JP2007275733A - Recycling method of used titanium compound as fluorine collector - Google Patents

Recycling method of used titanium compound as fluorine collector Download PDF

Info

Publication number
JP2007275733A
JP2007275733A JP2006104049A JP2006104049A JP2007275733A JP 2007275733 A JP2007275733 A JP 2007275733A JP 2006104049 A JP2006104049 A JP 2006104049A JP 2006104049 A JP2006104049 A JP 2006104049A JP 2007275733 A JP2007275733 A JP 2007275733A
Authority
JP
Japan
Prior art keywords
fluorine
titanium
treatment
compound
titanium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006104049A
Other languages
Japanese (ja)
Other versions
JP4716913B2 (en
Inventor
Masatoshi Endo
昌敏 遠藤
Tsutomu Honda
勉 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU KOEKI KK
Original Assignee
TOHOKU KOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU KOEKI KK filed Critical TOHOKU KOEKI KK
Priority to JP2006104049A priority Critical patent/JP4716913B2/en
Publication of JP2007275733A publication Critical patent/JP2007275733A/en
Application granted granted Critical
Publication of JP4716913B2 publication Critical patent/JP4716913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To develop a method of recovering used titanium compounds from waste containing titanium compounds and using for a fluorine treatment. <P>SOLUTION: The recycling method of the titanium compounds as the collector comprises the following processes: the waste containing the titanium compounds is subjected to pretreatments of an alkali treatment, an acid treatment, and a chelating agent addition treatment and/or a flocculant addition treatment, and the obtained titanium-containing compound is used to collect fluorine, and fluorine-containing compounds from drain containing fluorine, and the fluorine-containing compounds at a low concentration. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はチタン化合物を含む廃棄物中のチタン化合物を処理してフッ素及びフッ素含有化合物の捕集剤として再生利用する方法に関する。   The present invention relates to a method of treating a titanium compound in waste containing a titanium compound and recycling it as a scavenger for fluorine and fluorine-containing compounds.

産業排水などのフッ素及びその化合物を含む排水の排水処理は、カルシウム塩による一段凝集処理法が広く普及している。超高濃度(数千ppm以上)のフッ素の処理には炭酸カルシウムや塩化カルシウムを用いて、フッ素を、フッ化カルシウムとして回収する方法が一般的に行われている。しかし、かかる一段処理法ではフッ素として通常10〜20mg/L(ppm)程度までしか処理できない。そのため排水基準値の8mg/L以下の濃度までフッ素を安定に処理するためには、
1)ポリ塩化アルミニウム(PAC)や硫酸バンド等のアルミニウム塩を添加してフッ素を水酸化アルミニウムに吸着、共沈させ、凝集処理施設を二段処理する方法、
2)アルミニウム塩に希土類などのフッ素処理助剤を追加投入する方法、
3)アルミニウムイオンを吸着させたホスホメチルアミノ型キレート樹脂、ジルコニウムなどの金属表面に担持させた樹脂、含水酸化セリウムを高分子化合物に担持させた吸着剤などの処理設備を増設するなどの方法
をとる必要がある(非特許文献1参照)。
For wastewater treatment of wastewater containing fluorine and its compounds, such as industrial wastewater, a one-stage coagulation treatment method using calcium salt is widely used. In general, a method of recovering fluorine as calcium fluoride by using calcium carbonate or calcium chloride is used for treating ultra-high concentration (several thousand ppm or more) of fluorine. However, such a one-stage treatment method can usually treat only up to about 10 to 20 mg / L (ppm) as fluorine. Therefore, in order to stably treat fluorine to a concentration of 8 mg / L or less of the wastewater standard value,
1) A method in which an aluminum salt such as polyaluminum chloride (PAC) or a sulfuric acid band is added to adsorb and coprecipitate fluorine in aluminum hydroxide, and the coagulation treatment facility is treated in two stages
2) A method of adding an additional fluorine processing aid such as rare earth to the aluminum salt
3) Additional methods such as phosphomethylamino chelate resin that adsorbs aluminum ions, resin supported on a metal surface such as zirconium, and adsorbent that supports hydrous cerium on a polymer compound. It is necessary to take (see Non-Patent Document 1).

しかし、第一の二段処理法ではアルミニウム塩注入量を増加させた分だけ汚泥の発生量も増加し、コストが高くなる。しかも、現在、一段処理を行っている事業所が二段設備に移行するためには、多額の費用と増設スペースを必要とするなど、新たな設備の設置は困難であると考えられる。第二のフッ素処理助剤を添加する方法は、新たな設備投資を要しないためイニシャルコストは安価であるが、ランニングコストは一段処理法よりも高価となるという問題がある。第三の樹脂処理はコストが高く、排水量が多い場合には不適当であるという問題点が指摘されている。以上のような問題点に加えて、環境基準値は排出基準値よりも更に低い0.8ppmであるため、この環境基準値をクリアするには更なる新たな処理技術の開発が要求されている。   However, in the first two-stage treatment method, the amount of sludge generated is increased by the amount of aluminum salt injection, and the cost is increased. Moreover, it is considered that it is difficult to install new facilities because a large amount of cost and additional space are required for an establishment that is currently performing one-stage processing to move to two-stage equipment. The method of adding the second fluorine processing aid does not require a new capital investment, so the initial cost is low, but there is a problem that the running cost is more expensive than the one-step processing method. It has been pointed out that the third resin treatment is expensive and inappropriate when the amount of drainage is large. In addition to the above-mentioned problems, the environmental standard value is 0.8 ppm, which is lower than the emission standard value. Therefore, development of further new processing technology is required to clear this environmental standard value. .

平成15年度水質汚染未規制物質排出状況調査((株)東レリサーチセンター、平成16年3月)2003 Water Pollution Unregulated Substances Release Status Survey (Toray Research Center, Inc., March 2004)

従って、本発明の目的は、チタン化合物を含む廃棄物等から使用済みのチタン化合物を回収して、排液中に含まれるフッ素及びフッ素含有化合物のフッ素捕集剤として使用する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for recovering used titanium compounds from wastes containing titanium compounds and using them as fluorine scavengers for fluorine and fluorine-containing compounds contained in the effluent. It is in.

本発明に従えば、チタン化合物を含む廃棄物に、アルカリ処理、酸処理、キレート化剤添加処理及び/又は凝集剤添加処理の前処理を施し、次に得られたチタン含有化合物を低濃度のフッ素及びフッ素含有化合物を含む排液中からフッ素及びフッ素含有化合物を捕集するのに使用することを特徴とするチタン化合物の捕集剤としての再生利用方法が提供される。   According to the present invention, the waste containing the titanium compound is subjected to pretreatment of alkali treatment, acid treatment, chelating agent addition treatment and / or flocculant addition treatment, and then the obtained titanium-containing compound is reduced to a low concentration. There is provided a recycling method as a scavenger for a titanium compound, which is used for collecting fluorine and a fluorine-containing compound from an effluent containing fluorine and a fluorine-containing compound.

本発明によれば、使用済みのチタン化合物を含む廃棄物等からチタン化合物を回収して排液中のフッ素及びフッ素含有化合物の捕集剤として使用することによりフッ化物イオンの排水基準値8ppmは勿論のこと、環境基準値の0.8ppm以下まで処理することができる。   According to the present invention, by recovering a titanium compound from waste containing a used titanium compound and using it as a scavenger for fluorine and fluorine-containing compounds in the effluent, the drainage standard value for fluoride ions is 8 ppm. Of course, processing can be performed up to an environmental standard value of 0.8 ppm or less.

本発明者らは前記課題を解決すべく研究を進めた結果、排液中の低濃度のフッ化物イオンを除去するためには、フッ素の再溶出を防ぐため、溶解度の低いフッ素化合物の形で捕集することが有効であると考えた。また、金属水酸化物中の水酸化物イオンとフッ化物イオンとのイオン交換反応は化合物全体の電荷が変化しないため、フッ化物イオンの処理法として適しており、フッ化物イオンはHSAB(Hard and Soft Acids and Bases)の概念において硬い塩基(例えばOH-,F-,Cl-)に属し、硬い酸(Ti4+,Al3+,Fe3+,Mg2+,Ca2+)と親和性が強いため、硬い酸であるアルミニウム、鉄など酸化数の大きい金属化合物を用いる処理法が有効であると考えた。そこで、廃棄物のチタン化合物に着目して、この、酸化数の大きいチタン化合物を用いて排液中のフッ化物イオンを除去することについて検討した。廃棄物中の使用済みチタン化合物に前処理法を施したチタン化合物を排液中のフッ素及びフッ素含有化合物の捕集剤とすることで、フッ化物イオンを基準値以下の濃度まで処理できることを見出した。本発明によれば廃棄物等中の使用済みチタン化合物を用いるので、安価かつ簡便に低濃度のフッ化物イオンの除去を行なうことができる。 As a result of researches to solve the above-mentioned problems, the inventors of the present invention have found that in order to remove low-concentration fluoride ions in the effluent, in the form of fluorine compounds with low solubility in order to prevent re-elution of fluorine. We thought it was effective to collect. In addition, the ion exchange reaction between hydroxide ions and fluoride ions in metal hydroxides is suitable as a treatment method for fluoride ions because the charge of the entire compound does not change. In the concept of Soft Acids and Bases, it belongs to a hard base (for example, OH , F , Cl ) and has an affinity for hard acids (Ti 4+ , Al 3+ , Fe 3+ , Mg 2+ , Ca 2+ ) Therefore, the treatment method using a metal compound having a large oxidation number such as aluminum or iron which is a hard acid was considered effective. Therefore, paying attention to the titanium compound in the waste, we examined the removal of fluoride ions in the effluent using this titanium compound having a large oxidation number. Discovered that fluoride ions can be treated to a concentration below the reference value by using a pre-treatment method for the used titanium compound in waste as a scavenger for fluorine and fluorine-containing compounds in the effluent. It was. According to the present invention, the spent titanium compound in the waste or the like is used, so that low-concentration fluoride ions can be easily removed at low cost.

フッ素及びフッ素含有化合物を含み、排水基準値を超過する排水を出す業種として電気めっき業、半導体製造業、電子管製造業、ガラス工業などが挙げられるが、現在、多くは前述の一段凝集処理による排水処理を行っており、環境基準に対応するためには新たに設備を増設する必要があり、これは導入コストとその後の処理費用増加が大きな負担となることが予想される。これに対し、本発明の方法は既設の凝集沈殿装置を用いて処理を行えるため、初期投資のコストが安価であり、導入時の事業者負担を最小限に抑えることができる。また、本発明によれば、フッ化物イオンの排水基準値の8ppmはもちろんのこと、環境基準値の0.8ppm以下まで処理できるため、新たな規制が実施された場合への対応も可能となる。   Electroplating industry, semiconductor manufacturing industry, electron tube manufacturing industry, glass industry, etc. can be cited as industries that produce fluorine and fluorine-containing compounds that exceed the wastewater standard value. In order to comply with environmental standards, it is necessary to newly install facilities, and this is expected to be a significant burden due to the introduction cost and subsequent processing cost increase. On the other hand, since the method of the present invention can be processed using an existing coagulation sedimentation apparatus, the initial investment cost is low, and the burden on the operator at the time of introduction can be minimized. In addition, according to the present invention, since it is possible to treat not only the drainage standard value of fluoride ions of 8 ppm but also the environmental standard value of 0.8 ppm or less, it is possible to cope with the case where new regulations are implemented. .

本発明において捕集剤として使用するチタン化合物は、例えばプラスチック工業、電子工業、金属工業、製薬業、顔料工業などの産業から固形廃棄物として排出されており、一部では回収毎使用されている。本発明者らはかかるチタン化合物を含む廃棄物に着目し、廃棄物を、必要に応じ、洗浄、溶解、不純物除去、分離回収などの処理を施したのみ、アルカリ処理、酸処理、キレート化剤添加処理及び/又は凝集剤添加処理を施してチタン含有化合物を回収する。これらの処理方法はいずれもチタン化学分野において知られた方法であって、特に本発明において特異なことはないが、以下にその代表的な方法を説明する(但し、本発明の処理方法をこれらに限定するものでないことはいうまでもない。)。またこれらの処理方法は必要に応じ組合せて使用することができる。   The titanium compound used as a collecting agent in the present invention is discharged as solid waste from industries such as the plastic industry, the electronics industry, the metal industry, the pharmaceutical industry, and the pigment industry, and is partially used for every recovery. . The present inventors pay attention to the waste containing such a titanium compound, and if necessary, the waste is only subjected to treatment such as washing, dissolution, impurity removal, separation and recovery, alkali treatment, acid treatment, chelating agent. Addition treatment and / or flocculant addition treatment is performed to recover the titanium-containing compound. These treatment methods are all known in the field of titanium chemistry, and are not particularly specific in the present invention, but typical methods will be described below (however, the treatment method of the present invention is not limited to these methods). Needless to say, it is not limited to.) Moreover, these processing methods can be used in combination as necessary.

アルカリ処理
酸により溶解したチタン化合物あるいはスラリーとして得られるチタン化合物に水酸化ナトリウムや炭酸ナトリウムなどのアルカリを加えてpHを10以上とし、チタンの水酸化物を生成させる。
An alkali such as sodium hydroxide or sodium carbonate is added to a titanium compound dissolved with an alkali-treated acid or a titanium compound obtained as a slurry to adjust the pH to 10 or more to produce a titanium hydroxide.

酸処理
アルカリ処理によりpHが高くなったチタン化合物を含む溶液、スラリーに酸を添加してpH調整を行う(pH4以下)。また不純物の溶解のために酸を添加する場合もある。
The pH is adjusted by adding an acid to the solution and slurry containing the titanium compound whose pH is increased by the acid treatment alkali treatment (pH 4 or less). An acid may be added to dissolve impurities.

キレート化剤添加処理
チタン化合物のアルカリ処理後に生成した水酸化チタンを洗浄する際に、沈降速度が遅くなるため粒子サイズを大きくする目的で橋かけ構造をとれるキレート化剤を添加する場合もある。
When washing the titanium hydroxide formed after alkali treatment of chelating agent addition process titanium compounds, there is also a case of adding a chelating agent to take a crosslinking structure in order to increase the particle size because the sedimentation velocity becomes slow.

凝集剤添加処理
水酸化チタン化合物は形態が不安定であるが、pH調整と凝集効果のために各種多価有機酸の使用が有効であることを見い出した。しかし過剰な添加はフッ化物イオンの捕集能力が低下する。
The form of the titanium hydroxide compound treated with the flocculant is unstable, but it has been found that the use of various polyvalent organic acids is effective for pH adjustment and agglomeration effect. However, excessive addition reduces the ability to collect fluoride ions.

本発明によれば、上記の処理方法で回収したチタン化合物(例えば水酸化チタン、酸化チタン)を用いて、低濃度(例えばフッ素イオンとして3ppm以下)のフッ素及びフッ素化合物を含む排水を処理する。処理設備フローには特に限定はなく、例えば図1に示すようなフローで処理することができる。即ち、フッ素及びフッ素化合物を含む排水1を排水貯槽2に入れ、次にポンプなどで排水処理槽3に供給する。排水処理槽3には、別途前記方法で処理したチタン化合物捕集剤4を液状の形態で供給し、必要に応じpH調整剤(例えばアルカリ性の排水には塩酸や硫酸などの酸、酸性の排水には水酸化ナトリウム溶液、酢酸系緩衝剤)などを供給することができる。   According to the present invention, wastewater containing fluorine and a fluorine compound at a low concentration (for example, 3 ppm or less as fluorine ions) is treated using the titanium compound (for example, titanium hydroxide, titanium oxide) recovered by the above treatment method. The processing equipment flow is not particularly limited, and for example, processing can be performed according to the flow shown in FIG. That is, waste water 1 containing fluorine and a fluorine compound is put into a waste water storage tank 2 and then supplied to a waste water treatment tank 3 by a pump or the like. The wastewater treatment tank 3 is supplied with a titanium compound scavenger 4 separately treated by the above method in a liquid form, and a pH adjuster (for example, acid such as hydrochloric acid or sulfuric acid, acidic wastewater for alkaline wastewater). Can be supplied with sodium hydroxide solution, acetic acid buffer) and the like.

フッ素及び/又はフッ素化合物を含む排水1をチタン化合物捕集剤4で処理する際の条件には特に限定はないが、液のpHが1〜4であるのが好ましく(pH調整剤としては塩酸や硫酸と水酸化ナトリウムなどがあげられる)、温度は常温で、滞留時間は0.5〜2時間であるのが好ましい。   There is no particular limitation on the conditions when the wastewater 1 containing fluorine and / or fluorine compound is treated with the titanium compound scavenger 4, but the pH of the liquid is preferably 1 to 4 (as the pH adjuster, hydrochloric acid And sulfuric acid and sodium hydroxide), the temperature is normal temperature, and the residence time is preferably 0.5 to 2 hours.

フッ素及び/又はフッ素化合物を含む排水をチタン化合物捕集剤で処理する方法は連続回分又は半回分方式で実施することができる。チタン化合物捕集剤の添加量には特に制限はないが、低濃度のフッ化物イオンの処理が行えたうえでコストを抑制する観点から排水中のフッ素イオン1モル当りチタン原子として10〜15モルであるのが好ましい。   The method of treating the waste water containing fluorine and / or fluorine compound with a titanium compound scavenger can be carried out in a continuous batch or semi-batch mode. Although there is no restriction | limiting in particular in the addition amount of a titanium compound scavenger, 10-15 mol as a titanium atom per 1 mol of fluorine ions in waste water from the viewpoint of suppressing cost after processing a low concentration fluoride ion can be performed. Is preferred.

本発明に従って使用済みのチタン化合物を捕集剤として用いて排水中のフッ素及びフッ素化合物をフッ化チタン化合物として捕集し、これを例えば従来から用いられている沈殿槽5にて回収し、上澄水はそのまま処理水6として放出することができ、沈殿は汚泥として回収する。   Using the titanium compound used according to the present invention as a scavenger, fluorine and fluorine compounds in the waste water are collected as a titanium fluoride compound, and this is recovered, for example, in a precipitation tank 5 conventionally used. The clear water can be discharged as the treated water 6 as it is, and the precipitate is recovered as sludge.

以下に本発明を実施例に基づいて更に詳しく説明するが、本発明を以下の例に限定するものでないことはいうまでもない。   Hereinafter, the present invention will be described in more detail based on examples, but it is needless to say that the present invention is not limited to the following examples.

例1
焼却灰からのフッ化物イオン溶出量の測定は100mlポリエチレン製びんに焼却灰10gと純水100mlを加えて行った。また、フッ化物イオン捕集実験では100mlポリエチレン製びんにフッ化物イオン濃度が3ppmのフッ化ナトリウム溶液100mlと前処理を行った捕集剤を加えて実施した。いずれも6時間振とうした後に静置し、孔径0.2μmのメンブランフィルター(材質:セルロースアセテート)でろ過してからイオンクロマトグラフィー(DIONEX製DX−100)でフッ化物イオン濃度の測定を行なった。
Example 1
The amount of fluoride ions eluted from the incinerated ash was measured by adding 10 g of incinerated ash and 100 ml of pure water to a 100 ml polyethylene bottle. The fluoride ion collection experiment was conducted by adding 100 ml of a sodium fluoride solution having a fluoride ion concentration of 3 ppm and a pretreated collection agent to a 100 ml polyethylene bottle. Each was shaken for 6 hours, allowed to stand, filtered through a membrane filter (material: cellulose acetate) having a pore size of 0.2 μm, and then measured for fluoride ion concentration by ion chromatography (DX-100 manufactured by DIONEX). .

先ず、焼却灰から溶出するフッ化物イオン濃度の測定を行った。焼却灰はA社(製紙業)の焼却灰を準備し、A社の焼却灰は1.43ppmのフッ化物イオンを含んでいることを確認した。これは焼却物中にフッ素樹脂が含まれ、高温での燃焼によって分解し、フッ化物イオンが生成したためだと考えられる。   First, the fluoride ion concentration eluted from the incineration ash was measured. Incineration ash prepared the incineration ash of company A (paper industry), and it was confirmed that the incineration ash of company A contained 1.43 ppm of fluoride ions. This is thought to be due to the fact that the incinerated material contains fluororesin and decomposed by combustion at high temperature, producing fluoride ions.

以下の表Iに示すように、B社(製薬業)の廃触媒から得られたチタンを含む廃棄物を以下に示すようなアルカリ処理、中和処理又はキレート化剤添加処理で得られたチタン含有捕集剤X,Y及びZを用いて前記A社からの焼却灰の溶出液Aのフッ素除去処理を行なった。結果は表Iに示す。   As shown in Table I below, the titanium-containing waste obtained from the waste catalyst of Company B (pharmaceutical industry) was obtained by alkali treatment, neutralization treatment or chelating agent addition treatment as shown below. Fluorine removal treatment of the incinerated ash eluate A from Company A was carried out using the containing collection agents X, Y and Z. The results are shown in Table I.

Figure 2007275733
Figure 2007275733

表I脚注
捕集剤Xの調製:0.1mol/Lの炭酸ナトリウム溶液で撹はん処理、ろ別後50℃で2.5時間乾燥した。
捕集剤Yの調製:0.1mol/Lの炭酸ナトリウム溶液で撹はん処理後、0.1mol/Lの塩酸で撹はん処理、ろ別後50℃で2.5時間乾燥した。
捕集剤Zの調製:0.1mol/Lの炭酸ナトリウム溶液で撹はん処理後0.1mol/Lの塩酸で撹はん処理、その後0.1mol/Lシュウ酸ナトリウム溶液で撹はん処理、ろ別後50℃で2.5時間乾燥した。
Table I Preparation of footnote collecting agent X: Stirring with 0.1 mol / L sodium carbonate solution, followed by filtration and drying at 50 ° C. for 2.5 hours.
Preparation of collection agent Y: After stirring with 0.1 mol / L sodium carbonate solution, stirring with 0.1 mol / L hydrochloric acid, and after filtration, the mixture was dried at 50 ° C. for 2.5 hours.
Preparation of scavenger Z: Stirring with 0.1 mol / L sodium carbonate solution followed by stirring with 0.1 mol / L hydrochloric acid followed by stirring with 0.1 mol / L sodium oxalate solution After filtration, it was dried at 50 ° C. for 2.5 hours.

以上の通り、アルカリ処理、中和処理及びキレート化剤添加処理を行って得たチタン含有捕集剤を用いて低濃度域でのフッ化物イオンの捕集実験を行なったところ、捕集剤X及びYについては環境基準値(0.8ppm)以下の濃度まで処理することが可能となった。一方捕集剤Zは凝集剤として使用したシュウ酸イオンの濃度が高いため捕集率が低下した。チタン含有捕集剤調製時の乾燥条件については、チタン含有捕集剤の乾燥温度が高くなるにつれて捕集率が減少した。よって乾燥させないままでの添加が望ましい。処理の際の溶液のpH条件については、振とう前のpHが1〜4付近の場合に最も捕集率が高いことを認めた。
例2
フッ素イオン濃度が3ppmと20ppmの2種類のフッ化ナトリウム(NAF)水溶液サンプルB及びC100mlを準備し、前記捕集剤Yを0.1g、0.5g及び1gとなる量用いて、例1と同様にしてNaF水溶液中のフッ素イオンの除去を行なった。
結果は表IIに示す。
As described above, when an experiment for collecting fluoride ions in a low concentration region was performed using a titanium-containing collection agent obtained by performing alkali treatment, neutralization treatment, and chelating agent addition treatment, the collection agent X As for Y and Y, it became possible to treat to a concentration below the environmental standard value (0.8 ppm). On the other hand, since the collection agent Z had a high concentration of oxalate ions used as a flocculant, the collection rate decreased. About the drying conditions at the time of titanium-containing collection agent preparation, the collection rate decreased as the drying temperature of the titanium-containing collection agent increased. Therefore, addition without drying is desirable. About the pH conditions of the solution in the case of a process, when pH before shaking was 1-4 vicinity, it recognized that the collection rate was the highest.
Example 2
Example 1 was prepared by preparing 100 ml of two types of sodium fluoride (NAF) aqueous solution samples B and C having a fluoride ion concentration of 3 ppm and 20 ppm, and using the collection agent Y in amounts of 0.1 g, 0.5 g and 1 g. Similarly, fluorine ions in the NaF aqueous solution were removed.
The results are shown in Table II.

Figure 2007275733
Figure 2007275733

本発明に従えば、各種産業工程から発生するチタン化合物及び廃棄物としてのチタン化合物に対して、アルカリ処理、酸処理、キレート化剤添加処理及び/又は凝集剤添加処理の処理を施し、次に得られるチタン含有化合物を用いて低濃度のフッ素及びフッ素含有化合物を含む排液中からフッ素及びフッ素含有化合物を捕集して環境基準に合致したフッ素イオン濃度とすることができる。   According to the present invention, the titanium compound generated from various industrial processes and the titanium compound as waste are subjected to alkali treatment, acid treatment, chelating agent addition treatment and / or flocculant addition treatment, Using the obtained titanium-containing compound, fluorine and the fluorine-containing compound can be collected from the drainage liquid containing a low concentration of fluorine and the fluorine-containing compound to obtain a fluorine ion concentration that meets environmental standards.

本発明のチタン化合物の再生利用法のフローの一例を示す図面である。It is drawing which shows an example of the flow of the recycling method of the titanium compound of this invention.

符号の説明Explanation of symbols

1 排水
2 排水貯槽
3 排水処理槽
4 チタン化合物捕集剤
5 沈殿槽
6 処理水
1 Wastewater 2 Wastewater storage tank 3 Wastewater treatment tank 4 Titanium compound collector 5 Precipitation tank 6 Treated water

Claims (3)

チタン化合物を含む廃棄物に、アルカリ処理、酸処理、キレート化剤添加処理及び/又は凝集剤添加処理の前処理を施し、次に得られたチタン含有化合物を低濃度のフッ素及びフッ素含有化合物を含む排液中からフッ素及びフッ素含有化合物を捕集するのに使用することを特徴とするチタン化合物の捕集剤としての再生利用方法。   The waste containing the titanium compound is subjected to alkali treatment, acid treatment, chelating agent addition treatment and / or flocculant addition treatment, and the resulting titanium-containing compound is reduced to low concentrations of fluorine and fluorine-containing compounds. A recycling method as a scavenger for a titanium compound, characterized by being used for collecting fluorine and a fluorine-containing compound from a drainage liquid. 前記チタン化合物の前処理を、アルカリ処理によりチタンの水酸化物を生成させ、沈降、洗浄により不純物と分離し、中和処理、キレート化剤及び/又は凝集剤添加によって得られたチタン含有化合物に酸を添加してpHの調整を実施する請求項1に記載の方法。   A titanium-containing compound obtained by pretreatment of the titanium compound by producing a titanium hydroxide by alkali treatment, separating from impurities by sedimentation and washing, and neutralizing treatment, chelating agent and / or flocculant addition. The method of Claim 1 which adjusts pH by adding an acid. 前記排液中のフッ素及びフッ素含有化合物の捕集を、請求項2の前処理により得られたチタン含有化合物を排水に添加し、pH調整剤によりpHを4以下として実施する請求項2に記載の方法。   The collection of fluorine and a fluorine-containing compound in the drainage liquid is carried out by adding the titanium-containing compound obtained by the pretreatment of claim 2 to the wastewater and adjusting the pH to 4 or less with a pH adjuster. the method of.
JP2006104049A 2006-04-05 2006-04-05 Recycling of used titanium compounds as fluorine scavengers Expired - Fee Related JP4716913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104049A JP4716913B2 (en) 2006-04-05 2006-04-05 Recycling of used titanium compounds as fluorine scavengers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104049A JP4716913B2 (en) 2006-04-05 2006-04-05 Recycling of used titanium compounds as fluorine scavengers

Publications (2)

Publication Number Publication Date
JP2007275733A true JP2007275733A (en) 2007-10-25
JP4716913B2 JP4716913B2 (en) 2011-07-06

Family

ID=38677797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104049A Expired - Fee Related JP4716913B2 (en) 2006-04-05 2006-04-05 Recycling of used titanium compounds as fluorine scavengers

Country Status (1)

Country Link
JP (1) JP4716913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047301A (en) * 2012-08-31 2014-03-17 Katsuya Maeyama Polymer gel and production method thereof, and fluoride ion scavenger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657476A (en) * 1992-08-14 1994-03-01 Mitsui Mining & Smelting Co Ltd Removing method for fluorine ion in zinc electrolytic solution
JP2003320365A (en) * 2002-05-02 2003-11-11 Kurita Water Ind Ltd Method for treating object to be treated containing contaminant and treating agent for contaminated object to be treated
JP2004097860A (en) * 2002-09-04 2004-04-02 Japan Organo Co Ltd Removing agent of fluorine or phosphorus and removing method using the same
JP2005040654A (en) * 2003-07-22 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing nox decomposing catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657476A (en) * 1992-08-14 1994-03-01 Mitsui Mining & Smelting Co Ltd Removing method for fluorine ion in zinc electrolytic solution
JP2003320365A (en) * 2002-05-02 2003-11-11 Kurita Water Ind Ltd Method for treating object to be treated containing contaminant and treating agent for contaminated object to be treated
JP2004097860A (en) * 2002-09-04 2004-04-02 Japan Organo Co Ltd Removing agent of fluorine or phosphorus and removing method using the same
JP2005040654A (en) * 2003-07-22 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing nox decomposing catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047301A (en) * 2012-08-31 2014-03-17 Katsuya Maeyama Polymer gel and production method thereof, and fluoride ion scavenger

Also Published As

Publication number Publication date
JP4716913B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
CN106045168A (en) Zero discharge method for desulfurization waste water
JP5709199B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
JP2004141799A (en) Silica-containing waste water treatment method
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
JP2006192370A (en) Method for separating and recovering valuable resource from stainless steel pickling waste liquid
JP2009011920A (en) Treatment method for wastewater containing heavy metal
JP2007175673A (en) Treatment method of ammonia-containing drain
JP2010036107A (en) Sewage treatment method
JP4716913B2 (en) Recycling of used titanium compounds as fluorine scavengers
JP7084704B2 (en) Silica-containing water treatment equipment and treatment method
JP2008168273A (en) Method for treating selenium-containing waste water
JP4014276B2 (en) Treatment method for boron-containing wastewater
JP5187199B2 (en) Fluorine separation method from fluorine-containing wastewater
US20040217062A1 (en) Method for removing metal from wastewater
JP7108392B2 (en) Silica-containing water treatment apparatus and treatment method
JP2005144209A (en) Fluorine-containing waste water treatment method
JP3672262B2 (en) Method for treating boron-containing water
JP2005138017A (en) Treatment method for cement kiln steam extract dust
JP2005324137A (en) Method for removing fluoride ion in wastewater
CA3031762C (en) Process for removing silica from produced water and other wastewater streams
JP5306977B2 (en) Method for treating boron-containing water and boron removing agent
JP2005296756A (en) Treatment method of ion-exchange resin regeneration waste liquid
JP6413772B2 (en) Chromium-containing water treatment method
KR20060051767A (en) Treating method of drainage containing fluorine
JPH03186393A (en) Treatment of waste water containing fluorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Ref document number: 4716913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees