JP2005040654A - Method for manufacturing nox decomposing catalyst - Google Patents

Method for manufacturing nox decomposing catalyst Download PDF

Info

Publication number
JP2005040654A
JP2005040654A JP2003200002A JP2003200002A JP2005040654A JP 2005040654 A JP2005040654 A JP 2005040654A JP 2003200002 A JP2003200002 A JP 2003200002A JP 2003200002 A JP2003200002 A JP 2003200002A JP 2005040654 A JP2005040654 A JP 2005040654A
Authority
JP
Japan
Prior art keywords
precipitate
catalyst
solution
acid solution
decomposition catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003200002A
Other languages
Japanese (ja)
Other versions
JP4314908B2 (en
Inventor
Kumiko Uchida
久美子 内田
Hiroshi Nakai
宏 中井
Tsuneo Ayabe
統夫 綾部
Nobuichi Tsubouchi
展一 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003200002A priority Critical patent/JP4314908B2/en
Publication of JP2005040654A publication Critical patent/JP2005040654A/en
Application granted granted Critical
Publication of JP4314908B2 publication Critical patent/JP4314908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a NOx decomposing catalyst from waste containing Ti, V and Al. <P>SOLUTION: This method comprises a step to prepare an acid-dissolved liquid 13 by dissolving a starting material 11 composed of the waste containing Ti, V and Al in an acidic solution 12, a step to produce a precipitate 15 by adding an alkaline solution 14 to the acid-dissolved liquid 13, a step A to purify the precipitate 15, a step to withdraw a mixture of titanium hydroxide and vanadium hydroxide as a catalyst precursor 16 and a step B to fire the precursor 16 at 300-600°C, so that the NOx decomposing catalyst 17 being a fired material of titanium hydroxide and vanadium hydroxide is manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、チタン酸化物とバナジウム酸化物からなるNO分解触媒の製造方法に関するものである。
【0002】
【従来の技術】
ジェットエンジンやガスタービン等のタービンブレードは、一般にTi合金、例えばTi−6Al−4Vで構成される。このタービンブレードの成形加工の1つに電解加工がある。電解加工は、アルカリ金属のハロゲン塩溶液からなる電解質水溶液(例えば、NaCl水溶液)中において、鋳造などにより形成したTi合金成形体に、最終製品と同一形状を有する雌型電極を近接(又は当接)させて電気分解を行い、所望の形状の最終製品(雄型)を得るものである。電解加工を行うと、電気分解によりスラッジが生じる。このスラッジ中には、Ti,V,及びAlの他にアルカリ金属のハロゲン塩が含まれる。
【0003】
従来、スラッジは産業廃棄物として廃棄、処分されてきたが、近年、ゼロエミッションの観点から、廃棄物から有用金属を回収する試みがなされている。例えば、Tiのふっ化物を含む水溶液に、水酸化カリウム、水酸化アンモニウム、及びアンモニアの内の1種又は2種以上を添加することによって、Tiを水酸化物として沈殿させ、回収する方法がある(例えば、特許文献1参照)。また、クロール法によるチタン製造により生成するスラッジを水又は希硝酸で溶解して、V、Fe、及びAlを含む濾液を取り出し、その濾液にアンモニア水及び過酸化水素水を加えてのpH調整、加温、及び濾過の工程を複数回繰り返して、Vを酸化物として沈殿回収する方法がある(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開2000−265223号公報
【特許文献2】
特開昭53−70017号公報
【0005】
【発明が解決しようとする課題】
ところで、これらの回収方法により得られた回収物は、単体の化合物であって、工業的な付加価値はあまり高くないため、相対的に処理コストが割高となってしまうという問題があった。よって、処理コストに見合った付加価値の高い回収物が求められている。
【0006】
以上の事情を考慮して創案された本発明の目的は、Ti,V,及びAlを含む廃棄物からNO分解触媒を製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成すべく本発明に係るNO分解触媒の製造方法は、Ti,V,及びAlを含む廃棄物で構成される出発物質からNO分解触媒を製造する方法において、上記出発物質を酸性溶液で溶解して酸溶解液を作製し、その酸溶解液にアルカリ性溶液を加えて沈殿物を生成させ、その沈殿物を精製してチタン水酸化物とバナジウム水酸化物との混合物を触媒前駆体として取り出すものである。
【0008】
また、本発明に係るNO分解触媒の他の製造方法は、Ti,V,及びAlを含む廃棄物で構成される出発物質からNO分解触媒を製造する方法において、上記出発物質を酸性溶液で溶解して酸溶解液を作製し、その酸溶解液の上澄み液を分離し、その上澄み液にアルカリ性溶液を加えて沈殿物を生成させ、その沈殿物を精製してチタン水酸化物とバナジウム水酸化物との混合物を触媒前駆体として取り出すものである。
【0009】
ここで、酸溶解液にアルカリ性溶液を加えてpHを3.4〜3.6に調整し、沈殿物を生成させることが好ましい。これによって、Al成分を含まない沈殿物が得られる。
【0010】
触媒前駆体に300〜600℃の温度で焼成処理を施し、チタン酸化物とバナジウム酸化物の焼成物を製造することが好ましい。
【0011】
沈殿物を精製するための精製処理として、沈殿物を40〜90℃の純水で水洗浄することが好ましい。また、酸溶解液をイオン交換膜に通して精製処理を行うことが好ましい。これによって、触媒前駆体中の、Ti,V,及びAl成分以外の不純物が除去される。
【0012】
以上によれば、Ti,V,及びAlを含む廃棄物から、工業的な付加価値の高いNO分解触媒を得ることができる。これによって、廃棄物の量を減量することができ、廃棄物排出量を低減することができる。
【0013】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基づいて説明する。
【0014】
本発明者らは、タービンブレードを構成する代表的なTi合金であるTi−6Al−4V中に、脱硝触媒として好適な割合でTi成分とV成分とが含まれていることに着目し、電界加工後の廃棄物であるスラッジから、NO分解触媒を取り出すことができるということを新たに見出した。
【0015】
本発明の好適一実施の形態に係るNO分解触媒の製造方法を説明するためのフローを図1に示す。
【0016】
本実施の形態に係るNO分解触媒の製造方法は、以下に示す手順で行われる。
【0017】
図1に示すように、出発物質11は、
Ti,V,及びAlを含むスラッジ11a、
Ti,V,及びAlを含む水溶液(例えば、チタン酸洗浄液)11b、
及びTi,V,及びAlを含む切り粉(例えば、Ti合金の切削屑)11c、
の内の少なくとも1種を含む廃棄物で構成される。ここでは、スラッジ11aのみを出発物質11として用いた場合について説明を行う。このスラッジ11a中には、電解加工に用いたTi合金と同組成のTi,V,及びAl成分を含んでおり、その他に、電解加工に用いた電解質水溶液におけるアルカリ金属のハロゲン塩の各成分、例えばNa成分及びCl成分が含まれている。
【0018】
そこで、先ず、スラッジ11aで構成される出発物質11を酸性溶液12で溶解し、酸溶解液13を作製する。酸性溶液12としては、特に限定するものではないが、工業上、慣用的に用いられている塩酸、硝酸、硫酸、ふっ酸などが好ましい。
【0019】
次に、この酸溶解液13にアルカリ性溶液14を加えて、中和反応による沈殿を生じさせる。この時、pH値が2以上、好ましくは3.4〜3.6となるように、酸性溶液12及びアルカリ性溶液14の、濃度及び混合量を調整した状態で沈殿を生じさせる。アルカリ性溶液14としては、特に限定するものではないが、アンモニア水やNaOH水溶液などのカセイアルカリなどが好ましく、特にアンモニア水が好ましい。
【0020】
次に、得られた沈殿物15に精製処理を施し(stepA)、チタン水酸化物とバナジウム水酸化物との混合物を触媒前駆体16として取り出す。精製処理は、沈殿物15を40〜90℃、好ましくは60〜80℃の純水で水洗浄することで、アルカリ金属イオン等、例えばNa、Clが純水中に溶出して沈殿物15からNa、Clが除去され、沈殿物15の精製がなされる。
【0021】
その後、取り出した触媒前駆体16に、焼成処理を施すことで(stepB)、少なくともチタン酸化物(TiO)とバナジウム酸化物(V)とを所定の割合(例えば、TiO:V=98:1〜2)で含んだ焼成物であるNO分解触媒17が得られる。焼成処理時の焼成温度は、得られるTiOの結晶型が触媒として最適なアナターゼ型となるように、Tiの焼成温度としては比較的低い温度、例えば、300〜600℃、好ましくは330〜470℃、より好ましくは350〜450℃、特に好ましくは400℃前後の温度で行う。
【0022】
ここで、酸性溶液12及びアルカリ性溶液14の濃度は、特に限定するものではないが、水酸化物の粒径を細かくするためには、濃度はあまり高くない方が好ましく、例えば、2〜0.1規定、好ましくは1〜0.2規定、より好ましくは0.2規定前後である。特に、酸性溶液12の濃度が高いと、pH調整する際に、濃度の高いアルカリ性溶液14が多量に必要となるため、取り扱い性が悪化し、廃水量が増加してしまう。
【0023】
また、pH値を2〜13、好ましくは3.4〜3.6と調整するのは、pH値が2未満だと、生成した沈殿物15が混合液中に再び溶解してしまうためである。特に、pH値が3.6を超えると、沈殿物15中にAl成分が混入するためである。
【0024】
また、触媒前駆体16の焼成温度を300〜600℃とするのは、焼成温度が、300℃未満だとアナターゼ型のTiOを安定して得ることができず、600℃を超えるとルチル型のTiOとなり、触媒17としての活性がなくなるためである。
【0025】
次に、本実施の形態の作用を説明する。
【0026】
本実施の形態に係る製造方法においては、酸溶解液13とアルカリ性溶液14とを混合する際、pH値を2〜13、好ましくは3.4〜3.6に調整している。ここで、pH値を2〜13の範囲で調整している場合、得られた沈殿物15中には、Ti及びV成分の他にAl成分が混入する。この三元系(Ti,V,Al)の沈殿物15を用いた触媒17は、NO分解作用は有しているものの、SOによる活性低下があることから、ガス中にSOを含まないジェットエンジンやガスタービンなどの脱硝触媒として用いることができる。一方、pH値を3.4〜3.6の範囲で調整している場合、得られた沈殿物15中にAl成分は混入せず、Ti及びV成分の二元系となる。この二元系(Ti,V)の沈殿物15を用いた触媒17は、NO分解作用と共にSOによる活性低下がないことから、ジェットエンジンやガスタービンなどの脱硝触媒の他に、ガス中にSOを含む石炭焚きボイラ等の脱硝及び脱硫触媒としても用いることができる。
【0027】
また、触媒前駆体16中に、アルカリ金属イオン、例えばNaが残留していると、NO分解触媒17の触媒性能が著しく低下してしまう。このため、本実施の形態に係る製造方法においては、沈殿物15に精製処理を施す(stepA)ことで、沈殿物15からNaを除去することができ、これによって、触媒17の触媒寿命の低下を防ぐことができる。
【0028】
ここで、沈殿物15に精製処理を施すというstepAの代わりに、図2に示すように、酸溶解液13をイオン交換する(stepC)ようにしてもよい。このイオン交換によって、酸溶解液13からアルカリ金属イオン、例えばNaを除去することができ、酸溶解液13の精製を行うことができる。この場合、得られた沈殿物15が触媒前駆体となる。また、図3に示すように、イオン交換による精製処理(stepC)と純水洗浄による精製処理(stepA)の両方を行うようにしてもよい。stepC,Aを併用することにより、stepC(又はstepA)を単独で行う場合と比較して、沈殿物15中のTi,V,Al(又はTi,V)成分の純度がより高くなる。
【0029】
また、本実施の形態に係る製造方法においては、触媒前駆体16に対して300〜600℃の温度範囲で焼成処理を行うことで、アナターゼ型のTiOを安定して得ることができる。その結果、少なくともアナターゼ型のTiOとバナジウム酸化物とを所定の割合で含んだ焼成物(TiO/V)からなるNO分解触媒17が得られる。
【0030】
また、出発物質11(スラッジ11a)中に含まれるTi成分又はV成分の一方の量が極端に少ない場合、チタン酸化物とバナジウム酸化物とを所定の割合で含んだ触媒17が得られなくなるおそれもある。この場合、スラッジ11aに、チタン酸洗浄液11b、チタン切り粉11c、Ti粉末、及びV粉末の内の少なくとも1種を適宜添加することで、出発物質11中のTi成分とV成分の割合を所定の範囲に調整することができる。その結果、チタン酸化物とバナジウム酸化物とを所定の割合で含んだ触媒17を得ることができる。
【0031】
以上、本実施の形態に係るNO分解触媒の製造方法によれば、従来、産業廃棄物として廃棄、処分を行っていたTi,V,及びAlを含むスラッジ11aなどから、有用金属を回収し、回収処理コストに見合った高付加価値のNO分解触媒17が得られる。その結果、スラッジ11aを商業ベースで処理することが可能となり、産業廃棄物の量を減量することができ、延いては廃棄物の排出量を低減することができる。
【0032】
また、本実施の形態に係る製造方法により得られた触媒17は、NO分解触媒の他にも、光触媒などにも適用することができる。
【0033】
次に、本発明の他の実施の形態を添付図面に基づいて説明する。
【0034】
本発明の他の好適一実施の形態に係るNO分解触媒の製造方法を説明するためのフローを図4に示す。尚、図1と同様の部材については同じ符号を付しており、これらの部材については説明を省略する。
【0035】
本実施の形態に係るNO分解触媒の製造方法の、基本的な製造手順は、前実施の形態に係る製造方法と同じである。
【0036】
図4に示すように、本実施の形態に係るNO分解触媒の製造方法は、酸溶解液13に対して濾過などによる分離処理を施して(stepD)、上澄み液41と沈殿物42とに分離し、この上澄み液41にアルカリ性溶液14を加えて沈殿を生じさせ、その後は前実施の形態に係る製造方法と同様にして、少なくともチタン酸化物(TiO)とバナジウム酸化物とを所定の割合で含んだ焼成物であるNO分解触媒47が得られる。
【0037】
得られた触媒47は、酸溶解液13に分離処理(stepD)を施してなる上澄み液41のみを用いており、Ti,V,Al(又はTi,V)成分以外の不純物分は沈殿物42としてほぼ完全に除去していることから、前実施の形態に係る製造方法により得られた触媒17と比較して、より高純度の触媒、即ちより高分解能の触媒となる。
【0038】
また、本実施の形態に係る製造方法においても、図2に示したstepCの精製処理又は図3に示したstepCとstepBを併用する精製処理を施すようにしてもよい。
【0039】
本実施の形態に係る製造方法においても、前実施の形態に係る製造方法と同様の作用効果が得られる。
【0040】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0041】
【実施例】
次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
【0042】
(実施例1)
出発物質として、
Ti含有量が27.0重量%、
V含有量が0.74重量%、
Al含有量が1.97重量%、
Na含有量が17.1重量%、
Cl含有量が18.9重量%であるスラッジを用い、1Nの塩酸で溶解し、酸溶解液を作製する。
【0043】
次に、この酸溶解液に1Nのアンモニア水を加えて沈殿を生じさせる。この時、pH値が3.4〜3.6となるように、塩酸及びアンモニア水の混合量を調整する。
【0044】
次に、得られた沈殿物を、60〜80℃の純水で水洗浄して精製処理を施し、チタン水酸化物とバナジウム水酸化物との混合物を触媒前駆体として取り出す。
【0045】
その後、取り出した触媒前駆体に、400℃で焼成処理を施し、
Ti含有量が52.4重量%、
V含有量が1.46重量%、
Al含有量が0.05重量%未満、
Na含有量が0.05重量%未満、
Cl含有量が0.05重量%未満である触媒を得た(試料1)。
【0046】
次に、試料1に対してX線回折試験を行った。回折試験における回折パターンを図5(a)に、回折パターンのピーク(強度)のみをデータ化したものを図5(b)に示すように、角度(2θ)が約25°、約38°、約48°、約55°、約62°、約70°、約75°、約82°、及び約95°において強いピークが得られた。この図5(b)に示したピークデータと、図5(c)に示すアナターゼ型のTiOのピークデータ及び図5(d)に示すルチル型のTiOのピークデータとを比較した結果、試料1に含まれるTiOはアナターゼ型であることが確認できた。
【0047】
次に、試料1に対して触媒性能試験を行った。試験は、試料1を充填した石英管を反応炉内にセットし、400℃の温度条件下、石英管の一端側から、NOが90ppmの試験ガスに同じモル濃度のNHを添加して流し、SV(Space Velocity:空間速度)値が10000h−1の条件で試験を行った。
【0048】
触媒性能試験結果を図6に示すように、▲2▼で示すアンモニア添加停止時においてはNOの分解はなされないが、▲1▼で示すアンモニア添加時において、NO初期濃度(C)が90ppmであった試験ガスは、試料1を充填した石英管内を通過することによってNO計測濃度(C)が5ppmとなった。つまり、試料1の触媒を用いることで、90%を超える高い分解率(=[(C−C)/C]×100)が得られることから、試料1の触媒は優れたNO分解触媒であることが確認できた。
【0049】
【発明の効果】
以上要するに本発明によれば、Ti,V,及びAlを含む廃棄物から、工業的な付加価値の高いNO分解触媒を得ることができるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の好適一実施の形態に係るNO分解触媒の製造方法を説明するためのフローである。
【図2】図1の一変形例である。
【図3】図1の他の変形例である。
【図4】本発明の他の好適一実施の形態に係るNO分解触媒の製造方法を説明するためのフローである。
【図5】実施例における試料1のX線回折試験結果を示す図であり、横軸が2θ[°]、縦軸が強度[counts]を示している。
【図6】
実施例における試料1の触媒性能試験結果を示す図である。
【符号の説明】
11 出発物質
12 酸性溶液
13 酸溶解液
14 アルカリ性溶液
15 沈殿物
16 触媒前駆体
17 NO分解触媒
stepA 精製処理
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a NO x decomposition catalyst comprising titanium oxide and vanadium oxide.
[0002]
[Prior art]
Turbine blades such as jet engines and gas turbines are generally made of a Ti alloy, for example, Ti-6Al-4V. One of the forming processes of the turbine blade is an electrolytic process. In the electrolytic processing, a female electrode having the same shape as the final product is brought close to (or in contact with) a Ti alloy molded body formed by casting or the like in an aqueous electrolyte solution (for example, NaCl aqueous solution) made of an alkali metal halide salt solution. And final electrolysis is performed to obtain a final product (male mold) having a desired shape. When electrolytic processing is performed, sludge is generated by electrolysis. This sludge contains alkali metal halide salts in addition to Ti, V, and Al.
[0003]
Conventionally, sludge has been discarded and disposed as industrial waste, but in recent years, attempts have been made to recover useful metals from waste from the viewpoint of zero emissions. For example, there is a method in which Ti is precipitated and recovered as a hydroxide by adding one or more of potassium hydroxide, ammonium hydroxide, and ammonia to an aqueous solution containing a fluoride of Ti. (For example, refer to Patent Document 1). Moreover, the sludge produced | generated by titanium manufacture by a crawl method is melt | dissolved with water or dilute nitric acid, the filtrate containing V, Fe, and Al is taken out, pH adjustment by adding ammonia water and hydrogen peroxide water to the filtrate, There is a method in which the steps of heating and filtration are repeated a plurality of times to precipitate and recover V as an oxide (see, for example, Patent Document 2).
[0004]
[Patent Document 1]
JP 2000-265223 A [Patent Document 2]
JP-A-53-70017 [0005]
[Problems to be solved by the invention]
By the way, since the recovered material obtained by these recovery methods is a single compound and has not so high industrial added value, there has been a problem that the processing cost becomes relatively high. Therefore, there is a demand for a high-value-added recovered material that meets the processing cost.
[0006]
An object of the present invention was developed in view of the above circumstances, it is to provide a method of manufacturing the NO X decomposition catalyst from waste containing Ti, V, and Al.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a NO X decomposition catalyst according to the present invention is a method for producing a NO X decomposition catalyst from a starting material composed of waste containing Ti, V, and Al. An acid solution is prepared by dissolving in an acidic solution, and an alkaline solution is added to the acid solution to form a precipitate. The precipitate is purified to catalyze a mixture of titanium hydroxide and vanadium hydroxide. It is taken out as a precursor.
[0008]
Another method for producing the NO X decomposition catalyst according to the present invention is a method for producing a NO X decomposition catalyst from a starting material composed of waste containing Ti, V, and Al. To prepare an acid solution, separate the supernatant of the acid solution, add an alkaline solution to the supernatant to form a precipitate, purify the precipitate, titanium hydroxide and vanadium A mixture with a hydroxide is taken out as a catalyst precursor.
[0009]
Here, it is preferable to adjust the pH to 3.4 to 3.6 by adding an alkaline solution to the acid solution to generate a precipitate. As a result, a precipitate containing no Al component is obtained.
[0010]
It is preferable to calcinate the catalyst precursor at a temperature of 300 to 600 ° C. to produce a fired product of titanium oxide and vanadium oxide.
[0011]
As a purification treatment for purifying the precipitate, the precipitate is preferably washed with pure water at 40 to 90 ° C. Moreover, it is preferable to perform the purification treatment by passing the acid solution through an ion exchange membrane. Thereby, impurities other than Ti, V, and Al components in the catalyst precursor are removed.
[0012]
According to the above, Ti, V, and from waste containing Al, it is possible to obtain a high industrial value-added NO X decomposition catalyst. Thereby, the amount of waste can be reduced, and the amount of waste discharged can be reduced.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
[0014]
The present inventors pay attention to the fact that Ti-6Al-4V, which is a typical Ti alloy constituting the turbine blade, contains a Ti component and a V component at a ratio suitable as a denitration catalyst. It was newly found that the NO X decomposition catalyst can be taken out from the sludge which is the waste after processing.
[0015]
FIG. 1 shows a flow for explaining a method for producing a NO X decomposition catalyst according to a preferred embodiment of the present invention.
[0016]
The manufacturing method of the NO X decomposition catalyst according to the present embodiment is performed according to the following procedure.
[0017]
As shown in FIG. 1, the starting material 11 is
Sludge 11a containing Ti, V, and Al,
An aqueous solution (for example, titanic acid cleaning solution) 11b containing Ti, V, and Al,
And a chip (for example, Ti alloy cuttings) 11c containing Ti, V, and Al,
It is comprised with the waste containing at least 1 sort (s). Here, the case where only the sludge 11a is used as the starting material 11 will be described. This sludge 11a contains Ti, V, and Al components having the same composition as that of the Ti alloy used for the electrolytic processing. In addition, each component of the alkali metal halide salt in the aqueous electrolyte solution used for the electrolytic processing, For example, Na component and Cl component are contained.
[0018]
Therefore, first, the starting material 11 composed of the sludge 11 a is dissolved with the acidic solution 12 to prepare the acid solution 13. The acidic solution 12 is not particularly limited, but hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid and the like conventionally used in industry are preferable.
[0019]
Next, an alkaline solution 14 is added to the acid solution 13 to cause precipitation due to a neutralization reaction. At this time, precipitation is caused in a state in which the concentration and the mixing amount of the acidic solution 12 and the alkaline solution 14 are adjusted so that the pH value is 2 or more, preferably 3.4 to 3.6. The alkaline solution 14 is not particularly limited, but a caustic alkali such as ammonia water or NaOH aqueous solution is preferable, and ammonia water is particularly preferable.
[0020]
Next, the obtained precipitate 15 is purified (step A), and a mixture of titanium hydroxide and vanadium hydroxide is taken out as the catalyst precursor 16. In the purification treatment, the precipitate 15 is washed with pure water at 40 to 90 ° C., preferably 60 to 80 ° C., so that alkali metal ions and the like, for example, Na + and Cl are eluted into the pure water. Na + and Cl are removed from 15 and the precipitate 15 is purified.
[0021]
Thereafter, the extracted catalyst precursor 16 is subjected to a firing treatment (step B), so that at least a titanium oxide (TiO 2 ) and a vanadium oxide (V 2 O 5 ) are in a predetermined ratio (for example, TiO 2 : V The NO X decomposition catalyst 17 which is a baked product containing 2 O 5 = 98: 1 to 2) is obtained. The calcination temperature during the calcination treatment is relatively low as the calcination temperature of Ti, for example, 300 to 600 ° C., preferably 330 to 470, so that the crystal form of TiO 2 to be obtained is an anatase type optimum as a catalyst. C., more preferably 350 to 450.degree. C., particularly preferably around 400.degree.
[0022]
Here, although the density | concentration of the acidic solution 12 and the alkaline solution 14 is not specifically limited, In order to make the particle size of a hydroxide fine, the one where a density | concentration is not so high is preferable, for example, 2-0. 1N, preferably 1 to 0.2N, more preferably around 0.2N. In particular, when the concentration of the acidic solution 12 is high, a large amount of the alkaline solution 14 having a high concentration is required when adjusting the pH, so that the handleability deteriorates and the amount of waste water increases.
[0023]
The reason why the pH value is adjusted to 2 to 13, preferably 3.4 to 3.6 is that when the pH value is less than 2, the generated precipitate 15 is dissolved again in the mixed solution. . In particular, when the pH value exceeds 3.6, the Al component is mixed in the precipitate 15.
[0024]
Moreover, the calcination temperature of the catalyst precursor 16 is set to 300 to 600 ° C. If the calcination temperature is less than 300 ° C., anatase-type TiO 2 cannot be stably obtained. TiO 2 Nearby is because there is no activity as a catalyst 17.
[0025]
Next, the operation of the present embodiment will be described.
[0026]
In the production method according to the present embodiment, when the acid solution 13 and the alkaline solution 14 are mixed, the pH value is adjusted to 2 to 13, preferably 3.4 to 3.6. Here, in the case where the pH value is adjusted in the range of 2 to 13, the obtained precipitate 15 contains an Al component in addition to the Ti and V components. The precipitate 15 catalyst 17 using the ternary (Ti, V, Al), although has the NO X decomposition, since there is a decrease in activity due to SO X, free of SO X in the gas It can be used as a denitration catalyst for jet engines and gas turbines. On the other hand, when the pH value is adjusted in the range of 3.4 to 3.6, the Al component is not mixed in the obtained precipitate 15 and becomes a binary system of Ti and V components. The precipitate 15 catalyst 17 using the binary (Ti, V), since there is no reduction in activity due to SO X with NO X decomposition, in addition to the denitration catalyst, such as jet engines and gas turbines, gas It can also be used as a denitrification and desulfurization catalyst of coal-fired boiler comprising a SO X in.
[0027]
Further, if alkali metal ions such as Na + remain in the catalyst precursor 16, the catalytic performance of the NO X decomposition catalyst 17 is significantly lowered. For this reason, in the manufacturing method according to the present embodiment, by performing purification treatment on the precipitate 15 (step A), Na + can be removed from the precipitate 15, thereby reducing the catalyst life of the catalyst 17. Decline can be prevented.
[0028]
Here, instead of step A in which the precipitate 15 is subjected to purification treatment, the acid solution 13 may be ion-exchanged (step C) as shown in FIG. By this ion exchange, alkali metal ions such as Na + can be removed from the acid solution 13, and the acid solution 13 can be purified. In this case, the obtained precipitate 15 becomes a catalyst precursor. Moreover, as shown in FIG. 3, you may make it perform both the refinement | purification process (stepC) by ion exchange, and the refinement | purification process (stepA) by pure water washing | cleaning. By using stepC and A in combination, the purity of the Ti, V, and Al (or Ti, V) components in the precipitate 15 is higher than when stepC (or stepA) is performed alone.
[0029]
Further, in the manufacturing method according to the present embodiment, anatase-type TiO 2 can be stably obtained by performing a firing treatment on the catalyst precursor 16 in a temperature range of 300 to 600 ° C. As a result, the NO X decomposition catalyst 17 made of a calcined product (TiO 2 / V 2 O 5 ) containing at least anatase-type TiO 2 and vanadium oxide in a predetermined ratio is obtained.
[0030]
In addition, when one of the Ti component and the V component contained in the starting material 11 (sludge 11a) is extremely small, the catalyst 17 containing titanium oxide and vanadium oxide at a predetermined ratio may not be obtained. There is also. In this case, the ratio of the Ti component and the V component in the starting material 11 is predetermined by appropriately adding at least one of the titanic acid cleaning liquid 11b, the titanium cutting powder 11c, the Ti powder, and the V powder to the sludge 11a. Can be adjusted within the range. As a result, the catalyst 17 containing titanium oxide and vanadium oxide at a predetermined ratio can be obtained.
[0031]
As mentioned above, according to the manufacturing method of the NO x decomposition catalyst according to the present embodiment, useful metals are recovered from sludge 11a containing Ti, V, and Al that has been conventionally disposed and disposed as industrial waste. Thus, a high added-value NO X decomposition catalyst 17 commensurate with the cost of the recovery treatment can be obtained. As a result, the sludge 11a can be treated on a commercial basis, the amount of industrial waste can be reduced, and the amount of waste discharged can be reduced.
[0032]
Further, the catalyst 17 obtained by the manufacturing method according to the present embodiment can be applied to a photocatalyst or the like in addition to the NO X decomposition catalyst.
[0033]
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.
[0034]
FIG. 4 shows a flow for explaining a method for producing a NO X decomposition catalyst according to another preferred embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the member similar to FIG. 1, and description is abbreviate | omitted about these members.
[0035]
The basic manufacturing procedure of the NO X decomposition catalyst manufacturing method according to the present embodiment is the same as the manufacturing method according to the previous embodiment.
[0036]
As shown in FIG. 4, in the method for producing the NO X decomposition catalyst according to the present embodiment, the acid solution 13 is subjected to a separation process such as filtration (step D), and the supernatant liquid 41 and the precipitate 42 are separated. Then, the alkaline solution 14 is added to the supernatant 41 to cause precipitation, and then at least titanium oxide (TiO 2 ) and vanadium oxide are added to each other in the same manner as in the manufacturing method according to the previous embodiment. The NO X decomposition catalyst 47, which is a fired product contained in a proportion, is obtained.
[0037]
The obtained catalyst 47 uses only the supernatant liquid 41 obtained by subjecting the acid solution 13 to separation treatment (step D), and impurities other than Ti, V, Al (or Ti, V) components are precipitated 42. As a result, the catalyst has a higher purity than that of the catalyst 17 obtained by the manufacturing method according to the previous embodiment, that is, a catalyst with higher resolution.
[0038]
Also in the manufacturing method according to the present embodiment, the purification process of stepC shown in FIG. 2 or the purification process using both stepC and stepB shown in FIG. 3 may be performed.
[0039]
Also in the manufacturing method according to the present embodiment, the same effects as the manufacturing method according to the previous embodiment can be obtained.
[0040]
As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.
[0041]
【Example】
Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.
[0042]
(Example 1)
As a starting material,
Ti content is 27.0% by weight,
V content is 0.74% by weight,
Al content is 1.97 wt%,
Na content is 17.1% by weight,
A sludge having a Cl content of 18.9% by weight is used and dissolved with 1N hydrochloric acid to prepare an acid solution.
[0043]
Next, 1N ammonia water is added to the acid solution to cause precipitation. At this time, the mixing amount of hydrochloric acid and aqueous ammonia is adjusted so that the pH value becomes 3.4 to 3.6.
[0044]
Next, the obtained precipitate is washed with pure water at 60 to 80 ° C. and subjected to purification treatment, and a mixture of titanium hydroxide and vanadium hydroxide is taken out as a catalyst precursor.
[0045]
Thereafter, the catalyst precursor taken out is subjected to a baking treatment at 400 ° C.,
Ti content is 52.4% by weight,
V content is 1.46% by weight,
Al content is less than 0.05% by weight,
Na content less than 0.05% by weight,
A catalyst having a Cl content of less than 0.05% by weight was obtained (Sample 1).
[0046]
Next, an X-ray diffraction test was performed on Sample 1. The diffraction pattern in the diffraction test is shown in FIG. 5A, and only the peak (intensity) of the diffraction pattern is converted into data. As shown in FIG. 5B, the angle (2θ) is about 25 °, about 38 °, Strong peaks were obtained at about 48 °, about 55 °, about 62 °, about 70 °, about 75 °, about 82 °, and about 95 °. As a result of comparing the peak data shown in FIG. 5 (b) with the peak data of the anatase TiO 2 shown in FIG. 5 (c) and the peak data of the rutile TiO 2 shown in FIG. 5 (d), It was confirmed that TiO 2 contained in Sample 1 was anatase type.
[0047]
Next, a catalyst performance test was performed on Sample 1. In the test, a quartz tube filled with sample 1 was set in a reaction furnace, and NH 3 having the same molar concentration was added to a test gas having NO of 90 ppm from one end side of the quartz tube under a temperature condition of 400 ° C. The test was conducted under the condition that the SV (Space Velocity) value was 10,000 h −1 .
[0048]
The catalytic performance test results as shown in FIG. 6, ▲ 2 ▼ decomposition of the NO X at the time of the ammonia added is stopped shown in is not made, ▲ 1 ▼ during the addition of ammonia indicated in, NO X initial concentration (C 0) The test gas having a concentration of 90 ppm passed through the quartz tube filled with the sample 1, and the measured NO X concentration (C) was 5 ppm. That is, by using the sample 1 catalyst, a high decomposition rate exceeding 90% (= [(C 0 -C) / C 0 ] × 100) can be obtained. Therefore, the sample 1 catalyst has excellent NO X decomposition. It was confirmed to be a catalyst.
[0049]
【The invention's effect】
According to the brief present invention above, exhibits Ti, V, and from waste containing Al, an excellent effect that it is possible to obtain a highly industrial value-added NO X decomposition catalyst.
[Brief description of the drawings]
FIG. 1 is a flow for explaining a method for producing a NO x decomposition catalyst according to a preferred embodiment of the present invention.
FIG. 2 is a modification of FIG.
FIG. 3 is another modification of FIG.
FIG. 4 is a flow for explaining a method for producing a NO x decomposition catalyst according to another preferred embodiment of the present invention.
FIG. 5 is a diagram showing the X-ray diffraction test results of Sample 1 in Examples, where the horizontal axis indicates 2θ [°] and the vertical axis indicates intensity [counts].
[Fig. 6]
It is a figure which shows the catalyst performance test result of the sample 1 in an Example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Starting material 12 Acid solution 13 Acid solution 14 Alkaline solution 15 Precipitate 16 Catalyst precursor 17 NO X decomposition catalyst stepA Purification process

Claims (7)

Ti,V,及びAlを含む廃棄物で構成される出発物質からNO分解触媒を製造する方法において、上記出発物質を酸性溶液で溶解して酸溶解液を作製し、その酸溶解液にアルカリ性溶液を加えて沈殿物を生成させ、その沈殿物を精製してチタン水酸化物とバナジウム水酸化物との混合物を触媒前駆体として取り出すことを特徴とするNO分解触媒の製造方法。Ti, V, and a process for the preparation of NO X decomposition catalyst from constituted starting material in waste containing Al, and dissolving the starting material with an acid solution to produce an acid solution, an alkaline to its acid solution A method for producing a NO X decomposition catalyst, comprising adding a solution to produce a precipitate, purifying the precipitate, and taking out a mixture of titanium hydroxide and vanadium hydroxide as a catalyst precursor. Ti,V,及びAlを含む廃棄物で構成される出発物質からNO分解触媒を製造する方法において、上記出発物質を酸性溶液で溶解して酸溶解液を作製し、その酸溶解液の上澄み液を分離し、その上澄み液にアルカリ性溶液を加えて沈殿物を生成させ、その沈殿物を精製してチタン水酸化物とバナジウム水酸化物との混合物を触媒前駆体として取り出すことを特徴とするNO分解触媒の製造方法。In a method for producing a NO x decomposition catalyst from a starting material composed of a waste containing Ti, V, and Al, an acid solution is prepared by dissolving the above starting material with an acid solution, and the supernatant of the acid solution is obtained. The solution is separated, an alkaline solution is added to the supernatant to form a precipitate, the precipitate is purified, and a mixture of titanium hydroxide and vanadium hydroxide is taken out as a catalyst precursor. A method for producing a NO X decomposition catalyst. 上記酸溶解液にアルカリ性溶液を加えてpHを3.4〜3.6に調整し、沈殿物を生成させる請求項1又は2記載のNO分解触媒の製造方法。The method for producing a NO x decomposition catalyst according to claim 1 or 2, wherein an alkaline solution is added to the acid solution to adjust the pH to 3.4 to 3.6 to generate a precipitate. 上記触媒前駆体に300〜600℃の温度で焼成処理を施し、チタン酸化物とバナジウム酸化物の焼成物を製造する請求項1から3いずれかに記載のNO分解触媒の製造方法。The method for producing a NO x decomposition catalyst according to any one of claims 1 to 3, wherein the catalyst precursor is calcined at a temperature of 300 to 600 ° C to produce a calcined product of titanium oxide and vanadium oxide. 上記廃棄物が、Ti,V,及びAlを含むスラッジ、水溶液、及び切り粉の内の少なくとも1種で構成される請求項1から4いずれかに記載のNO分解触媒の製造方法。The method for producing a NO x decomposition catalyst according to any one of claims 1 to 4, wherein the waste is composed of at least one of sludge containing Ti, V, and Al, an aqueous solution, and chips. 上記沈殿物を精製するための精製処理として、沈殿物を40〜90℃の純水で水洗浄する請求項1から5いずれかに記載のNO分解触媒の製造方法。The method for producing a NO X decomposition catalyst according to any one of claims 1 to 5, wherein the precipitate is washed with pure water at 40 to 90 ° C as a purification treatment for purifying the precipitate. 上記酸溶解液をイオン交換膜に通して精製処理を行う請求項1から6いずれかに記載のNO分解触媒の製造方法。The method for producing a NO x decomposition catalyst according to any one of claims 1 to 6, wherein the acid solution is passed through an ion exchange membrane for purification.
JP2003200002A 2003-07-22 2003-07-22 Method for producing NOX decomposition catalyst Expired - Fee Related JP4314908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200002A JP4314908B2 (en) 2003-07-22 2003-07-22 Method for producing NOX decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200002A JP4314908B2 (en) 2003-07-22 2003-07-22 Method for producing NOX decomposition catalyst

Publications (2)

Publication Number Publication Date
JP2005040654A true JP2005040654A (en) 2005-02-17
JP4314908B2 JP4314908B2 (en) 2009-08-19

Family

ID=34260584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200002A Expired - Fee Related JP4314908B2 (en) 2003-07-22 2003-07-22 Method for producing NOX decomposition catalyst

Country Status (1)

Country Link
JP (1) JP4314908B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275733A (en) * 2006-04-05 2007-10-25 Tohoku Koeki Kk Recycling method of used titanium compound as fluorine collector
CN102190390A (en) * 2010-03-08 2011-09-21 张步芳 Vanadium and titanium industrial wastewater treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736495B (en) * 2013-11-19 2016-01-13 上海大学 3-D nano, structure vanadate monoblock type denitrating catalyst, preparation method and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275733A (en) * 2006-04-05 2007-10-25 Tohoku Koeki Kk Recycling method of used titanium compound as fluorine collector
JP4716913B2 (en) * 2006-04-05 2011-07-06 東北交易株式会社 Recycling of used titanium compounds as fluorine scavengers
CN102190390A (en) * 2010-03-08 2011-09-21 张步芳 Vanadium and titanium industrial wastewater treatment device

Also Published As

Publication number Publication date
JP4314908B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
KR101452179B1 (en) Recovery method of vanadium and tungsten from leaching solution of spent catalyst of denitrification
JP3694537B2 (en) Method for producing mixed oxide powder used as catalyst for removing nitrogen oxides
KR101813233B1 (en) Selective recovery method for valuable metal from spent SCR catalyst using alkali fusion
JP2018524171A (en) Recycling method of used SCR denitration catalyst
CN114774701B (en) Resource utilization method of industrial waste salt and waste denitration catalyst
CN115445604B (en) Recycling recovery method of waste denitration catalyst
CN108772057A (en) A kind of low-temperature SCR manganese oxide catalyst and its preparation method and application
CN107029739A (en) A kind of preparation method and application without low temperature SCR denitration catalyst in vanadium
JP2005125211A (en) Exhaust gas treatment method
JP2017179562A (en) Method of recovering vanadium from denitration catalyst
CN115717201A (en) Method for recovering metal oxide from waste SCR denitration catalyst
JP2008049288A (en) Compound oxide and its producing method, and catalyst, method and apparatus for removing nitrogen oxide
JP4314908B2 (en) Method for producing NOX decomposition catalyst
CN110605113B (en) TiO 2 -WO 3 Composite nano powder and preparation method thereof, SCR denitration catalyst and flue gas denitration method
CN112125336B (en) Method for recovering nano bismuth titanate, bismuth vanadate and high-purity tungsten slag from waste denitration catalyst
CN109012703A (en) A kind of new method preparing iron sulphur titanium group high temperature NH3-SCR denitrating catalyst
JP6007601B2 (en) Method for producing manganese oxide
RU2317947C1 (en) Method of preparing photocatalytic titanium dioxide
JP2008049289A (en) Catalyst, method and apparatus for removing nitrogen oxide
CN103071483A (en) Preparation method of titanium-tungsten-silicon composite powder for SCR (Selective Catalytic Reduction) denitration catalyst
CN115612846A (en) Method for recycling and preparing titanium-tungsten powder and vanadium products from waste SCR denitration catalyst
EP1205564B1 (en) Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent
CN114229886A (en) Preparation method of alkaline battery additive
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
CN106521165B (en) A method of extraction discards valuable metal in SCR catalyst and prepares alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R151 Written notification of patent or utility model registration

Ref document number: 4314908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees