JP2005042202A - Method and device for treating waste activated carbon - Google Patents

Method and device for treating waste activated carbon Download PDF

Info

Publication number
JP2005042202A
JP2005042202A JP2004279024A JP2004279024A JP2005042202A JP 2005042202 A JP2005042202 A JP 2005042202A JP 2004279024 A JP2004279024 A JP 2004279024A JP 2004279024 A JP2004279024 A JP 2004279024A JP 2005042202 A JP2005042202 A JP 2005042202A
Authority
JP
Japan
Prior art keywords
activated carbon
waste activated
raw material
sintering
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279024A
Other languages
Japanese (ja)
Inventor
Makoto Gocho
誠 牛腸
Hiromi Nakamura
博巳 中村
Koichi Kimura
康一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004279024A priority Critical patent/JP2005042202A/en
Publication of JP2005042202A publication Critical patent/JP2005042202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating waste activated carbon by which the waste activated carbon can effectively be utilized as the resource with considering composition and characteristics of the waste activated carbon, absorbed materials, etc. <P>SOLUTION: In the treating method of the waste activated carbon, the waste activated carbon is added to sintering raw material and the sintering raw material is granulated by using a mixer while adding water, if necessary, lime, and pseudo-grains are formed and this raw material is supplied into a sintering machine and the waste activated carbon surrounded by the pseudo-grain is made to function as the heat-source and the reducing agent of mineral and thus, the carbon contributes to the sintering reaction by promoting the generation of fused liquid to the low melting point mineral. The waste activated carbon is generated as the formation, in which various kinds of materials are absorbed into the activated carbon. By paying attention to that the waste activated carbon at ≥80% in the market has no problem as the absorbed material on the production of the iron and steel and also, this waste activated carbon can effectively be utilized as the resource, this waste activated carbon is effectively utilized as the sintering raw material in the iron works. SiO<SB>2</SB>, CaO and Al<SB>2</SB>O<SB>3</SB>in the waste activated carbon mixed in the sintering raw material, are effectively utilized as the blast furnace slag. Further, C in the waste activated carbon and (C, H) in the absorptive material, are formed as the fuel and the reducing agent and effectively utilized as a substitution for powdery coke. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、上・下水の水処理、空気浄化等に適用された使用済みの活性炭(廃活性炭)を処理する廃活性炭処理方法及び装置に関する。   The present invention relates to a waste activated carbon treatment method and apparatus for treating used activated carbon (waste activated carbon) applied to water treatment of upper / sewage water, air purification, and the like.

活性炭は、上・下水、工業用水等の水処理、大気汚染や悪臭等の空気浄化等のみならず、食品製造メーカ等の製造プロセスに幅広く利用されている。このような活性炭は、ヤシガラ、石炭等を原料とし、賦活処理して製造されるのが普通であり、形状も粒状、粉末状、繊維状等様々である。活性炭は、表面あるいは細孔内に各種物質を吸着するので、使用により徐々に吸着性能が悪くなる。このため、安価な活性炭は再生利用されることなく、1回限りの使い捨てとされる。また、再生処理、乾留処理により付着物質を除去して再生利用される活性炭もあるが、再生利用の繰り返しにより性能が低下し、目標となる吸着性能を達成することができなくなる。従来、このような使用済みの活性炭は、焼却処理や埋め立て処理されていた。   Activated carbon is widely used not only for water treatment of water, sewage and industrial water, air purification such as air pollution and bad odor, but also for manufacturing processes of food manufacturers. Such activated carbon is usually produced by activation treatment using coconut shells, coal, or the like as raw materials, and the shapes thereof are various such as granular, powdery, and fibrous. Since activated carbon adsorbs various substances on the surface or in the pores, the adsorption performance gradually deteriorates with use. For this reason, cheap activated carbon is made into one-time disposable, without being recycled. In addition, there is activated carbon that is reused by removing adhered substances by regeneration treatment or dry distillation treatment. However, the performance decreases due to repeated recycling, and the target adsorption performance cannot be achieved. Conventionally, such used activated carbon has been incinerated or landfilled.

しかしながら、廃活性炭を焼却処理や埋め立て処理するとエネルギー資源として有効利用することができない。また、廃活性炭には灰分が含まれているので、単に焼却するだけだと、灰分に顕熱が奪われてスラグが生じる。このスラグの処理も問題になる。   However, when the activated carbon is incinerated or landfilled, it cannot be effectively used as an energy resource. In addition, since the waste activated carbon contains ash, if it is simply incinerated, sensible heat is lost to the ash and slag is generated. This slag treatment is also a problem.

そこで、本発明は、廃活性炭の成分及び性状、並びに吸着物質等を考慮した上で、廃活性炭を資源として有効利用できる廃活性炭の処理方法及び処理装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a waste activated carbon treatment method and treatment apparatus that can effectively use waste activated carbon as a resource in consideration of the components and properties of the waste activated carbon, adsorbed substances, and the like.

本発明者は、廃活性炭の成分及び性状、並びに吸着物質を調査した。その結果の分析例を表1に示す。   The inventor investigated the components and properties of the waste activated carbon and the adsorbed substances. An analysis example of the results is shown in Table 1.

Figure 2005042202
Figure 2005042202

廃活性炭は、活性炭に各種吸着物質が吸着された形で発生する。市場の廃活性炭の80%以上は、吸着物質が鉄鋼製造上問題ないこと、逆に廃活性炭を資源として有効利用できることに本発明者は着目し、製鉄所で廃活性炭を焼結原料として有効利用する廃活性炭の処理方法を発明した。具体的には、本発明は、焼結原料に廃活性炭を添加し、混合装置を用いて、水と必要に応じて生石灰を加えて焼結原料を造粒し、擬似粒子を形成せしめ、当該原料を焼結機に供給し、粗粒部は熱源として微粉部は鉱石の還元剤として機能せしめることによって、低融点鉱物の融液生成を促進し焼結反応に役立たせることを特徴とする廃活性炭処理方法により、上述した課題を解決した。   Waste activated carbon is generated in the form of various adsorbed substances adsorbed on the activated carbon. Over 80% of the waste activated carbon on the market, the inventor pays attention to the fact that the adsorbed material has no problem in steel production, and conversely, the activated carbon can be effectively used as a resource. Invented a method of treating waste activated carbon. Specifically, the present invention adds waste activated carbon to the sintering raw material, and using a mixing device, granulate the sintering raw material by adding water and quick lime as necessary, to form pseudo particles, The waste is characterized in that the raw material is supplied to the sintering machine, the coarse grain part functions as a heat source, and the fine powder part functions as a reducing agent for ore, thereby promoting the melt generation of low melting point minerals and making them useful for the sintering reaction. The above-mentioned problem was solved by the activated carbon treatment method.

この発明によれば、焼結原料に混合した廃活性炭中のSiO2,CaO,Al23は、焼結鉱製造時スラグバインダーとして寄与し、これにより焼結原料が焼結鉱として塊成化される。したがって、廃活性炭中のSiO2,CaO,Al23は、最終的には高炉スラグとして有効利用される。また、廃活性炭中のC及び吸着物質中の(C,H)は、燃料、還元剤となり、粉コークスの代替として有効利用される。 According to this invention, SiO 2 , CaO, Al 2 O 3 in the waste activated carbon mixed with the sintering raw material contributes as a slag binder at the time of manufacturing the sintered ore, whereby the sintering raw material is agglomerated as the sintered ore. It becomes. Therefore, SiO 2 , CaO, Al 2 O 3 in the waste activated carbon is finally effectively used as blast furnace slag. Further, C in the waste activated carbon and (C, H) in the adsorbed material become a fuel and a reducing agent, and are effectively used as a substitute for the powder coke.

また、本発明は、焼結原料に廃活性炭を混合する廃活性炭混合手段と、この廃活性炭を混合した焼結原料を焼結する焼結機とを備え、前記廃活性炭混合手段は、廃活性炭及び焼結原料を造粒する混合装置の前で廃活性炭を焼結原料に添加し、前記混合装置で廃活性炭及び焼結原料を造粒して廃活性炭を焼結原料とともに混合造粒することを特徴とする廃活性炭処理装置により、上述した課題を解決した。ここで、混合装置には、パッグミル、ドラムミキサー等が用いられる。   Further, the present invention comprises a waste activated carbon mixing means for mixing waste activated carbon with a sintered raw material, and a sintering machine for sintering the sintered raw material mixed with this waste activated carbon, and the waste activated carbon mixing means comprises waste activated carbon. In addition, the waste activated carbon is added to the sintered raw material in front of the mixing device for granulating the sintered raw material, and the waste activated carbon and the sintered raw material are granulated in the mixing device, and the waste activated carbon is mixed and granulated with the sintered raw material. The above-described problems have been solved by a waste activated carbon treatment apparatus characterized by the following. Here, a pug mill, a drum mixer, or the like is used as the mixing device.

廃活性炭を焼結原料と一緒に造粒すると、擬似粒子が形成される。これにより、焼結機の原料層の通気性が悪化するのを防止でき、焼結反応を均一かつ十分に進行することができる。また、既存の混合装置を利用することで、新たな設備を設けることなく、焼結原料に廃活性炭を混合することができる。   When the waste activated carbon is granulated together with the sintering raw material, pseudo particles are formed. Thereby, it can prevent that the air permeability of the raw material layer of a sintering machine deteriorates, and a sintering reaction can be advanced uniformly and fully. Moreover, waste activated carbon can be mixed with a sintering raw material by utilizing the existing mixing apparatus, without providing new equipment.

本発明によれば、焼結原料に廃活性炭を混合し、この廃活性炭を混合した焼結原料を焼結したので、焼結原料に混合した廃活性炭中のSiO2,CaO,Al23が、焼結鉱製造時スラグバインダーとして寄与し、これにより焼結原料が焼結鉱として塊成化される。したがって、廃活性炭中のSiO2,CaO,Al23は、最終的には高炉スラグとして有効利用される。また、廃活性炭中のC及び吸着物質中の(C,H)は、燃料、還元剤となり、粉コークスの代替として有効利用される。 According to the present invention, the waste activated carbon is mixed with the sintered raw material, and the sintered raw material mixed with the waste activated carbon is sintered, so that SiO 2 , CaO, Al 2 O 3 in the waste activated carbon mixed with the sintered raw material is sintered. However, it contributes as a slag binder at the time of manufacturing a sintered ore, and thereby the sintered raw material is agglomerated as a sintered ore. Therefore, SiO 2 , CaO, Al 2 O 3 in the waste activated carbon is finally effectively used as blast furnace slag. Further, C in the waste activated carbon and (C, H) in the adsorbed material become a fuel and a reducing agent, and are effectively used as a substitute for the powder coke.

以下、添付図面に基づいて、本発明の一実施形態における廃活性炭処理装置について説明する。図1は廃活性炭処理装置の概略構成図を示すものである。この廃活性炭処理装置は、廃活性炭を焼結鉱製造用原料(以下焼結原料という)に混合する廃活性炭混合手段としての廃活性炭混合装置1と、廃活性炭を混合した焼結原料を焼結する焼結機2とを備える。   Hereinafter, a waste activated carbon treatment apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a schematic configuration diagram of a waste activated carbon treatment apparatus. This waste activated carbon treatment apparatus sinters the waste activated carbon mixing device 1 as waste activated carbon mixing means for mixing waste activated carbon with raw materials for manufacturing sintered ore (hereinafter referred to as sintered raw materials) and the sintered raw material mixed with waste activated carbon. The sintering machine 2 to be provided.

廃活性炭混合装置1は、焼結原料を種類毎に貯蔵する複数の原料槽3と、原料槽3内の焼結原料を所定量切り出す原料切り出し装置4と、切り出された焼結原料を搬送する焼結原料輸送コンベヤ5と、廃活性炭及び焼結原料を造粒する混合装置としてのドラムミキサー7a,7bとを備える。ドラムミキサー7a,7bは、直列に2基配置された第1ドラムミキサー7a及び第2ドラムミキサー7bとから構成される。この廃活性炭混合装置1は、廃活性炭及び焼結原料を造粒するドラムミキサー7a,7bの前で廃活性炭を焼結原料に添加し、ドラムミキサー7a,7bで廃活性炭及び焼結原料が造粒されて廃活性炭を焼結原料に付着する。   The waste activated carbon mixing device 1 conveys a plurality of raw material tanks 3 that store the sintered raw materials for each type, a raw material cutting device 4 that cuts out a predetermined amount of the sintered raw materials in the raw material tank 3, and the cut sintered raw materials. A sintered raw material transport conveyor 5 and drum mixers 7a and 7b as mixing devices for granulating the waste activated carbon and the sintered raw material are provided. The drum mixers 7a and 7b are composed of a first drum mixer 7a and a second drum mixer 7b arranged in series. This waste activated carbon mixing apparatus 1 adds waste activated carbon to the sintering raw material in front of the drum mixers 7a and 7b for granulating the waste activated carbon and the sintering raw material, and the waste activated carbon and the sintering raw material are produced by the drum mixers 7a and 7b. It is granulated and the waste activated carbon adheres to the sintering raw material.

排出業者から排出された廃活性炭は、フレコン詰めでトラック等により焼結工場の保管庫に保管される。ここから所定量のフレコン15は、ホイスト16等の吊上げ手段により吊り上げられ、フレコン内の廃活性炭が活性炭投入ホッパー17に移される。活性炭投入ホッパー17内の廃活性炭は、切出し装置によって切出され、チェーンコンベヤ19を介して焼結原料に添加される。廃活性炭のうち粒度の大きいものは、粉コークスに添加され、ロッドミル18で粉砕され、原料槽3に供給される。   The waste activated carbon discharged from the discharger is packed in a flexible container and stored in the storage of the sintering plant by a truck or the like. A predetermined amount of the flexible container 15 is lifted by lifting means such as a hoist 16, and the waste activated carbon in the flexible container is transferred to the activated carbon charging hopper 17. The waste activated carbon in the activated carbon charging hopper 17 is cut out by a cutting device and added to the sintered raw material via the chain conveyor 19. The waste activated carbon having a large particle size is added to the powder coke, pulverized by the rod mill 18, and supplied to the raw material tank 3.

廃活性炭は、混合した焼結原料(以下混合原料という)と一緒に回転する第1ドラムミキサー7aに供給される。第1ドラムミキサー7aは廃活性炭と混合原料とを混合・造粒する。第1ドラムミキサー7aには原料を造粒するための温水または冷水添加装置が設置され、混合原料中の水分を一定値にコントロールしている。温水または冷水添加装置は、原料水分が概そ7〜8%になるように水を添加している。第1ドラムミキサー7a内を原料が転動しながら進む際、添加された水の表面張力により、微粉が粗粒に付着し擬似粒子が形成される。第1ドラムミキサー7aである程度造粒された原料は、第2ドラムミキサー7bに供給され、さらに造粒が継続される。第2ドラムミキサー7bは造粒をさらに促進する目的で使用されている。   The waste activated carbon is supplied to a first drum mixer 7a that rotates together with a mixed sintered raw material (hereinafter referred to as a mixed raw material). The first drum mixer 7a mixes and granulates the waste activated carbon and the mixed raw material. The first drum mixer 7a is provided with a hot water or cold water addition device for granulating the raw material, and controls the water content in the mixed raw material to a constant value. The hot water or cold water addition apparatus adds water so that the raw material moisture is about 7 to 8%. When the raw material moves while rolling in the first drum mixer 7a, the fine powder adheres to the coarse particles due to the surface tension of the added water to form pseudo particles. The raw material granulated to some extent by the first drum mixer 7a is supplied to the second drum mixer 7b, and further granulation is continued. The second drum mixer 7b is used for the purpose of further promoting granulation.

一般に、混合原料を焼結機で焼成する際、微粉が多いと、焼結機上の原料の通気性が悪化し、焼成速度が低下するので、生産性が低下する。この対策として原料ホッパーと焼結機の間に大型の回転ドラムミキサーを通常2機設置し、原料成分の均一化を図るとともに造粒することにより、微粉を減らし、平均粒径を大きくしている。焼結原料としては、例えば約55%の鉄鉱石粉、約15%の所内回収ダスト、約14%の返鉱(焼結鉱のうち成品にするには粒径の小さすぎるもの)、そして、約14%の石灰石、生石灰、じゃもん岩、ドロマイト等)と約3%のコークス粉(燃料)を使用する。焼結原料の粒度は原料の種類によって各々異なるが、混合したもの(以下混合原料という)の粒度構成は、例えば表2の如くである。   In general, when the mixed raw material is fired with a sintering machine, if there is a large amount of fine powder, the air permeability of the raw material on the sintering machine is deteriorated and the firing speed is lowered, so that the productivity is lowered. As a countermeasure, two large rotating drum mixers are usually installed between the raw material hopper and the sintering machine to reduce the fine powder and increase the average particle size by making the raw material components uniform and granulating. . As sintering raw materials, for example, about 55% iron ore powder, about 15% in-house recovered dust, about 14% return ore (sintered ore whose particle size is too small to be a product), and about 14% limestone, quicklime, gabbro, dolomite, etc.) and about 3% coke powder (fuel). The particle size of the sintered raw material varies depending on the type of raw material, but the particle size configuration of the mixed material (hereinafter referred to as mixed raw material) is as shown in Table 2, for example.

Figure 2005042202
Figure 2005042202

この表から、造粒前は、混合原料のうち粒径が0.25mmから0.125mmである細粒が10%、さらに細かい0.125mm(125μm)以下の微粉が6%を占めることがわかる。一方、造粒完了後の混合原料の粒度構成は、0.25mmから0.125mmの細粒が5%と減少し、125μm以下の微粉が皆無となっている。また、造粒前後で混合原料の平均粒径は2.1mmから2.5mmに増加している。なお、生産性向上のために、焼結原料の石灰石の一部を活性度の高い生石灰に代替し、造粒性を高める場合もある。   From this table, it can be seen that before granulation, fine particles having a particle size of 0.25 mm to 0.125 mm account for 10%, and finer particles of 0.125 mm (125 μm) or less account for 6% before mixing. . On the other hand, the particle size composition of the mixed raw material after completion of granulation is such that fine particles of 0.25 mm to 0.125 mm are reduced to 5%, and there is no fine powder of 125 μm or less. Moreover, the average particle diameter of the mixed raw material increases from 2.1 mm to 2.5 mm before and after granulation. In addition, in order to improve productivity, a part of limestone of the sintering raw material may be replaced with quick lime having high activity to increase granulation property.

図1に示すように、造粒された混合原料及び廃活性炭は、原料供給装置11を経て焼結機本体12のパレット上に装入される。点火炉13は混合原料表面のコークスに均一に着火する。焼結機本体12はパレットを自動的に排鉱側に送る。パレットの下部には風箱が設けられていて、排風装置によって下側に風を吸引しているので、焼結原料中に混合されている粉コークスの大部分は下記反応式(1)によって燃焼し、原料鉱石粒子の溶融反応に必要な熱を供給する。   As shown in FIG. 1, the granulated mixed raw material and waste activated carbon are charged onto a pallet of a sintering machine body 12 through a raw material supply device 11. The ignition furnace 13 ignites uniformly the coke on the surface of the mixed raw material. The main body 12 of the sintering machine automatically sends the pallet to the discharge side. A wind box is provided at the lower part of the pallet, and since the wind is sucked downward by the exhaust device, most of the powder coke mixed in the sintered raw material is expressed by the following reaction formula (1). It burns and supplies the heat necessary for the melting reaction of the raw ore particles.

またコークス粉のごく一部分は擬似粒子に取り込まれ、下記反応式(2)及び/又は(3)によって粉鉱石の一部を還元し、下記反応式(4)によって低融点の融液を生成する。この融液を介して焼結反応が促進され、全体が塊成化される。   Further, a small part of the coke powder is taken into the pseudo particles, and a part of the powder ore is reduced by the following reaction formula (2) and / or (3), and a low melting point melt is generated by the following reaction formula (4). . The sintering reaction is promoted through this melt, and the whole is agglomerated.

焼結鉱製造過程での粉コークス(C)の役割
1)熱源:燃料としての働き(大きい粒度の物)
+O2→CO2+Q(発熱)・・・(1)
2)低融点の融液生成:
(A)低塩基度側:上記1)の熱により還元剤として働く(小さい粒度の物)
Fe23+2→2FeO+H2O・・・(2)
Fe23→2FeO+CO・・・(3)
2FeO+SiO22FeO・SiO 2 ファイアライト(MP=1170℃)…(4)
(B)高塩基度側:上記1)の熱により
CaO+2Fe23CaO・2Fe 2 3 カルシウムフェライト(MP=1230℃)…(5)
1)の熱により2)の低融点融液が生成され、冷却過程において原料粒子を結合し、焼結鉱を生成する(単なる加熱のみでは焼結反応が生じない)。
Role of powder coke (C) in sinter production process 1) Heat source: Function as fuel (large particle size)
C + O 2 → CO 2 + Q (heat generation) (1)
2) Low melting point melt production:
(A) Low basicity side: works as a reducing agent by the heat of 1) above (small particle size)
Fe 2 O 3 +2 H → 2FeO + H 2 O (2)
Fe 2 O 3 + C → 2FeO + CO (3)
2FeO + SiO 22FeO · SiO 2 firelight (MP = 1170 ° C.) (4)
(B) High basicity side: CaO + 2Fe 2 O 3CaO · 2Fe 2 O 3 calcium ferrite (MP = 1230 ° C.) by the heat of 1) (5)
The low melting point melt of 2) is generated by the heat of 1), and the raw material particles are combined in the cooling process to form a sintered ore (sintering reaction does not occur only by simple heating).

廃活性炭のうち、破砕炭は0.2〜5mm、粉末炭は0.001〜2mm、成形炭は1〜10mmの大きさを有する。廃活性炭のうち粒度の小さいものは、そのまま、粒度の大きいものは、上述のようにロッドミル等で整粒後、焼結機に投入される。廃活性炭中のC及び吸着物質中の(C,H)のうち、粒度の大きいものは反応式(1)によって燃焼し、原料鉱石粒子の溶融反応に必要な熱を供給する。粒度の細かいものは、反応式(2)及び/又は(3)によって粉鉱石の一部を還元する。したがって、廃活性炭中のC及び吸着物質中の(C,H)を粉コークスの代替として有効利用することができる。また、廃活性炭中の廃活性炭中のSiO2,CaO,Al23は、焼結鉱製造時スラグバインダーとして寄与し、これにより焼結原料が焼結鉱として塊成化される。したがって、廃活性炭中のSiO2,CaO,Al23は、最終的には高炉スラグとして有効利用される。 Among the waste activated carbon, crushed coal has a size of 0.2 to 5 mm, powdered coal has a size of 0.001 to 2 mm, and formed coal has a size of 1 to 10 mm. Among the activated carbons, those with a small particle size are used as they are, and those with a large particle size are sized using a rod mill or the like as described above, and then put into a sintering machine. Of C in the waste activated carbon and (C, H) in the adsorbed material, those having a large particle size are combusted according to the reaction formula (1), and supply heat necessary for the melting reaction of the raw ore particles. In the case of fine particles, a part of the fine ore is reduced by the reaction formula (2) and / or (3). Therefore, C in the waste activated carbon and (C, H) in the adsorbent can be effectively used as a substitute for the powder coke. In addition, SiO 2 , CaO, Al 2 O 3 in the waste activated carbon in the waste activated carbon contributes as a slag binder during the production of the sintered ore, whereby the sintered raw material is agglomerated as the sintered ore. Therefore, SiO 2 , CaO, and Al 2 O 3 in the waste activated carbon are finally effectively used as blast furnace slag.

図2は、廃活性炭処理装置に廃トナーを供給する廃トナー供給装置6を示す。この廃トナー供給装置6は、上記廃活性炭に加えて廃トナーを焼結原料に添加する。   FIG. 2 shows a waste toner supply device 6 that supplies waste toner to the waste activated carbon treatment device. The waste toner supply device 6 adds waste toner to the sintering raw material in addition to the waste activated carbon.

本発明者等は、トナーの成分および性状を調査した。その結果、トナーには、主に樹脂からなるトナーBと、樹脂に鉄粉を添加したトナーAとの2種類が存在することがわかった。表3は、トナーAとトナーBとの成分、物性、製造比率を示したものである。   The inventors investigated the components and properties of the toner. As a result, it has been found that there are two types of toner, toner B mainly composed of resin and toner A in which iron powder is added to the resin. Table 3 shows the components, physical properties, and production ratios of toner A and toner B.

Figure 2005042202
Figure 2005042202

この表に示すように、市場の70〜80%を占めるトナーAの成分は、磁性を与えるための40〜50%重量の鉄粉と、50〜60%重量の樹脂からなる。トナーAの成分は、より具体的には、スチレンアクリル樹脂35%,ポリエステル樹脂17%,ポリオレフィン3%,鉄粉(マグネタイト)44%,染料(青色)1%とからなり、主に一成分現像法の黒色トナーとして用いられる。トナーBの成分は、90%重量の樹脂と顔料とからなり、主に二成分現像法のカラートナーとして用いられる。また、トナーAとトナーBの物性を比較すると、比重はトナーAがトナーBよりも鉄分を含むので若干大きく、融点はトナーA,トナーBいずれも略等しく、水溶性はトナーA,トナーBともほとんどないことがわかった。そして、トナーA,トナーBの性状は、いずれも粒子径が数〜十数μmの超微粒子である。なお、トナーAには、鉄粉を85〜90%重量含むものも存在する。   As shown in this table, the component of toner A occupying 70 to 80% of the market is composed of iron powder of 40 to 50% weight for imparting magnetism and resin of 50 to 60% weight. More specifically, the component of toner A is composed of 35% styrene acrylic resin, 17% polyester resin, 3% polyolefin, 44% iron powder (magnetite), and 1% dye (blue), and is mainly composed of one component. Used as a black toner in the method. The component of toner B is composed of 90% by weight resin and pigment, and is mainly used as a color toner in the two-component development method. Further, comparing the physical properties of the toner A and the toner B, the specific gravity is slightly larger because the toner A contains iron than the toner B, the melting points are almost equal in both the toner A and the toner B, and the water solubility is both in the toner A and the toner B I found almost no. The properties of toner A and toner B are both ultrafine particles having a particle diameter of several to several tens of micrometers. The toner A includes toner containing 85 to 90% by weight of iron powder.

本発明者は、トナーA,Bいずれも粒子径が数〜十数μmの超微粒子であることに着目し、焼結原料に廃トナーを混合し、この廃トナーを混合した前記焼結原料を焼結する際、廃トナーを鉱石の還元剤として有効利用した。   The present inventor noticed that both the toners A and B are ultrafine particles having a particle diameter of several to several tens of μm, and mixed the waste toner with the sintering material, and the sintering material mixed with the waste toner. When sintering, waste toner was effectively used as a reducing agent for ore.

焼結原料に混合した廃トナー中の鉄粉は鉄源として有効利用される。また、廃トナーは粒子径が数〜十数μmの超微粒子であるため、混合装置にて焼結原料を造粒する際、擬似粒子の中に廃トナーの大半が取り込まれ、廃トナーの樹脂成分(C,H)を鉄鉱石の還元剤として機能させることができる。鉄鉱石の還元によりファイヤライト(2FeO・SiO2)なる低融点鉱物が生成し、その融液は冷却に際し原料のバインダーとして働き、この結果原料が焼結鉱として塊成化される。したがって、廃トナーはケミカルリサイクルとして焼結反応に有効に用いられることになる。 The iron powder in the waste toner mixed with the sintering raw material is effectively used as an iron source. In addition, since the waste toner is an ultrafine particle having a particle size of several to several tens of μm, when the sintering raw material is granulated with a mixing device, most of the waste toner is taken into the pseudo particles, and the waste toner resin The components (C, H) can function as a reducing agent for iron ore. Reduction of the iron ore produces a low-melting-point mineral called firelite (2FeO.SiO 2 ), and the melt acts as a raw material binder upon cooling, and as a result, the raw material is agglomerated as sintered ore. Therefore, the waste toner is effectively used for the sintering reaction as chemical recycling.

廃トナーを焼結原料輸送コンベヤ5上に供給する廃トナー供給装置6は、フレコンまたはローリー車で搬入された廃トナーを貯蔵するホッパー8と、このホッパー8内の廃トナーを一定量切り出す定量切出し装置としてのロータリーフィーダー9と、切り出された廃トナーを焼結原料輸送コンベヤ5上に搬送する廃トナー搬送装置としてのチェーンコンベヤ10とで構成される。ここで、廃トナーが粉塵爆発を起こす可能性があるので、ホッパー8には静電気対策が取られている。   A waste toner supply device 6 that supplies waste toner onto the sintering material transport conveyor 5 includes a hopper 8 that stores waste toner carried in a flexible container or a lorry vehicle, and a quantitative cutout that cuts out a certain amount of waste toner in the hopper 8. A rotary feeder 9 as an apparatus and a chain conveyor 10 as a waste toner transport device for transporting the cut out waste toner onto the sintered raw material transport conveyor 5 are configured. Here, since waste toner may cause dust explosion, the hopper 8 is provided with countermeasures against static electricity.

廃トナーは、混合された焼結原料(以下混合原料という)と一緒に回転する第1ドラムミキサー7aに供給される。第1ドラムミキサー7aは廃トナーと混合原料とを混合・造粒する。上述のように、第1ドラムミキサー7aには原料を造粒するための温水または冷水添加装置が設置され、混合原料中の水分を一定値にコントロールしている。   The waste toner is supplied to a first drum mixer 7a that rotates together with a mixed sintered raw material (hereinafter referred to as a mixed raw material). The first drum mixer 7a mixes and granulates the waste toner and the mixed raw material. As described above, the first drum mixer 7a is provided with a hot water or cold water addition device for granulating the raw material, and controls the water content in the mixed raw material to a constant value.

廃トナーは、第1ドラムミキサー7aの前で焼結原料に添加される。そして、第1及び第2ドラムミキサー7a,7bが廃トナーおよび焼結原料を造粒し、廃トナーを焼結原料に付着する。廃トナーを粗粒原料に付着すると、擬似粒子が形成される。これにより、焼結機2の原料層の通気性が悪化するのを防止でき、焼結反応を均一かつ十分に進行することができる。また、既存の第1及び第2ドラムミキサー7a,7bを利用することで、新たな設備を設けることなく、焼結原料に廃トナーを混合することができる。   The waste toner is added to the sintering raw material before the first drum mixer 7a. Then, the first and second drum mixers 7a and 7b granulate the waste toner and the sintering raw material, and adhere the waste toner to the sintering raw material. When the waste toner adheres to the coarse raw material, pseudo particles are formed. Thereby, it can prevent that the air permeability of the raw material layer of the sintering machine 2 is deteriorated, and the sintering reaction can proceed uniformly and sufficiently. Further, by using the existing first and second drum mixers 7a and 7b, waste toner can be mixed with the sintering raw material without providing new equipment.

図1に示すように、造粒された混合原料および廃トナーは、原料供給装置11を経て焼結機本体12のパレット上に装入される。点火炉13は混合原料表面のコークスに均一に着火する。焼結機本体12はパレットを自動的に排鉱側に送る。パレットの下部には風箱が設けられていて、排風装置によって下側に風を吸引しているので、焼結原料中に混合されている粉コークスの大部分は上記反応式(1)によって燃焼し、原料鉱石粒子の溶融反応に必要な熱を供給する。   As shown in FIG. 1, the granulated mixed raw material and waste toner are charged onto a pallet of a sintering machine main body 12 through a raw material supply device 11. The ignition furnace 13 ignites uniformly the coke on the surface of the mixed raw material. The main body 12 of the sintering machine automatically sends the pallet to the discharge side. A wind box is provided at the lower part of the pallet, and since the wind is sucked down by the air exhaust device, most of the powder coke mixed in the sintered raw material is expressed by the above reaction formula (1). It burns and supplies the heat necessary for the melting reaction of the raw ore particles.

上述のように、コークス粉のごく一部分は擬似粒子に取り込まれ、上記反応式(2)及び/又は(3)によって粉鉱石の一部を還元し、上記反応式(4)によって低融点の融液を生成する。この融液を介して焼結反応が促進され、全体が塊成化される。このとき廃トナーはコークス粉に比較すると十分小さい(廃トナー径=0.001〜0.010mmφ、粉コークス径=平均2mmφ下記表4参照)ので、ほぼ全量が擬似粒子に取り込まれ、還元剤として粉コークスの代替となることを発見した。また、廃トナーの鉄分は鉄源として有効利用できる。   As described above, a small part of the coke powder is taken into the pseudo particles, a part of the powder ore is reduced by the above reaction formula (2) and / or (3), and the low melting point is melted by the above reaction formula (4). A liquid is produced. The sintering reaction is promoted through this melt, and the whole is agglomerated. At this time, since the waste toner is sufficiently small compared to the coke powder (waste toner diameter = 0.001 to 0.010 mmφ, powder coke diameter = average 2 mmφ, see Table 4 below), almost the entire amount is taken into the pseudo particles and used as a reducing agent. Found to be an alternative to ground coke. Further, the iron content of the waste toner can be effectively used as an iron source.

Figure 2005042202
Figure 2005042202

発明の実施例を以下に示す。焼結原料に廃活性炭を添加し、第1ドラムミキサー(直径4.2m、長さ14m、回転速度6rpm)に混合原料水分が8%になるように80℃の温水を必要量添加し、造粒後さらに第2ドラムミキサー(直径5m、長さ18.5m、回転速度4.8rpm)にて造粒し、焼結鉱を製造した。廃活性炭の添加前後で表2に示した造粒後の原料粒度に変化はなく、廃活性炭は全量擬似粒子に取り込まれた。   Examples of the invention are shown below. Add the waste activated carbon to the sintering raw material, add the required amount of warm water of 80 ° C to the 1st drum mixer (diameter 4.2m, length 14m, rotation speed 6rpm) so that the mixed raw material moisture becomes 8%. After granulation, the mixture was further granulated with a second drum mixer (diameter 5 m, length 18.5 m, rotation speed 4.8 rpm) to produce a sintered ore. There was no change in the raw material particle size after granulation shown in Table 2 before and after the addition of the waste activated carbon, and all the waste activated carbon was incorporated into the pseudo particles.

コークスの発熱量8000cal/gに対して、廃活性炭の発熱量は3000〜5000cal/gである。したがって、廃活性炭を1g添加すると、粉コークスの添加量を0.4〜0.6g(平均0.5)低減することができる。   The calorific value of coke is 8000 cal / g, and the calorific value of waste activated carbon is 3000 to 5000 cal / g. Therefore, when 1 g of waste activated carbon is added, the amount of powder coke added can be reduced by 0.4 to 0.6 g (average 0.5).

廃活性炭中のSiO2,CaO,Al23も焼結鉱として有効利用されている。表5に示すように、生産性や成品焼結鉱の性状(強度、還元指数、還元粉化指数)は、廃活性炭の前後で全く変化がみられず、本発明の有効性が立証された。 SiO 2 , CaO, and Al 2 O 3 in waste activated carbon are also effectively used as sintered ores. As shown in Table 5, the productivity and properties of the product sintered ore (strength, reduction index, reduced powdering index) did not change at all before and after the waste activated carbon, and the effectiveness of the present invention was proved. .

Figure 2005042202
Figure 2005042202

なお、この実施例では廃活性炭の全量を第1ドラムミキサーの手前で添加したが、その一部または全量を第2ドラムミキサーの手前で添加しても同等の効果が得られた。   In this example, the total amount of the waste activated carbon was added before the first drum mixer, but the same effect was obtained even when a part or all of the waste activated carbon was added before the second drum mixer.

本発明の一実施形態における廃活性炭混合装置を示す概略図である。It is the schematic which shows the waste activated carbon mixing apparatus in one Embodiment of this invention. 上記廃活性炭供給装置に廃トナーを供給する廃トナー供給装置を示す概略図である。It is the schematic which shows the waste toner supply apparatus which supplies waste toner to the said waste activated carbon supply apparatus.

符号の説明Explanation of symbols

1…廃活性炭混合装置(廃活性炭混合手段)
2…焼結機
7a…第1ドラムミキサー(一次混合装置)
7b…第2ドラムミキサー(二次混合装置)
1 ... Waste activated carbon mixing device (waste activated carbon mixing means)
2 ... Sinter 7a ... 1st drum mixer (primary mixing device)
7b 2nd drum mixer (secondary mixing device)

Claims (2)

焼結原料に廃活性炭を添加し、混合装置を用いて、水と必要に応じて生石灰を加えて焼結原料を造粒し、擬似粒子を形成せしめ、当該原料を焼結機に供給し、擬似粒子内にとりこまれた廃活性炭を熱源及び鉱石の還元剤として機能せしめることによって、低融点鉱物の融液生成を促進し焼結反応に役立たせることを特徴とする廃活性炭処理方法。   Add waste activated carbon to the sintering raw material, add water and quick lime as needed to granulate the sintering raw material using a mixing device, form pseudo particles, and supply the raw material to the sintering machine, A waste activated carbon treatment method characterized in that waste activated carbon incorporated in pseudo-particles functions as a heat source and a reducing agent for ore, thereby facilitating the formation of a low-melting-point mineral melt and making it useful for the sintering reaction. 焼結原料に廃活性炭を混合する廃活性炭混合手段と、この廃活性炭を混合した焼結原料を焼結する焼結機とを備え、
前記廃活性炭混合手段は、廃活性炭及び焼結原料を造粒する混合装置の前で廃活性炭を焼結原料に添加し、前記混合装置で廃活性炭及び焼結原料を造粒することを特徴とする廃活性炭処理装置。
A waste activated carbon mixing means for mixing the waste activated carbon with the sintered raw material, and a sintering machine for sintering the sintered raw material mixed with the waste activated carbon,
The waste activated carbon mixing means is characterized in that the waste activated carbon is added to the sintered raw material before the mixing device for granulating the waste activated carbon and the sintered raw material, and the waste activated carbon and the sintered raw material are granulated by the mixing device. Waste activated carbon treatment equipment.
JP2004279024A 2004-09-27 2004-09-27 Method and device for treating waste activated carbon Pending JP2005042202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279024A JP2005042202A (en) 2004-09-27 2004-09-27 Method and device for treating waste activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279024A JP2005042202A (en) 2004-09-27 2004-09-27 Method and device for treating waste activated carbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000276916A Division JP3714140B2 (en) 2000-09-12 2000-09-12 Waste activated carbon treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2005042202A true JP2005042202A (en) 2005-02-17

Family

ID=34270285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279024A Pending JP2005042202A (en) 2004-09-27 2004-09-27 Method and device for treating waste activated carbon

Country Status (1)

Country Link
JP (1) JP2005042202A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300175B1 (en) 2011-11-08 2013-08-26 주식회사 포스코 Manufacturing method of mixing raw material for sintering
JP2013237876A (en) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore using fatty palm kernel shell coal
CN103727789A (en) * 2013-12-26 2014-04-16 李观升 Raw material classification distributing device in front of iron-making sintering igniter and process implemented by raw material classification distributing device
JP2014218713A (en) * 2013-05-09 2014-11-20 新日鐵住金株式会社 Method of producing sintered ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300175B1 (en) 2011-11-08 2013-08-26 주식회사 포스코 Manufacturing method of mixing raw material for sintering
JP2013237876A (en) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore using fatty palm kernel shell coal
JP2014218713A (en) * 2013-05-09 2014-11-20 新日鐵住金株式会社 Method of producing sintered ore
CN103727789A (en) * 2013-12-26 2014-04-16 李观升 Raw material classification distributing device in front of iron-making sintering igniter and process implemented by raw material classification distributing device
CN103727789B (en) * 2013-12-26 2015-05-20 李观升 Raw material classification distributing device in front of iron-making sintering igniter and process implemented by raw material classification distributing device

Similar Documents

Publication Publication Date Title
KR101311575B1 (en) Process for production of sintered mineral
CN109207739B (en) Method for producing iron-making furnace burden by resource utilization of zinc-containing metallurgical dust
JP6091183B2 (en) Method for removing radioactive cesium and method for producing fired product
JP2005042202A (en) Method and device for treating waste activated carbon
BR102017017535A2 (en) COLD PELIZATION PROCESS OF IRON ORE FINES WITH MIXTURE FLEXIBILITY
JP3714140B2 (en) Waste activated carbon treatment method and apparatus
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP2012219283A (en) Method for producing sintered ore
JP3653032B2 (en) Processing method of iron-containing dust for iron making
AU7566296A (en) Method for preparing hardened granules from a particulate material
JP3738606B2 (en) Waste toner processing method and apparatus
JP4777025B2 (en) Method and apparatus for treating sulfuric acid-containing oily waste
JP5517501B2 (en) Method for producing sintered ore
RU2299868C2 (en) Additive mixture for production of cement clinker and use thereof
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP2009132565A (en) Method of manufacturing artificial aggregate
CN107674971B (en) Raw material treatment method
US6162164A (en) Process of recycling a liquid waste
JP2015209570A (en) Production method of reduced iron
JP2018066046A (en) Manufacturing method of sintered ore
JP2000328144A (en) Method and device for processing waste toner
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP5167641B2 (en) Method for producing sintered ore
JP2008156197A (en) Method for producing fired material
JP2019116684A (en) Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore