffer plating layer made of Fe-based or Ni-based corrosion-resistant alloy + outermost layer made of Pd (palladium) or Pd alloy”, the above fine particles It has been found that excellent corrosion resistance, electrical conductivity, and pressure resistance can be imparted even when using as a base material. The present invention has been completed based on this finding.
すなわち、上記目的は、粒径0.5〜5μmの基材粒子の表面に、平均膜厚0.01〜0.1μmのFe基またはNi基耐食合金からなる緩衝めっき層を有し、前記緩衝めっき層の上に平均膜厚0.01〜0.1μmのPdめっき層またはPd合金めっき層を有する微細粒径の導電性粒子によって達成される。
ここで、基材粒子が真球状でない場合の粒径は最大径によって表される。Fe基合金およびNi基合金とは、合金を構成する元素のうち最も含有量の多い元素が、それぞれFeおよびNiである合金をいう。耐食合金とは、その合金からなる板状試験片についてJIS Z 2371に準拠した塩水噴霧試験を行ったとき、試験前後の質量変化がFe−13質量%Cr合金よりも小さいものをいう。Pd合金とは、原子比でPdが50%以上含まれる合金をいう。
That is, the object is to have a buffer plating layer made of an Fe-based or Ni-based corrosion-resistant alloy having an average film thickness of 0.01 to 0.1 μm on the surface of substrate particles having a particle size of 0.5 to 5 μm, and the buffer This is achieved by conductive particles having a fine particle diameter having a Pd plating layer or a Pd alloy plating layer having an average film thickness of 0.01 to 0.1 μm on the plating layer.
Here, the particle diameter in the case where the base particle is not spherical is represented by the maximum diameter. The Fe-based alloy and Ni-based alloy refer to alloys in which the elements having the highest content among the elements constituting the alloy are Fe and Ni, respectively. The corrosion resistant alloy refers to a plate-like test piece made of the alloy, which has a smaller mass change before and after the test than that of the Fe-13 mass% Cr alloy when a salt spray test based on JIS Z 2371 is performed. A Pd alloy refers to an alloy containing 50% or more of Pd by atomic ratio.
上記導電性粒子において、基材粒子が、シリカ粒子またはジビニルベンゼン樹脂系粒子であるものが提供される。 In the conductive particles, the base particles are silica particles or divinylbenzene resin-based particles.
また、上記導電性粒子において、緩衝めっき層が、i) Cr:13〜30質量%,Ni:3〜30質量%を含むFe基耐食合金からなるもの、ii) Mo:20〜35質量%,Fe:2〜10質量%を含むNi基耐食合金からなるもの、iii) Cr:10〜25質量%,Mo:3〜20質量,Fe:2〜25質量%を含むNi基耐食合金からなるものが、それぞれ提供される。 Further, in the above conductive particles, the buffer plating layer is made of i) Cr: 13-30% by mass, Ni: Fe-based corrosion resistant alloy containing 3-30% by mass, ii) Mo: 20-35% by mass, Fe: made of Ni-based corrosion resistant alloy containing 2 to 10% by mass, iii) Cr: made of Ni-based corrosion resistant alloy containing 10 to 25% by mass, Mo: 3 to 20% by mass, Fe: 2 to 25% by mass Are provided respectively.
また、上記導電性粒子において、緩衝めっき層およびPdめっき層がスパッタリング法により形成されたものが提供される。 Moreover, the said electroconductive particle WHEREIN: The thing in which the buffer plating layer and the Pd plating layer were formed by sputtering method is provided.
上記本発明の導電性粒子は、粒径5μm以下、あるいは4μm以下、更には3μm以下といった微細粒径の基材に、導電性物質を安定的に被覆したものである。従来、このような微細な導電性粒子を得ることは困難であったところ、本発明の導電性粒子は工業的な製造が可能であり、以下のメリットを有する。
[1] 粒径が小さいため、この粒子で構成される粉末は、積層間隔や電極間距離を従来よりも小さくしたいという高密度電子部品のニーズに対応することができる。
[2] 「Fe基またはNi基耐食合金からなる緩衝めっき層 + PdまたはPd合金からなる最外層」という特定厚さの被覆構造としたことにより、粒径が小さいにもかかわらず、圧着時における被覆層の割れや剥離に対する抵抗力が高い。すなわち、耐圧着性に優れる。
[3] 前記被覆構造としたことにより、Auめっき層を有しないにもかかわらず、耐食性に優れ、かつ十分な導電性が得られる。
[4] Auめっき層を形成する必要がないため、素材コストが安い。
[5] 無電解めっき法を使用する必用がないので、廃液による環境悪化が生じない。
The conductive particles of the present invention are those in which a conductive material is stably coated on a substrate having a fine particle diameter of 5 μm or less, 4 μm or less, and further 3 μm or less. Conventionally, it has been difficult to obtain such fine conductive particles, but the conductive particles of the present invention can be industrially produced and have the following merits.
[1] Since the particle size is small, the powder composed of these particles can meet the needs of high-density electronic components in which the stacking interval and interelectrode distance are desired to be smaller than before.
[2] By adopting a coating structure with a specific thickness of “buffer plating layer made of Fe-base or Ni-base corrosion-resistant alloy + outermost layer made of Pd or Pd alloy”, even when the particle size is small, it is High resistance to cracking and peeling of coating layer. That is, it has excellent pressure resistance.
[3] By adopting the coating structure, it has excellent corrosion resistance and sufficient conductivity even though it does not have an Au plating layer.
[4] Since there is no need to form an Au plating layer, the material cost is low.
[5] Since it is not necessary to use the electroless plating method, environmental degradation due to waste liquid does not occur.
本発明の導電性粒子は、基材粒子として粒径5μm以下の微細粒子を採用する。これにより積層間隔あるいは電極間距離の極めて小さい高密度電子部品を構成するのに好適な導電フィラーが提供可能になる。基材粒子の粒径が5μmを超えて大きいと、積層型電子部品の積層間隔を従来より更に小さくすることが困難である。また、そのような粒径の大きい粒子の場合、液晶部品等の電極間距離を従来より更に小さくするためには圧着時に粒子に非常に大きな変形を加える必要があり、この場合、導電皮膜の剥離等を招いて安定した導電性の確保が難しくなる。したがって本発明では粒径5μm以下の微細な基材粒子を使用するが、5μm未満、あるいは4μm以下、更には3μm以下の極めて微細な基材粒子を使用することが一層望ましい。 The conductive particles of the present invention employ fine particles having a particle size of 5 μm or less as substrate particles. As a result, it is possible to provide a conductive filler suitable for constructing a high-density electronic component having a very small stacking interval or interelectrode distance. If the particle diameter of the substrate particles exceeds 5 μm, it is difficult to further reduce the stacking interval of the multilayer electronic component. In addition, in the case of such a large particle, in order to further reduce the distance between electrodes of liquid crystal parts and the like, it is necessary to apply a very large deformation to the particle at the time of pressure bonding. As a result, it becomes difficult to ensure stable conductivity. Therefore, in the present invention, fine substrate particles having a particle size of 5 μm or less are used, but it is more desirable to use extremely fine substrate particles having a particle size of less than 5 μm, 4 μm or less, and further 3 μm or less.
ただし、粒径が0.5μm未満になると粒子どうしの凝集が極めて起こり易いので、基材粒子の1粒ずつに均一なめっきを施すことが難しくなる。また、粒径が小さいほど比表面積が増加するので、めっき量を極めて多くする必要があり、不経済となる。このため、本発明では基材粒子の粒径の下限を0.5μmに規定する。 However, when the particle diameter is less than 0.5 μm, the particles are very likely to aggregate, and it is difficult to uniformly plate the base particles one by one. Moreover, since the specific surface area increases as the particle size decreases, it is necessary to increase the amount of plating extremely, which is uneconomical. For this reason, in the present invention, the lower limit of the particle size of the substrate particles is specified to be 0.5 μm.
基材粒子の材質は、少なくとも常温から100℃までの温度範囲で定形性を有する無機物質または有機物質である必要がある。好ましくは150℃まで、更に好ましくは250℃までの温度範囲で定形性を維持できるものが望ましい。無機物質からなる粒子としては、シリカ粒子が最適である。ガラス粒子その他種々のセラミックス粒子も使用できる。有機物質からなる粒子としては、ジビニルベンゼン樹脂系粒子が好適に使用できる。ベンゾグアナミン樹脂系,アクリル樹脂系,ポリスチレン樹脂系,シリコーン樹脂系,フッ素樹脂系,ウレタン樹脂系などの樹脂粒子も使用できる。 The material of the base particles needs to be an inorganic substance or an organic substance having a regularity at least in a temperature range from room temperature to 100 ° C. Those capable of maintaining the formability in a temperature range of preferably up to 150 ° C, more preferably up to 250 ° C are desirable. Silica particles are optimal as the particles made of an inorganic substance. Glass particles and other various ceramic particles can also be used. As particles made of an organic substance, divinylbenzene resin-based particles can be suitably used. Resin particles such as benzoguanamine resin, acrylic resin, polystyrene resin, silicone resin, fluorine resin, and urethane resin can also be used.
基材粒子の形状は特に制限されない。真球状,粒状,塊状,破砕状,多孔質状,凝集状,フレーク状,スパイク状,フィラメント状,ファイバー状,ウイスカー状など、用途に応じて各種形状の粒子が使用できる。一般的には、使用する際の電気伝導度のバラツキを小さくする上で、できるだけ粒径の揃った真球状の粉末を使用するのが良いと考えられる。 The shape of the substrate particles is not particularly limited. Various shapes of particles can be used depending on the application, such as spherical, granular, massive, crushed, porous, aggregated, flake, spike, filament, fiber, whisker. In general, in order to reduce the variation in electrical conductivity during use, it is considered preferable to use a true spherical powder having a uniform particle size as much as possible.
基材粒子の表面の被覆層をすべてPdまたはPd合金で構成すると高価になるため、最外層のPdまたはPd合金めっき層の下に緩衝めっき層を介在させる。PdまたはPd合金はAuほど耐食性が高くないので、被覆層全体で十分な耐食性を確保するために、緩衝めっき層はFe基またはNi基耐食合金によって構成する。 Since it becomes expensive if the coating layer on the surface of the substrate particles is entirely composed of Pd or Pd alloy, a buffer plating layer is interposed under the outermost Pd or Pd alloy plating layer. Since Pd or Pd alloy is not as corrosion-resistant as Au, the buffer plating layer is made of an Fe-based or Ni-based corrosion-resistant alloy in order to ensure sufficient corrosion resistance in the entire coating layer.
Fe基耐食合金としては、Cr:13〜30質量%,Ni:3〜30質量%を含むものが好適である。この中にはオーステナイト系ステンレス鋼であるSUS304,SUS310S,SUS316,SUS309S,SUS317,SUS321,SUS347等が含まれる。 As the Fe-based corrosion resistant alloy, those containing Cr: 13 to 30% by mass and Ni: 3 to 30% by mass are suitable. These include SUS304, SUS310S, SUS316, SUS309S, SUS317, SUS321, and SUS347, which are austenitic stainless steels.
Ni基耐食合金としては、Mo:20〜35質量%,Fe:2〜10質量%を含むもの、または、Cr:10〜25質量%,Mo:3〜20質量,Fe:2〜25質量%を含むものが好適である。これらの中には、ハステロイ(登録商標)と称される高耐食合金が含まれる。例えば、ハステロイB,ハステロイG,ハステロイC,ハステロイH,ハステロイN,ハステロイX,ハステロイXR等が挙げられる。 Ni-based corrosion resistant alloys include Mo: 20 to 35 mass%, Fe: 2 to 10 mass%, or Cr: 10 to 25 mass%, Mo: 3 to 20 mass%, Fe: 2 to 25 mass% Those containing are preferred. Among these, a high corrosion resistance alloy called Hastelloy (registered trademark) is included. Examples include Hastelloy B, Hastelloy G, Hastelloy C, Hastelloy H, Hastelloy N, Hastelloy X, Hastelloy XR and the like.
従来から行われている無電解めっき法では、このような複雑な合金めっきは不可能であった。真空蒸着法でも、合金を構成する各金属の融点,沸点および高真空下における蒸気圧が各々異なるので、任意組成の合金めっきを行うことは技術的に不可能であった。めっき時の温度が500℃以上となるCVD法等では基材粒子自体が熱影響を受けるので本発明に適用できない。この点、粉末スパッタリング法を用いれば上記のような各種合金を基材粒子の表面に被覆することが可能である。 Such a complex alloy plating is impossible by the electroless plating method conventionally performed. Even in the vacuum deposition method, the melting point, boiling point, and vapor pressure under high vacuum of each metal constituting the alloy are different from each other, so that it is technically impossible to perform alloy plating with an arbitrary composition. A CVD method or the like in which the temperature during plating is 500 ° C. or higher cannot be applied to the present invention because the substrate particles themselves are affected by heat. In this respect, if the powder sputtering method is used, the above various alloys can be coated on the surface of the substrate particles.
緩衝めっき層の平均膜厚は0.01〜0.1μmとすることが好ましい。平均膜厚が0.01μm未満の場合、基材粒子の表面に均一に被覆することが難しく散点状の被覆層となりやすい。この場合、最外層の十分な密着性を確保することができず、導電フィラーとしての電気伝導率は低下する。一方、平均膜厚が0.1μmを超えるとめっき層表面の凹凸が大きくなるために、逆に粒子間の電気抵抗が高くなり、導電フィラーとしての電気伝導率は低下する。
Fe基またはNi基耐食合金はAuに比べ比重が軽いので、比較的少量のめっきによって所定の膜厚にコントロールすることができる。
The average thickness of the buffer plating layer is preferably 0.01 to 0.1 μm. When the average film thickness is less than 0.01 μm, it is difficult to uniformly coat the surface of the substrate particles, and it tends to be a scattered coating layer. In this case, sufficient adhesion of the outermost layer cannot be ensured, and the electrical conductivity as the conductive filler is lowered. On the other hand, when the average film thickness exceeds 0.1 μm, the unevenness on the surface of the plating layer becomes large. On the contrary, the electrical resistance between the particles increases, and the electrical conductivity as the conductive filler decreases.
Since the Fe-based or Ni-based corrosion resistant alloy has a lower specific gravity than Au, it can be controlled to a predetermined thickness by a relatively small amount of plating.
緩衝めっき層の上には最表層としてPdめっき層またはPd合金めっき層を形成する。前述のように、耐食性,加工性,導電性の点からはAuが非常に優れているが、本発明では従来とは異なり微細粒径の基材を用いることから、比重が重く、かつ高価なAuを使用するわけにはいかない。そこで種々検討の結果、前記の緩衝めっき層との組み合わせにおいて、PdまたはPd合金を最表層として被覆することにより、Auめっきの場合と実用的に遜色のない耐食性,導電性,耐圧着性を備え、かつ、Auめっきの場合には得られない微細粒径の導電性粒子が実現できた。 On the buffer plating layer, a Pd plating layer or a Pd alloy plating layer is formed as the outermost layer. As described above, Au is very excellent in terms of corrosion resistance, workability, and conductivity. However, in the present invention, since a substrate having a fine particle diameter is used unlike the conventional one, the specific gravity is heavy and expensive. You can't use Au. Therefore, as a result of various studies, in combination with the buffer plating layer described above, Pd or Pd alloy is coated as the outermost layer, so that it has corrosion resistance, conductivity and pressure resistance that are practically comparable to those of Au plating. In addition, conductive particles having a fine particle size that cannot be obtained in the case of Au plating can be realized.
最表層は高純度Pd(例えば純度99.99質量%以上)からなるPdめっき層とすることができる他、耐ハンダバリヤー性や耐摩耗性等の要求特性に応じてPd合金めっき層とすることもできる。Pd合金としては、Pd−Au合金,Pd−Ag合金,Pd−Cu合金,Pd−Fe合金,Pd−Ni合金,Pd−Pt合金等が挙げられる。PdめっきやPd合金めっきも粉末スパッタリング法により好適に実施できる。 The outermost layer can be a Pd plating layer made of high-purity Pd (for example, a purity of 99.99% by mass or more), and a Pd alloy plating layer according to required characteristics such as solder barrier resistance and wear resistance. You can also. Examples of the Pd alloy include a Pd—Au alloy, a Pd—Ag alloy, a Pd—Cu alloy, a Pd—Fe alloy, a Pd—Ni alloy, and a Pd—Pt alloy. Pd plating and Pd alloy plating can also be suitably performed by a powder sputtering method.
PdまたはPd合金めっき層の平均膜厚は0.01〜0.1μmとすることが好ましい。0.01μm未満では緩衝めっき層の表面全体を覆うめっきが難しく散点状になりやすいため、密着性を強固にすることができず、導電フィラーとしての電気伝導率が不十分となる。一方、平均膜厚が0.1μmを超えて厚くなっても導電フィラーとしての電気伝導率は向上せず、経済性を損ねるだけである。
PdまたはPd合金はAuに比べ比重が軽いので、比較的少量のめっきによって所定の膜厚にコントロールすることができる。
The average film thickness of the Pd or Pd alloy plating layer is preferably 0.01 to 0.1 μm. If the thickness is less than 0.01 μm, it is difficult to cover the entire surface of the buffer plating layer, and it tends to be scattered, so that the adhesion cannot be strengthened, and the electrical conductivity as the conductive filler becomes insufficient. On the other hand, even if the average film thickness exceeds 0.1 μm, the electrical conductivity as the conductive filler is not improved, and only the economy is impaired.
Since Pd or Pd alloy has a lower specific gravity than Au, it can be controlled to a predetermined film thickness by a relatively small amount of plating.
緩衝めっき層と、PdまたはPd合金めっき層を形成するためには、特許文献2に開示される「粉末スパッタリング法」が使用できる。すなわち、回転バレル内に基材粒子の粉末または緩衝めっき層を施した粒子の粉末を入れ、攪拌しながらプラズマ状態に励起された各種金属のスパッタ粒子を粉末に照射すれば、個々の粒子に目的金属または合金を均一に被覆することが可能である。条件としては、例えば、真空度:1×10-3Tor.以下,アルゴンガス流量:5ccm以下,スパッタリング出力:10W/cm2以上,粒子温度:100℃以上とすることが好ましい。 In order to form the buffer plating layer and the Pd or Pd alloy plating layer, the “powder sputtering method” disclosed in Patent Document 2 can be used. That is, if the powder of the base particle or the powder with the buffer plating layer is put in the rotating barrel and the powder is irradiated with sputtered particles of various metals excited to the plasma state while stirring, the individual particles are targeted. It is possible to coat the metal or alloy uniformly. As conditions, for example, the degree of vacuum: 1 × 10 −3 Tor. Hereinafter, it is preferable that the argon gas flow rate is 5 ccm or less, the sputtering output is 10 W / cm 2 or more, and the particle temperature is 100 ° C. or more.
PdまたはPd合金の仕上めっきを行った後に、塗料中における分散性を向上するために、種々のシランカップリング剤またはチタネートカップリング剤等で表面処理を施してもよい。また、塗膜の導電性の経時変化をできるだけ抑えるために、ハイドロキノン,トリエタノールアミン,O−スルホベンズイミドまたはN−オクタデカノイルベンゼンスルホニルアミドなどの酸化防止剤で表面処理を施してもよい。 After finish plating of Pd or Pd alloy, surface treatment may be performed with various silane coupling agents or titanate coupling agents in order to improve dispersibility in the paint. Further, in order to suppress the change in conductivity of the coating film with time, the surface treatment may be performed with an antioxidant such as hydroquinone, triethanolamine, O-sulfobenzimide or N-octadecanoylbenzenesulfonylamide.
〔発明例1〕
平均粒径2μmの球状シリカ粒子粉末を基材として、その粒子の表面に58%Ni−22%Cr−13%Mo−4%Fe−3%W合金(組成は質量%)をめっきして緩衝めっき層を形成した。この合金はハステロイC(商品名)に相当するNi基耐食合金である。次いで緩衝めっき層の上にPdめっき層を形成した。めっき方法は回転バレル内の粉末粒子の表面にスパッタリング法で被覆層を形成する「粉末スパッタリング法」を用いた。めっき条件は、真空度:1×10-3Tor.以下,アルゴンガス流量:5ccm以下,スパッタリング出力:10W/cm2以上,粒子温度:100℃以上とした。途中でターゲットを交換することにより緩衝めっき層の形成とPdめっき層の形成を順次行った。得られためっき粒子の粉末についてSi,NiおよびPdの蛍光X線分析を行い、そのデータに基づいて各めっき皮膜の膜厚を算出した結果、緩衝めっき層の平均膜厚は0.05μm、Pdめっき層の平均膜厚は0.05μmであった。
[Invention Example 1]
Using spherical silica particle powder with an average particle size of 2 μm as a base material, 58% Ni-22% Cr-13% Mo-4% Fe-3% W alloy (composition is mass%) is buffered on the surface of the particles. A plating layer was formed. This alloy is a Ni-based corrosion resistant alloy corresponding to Hastelloy C (trade name). Next, a Pd plating layer was formed on the buffer plating layer. The plating method used was a “powder sputtering method” in which a coating layer was formed by sputtering on the surface of the powder particles in the rotating barrel. The plating conditions are as follows: degree of vacuum: 1 × 10 −3 Tor. Hereinafter, the argon gas flow rate: 5 ccm or less, the sputtering output: 10 W / cm 2 or more, and the particle temperature: 100 ° C. or more. The buffer plating layer and the Pd plating layer were sequentially formed by changing the target in the middle. The obtained powder of plating particles was subjected to X-ray fluorescence analysis of Si, Ni and Pd, and the film thickness of each plating film was calculated based on the data. As a result, the average film thickness of the buffer plating layer was 0.05 μm, Pd The average film thickness of the plating layer was 0.05 μm.
このめっき粒子の粉末を5質量%のエポキシ系樹脂と混合して、厚さ25μmのフィルムに成形した。次いでこのフィルムを熱可塑性ポリエーテルサルホン樹脂を塗布したガラス基板にはさみ、圧力20kg/cm2,温度150℃で15秒間熱圧着した。 The plating particle powder was mixed with 5% by mass of an epoxy resin to form a film having a thickness of 25 μm. Next, this film was sandwiched between glass substrates coated with thermoplastic polyethersulfone resin, and thermocompression bonded at a pressure of 20 kg / cm 2 and a temperature of 150 ° C. for 15 seconds.
熱圧着したフィルムの断面を光学顕微鏡により観察し、耐圧着性を以下の基準で評価した。
(耐圧着性評価)
○:粒子のめっき皮膜に割れ,剥離が認められない。
△:粒子のめっき皮膜に割れが認められるが、剥離は認められない。
×:粒子のめっき皮膜に剥離が認められる。
また、熱圧着後のフィルムについて4端子法で電気抵抗率を測定し、導電性を以下の基準で評価した。
(導電性評価)
○:体積抵抗が5×10-3Ω・cm未満(導電性;良好)
△:体積抵抗が5×10-3Ω・cm〜5×10-1Ω・cm未満(導電性;やや劣る)
×:体積抵抗が5×10-1Ω・cm以上(導電性;劣る)
表1に示すとおり、耐圧着性,導電性とも良好であった。
The cross section of the thermocompression-bonded film was observed with an optical microscope, and pressure resistance was evaluated according to the following criteria.
(Pressure resistant evaluation)
○: No cracking or peeling is observed in the plating film of particles.
(Triangle | delta): Although cracking is recognized by the plating film of particle | grains, peeling is not recognized.
X: Peeling is observed in the plating film of the particles.
Moreover, the electrical resistivity was measured by the 4 terminal method about the film after thermocompression bonding, and the electroconductivity was evaluated by the following references | standards.
(Conductivity evaluation)
○: Volume resistance is less than 5 × 10 −3 Ω · cm (conductivity: good)
Δ: Volume resistance is 5 × 10 −3 Ω · cm to less than 5 × 10 −1 Ω · cm (conductivity; somewhat inferior)
×: Volume resistance is 5 × 10 −1 Ω · cm or more (conductivity; inferior)
As shown in Table 1, both pressure resistance and conductivity were good.
〔発明例2〕
基材に平均粒径1μmの球状シリカ粒子粉末を用い、緩衝めっき層を52%Ni−22%Cr−20%Fe−6%Mo合金(組成は質量%)とした以外、発明例1と同様の方法で実験を行った。緩衝めっき層の上記合金はハステロイG(商品名)に相当するNi基耐食合金である。緩衝めっき層の平均膜厚は0.03μm、Pdめっき層の平均膜厚は0.03μmであった。表1に示すとおり、耐圧着性,導電性とも良好であった。
[Invention Example 2]
Similar to Invention Example 1 except that spherical silica particle powder having an average particle diameter of 1 μm is used as the base material and the buffer plating layer is made of a 52% Ni-22% Cr-20% Fe-6% Mo alloy (composition is mass%). The experiment was carried out by the method. The alloy of the buffer plating layer is a Ni-based corrosion resistant alloy corresponding to Hastelloy G (trade name). The average film thickness of the buffer plating layer was 0.03 μm, and the average film thickness of the Pd plating layer was 0.03 μm. As shown in Table 1, both pressure resistance and conductivity were good.
〔発明例3〕
基材に平均粒径0.5μmの球状シリカ粒子粉末を用い、緩衝めっき層を55%Fe−25%Cr−20%Ni合金(組成は質量%)とした以外、発明例1と同様の方法で実験を行った。緩衝めっき層の上記合金はSUS310Sに相当するFe基耐食合金である。緩衝めっき層の平均膜厚は0.01μm、Pdめっき層の平均膜厚は0.01μmであった。表1に示すとおり、耐圧着性,導電性とも良好であった。
[Invention Example 3]
The same method as Example 1 except that spherical silica particle powder having an average particle size of 0.5 μm is used as the base material, and the buffer plating layer is 55% Fe-25% Cr-20% Ni alloy (composition is mass%). The experiment was conducted. The alloy of the buffer plating layer is an Fe-based corrosion resistant alloy corresponding to SUS310S. The average film thickness of the buffer plating layer was 0.01 μm, and the average film thickness of the Pd plating layer was 0.01 μm. As shown in Table 1, both pressure resistance and conductivity were good.
〔発明例4〕
基材に平均粒径5μmの球状ジビニルベンゼン樹脂系粒子粉末を用い、緩衝めっき層を67%Ni−28%Mo−5%Fe合金(組成は質量%)とした以外、発明例1と同様の方法で実験を行った。緩衝めっき層の上記合金はハステロイB(商品名)に相当するNi基耐食合金である。緩衝めっき層の平均膜厚は0.1μm、Pdめっき層の平均膜厚は0.1μmであった。表1に示すとおり、耐圧着性,導電性とも良好であった。
[Invention Example 4]
The same as Example 1 except that spherical divinylbenzene resin particle powder having an average particle diameter of 5 μm is used as the base material, and the buffer plating layer is a 67% Ni-28% Mo-5% Fe alloy (composition is mass%). The experiment was conducted by the method. The alloy of the buffer plating layer is a Ni-based corrosion resistant alloy corresponding to Hastelloy B (trade name). The average film thickness of the buffer plating layer was 0.1 μm, and the average film thickness of the Pd plating layer was 0.1 μm. As shown in Table 1, both pressure resistance and conductivity were good.
〔発明例5〕
基材に平均粒径4μmの球状ジビニルベンゼン樹脂系粒子粉末を用い、緩衝めっき層を74%Fe−18%Cr−8%Ni合金(組成は質量%)とした以外、発明例1と同様の方法で実験を行った。緩衝めっき層の上記合金はSUS304に相当するFe基耐食合金である。緩衝めっき層の平均膜厚は0.08μm、Pdめっき層の平均膜厚は0.08μmであった。表1に示すとおり、耐圧着性,導電性とも良好であった。
[Invention Example 5]
The same as in Invention Example 1 except that spherical divinylbenzene resin particle powder having an average particle diameter of 4 μm is used as the base material and the buffer plating layer is made of 74% Fe-18% Cr-8% Ni alloy (composition is mass%). The experiment was conducted by the method. The alloy of the buffer plating layer is an Fe-based corrosion resistant alloy corresponding to SUS304. The average film thickness of the buffer plating layer was 0.08 μm, and the average film thickness of the Pd plating layer was 0.08 μm. As shown in Table 1, both pressure resistance and conductivity were good.
〔発明例6〕
基材に平均粒径3μmの球状ジビニルベンゼン樹脂系粒子粉末を用い、緩衝めっき層を68%Fe−18%Cr−12%Ni−2%Mo合金(組成は質量%)とした以外、発明例1と同様の方法で実験を行った。緩衝めっき層の上記合金はSUS316に相当するFe基耐食合金である。緩衝めっき層の平均膜厚は0.06μm、Pdめっき層の平均膜厚は0.06μmであった。表1に示すとおり、耐圧着性,導電性とも良好であった。
[Invention Example 6]
Example of invention, except that spherical divinylbenzene resin particle powder having an average particle diameter of 3 μm is used as the base material, and the buffer plating layer is made of 68% Fe-18% Cr-12% Ni-2% Mo alloy (composition is mass%). The experiment was conducted in the same manner as in 1. The alloy of the buffer plating layer is an Fe-based corrosion resistant alloy corresponding to SUS316. The average film thickness of the buffer plating layer was 0.06 μm, and the average film thickness of the Pd plating layer was 0.06 μm. As shown in Table 1, both pressure resistance and conductivity were good.
〔比較例1〕
基材に平均粒径2μmの球状シリカ粒子粉末を用い、緩衝めっき層の形成を省略して基材粒子表面に直接Pdめっき層を形成した以外、発明例1と同様の方法で実験を行った。Pdめっき層の平均膜厚は0.05μmであった。表1に示すとおり、緩衝めっき層が無いとPdめっき層の密着性が悪く、耐圧着性に劣った。この場合、電気抵抗の測定値は良好であったが、Pd皮膜に剥離が生じているため実際の使用においては局部的な通電不良を起こす恐れがあり、信頼性に欠ける。
[Comparative Example 1]
An experiment was conducted in the same manner as in Invention Example 1 except that spherical silica particle powder having an average particle diameter of 2 μm was used as the base material, the formation of the buffer plating layer was omitted, and the Pd plating layer was directly formed on the base particle surface. . The average film thickness of the Pd plating layer was 0.05 μm. As shown in Table 1, when there was no buffer plating layer, the adhesiveness of the Pd plating layer was poor, and the pressure resistance was poor. In this case, the measured value of the electric resistance was good, but since the Pd film was peeled off, there was a risk of causing a localized current failure in actual use, resulting in lack of reliability.
〔比較例2〕
基材に平均粒径2μmの球状シリカ粒子粉末を用い、最外層のPdめっき層の形成を省略した以外、発明例1と同様の方法で実験を行った。ハステロイC(商品名)に相当する皮膜の平均膜厚は0.05μmであった。表1に示すとおり、Pdめっき層が無いため導電性に劣った。
[Comparative Example 2]
Experiments were performed in the same manner as in Invention Example 1 except that spherical silica particle powder having an average particle diameter of 2 μm was used as the substrate and the formation of the outermost Pd plating layer was omitted. The average film thickness of the film corresponding to Hastelloy C (trade name) was 0.05 μm. As shown in Table 1, the conductivity was inferior because there was no Pd plating layer.
〔比較例3〕
基材に平均粒径2μmの球状シリカ粒子粉末を用いた以外、発明例1と同様の方法で実験を行った。ただし、ハステロイC(商品名)に相当する緩衝めっき層の平均膜厚を0.005μmに調整し、Pdめっき層の平均膜厚を0.005μmに調整した。表1に示すとおり、緩衝めっき層の平均膜厚が本発明規定範囲より薄いことにより、皮膜密着性が低下し、耐圧着性に劣った。またPdめっき層の平均膜厚が本発明規定範囲より薄いことにより、導電性にも劣った。
[Comparative Example 3]
An experiment was performed in the same manner as in Invention Example 1 except that spherical silica particle powder having an average particle diameter of 2 μm was used as the substrate. However, the average film thickness of the buffer plating layer corresponding to Hastelloy C (trade name) was adjusted to 0.005 μm, and the average film thickness of the Pd plating layer was adjusted to 0.005 μm. As shown in Table 1, when the average film thickness of the buffer plating layer was thinner than the specified range of the present invention, the film adhesion decreased and the pressure-resistant adhesion was inferior. Further, since the average film thickness of the Pd plating layer was thinner than the range specified in the present invention, the conductivity was inferior.
〔比較例4〕
基材に平均粒径2μmの球状シリカ粒子粉末を用いた以外、発明例1と同様の方法で実験を行った。ただし、ハステロイC(商品名)に相当する緩衝めっき層の平均膜厚を0.2μmに調整し、Pdめっき層の平均膜厚を0.2μmに調整した。この場合、緩衝めっき層およびPdめっき層の平均膜厚が本発明規定範囲より厚いことにより、めっき表面の凹凸が大きくなった。これに起因して応力が付加された際に皮膜割れが発生し易くなり、また粒子間の接触電気抵抗も大きくなった。このため、表1に示すとおり、耐圧着性および導電性はあまり良好ではなかった。
[Comparative Example 4]
An experiment was performed in the same manner as in Invention Example 1 except that spherical silica particle powder having an average particle diameter of 2 μm was used as the substrate. However, the average film thickness of the buffer plating layer corresponding to Hastelloy C (trade name) was adjusted to 0.2 μm, and the average film thickness of the Pd plating layer was adjusted to 0.2 μm. In this case, when the average film thickness of the buffer plating layer and the Pd plating layer was thicker than the specified range of the present invention, the unevenness of the plating surface was increased. When stress is applied due to this, film cracking easily occurs, and the contact electrical resistance between particles also increases. For this reason, as shown in Table 1, the pressure resistance and conductivity were not very good.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003278686A JP2005044677A (en) | 2003-07-23 | 2003-07-23 | Conductive particle of detailed particle size |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003278686A JP2005044677A (en) | 2003-07-23 | 2003-07-23 | Conductive particle of detailed particle size |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005044677A true JP2005044677A (en) | 2005-02-17 |
Family
ID=34265024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003278686A Withdrawn JP2005044677A (en) | 2003-07-23 | 2003-07-23 | Conductive particle of detailed particle size |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005044677A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009511754A (en) * | 2005-10-26 | 2009-03-19 | ピー アンド アイ コーポレーション | Method of manufacturing powder by uniformly vacuum-depositing metal, alloy and ceramic nanoparticles, and apparatus for manufacturing the same |
JP2010073578A (en) * | 2008-09-19 | 2010-04-02 | Sekisui Chem Co Ltd | Conducting particles, anisotropic conducting material and connecting structure |
WO2011111152A1 (en) * | 2010-03-08 | 2011-09-15 | 積水化学工業株式会社 | Electroconductive particle, anisotropic electroconductive material and connecting structure |
JP2014241278A (en) * | 2013-05-13 | 2014-12-25 | 積水化学工業株式会社 | Conductive particles, conductive material, and connection structure |
-
2003
- 2003-07-23 JP JP2003278686A patent/JP2005044677A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009511754A (en) * | 2005-10-26 | 2009-03-19 | ピー アンド アイ コーポレーション | Method of manufacturing powder by uniformly vacuum-depositing metal, alloy and ceramic nanoparticles, and apparatus for manufacturing the same |
JP2010073578A (en) * | 2008-09-19 | 2010-04-02 | Sekisui Chem Co Ltd | Conducting particles, anisotropic conducting material and connecting structure |
WO2011111152A1 (en) * | 2010-03-08 | 2011-09-15 | 積水化学工業株式会社 | Electroconductive particle, anisotropic electroconductive material and connecting structure |
KR20130015268A (en) * | 2010-03-08 | 2013-02-13 | 세키스이가가쿠 고교가부시키가이샤 | Electroconductive particle, anisotropic electroconductive material and connecting structure |
KR101704856B1 (en) | 2010-03-08 | 2017-02-08 | 세키스이가가쿠 고교가부시키가이샤 | Electroconductive particle, anisotropic electroconductive material and connecting structure |
JP2014241278A (en) * | 2013-05-13 | 2014-12-25 | 積水化学工業株式会社 | Conductive particles, conductive material, and connection structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6369750B2 (en) | LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL | |
CN1985014B (en) | Material for conductor tracks made of copper alloy | |
JP5730089B2 (en) | Conductive material, laminate, and method for producing conductive material | |
Li et al. | A new approach to prepare fully dense Cu with high conductivities and anti-corrosion performance by cold spray | |
US20100143707A1 (en) | Surface-treated metal substrate and manufacturing method of the same | |
US8315036B2 (en) | Ceramic electronic component and method for manufacturing the same | |
JP6753869B2 (en) | How to make composites | |
JP2016092404A (en) | Chip electronic component and method of manufacturing the same | |
WO2001048260A1 (en) | Parts for vacuum film-forming device | |
CN1308146A (en) | Manufacture of cladded hollow megnetron sputtering target | |
WO2012137950A1 (en) | Laminate, and method for producing laminate | |
CN105220049A (en) | A kind of sheet diamond reinforced metal-base composite material and preparation method | |
EP2402285A1 (en) | Method for fabricating composite material comprising nano carbon and metal or ceramic | |
US10465275B2 (en) | Iron bus bar having copper layer, and method for manufacturing the same | |
Zhou et al. | One-step fabrication of 3D nanohierarchical nickel nanomace array to sinter with silver NPs and the interfacial analysis | |
JP2008248279A (en) | Method for producing alloy laminate material containing dispersed quasicrystal grains, method for producing alloy bulk material containing dispersed quasicrystal grains, alloy laminate material containing dispersed quasicrystal grains, and alloy bulk material containing dispersed quasicrystal grains | |
JP2005044677A (en) | Conductive particle of detailed particle size | |
CN207678068U (en) | A kind of ultra-high conducting heat type ceramic substrate | |
JP6199145B2 (en) | Method for producing composite conductive particles | |
JP6380837B2 (en) | Sputtering target material for forming coating layer and method for producing the same | |
TWI321159B (en) | Solder alloy for producing sputtering target and sputtering target using the same | |
JPH1139937A (en) | Conductive particle | |
JP2011192840A (en) | Flat aluminum coated copper ribbon for semiconductor element | |
TWM545139U (en) | Composite coating layer of cutter and cutter containing same | |
JP2003253474A (en) | Conductive particle having excellent press-contacting performance and coating material blending the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061003 |