JP2005038637A - Fuel cell power generating apparatus - Google Patents
Fuel cell power generating apparatus Download PDFInfo
- Publication number
- JP2005038637A JP2005038637A JP2003197597A JP2003197597A JP2005038637A JP 2005038637 A JP2005038637 A JP 2005038637A JP 2003197597 A JP2003197597 A JP 2003197597A JP 2003197597 A JP2003197597 A JP 2003197597A JP 2005038637 A JP2005038637 A JP 2005038637A
- Authority
- JP
- Japan
- Prior art keywords
- water
- cooling water
- fuel cell
- tank
- reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、炭化水素系原燃料ガスを触媒により水素リッチなガスに水蒸気改質する改質器と、改質器燃焼排ガスおよび燃料電池オフ空気等の排ガス中の水蒸気を凝縮させて凝縮水を回収する回収水タンクとを備えた燃料電池発電装置に関する。
【0002】
【従来の技術】
燃料電池発電装置に組み込まれる燃料電池としては、電解質の種類、改質原料の種類等によって異なる種々のタイプがあるが、例えば、固体高分子膜を電解質として用い、その運転温度が約80℃と比較的低いタイプの燃料電池として、固体高分子電解質型燃料電池がよく知られている。
【0003】
この固体高分子電解質型燃料電池は、リン酸型燃料電池と同様に、例えばメタンガス(都市ガス)等の炭化水素系原燃料を水蒸気改質して得られた燃料ガス中の水素と空気中の酸素とを、燃料電池の燃料極および空気極にそれぞれ供給し、電気化学反応に基づいて発電を行うものである。また、原燃料を燃料ガスへ改質するに際しては、原燃料に水蒸気を加え燃料改質器で触媒により改質を促進する方法が採用されている(前記基本的システム構成は、例えば、特許文献1参照)。
【0004】
前記改質を定常的に行なうには、所要の水蒸気量を定常的に補給する必要があり、水蒸気の供給装置には、これに対応した水を常時補給する必要がある。なお、使用する水は高純度の水であることが必要であり、イオン交換式の水処理装置で不純物を除去したイオン交換水が用いられるのが通例である。
【0005】
一方、燃料電池の電気化学反応では発電生成水が生じ、また燃料改質器では吸熱反応である水蒸気改質反応を定常的に行なうための触媒加熱用の燃焼に伴い燃焼生成水が生じるが、これらの生成水は通常の水道水に比べて不純物が少なく、これらの生成水を原水として用いれば、水処理装置の負荷を軽減することができるため、回収水タンクおよび排ガス冷却器を付加して、これらの生成水を回収して改質水蒸気発生用の供給水とする方法が、通常採用されている。
【0006】
また、燃料電池の電気化学反応では反応に伴って熱が発生し、この排熱エネルギーの一部は、貯湯槽に温水として貯え、給湯もしくは暖房に供される。
【0007】
図4は、都市ガスを原燃料とする従来の固体高分子電解質型燃料電池発電装置の一例を示す系統図であり、特許文献1に開示されたものに対して、電池冷却水系機器や回収水機器等々を追加して、より詳細なシステム構成を示す。
【0008】
図4において、模式的に示した燃料電池1は、燃料極1aと空気極1bとを有する単位セルを複数個重ねる毎に、図示しない冷却管または冷却溝を有する冷却板1cを配設,積層することにより構成されている。
【0009】
原燃料(主成分CH4)はまず改質用水蒸気とともに改質器3に供給され、以下の反応により、水素と一酸化炭素に改質される。改質用の触媒としては、貴金属系触媒またはニッケル系触媒が用いられる。
【0010】
CH4+H2O→3H2+CO (吸熱反応)
その後、この改質ガスは、CO変成器4に供給され、以下の反応により、改質ガス中の―酸化炭素は1%程度まで低減される。CO変成用触媒としては、貴金属系触媒または銅−亜鉛系触媒が用いられる。
【0011】
CO+H2O→H2+CO2 (発熱反応)
その後、さらにCO除去器5に供給され、図示しない選択酸化空気ブロアによって供給された空気によりCOを選択酸化する以下の反応により、改質ガス中の一酸化炭素は10ppm程度まで低減された後、燃料電池の燃料極1aに供給される。
【0012】
CO+1/2O2→CO2 (発熱反応)
上記の如く、改質器3において改質反応を行う場合、水蒸気を供給する必要があり、固体高分子型燃料電池発電装置では、その熱源として改質器3の燃焼排ガスの顕熱,CO変成器4及びCO除去器5の反応熱を利用するのが一般的である。そのため、電池冷却水循環ポンプ54にて供給される改質用水を、CO変成器4,CO除去器5,水蒸気発生器24の各反応器を直列に順次流すための改質用水蒸気供給ライン25を設け、前記各反応器から熱を受けて水蒸気とし、この水蒸気と原燃料とを混合して、改質用水蒸気供給ライン25から改質器3へ導入する構成としている。なお、図4においては、CO変成器4,CO除去器5への前記改質用水の通流ラインを省略している。
【0013】
又、上記の各反応器は触媒による化学反応を行うため、燃料電池発電装置の起動時には、適正な温度に予め昇温する必要がある。
各反応器の適正な温度は以下のとおりである。改質器:500〜700℃、CO変成器:200〜300℃、CO除去器:100〜250℃である。
【0014】
このため、改質器3は、燃料電池の排水素供給ライン19から供給される水素を改質器内に設置されているバーナで燃焼させることで、通常時は加熱されているが、起動時には原燃料をバーナで燃焼させることにより昇温している。また、改質器の燃焼排ガスにより水蒸気発生器24も昇温している。一方、CO変成器4とCO除去器5とは、それぞれが個々に備える図示しない電気ヒータにより昇温している。前記バーナには、燃焼空気ブロア6により、燃焼用空気が導入される。なお、7は、燃料電池本体の空気極に反応用の空気およびCO除去器におけるCO選択酸化用の空気を供給するための反応空気ブロアである。
【0015】
また、都市ガスは、都市ガス昇圧ブロア27により、まず脱硫器2へ導入され、都市ガス内に含まれる硫黄成分が除去された後、改質器3の触媒反応器へ導入され、前記燃焼排ガスにより熱の供給を受けながら改質され、水素リッチな燃料ガスとなる。
【0016】
次に、図4における燃料電池の冷却水系機器50および回収水系機器30について以下に述べる。冷却水系機器50は、電池冷却水冷却器51と、カソードオフガス冷却器52と、燃焼排ガスの排ガス冷却器53と、電池冷却水系タンク(もしくは純水タンク)55と、電池冷却水循環ポンプ54、その他配管等を含む。
【0017】
燃料電池1は、前述のように約80℃で運転され、前記電池冷却水循環ポンプ54によって、純水タンク55から通流される水によって冷却され、電池冷却水冷却器51によって除熱される。電池冷却水冷却器51には、図4には図示しない貯湯槽に接続される循環水導出ライン56から供給される、例えば約50℃の水が導入され、ここで電池冷却水を冷却した水は、その後、カソードオフガス冷却器52および燃焼排ガスの排ガス冷却器53を経由して、例えば約60℃に昇温されて、循環水導入ライン57から前記貯湯槽に還流する。前記純水タンク55には、液面計が設けてあり、液面が下限に到達した際には、後述する回収水が、水処理装置35を介して、間歇的に補給される。
【0018】
次に、回収水系機器30について述べる。回収水系機器30は、回収水タンク31と、回収水ポンプ33と、回収水冷却器34等からなる。前記回収水タンク31の上部には、カソードオフガス冷却器52および燃焼排ガスの排ガス冷却器53により冷却されたオフ空気および燃焼排ガスが導入され、空気およびガス中の含有水分を、上部に設けた散水装置から冷却水を散布することにより凝縮して、回収水タンク31の下部に回収する。この回収水を、回収水冷却器34により冷却して、前記散水装置に導入する。この散水装置の後段には、ラシヒリング等の充填層を備えた冷却水直接接触式凝縮器を設ける場合もある。
【0019】
この場合、水蒸気を含むオフ空気と燃焼排ガスを、図4には図示しない充填層下部から上方に通流し、一方、上部から回収水冷却器34で冷却された40℃程度の回収水を散水して、充填層部分でガスと冷却水を直接接触させながら、空気およびガス中の水蒸気分を凝縮・回収するものであり、簡単な構造で、回収効率が向上する利点がある。
【0020】
上記回収水は、前述のように、水処理装置で純化され補給水として用いられる。なお、回収水タンク31の下部にも液面計が設けられ、回収水タンク内の水が不足した場合には、補給水として市水(水道水)が供給され、この市水は水処理装置で純化される。
【0021】
次に、図2について述べる。図2は、図4とは機能上は実質的に同様であるが、一部異なる従来の固体高分子電解質型燃料電池発電装置の一例を示す系統図であり、図4に示した部材と同一機能部材には、同一番号を付してその詳細説明を省略する。
【0022】
図2において、図4と表示上異なる主な点は、前記電池冷却水系タンク(もしくは純水タンク)55を含む燃料電池1の冷却水循環回路中に、図4では図示を省略した、燃料電池冷却水入口温度調節用の三方調節弁67および電池冷却水バイパスライン60aを設けた点と、同様に図4では図示を省略した、CO除去器5およびCO変成器4への改質用水の通流ラインを設けた点である。また、図2において、前記改質用水は、CO除去器5およびCO変成器4の各冷却器5aおよび4aにおいて蒸気発生を可能とし、図4の系統図において設けた蒸気発生器24を省略している。
【0023】
なお、図2においては、電池冷却水冷却器51,カソードオフガス冷却器52および排ガス冷却器53を、図4と異なり、それぞれ、分散的に示しているが、図4と同様に、貯湯槽ユニットと連通する循環水導出ライン56および循環水導入ライン57に接続されている。
【0024】
次に、図3の従来システム例について述べる。図3に示すシステムは、図2に示したシステムにおいて、電池冷却水の温度調節に着目したシステム例を示し、説明の便宜上、一部の部材を追加または省略して示す。なお、図3において、図2に示した部材と同一機能部材には、同一番号を付してその詳細説明を省略する。
【0025】
図3において20で示した一点鎖線の範囲内は、固体高分子型燃料電池発電装置のパッケージの内部を示す。パッケージ20の内部には、図示以外にも多数の機器が存在するが、ここでは省略している。
【0026】
1は燃料電池を示し、前述のように、発生した熱は電池冷却水冷却器51により外部の貯湯槽70に供給される。このとき、三方調節弁67により、電池冷却水温度検出器66による検出温度を燃料電池1が安定して運転できる温度になるように、電池冷却水冷却器51を通過する電池冷却水流量を適宜調節している。電池冷却水冷却器51により外部に供給された熱は、貯湯槽循環水ポンプ69により送出される貯湯槽循環水により、貯湯槽70に蓄熱される。
【0027】
貯湯槽70の温度レベルが一定値以上に達したことを貯湯槽循環水温度検出器68が検知すると、貯湯槽循環水冷却器71が作動し、燃料電池発電装置の電池冷却水温度制御が正常に行えるよう制御される。なお、貯湯槽循環水は、貯湯槽70の下部より導出され、電池冷却水冷却器51により加熱された後、貯湯槽上部に供給される配管構成となっている。これは、貯湯槽70内部の自然対流による温水の温度分布、すなわち貯湯槽70内の上層部の温度レベルが高いことを考慮し、貯湯槽の温水を使用するユーザ給湯口76に可能な限り高いレベルの温度を供給するためである。
【0028】
一方、燃料電池発電装置が発電に至るまでの起動工程時においては、発電開始に備え、燃料電池1の温度を所定の温度まで昇温するために、電池冷却水系タンク55に設けられた電池冷却水昇温ヒータ64により、電池冷却水が加熱される。このとき、昇温された電池冷却水の熱を逃さないように、電池冷却水の流路は、三方調節弁67によって、電池冷却水冷却器51をバイパスするよう設定される。
【0029】
なお、図3において、60は電池冷却水循環回路、60aは電池冷却水バイパスライン、80は貯湯槽内温水循環回路、77は貯湯槽70の液面レベルを所定の範囲内に維持するために、ユーザ給湯口76での温水使用量に応じて供給される市水の開閉弁を示す。
【0030】
【特許文献1】
特開2002−124288号公報(第2−3頁、図4)
【0031】
【発明が解決しようとする課題】
ところで、図2ないし図4に示すような従来の燃料電池発電装置においては、下記のような問題点があった。
【0032】
前述の図2に示すように、燃料電池の冷却水循環回路には電池冷却水系タンク55を設け、回収水タンク31から前記電池冷却水系タンク55に水を供給し、この電池冷却水系タンク55から、燃料電池1に冷却水を供給すると共に、改質器3に改質用水を供給するように構成している。
【0033】
通常、電池冷却水系タンク55内の水温は82℃程度、回収水タンク31内の水温は55℃程度であるので、回収水タンク31から前記電池冷却水系タンク55に水を供給した場合、供給された水の一部はタンク内で混合されて改質用水として使用されるものの、前記混合によって電池冷却水系タンク55内の水温が低下する問題がある。
【0034】
従って、燃料電池の冷却を好適に行い燃料電池の安定した運転を行なうためには、前記温度低下分を補償するために、前記図3に示す電池冷却水昇温ヒータ64により加温する必要が生じ、システム効率が低下する問題がある。
【0035】
この発明は、上記の問題点に鑑みてなされたもので、この発明の課題は、回収水タンクから電池冷却水系タンクに水を供給した場合に、回収水を改質用水として優先的に使用できるようにして電池冷却水の温度低下を抑制し、もって燃料電池発電装置のシステム効率の向上を図ることにある。
【0036】
【課題を解決するための手段】
前述の課題を解決するために、この発明においては、炭化水素系原燃料を水蒸気改質する改質触媒層と、燃焼排ガスにより前記改質触媒を加熱するバーナとを有する改質器と、前記水蒸気改質して得られた燃料ガスと空気との電気化学的反応により発電を行ない循環回路内の冷却水により冷却してなる燃料電池と、この燃料電池オフ空気中に含まれる水蒸気および前記バーナにおける燃焼排ガス中の水蒸気を凝縮させて凝縮水を回収する回収水タンクと、前記燃料電池の冷却水循環回路に設けた電池冷却水系タンクとを備え、前記回収水タンクから前記電池冷却水系タンクに水を供給し、かつ前記電池冷却水系タンクから、燃料電池に冷却水を供給すると共に、前記改質器に改質用水を供給するように構成した燃料電池発電装置において、前記電池冷却水系タンクは、改質用水タンクと電池冷却水用タンクとに分割し、かつ、少なくとも一部において、前記分割された両タンク内の水が互いに連通する連通部を設けてなり、前記回収水タンクから前記改質用水タンクに水を導入し、前記改質器への改質用水は前記改質用水タンクから導出するようにし、さらに、前記燃料電池への冷却水は、前記電池冷却水用タンクから導出して、燃料電池に通流した後、当該電池冷却水用タンクに還流して導入するように構成したものとする(請求項1の発明)。
【0037】
上記構成により、回収水タンクから電池冷却水系タンクに水を供給する場合に、回収水が前記改質用水タンクに水が導入され、優先的に改質用水として使用できるようになる。従って、電池冷却水の温度低下が抑制され、燃料電池発電装置のシステム効率の向上を図ることができる。
【0038】
また、前記請求項1の発明の実施態様としては、下記請求項2ないし3の発明が好ましい。即ち、請求項1に記載の燃料電池発電装置において、前記連通部は、前記両タンクの底部に設け、かつ前記両タンクの水の導入および導出部は、前記両タンクにおいて、前記連通部と対向する側に設けたものとする(請求項2の発明)。
【0039】
さらに、前記請求項1または2に記載の燃料電池発電装置において、前記電池冷却水用タンクは、電池冷却水昇温用ヒータを備えたものとする(請求項3の発明)。なお、電池冷却水昇温用ヒータは、前記燃料電池の冷却水循環回路中の他の場所に設けることもできるが、電池冷却水温度より低温の回収水が導入される前記改質用水タンクに連通して設けた電池冷却水用タンクに設けるのが合理的である。
【0040】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0041】
図1は、この発明の実施例に関わる燃料電池発電装置の概略システム系統図であり、図2に示した系統図の左側の一部の系統を省略して示す。
【0042】
図1と図2との相違点は、図1においては、前述のように、電池冷却水系タンク55aを、改質用水タンク55bと電池冷却水用タンク55cとに分割し、かつ、前記分割された両タンク内の水が互いに連通する連通部55dを設けてなり、回収水タンク31から前記改質用水タンク55bに水を導入し、改質器3への改質用水は改質用水タンク55bから導出するようにし、さらに、燃料電池1への冷却水は、前記電池冷却水用タンク55cから導出して、燃料電池に通流した後、電池冷却水用タンク55cに還流するように構成した点である。
【0043】
また、前記連通部55dは、前記両タンクの底部に設け、かつ両タンクの水の導入および導出部は、両タンクにおいて、前記連通部55dと対向する側に設けてある。さらに、前記電池冷却水用タンク55cは、電池冷却水昇温用ヒータ64を備える。
【0044】
上記構成によれば、回収水タンク31から電池冷却水系タンク55aに水(例えば55℃)を供給する場合に、回収水が前記改質用水タンク55bに水が導入され、この改質用水タンク55bの下方から、改質用水がCO除去器5およびCO変成器の各冷却器5aおよび4aに通流されるので、電池冷却水(例えば81℃)と殆んど混合することなく、回収水が優先的に改質用水として使用される。従って、電池冷却水の温度低下が抑制され、燃料電池発電装置のシステム効率の向上を図ることができる。また、多少の混合により、電池冷却水の温度が所定温度に低下した場合には、電池冷却水昇温用ヒータ64をオンすることにより、直ちに加熱することができる。
【0045】
【発明の効果】
上記のとおり、この発明によれば、炭化水素系原燃料を水蒸気改質する改質触媒層と、燃焼排ガスにより前記改質触媒を加熱するバーナとを有する改質器と、前記水蒸気改質して得られた燃料ガスと空気との電気化学的反応により発電を行ない循環回路内の冷却水により冷却してなる燃料電池と、この燃料電池オフ空気中に含まれる水蒸気および前記バーナにおける燃焼排ガス中の水蒸気を凝縮させて凝縮水を回収する回収水タンクと、前記燃料電池の冷却水循環回路に設けた電池冷却水系タンクとを備え、前記回収水タンクから前記電池冷却水系タンクに水を供給し、かつ前記電池冷却水系タンクから、燃料電池に冷却水を供給すると共に、前記改質器に改質用水を供給するように構成した燃料電池発電装置において、前記電池冷却水系タンクは、改質用水タンクと電池冷却水用タンクとに分割し、かつ、少なくとも一部において、前記分割された両タンク内の水が互いに連通する連通部を設けてなり、前記回収水タンクから前記改質用水タンクに水を導入し、前記改質器への改質用水は前記改質用水タンクから導出するようにし、さらに、前記燃料電池への冷却水は、前記電池冷却水用タンクから導出して、燃料電池に通流した後、当該電池冷却水用タンクに還流して導入するように構成したので、
回収水タンクから電池冷却水系タンクに水を供給した場合に、回収水を改質用水として優先的に使用できるようにして電池冷却水の温度低下を抑制し、もって燃料電池発電装置のシステム効率の向上を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる燃料電池発電装置の概略システム系統図
【図2】従来の燃料電池発電装置の一例を示す概略システム系統図
【図3】電池冷却水の温度調節に着目した従来の燃料電池発電装置の一例を示す概略システム系統図
【図4】従来の図2とは異なる燃料電池発電装置の一例を示す概略システム系統図
【符号の説明】
1:燃料電池、3:改質器、4:CO変成器、5:CO除去器、31:回収水タンク、55,55a:電池冷却水系タンク、55b:改質用水タンク、55c:電池冷却水用タンク、55d:連通部、64:電池冷却水昇温用ヒータ。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a reformer that steam-reforms a hydrocarbon-based raw fuel gas into a hydrogen-rich gas by a catalyst, and condensate water by condensing steam in exhaust gas such as reformer combustion exhaust gas and fuel cell off-air. The present invention relates to a fuel cell power generator including a recovered water tank to be recovered.
[0002]
[Prior art]
There are various types of fuel cells incorporated in the fuel cell power generator, depending on the type of electrolyte, the type of reforming raw material, and the like. For example, a solid polymer membrane is used as the electrolyte, and the operating temperature is about 80 ° C. A solid polymer electrolyte fuel cell is well known as a relatively low type fuel cell.
[0003]
This solid polymer electrolyte fuel cell is similar to a phosphoric acid fuel cell, for example, in hydrogen and air in a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel such as methane gas (city gas). Oxygen is supplied to the fuel electrode and the air electrode of the fuel cell, respectively, and electricity is generated based on the electrochemical reaction. Further, when reforming raw fuel into fuel gas, a method is adopted in which steam is added to the raw fuel and reforming is promoted by a catalyst in a fuel reformer (the basic system configuration is, for example, Patent Document 1).
[0004]
In order to perform the reforming constantly, it is necessary to constantly replenish the required amount of water vapor, and it is necessary to constantly replenish the water vapor supply device with water corresponding thereto. The water to be used needs to be high-purity water, and ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment device is usually used.
[0005]
On the other hand, in the electrochemical reaction of the fuel cell, power generation product water is generated, and in the fuel reformer, combustion product water is generated with combustion for catalyst heating for performing a steam reforming reaction which is an endothermic reaction constantly. These generated waters have fewer impurities than normal tap water, and if these generated waters are used as raw water, the load on the water treatment device can be reduced. Therefore, a recovery water tank and an exhaust gas cooler are added. A method of recovering these generated waters to obtain supply water for generating reformed steam is usually employed.
[0006]
Further, in the electrochemical reaction of the fuel cell, heat is generated along with the reaction, and a part of the exhaust heat energy is stored as hot water in a hot water storage tank and supplied for hot water supply or heating.
[0007]
FIG. 4 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell power generation device using city gas as a raw fuel. Compared with that disclosed in Patent Document 1, battery cooling water system equipment and recovered water are shown. A more detailed system configuration is shown by adding devices and the like.
[0008]
In FIG. 4, a fuel cell 1 schematically shown includes a
[0009]
The raw fuel (main component CH 4 ) is first supplied to the reformer 3 together with the reforming steam, and is reformed to hydrogen and carbon monoxide by the following reaction. As the reforming catalyst, a noble metal catalyst or a nickel catalyst is used.
[0010]
CH 4 + H 2 O → 3H 2 + CO (endothermic reaction)
Thereafter, the reformed gas is supplied to the
[0011]
CO + H 2 O → H 2 + CO 2 (exothermic reaction)
Thereafter, the carbon monoxide in the reformed gas is reduced to about 10 ppm by the following reaction that is further supplied to the
[0012]
CO + 1 / 2O 2 → CO 2 (exothermic reaction)
As described above, when the reforming reaction is performed in the reformer 3, it is necessary to supply water vapor. In the polymer electrolyte fuel cell power generator, the sensible heat of the combustion exhaust gas from the reformer 3 and CO conversion are used as the heat source. In general, the heat of reaction of the
[0013]
In addition, since each of the reactors performs a chemical reaction using a catalyst, it is necessary to raise the temperature to an appropriate temperature in advance when the fuel cell power generator is started.
Appropriate temperatures for each reactor are as follows. Reformer: 500-700 ° C, CO converter: 200-300 ° C, CO remover: 100-250 ° C.
[0014]
For this reason, the reformer 3 is normally heated by burning the hydrogen supplied from the exhaust
[0015]
Further, the city gas is first introduced into the
[0016]
Next, the cooling
[0017]
The fuel cell 1 is operated at about 80 ° C. as described above, cooled by the water flowing from the
[0018]
Next, the recovered
[0019]
In this case, off-air containing steam and combustion exhaust gas are allowed to flow upward from the lower part of the packed bed (not shown in FIG. 4), while the recovered water at about 40 ° C. cooled by the recovered water cooler 34 is sprinkled from the upper part. Thus, the gas and the cooling water are brought into direct contact with each other in the packed bed portion, and the water and the water vapor in the gas are condensed and recovered, and there is an advantage that the recovery efficiency is improved with a simple structure.
[0020]
As described above, the recovered water is purified by a water treatment device and used as makeup water. A liquid level gauge is also provided at the bottom of the recovered water tank 31, and when the water in the recovered water tank is insufficient, city water (tap water) is supplied as make-up water. It is purified by.
[0021]
Next, FIG. 2 will be described. FIG. 2 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell power generator that is substantially similar in function to FIG. 4 but partially different, and is identical to the members shown in FIG. The functional members are assigned the same numbers and their detailed explanation is omitted.
[0022]
2, the main difference from the display in FIG. 4 is that in the cooling water circulation circuit of the fuel cell 1 including the battery cooling water system tank (or pure water tank) 55, the fuel cell cooling, which is not shown in FIG. The flow of reforming water to the
[0023]
In FIG. 2, the battery
[0024]
Next, an example of the conventional system shown in FIG. 3 will be described. The system shown in FIG. 3 shows an example of the system shown in FIG. 2 that focuses on the temperature adjustment of the battery cooling water. For convenience of explanation, some of the members are added or omitted. In FIG. 3, members having the same functions as those shown in FIG.
[0025]
In FIG. 3, the range indicated by the alternate long and
[0026]
Reference numeral 1 denotes a fuel cell. As described above, the generated heat is supplied to the external
[0027]
When the hot water tank circulating
[0028]
On the other hand, during the startup process until the fuel cell power generation device generates power, the battery cooling provided in the battery cooling
[0029]
In FIG. 3, 60 is a battery cooling water circulation circuit, 60 a is a battery cooling water bypass line, 80 is a hot water circulation circuit inside the hot water tank, and 77 is used to maintain the liquid level of the
[0030]
[Patent Document 1]
JP 2002-124288 A (page 2-3, FIG. 4)
[0031]
[Problems to be solved by the invention]
Incidentally, the conventional fuel cell power generator as shown in FIGS. 2 to 4 has the following problems.
[0032]
As shown in FIG. 2 described above, the cooling water circulation circuit of the fuel cell is provided with a battery cooling
[0033]
Usually, the water temperature in the battery cooling
[0034]
Therefore, in order to favorably cool the fuel cell and perform stable operation of the fuel cell, it is necessary to heat the cell cooling
[0035]
The present invention has been made in view of the above problems, and the object of the present invention is to preferentially use recovered water as reforming water when water is supplied from the recovered water tank to the battery cooling water system tank. Thus, it is intended to suppress the temperature drop of the battery cooling water and thereby improve the system efficiency of the fuel cell power generator.
[0036]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a reformer having a reforming catalyst layer for steam reforming a hydrocarbon-based raw fuel, and a burner for heating the reforming catalyst with combustion exhaust gas, A fuel cell which generates electricity by an electrochemical reaction between fuel gas obtained by steam reforming and air and is cooled by cooling water in a circulation circuit, water vapor contained in the fuel cell off-air, and the burner A recovery water tank that condenses water vapor in the combustion exhaust gas in the fuel cell to recover the condensed water, and a battery cooling water system tank provided in the cooling water circulation circuit of the fuel cell, and water is supplied from the recovery water tank to the battery cooling water system tank. A fuel cell power generator configured to supply cooling water to the fuel cell from the battery cooling water system tank and to supply reforming water to the reformer. The battery cooling water system tank is divided into a reforming water tank and a battery cooling water tank, and at least a part thereof is provided with a communication part that allows the water in both of the divided tanks to communicate with each other. Water is introduced from the water tank to the reforming water tank, the reforming water to the reformer is led out from the reforming water tank, and the cooling water to the fuel cell is the battery cooling water. It is assumed that the battery is led out from the fuel tank and passed through the fuel cell, and then returned to the battery cooling water tank for introduction (claim 1).
[0037]
With the above configuration, when water is supplied from the recovered water tank to the battery cooling water system tank, the recovered water is introduced into the reforming water tank so that it can be preferentially used as the reforming water. Therefore, the temperature drop of the battery cooling water is suppressed, and the system efficiency of the fuel cell power generator can be improved.
[0038]
As an embodiment of the invention of claim 1, the inventions of
[0039]
Furthermore, in the fuel cell power generator according to
[0040]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below with reference to the drawings.
[0041]
FIG. 1 is a schematic system diagram of a fuel cell power generator according to an embodiment of the present invention, and a part of the system on the left side of the system diagram shown in FIG. 2 is omitted.
[0042]
The difference between FIG. 1 and FIG. 2 is that in FIG. 1, as described above, the battery cooling water tank 55a is divided into the reforming water tank 55b and the battery cooling water tank 55c, and the divided Further, a communication portion 55d for communicating the water in both tanks is provided, water is introduced from the recovered water tank 31 to the reforming water tank 55b, and the reforming water to the reformer 3 is the reforming water tank 55b. Further, the cooling water to the fuel cell 1 is led out from the battery cooling water tank 55c and flows into the fuel cell, and then returns to the battery cooling water tank 55c. Is a point.
[0043]
The communication portion 55d is provided at the bottom of the two tanks, and the water introduction and discharge portions of both tanks are provided on the side facing the communication portion 55d in both tanks. Further, the battery cooling water tank 55c includes a battery cooling
[0044]
According to the above configuration, when water (for example, 55 ° C.) is supplied from the recovered water tank 31 to the battery cooling water system tank 55a, the recovered water is introduced into the reforming water tank 55b, and the reforming water tank 55b. From below, the reforming water is passed through the
[0045]
【The invention's effect】
As described above, according to the present invention, a reformer having a reforming catalyst layer for steam reforming a hydrocarbon-based raw fuel, a burner for heating the reforming catalyst with combustion exhaust gas, and the steam reforming process. A fuel cell that generates electricity by an electrochemical reaction between the fuel gas and air obtained in this way and cools with cooling water in the circulation circuit, and water vapor contained in the off-air of the fuel cell and combustion exhaust gas in the burner A recovery water tank that condenses the water vapor and recovers the condensed water, and a battery cooling water system tank provided in the cooling water circulation circuit of the fuel cell, and supplies water from the recovery water tank to the battery cooling water system tank, In the fuel cell power generator configured to supply cooling water to the fuel cell from the battery cooling water system tank and supply reforming water to the reformer, the battery cooling water system tank The tank is divided into a reforming water tank and a battery cooling water tank, and at least a part thereof is provided with a communication portion that allows the water in the two divided tanks to communicate with each other. Water is introduced into the reforming water tank, the reforming water to the reformer is led out from the reforming water tank, and the cooling water to the fuel cell is supplied from the battery cooling water tank. Since it was derived and passed through the fuel cell, it was configured to be refluxed and introduced into the battery cooling water tank.
When water is supplied from the recovered water tank to the battery cooling water system tank, the recovered water can be used preferentially as reforming water to suppress the temperature drop of the battery cooling water, thereby improving the system efficiency of the fuel cell power generator. Improvements can be made.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a fuel cell power generator according to an embodiment of the present invention. FIG. 2 is a schematic system diagram of an example of a conventional fuel cell power generator. FIG. FIG. 4 is a schematic system diagram showing an example of a conventional fuel cell power generator. FIG. 4 is a schematic system diagram showing an example of a fuel cell power generator different from the conventional FIG.
1: fuel cell, 3: reformer, 4: CO converter, 5: CO remover, 31: recovered water tank, 55, 55a: battery cooling water tank, 55b: reforming water tank, 55c: battery cooling water Tank, 55d: communication part, 64: heater for battery cooling water temperature rising.
Claims (3)
前記電池冷却水系タンクは、改質用水タンクと電池冷却水用タンクとに分割し、かつ、少なくとも一部において、前記分割された両タンク内の水が互いに連通する連通部を設けてなり、
前記回収水タンクから前記改質用水タンクに水を導入し、前記改質器への改質用水は前記改質用水タンクから導出するようにし、さらに、前記燃料電池への冷却水は、前記電池冷却水用タンクから導出して、燃料電池に通流した後、当該電池冷却水用タンクに還流して導入するように構成したことを特徴とする燃料電池発電装置。A reformer having a reforming catalyst layer for steam reforming a hydrocarbon-based raw fuel, a burner for heating the reforming catalyst with combustion exhaust gas, and a fuel gas obtained by steam reforming and air Condensed water is recovered by condensing the water vapor contained in the fuel cell off-air and the water vapor contained in the combustion exhaust gas in the burner, which is generated by electrochemical reaction and cooled by the cooling water in the circulation circuit. A recovered water tank, and a battery cooling water system tank provided in a cooling water circulation circuit of the fuel cell, supplying water from the recovered water tank to the battery cooling water system tank, and from the battery cooling water system tank to a fuel cell In the fuel cell power generator configured to supply cooling water to the reformer and to supply reforming water to the reformer,
The battery cooling water system tank is divided into a reforming water tank and a battery cooling water tank, and at least a part thereof is provided with a communication part that allows water in the divided tanks to communicate with each other.
Water is introduced from the recovered water tank to the reforming water tank, the reforming water to the reformer is led out from the reforming water tank, and the cooling water to the fuel cell is the battery. A fuel cell power generator, wherein the fuel cell power generator is configured to be led out from the cooling water tank and flowed to the fuel cell and then to be recirculated and introduced into the battery cooling water tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003197597A JP4161264B2 (en) | 2003-07-16 | 2003-07-16 | Fuel cell power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003197597A JP4161264B2 (en) | 2003-07-16 | 2003-07-16 | Fuel cell power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005038637A true JP2005038637A (en) | 2005-02-10 |
JP4161264B2 JP4161264B2 (en) | 2008-10-08 |
Family
ID=34207680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003197597A Expired - Fee Related JP4161264B2 (en) | 2003-07-16 | 2003-07-16 | Fuel cell power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4161264B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006252780A (en) * | 2005-03-08 | 2006-09-21 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and its control method |
JP2012174395A (en) * | 2011-02-18 | 2012-09-10 | Mitsubishi Heavy Ind Ltd | Solid polymer fuel cell power generating system |
-
2003
- 2003-07-16 JP JP2003197597A patent/JP4161264B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006252780A (en) * | 2005-03-08 | 2006-09-21 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and its control method |
JP4689305B2 (en) * | 2005-03-08 | 2011-05-25 | 東芝燃料電池システム株式会社 | Fuel cell power generation system and control method thereof |
JP2012174395A (en) * | 2011-02-18 | 2012-09-10 | Mitsubishi Heavy Ind Ltd | Solid polymer fuel cell power generating system |
Also Published As
Publication number | Publication date |
---|---|
JP4161264B2 (en) | 2008-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003282114A (en) | Stopping method of fuel cell power generating device | |
KR101355238B1 (en) | Solid oxide fuel cell system and method of operating the same | |
JP2008234869A (en) | Fuel cell system | |
JP4419329B2 (en) | Solid polymer electrolyte fuel cell power generator | |
US7122269B1 (en) | Hydronium-oxyanion energy cell | |
JP2005063697A (en) | Fuel cell power generating system | |
JP2005166283A (en) | Hydrogen manufacturing device for fuel cell | |
JP4403230B2 (en) | Operation method of fuel cell power generator | |
JP4161264B2 (en) | Fuel cell power generator | |
JP2001313053A (en) | Fuel cell system | |
JP2001176527A (en) | Fuel cell system and fuel cell cogeneration system | |
JP5389520B2 (en) | Fuel cell reformer | |
JP4304975B2 (en) | Fuel cell power generator | |
JP2005093127A (en) | Fuel cell cogeneration system and its operation method | |
JP2003288936A (en) | Fuel cell power generating system and its operation method | |
JP2004196611A (en) | Fuel reforming apparatus and fuel cell system | |
JP3994324B2 (en) | Fuel cell power generator | |
JP4072725B2 (en) | Operation method of fuel cell power generator | |
JP3789706B2 (en) | CO conversion unit and polymer electrolyte fuel cell power generation system | |
JP3997476B2 (en) | Fuel cell power generator | |
JP2005071740A (en) | Fuel cell power generation system and its operation method | |
JP2002100382A (en) | Fuel cell power generator | |
JP2003288933A (en) | Fuel cell power generating system | |
JP4479361B2 (en) | Hybrid fuel cell power generator | |
JP4003130B2 (en) | Fuel cell power generator and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |