JP2005038112A - Liquid cooling system and radiator - Google Patents

Liquid cooling system and radiator Download PDF

Info

Publication number
JP2005038112A
JP2005038112A JP2003198851A JP2003198851A JP2005038112A JP 2005038112 A JP2005038112 A JP 2005038112A JP 2003198851 A JP2003198851 A JP 2003198851A JP 2003198851 A JP2003198851 A JP 2003198851A JP 2005038112 A JP2005038112 A JP 2005038112A
Authority
JP
Japan
Prior art keywords
cooling
radiator
liquid
heat
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003198851A
Other languages
Japanese (ja)
Other versions
JP4603783B2 (en
Inventor
Shinji Matsushita
伸二 松下
Takeshi Toizono
武 樋園
Ichiro Asano
一郎 浅野
Kenichi Saito
賢一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003198851A priority Critical patent/JP4603783B2/en
Publication of JP2005038112A publication Critical patent/JP2005038112A/en
Application granted granted Critical
Publication of JP4603783B2 publication Critical patent/JP4603783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling technique that improves the performance of a cooling system for cooling by radiating heat generated from a CPU away without increasing the mounting height of the cooling system in a rack-mounted server module, and in particular, a cooling system and a cooling device that are useful in configuring a 1U server module and do not impair a thin design of the 1U. <P>SOLUTION: For CPU cooling in a server module, the liquid cooling system mounts jackets for absorbing generated heat in a coolant on CPUs, circulates the coolant by pumps and radiates the heat out at a radiator. In the liquid cooling system, the radiator is so constructed that a plurality of radiating fin units depending on the heat generation of the CPUs are arrayed in the flow direction of cooling air by cooling fans and that coolant circuits of the radiating fin units are connected in series. The cooling fans of the liquid cooling system are arranged in the center of the server module and shared for the air cooling of the radiator and the air cooling of the other device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ラックマウントサーバシステムのサーバモジュール等の薄型の情報処理装置の冷却に適用して有効な技術に関する。
【0002】
【従来の技術】
サーバ等の情報処理装置のシステム構成・収納および設置において、ラックマウント方式が主流となっている。ラックマウント方式とは、各々の機能を持った装置を特定の規格に基づき形成されたラックキャビネットに段積み搭載するもので、各装置の選択・配置を自由に行え、システム構成の柔軟性・拡張性に優れ、システム全体の占有面積も縮小できるという利点がある。
【0003】
特に、ラックマウントサーバではIEC規格(International Electrical Commission)/EIA規格(The Electrical Industries Association)に規定された19インチラックキャビネットが主流となっており、装置を搭載するための支柱の左右間口寸法を451mm、搭載における高さ寸法を1U(1EIA)=44.45mmという単位で規定されている。
【0004】
このラックマウントサーバのモジュールの実装例を図2にしめす。図2のモジュールは、1U(約45)の高さをもち、CPU(1)やメモリ2を実装したメインボード3、専用の冷却ファンを内蔵する電源ユニット4、HDDやCD−ROM等のストレージ5、拡張ボード6から構成される。さらに、主にCPUを冷却するために、モジュールの中央部に冷却ファン7を配置し、ファンの冷却風をCPUのヒートシンクに吹き付けて冷却をおこなっている。
【0005】
また、図2の従来のラックマウントサーバのモジュールでは、モジュールの前面から吸気し、冷却風はモジュール後面から周囲に排気される。このとき、冷却ファン7による冷却風の流れにより、モジュールの前部に配置されたストレージやCPU以外のメモリ2等のメインボード3に実装されている電子部品(図示せず)も冷却される。このようなラックマウントサーバの冷却技術が、例えば特許文献1に開示されている。
【0006】
【特許文献1】
特開2002−366258号公報
【0007】
【発明が解決しようとする課題】
近年、ラックマウント方式では、ラックキャビネットにおけるサーバモジュールの高密度搭載や省スペース化のため、装置の薄型化が進み、装置内部に実装できる冷却ファンも小型で風量の少ないものしか実装できなくなっている。加えて、装置前面にはディスク等のデバイスが実装され、装置後面には外部との接続コネクタ等が配置されるため、吸排気面積が著しく小さくなってきている。
【0008】
さらに、ラックマウント方式では、サーバモジュールの高性能化に伴い、CPUやLSI等の高速化、CPUのマルチ構成化、ディスクドライブ等のデバイスの高回転化やアレイ化などが進み、発熱量も増加している。このため、冷却風の流路の確保が難しくなり、冷却風による強制空冷が困難になっている。特に1UのサーバモジュールではCPUの発熱量の増加による影響が大きく、冷却フィンの大型化が必要となり、1Uの高さに実装することが困難になってきている。
【0009】
本発明の目的は、ラックマウントサーバのモジュールにおいて、冷却システムの実装高さを増すことなく、CPUの発熱を周囲に放熱して冷却をおこなう冷却システムの高性能化をおこなう冷却技術を提供することにある。
【0010】
特に1Uのサーバモジュールを構成するのに有用で、1Uの薄型を損なうことのない冷却システムや冷却デバイスを提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明では、ラックマウントサーバのモジュールに、液冷システムを設けることにより解決する。詳しくは、冷却液をポンプにより循環させ、CPUに装着したジャケットでCPUの発生熱を冷却液に吸熱し、冷却ファンにより冷却されるラジエーターで冷却液を空冷するようにして、CPUの発生熱を放熱するようにした。
【0012】
このとき、モジュール内のディスクやCPU以外の電子部品の冷却もおこなうため、冷却ファンをモジュールの中央部に配置し、この冷却ファンによりモジュールの前面から吸気された外気により、ディスク等のストレージ部品を冷却する。さらに、冷却ファンの空気の吐出し側にラジエーターを配置して、吐出した冷却風をラジエーターに当ててCPUの発生熱を吸熱した冷却液を冷やすとともに、ラジエーターを通過した冷却風で、モジュール内の他のデバイスやメインボード上の電子部品を冷却するようにした。
【0013】
また、上記ラジエーターは、冷却液が流れるU字管の管の円周方向に薄板の放熱フィンを設けて放熱面積を大きくしたフィンモジュールを、冷却風の流れ方向であって、U字管が流れ方向に垂直になるように複数の個数設ける構成とした。このフィンモジュールのU字管を、冷却風の流れ方向に順次接続し、冷却液が冷却風の流れの上流から下流の順に、フィンモジュールを流れるようにした。冷却液が複数のフィンモジュールを順に流れ、このフィンモジュールのフィンの間を冷却風がとおることで、冷却液に吸熱された熱は放熱フィンから冷却風に放熱され、冷却液は冷却される。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。なお、実施の形態を説明するための全図において、同一機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
【0015】
図1は、本発明の一例として、1Uサイズ(約45mm高さ)の2CPU構成のモジュールの液冷システムの概要をしめす図である。液冷システムは、2つの冷却液を循環させるポンプ10と、CPUの発生熱を冷却液に吸熱するジャケット11と、冷却液を冷やすラジエーター12と、ラジエーター12に冷却風を吹き付けラジエーターを冷やす冷却ファン13とから構成される。
【0016】
冷却液は、プロピレングリコールを希釈した不凍液を使用し、さらに銅やアルミニュウムの腐食防止剤を含有させる。
【0017】
冷却液が循環するジャケット11やラジエーター12は、熱伝導性のよい銅あるいはアルミニュウムで作られ、これらはブチルゴム等のフレキシブルチューブで接続される。
【0018】
冷却液の循環路の途中には、冷却液のエア抜きをおこなうタンク14を設けている。フレキシブルチューブやジョイント部から浸透したエアは、ポンプ10の性能を低下させたり、ジャケット11やラジエーター12の熱伝達効率を低下させるため、タンク14で冷却液から除去する。
【0019】
また、冷却液の循環路の途中に、逆止弁つきのユニバーサルジョイントを設け、ジャケットをフィールドで増設・交換できる構成にするとよい。これにより、CPUのフィールド増設や故障等によるCPU交換を容易におこなうことができる。
【0020】
図1にしめす液冷システムを、1Uサイズ(約45mm)に収めるために、冷却ファン13は、40mm角のものを複数個使用する構成とし、ポンプ10も外形寸法40mmのものを選択する。また、ラジエーター12の高さを40mm以下にする。
【0021】
図3は、図1にしめした液冷システムを搭載したラックマウントサーバのサーバモジュール概要図をしめす図であり、図4は、その上面をしめす図である。図では、上部面が開放された図になっているが、これは内容物をしめすためであり、実機では、天板でカバーされている。ラックマウントサーバでは、このような1Uサイズのモジュールを複数積層してラックにマウントしている。このため、上部面からの換気はおこなわれず、冷却風は、モジュール前面から吸気され、モジュール後面から排気する。
【0022】
液冷システムをモジュールの中央部に配置し、冷却ファン13によりモジュールの前面から吸気された外気により、ディスク等のストレージ部品5を冷却する。さらに、冷却ファンの空気の吐出し側にラジエーター12を配置して、吐出した冷却風をラジエーターに当ててCPU(11)の発生熱を吸熱した冷却液を冷やすとともに、ラジエーターを通過した冷却風で、モジュール内の他のデバイスやメインボード上の電子部品を冷却するようにした。
【0023】
このように、冷却風はモジュールの前面から後面に向かって流れるので、拡張ボード6やメモリモジュール2や電源ユニット4は、冷却風の流れに沿って配置するとよい。このような配置により、冷却風の流れが良くなり、CPUの冷却効率の増加や、冷却ファンの小容量化をおこなうことができる。
【0024】
図5は、図1にしめした液冷システムの模式図であり、この図を使用して冷却動作を詳細に説明する。符号は図1と同様に付してあり、内容の説明は省略する。冷却液は、ポンプ10により循環され、ジャケット11でCPUの発生熱を吸熱し、ラジエーター12で冷却風により冷却される。冷却された冷却液は、タンク14でエア抜きされて、ポンプ10に戻ってくる。このように、冷却液の循環の過程で熱の授受をおこない、CPUの発生熱を外気に放熱して、CPUを冷却する。
【0025】
本実施例の2CPU構成のモジュールでは、ラジエーター12は共用とし、CPUごとにポンプ10とジャケット11を設けてユニット化し、冷却液の循環路に並列に接続するようにした。さらに、ポンプ10とジャケット11をユニット化して、ユニバーサルジョイント16で、冷却液の循環路に接続するようにしてもよい。これにより、2CPU構成以外の4CPU構成の場合でもこのユニットを4つ並列に接続することで構成できる。
【0026】
液冷システムの冷却性能は、ジャケット11の受熱性能や冷却液の流量やラジエーター12の放熱性能、冷却風量により決まってくるが、特にラジエーター12の性能が重要となる。また、上記のようにポンプ10とジャケット11をユニット化した場合には、ユニット数により求められるラジエーターの放熱性能がことなるため、調整が必要となる。このため、複数の放熱容量の異なるラジエーターを用意する必要がある。
【0027】
本発明では、詳細は後述するが、冷却風の流れ方向にラジエーターを複数配置し、それぞれのラジエーターをシリーズに接続して冷却液の循環路を形成するようにした。これにより、放熱容量の増大に対しては、接続するラジエーターの個数を増すことにより対応する。この方法によれば、ラジエーターの高さは変わらないので、1Uサイズのモジュール内で放熱容量の調整が可能となる。このとき、冷却風は、放熱量が増すこととラジエーター部の流路抵抗が増すため、流量増加等をおこなう。
【0028】
図6は、CPUの発生熱を冷却液に受熱するジャケット11の構造を示す図である。ジャケットは銅あるいはアルミニュウムで形成される。ジャケット11は、CPUの上面に熱接続するように、受熱板20を介して、ネジ固定される。CPUの発生熱は、受熱板20からフィン18に熱伝導し、導入管17から流入した冷却液に熱伝達される。CPUの発生熱を吸熱した冷却液は、吐出管19からラジエーターに流出する。フィン18は、冷却液の流れに平行に設置して流路抵抗を小さくするともに、放熱面積を大きくして熱伝達量を大きくしている。なお、ジャケットの内部構造は、これに限られたものでないことはいうまでもない。
【0029】
図7は、ラジエーターの構造図であり、 (a)はモジュールの上部からみた上面図、(b)は右側面図、(c)は左側面図をしめしている。図7(a)で、複数の冷却液の流路管21が、冷却ファン13の冷却風の方向(図では下から上の方向)に直角方向に平行に配置されている。流路管21は、その円周方向に放熱フィン22を有し、冷却液の熱が流路管を介して放熱フィン22に熱伝導している。冷却風は、この放熱フィン22の隙間を流れ、このとき、放熱フィンの表面から熱をうばう。このようにしてCPUの発生熱を吸熱した冷却液は、ラジエーターから外気に放熱して冷却される。
【0030】
放熱フィン22は、2本の流路管21ごとに分割され、(b)図のように、ユニット23化されている。それぞれのユニット23は、冷却風の流れの方向に、配置する。また、(c)図のように、ユニット23の他端部で、流路管は他のユニットと接続され(図の24部)、1本の流路を形成している。
【0031】
冷却風の流れ方向に配置するユニット23の個数を増減することにより、放熱フィンの放熱面積が増減し、ラジエーター12の放熱容量を調整することができる。
【0032】
図8は、冷却液の流路の一部に設けるタンクの概略構造をしめす図である。このタンクは、冷却液のエア抜きのために設けられており、上部より流入した冷却液がタンクに一旦溜まるようになっている。このとき、冷却液の気泡がタンク上部に溜まるようになっている。冷却液は、タンクの下部から吐出されて、循環する。また、このタンクは、冷却液のチューブ等から浸透や接続部からの漏れによる減少分を補充するリザーブタンクとして使ってもよい。この場合には、補充量以上の容量のタンクを設ける必要がある。
【0033】
図9は、本発明のラジエーターの製造手順をしめす図である。(a)から(d)は製造手順の概略をしめしている。まず、放熱フィンのユニットを形成する。(a)にしめすように、銅あるいはアルミニュームのU字管にアルミニュームの薄板を圧入する。U字管の管径は、冷却液の流量により決まるが、本実施例では、外径5mm・肉厚0.4mmのパイプを使用した。U字管の曲げRは、管の材質と管径により決まるが、本実施例では、10mmとして。これらの寸法は、1Uサイズであれば、ラジエーター高さが40mm程度になるように適宜決めることができる。このU字管にアルミニュームの薄板を、1.5mmのピッチで複数枚圧入し、(b)の放熱フィンのユニットを形成する。このとき、理由は後述するが、U字管の圧入位置を中央から所定の高さ方向のオフセットを設けるようにする。つぎに、放熱フィンのユニットを、U字管に平行であって、交互に上下反転するように組み立てる((c)図)。その後、U字管の開放端を、隣のユニットと接続する((d)図)。このようにして、流路が一本のラジエーターを形成する。
【0034】
図10により、U字管をフィンに薄板にオフセットを設けて取り付ける理由を説明する。(a)図は、本発明のラジエーターの冷却液の流路管の配置をしめす図であり、放熱フィンユニットを上下反転させて組立てたことにより、流路管が冷却風の流れ方向に対して千鳥配置になっている。これに対して、放熱フィンユニットを全て同じ方向に組立て場合には、(b)図のようになる。この場合には、流路管は、冷却風の流れ方向に対して平行に配置される。両者を比較すると、(b)図の方が、隣のユニットとの冷却管の接続距離がながく、U字管で接続したときに、曲げRが大きくなり加工性・組立て性がよくなる特徴がある。しかし、放熱フィンの間の冷却風の流れの点で考えると、(b)より(a)の方が、冷却風の流れを阻害する流路管の距離が大きくなるため、ラジエーターの平均的な冷却風の流れが安定する特徴がある。冷却風の流れが安定することにより、熱伝達が安定するため、(a)図の構成の方がよい。
【0035】
図11は、ラジエーターの他の実施例をしめした図である。この例では、図3にしめしたモジュール構成図で、ラジエーター12の放熱容量を大きくする例を説明する。上述のようにラジエーターの放熱容量は、放熱フィン等の放熱面積に依存する。ここで、メインボードの電子部品の配置を考えると、電子部品の高集積化に伴い、部品高さは小さくなってきている。また、面実装部品が多数となり、部品高さの大きな部品は限られた部品となってきている。この点に着目し、本実施例のラジエーターは、冷却風の吐出し側(メインボード3側)に、冷却風の吸入側の放熱フィン高さよりちいさな高さの放熱フィンを取り付けるようにし、メインボード3にオーバーハングして設置するようにした。オーバーハングする部分の放熱フィン高さは、当該メインボードの部品に接触しない高さにすればよい。これにより、ラジエーターの高さを大きくすることなく、また、冷却風の流れる奥行方向の設置長を増加させることなく、放熱容量を増加させることができる。
【0036】
図12は、ラジエーター12の放熱容量を調整する他の実施例を説明する図である。本発明の上記実施例では、冷却風の流れ方向に組み付ける放熱フィンユニットの個数で、ラジエーターの放熱容量を調整する例について説明した。図12にしめす実施例では、放熱フィンの枚数を調整してラジエーターの放熱容量を調整する例についてしめす。
【0037】
標準的なサーバーモジュールが2CPU構成のとき、ラジエーターの幅がLで、組み立てる放熱フィンユニットの個数が4ユニットだったとする。このラジエーターを1CPU構成で使用した場合には、ラジエーターの放熱容量に余裕がでる。性能的には問題にならないが、ラジエーターの製造コストは有効に使われない。上記実施では、放熱ユニットの個数を2ユニットで構成するが、本実施例では、放熱フィンの薄板をL/2の幅分の個数とし、ラジエーター12を構成した。これは、ラジエーターの放熱容量は、放熱フィンの放熱面積に比例することに起因する。
【0038】
本実施例は、特に、標準構成に対して、CPU構成が少ないモジュールを構成する場合に有効な実施例である。ここで、他のデバイスの冷却のため、冷却ファンは半分にすることなく、同一個数とすることが望ましい。
【0039】
本実施例では、液冷システムで冷却するデバイスをCPUとして説明したが、メモリモジュールやチップセット、HDD等のストレージデバイスをこのような液冷システムで冷却するようにしてもよい。この場合、冷却するデバイスにジャケットを熱接続し、冷却液の循環路にCPUの冷却と並列に接続するようにしてもいいし、CPUの冷却ジャケットとは、直列に接続するようにしてもいい。直列に接続する場合には、CPUの発熱量に比べて小さいので、ラジエーター直後に接続し、その後でCPUの冷却ジャケットを接続することが望ましい。
【0040】
【発明の効果】
本発明によれば、高発熱量の高速CPUや高発熱デバイスを使用する場合でも、高効率にCPUやデバイスの発生熱を放熱できるので、モジュールサイズを増加させることなく、1UサイズのサーバーモジュールでもこのようなCPUやデバイスを搭載できる。
【0041】
また、ラジエーターを必要な放熱容量に応じて、放熱フィンユニットを組合せて構成できるので、安価にラジエーターを製造できる。
【図面の簡単な説明】
【図1】本発明の2CPU冷却システムの概略図。
【図2】ラックマウントサーバのモジュールの従来技術による実装例。
【図3】本発明を適用したラックマウントサーバモジュールの概略図。
【図4】モジュールの上面図。
【図5】本発明の液冷システムを模式図。
【図6】ジャケットの構造図。
【図7】ラジエーターの構造図。
【図8】タンクの構造図。
【図9】ラジエーターの製造手順をしめす図。
【図10】ラジエーターの流路管の構成図。
【図11】ラジエーターの他の実施例の図。
【図12】ラジエーターの他の実施例の図。
【符号の説明】
10…ポンプ、11…CPUジャケット、12…ラジエータ、13…放熱ファン、
21…U字管、22…放熱フィン、22…放熱フィンユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique effective when applied to cooling thin information processing apparatuses such as server modules of a rack mount server system.
[0002]
[Prior art]
In the system configuration / storage and installation of information processing apparatuses such as servers, the rack mount method has become the mainstream. The rack-mount system is a system in which devices with each function are stacked in a rack cabinet that is formed based on specific standards. Each device can be freely selected and arranged, and the system configuration is flexible and expanded. There is an advantage that it can be reduced and the occupied area of the entire system can be reduced.
[0003]
In particular, in rack mount servers, 19-inch rack cabinets stipulated in the IEC standard (International Electrical Commission) / EIA standard (The Electrical Industries Association) are the mainstream, and the left and right front dimensions of the column for mounting the equipment are 451 mm. The height dimension for mounting is defined in units of 1U (1EIA) = 44.45 mm.
[0004]
An example of mounting the rack mount server module is shown in FIG. The module of FIG. 2 has a height of 1U (about 45), a main board 3 on which a CPU (1) and a memory 2 are mounted, a power supply unit 4 incorporating a dedicated cooling fan, and a storage such as an HDD or a CD-ROM. 5 and an expansion board 6. Further, in order to mainly cool the CPU, a cooling fan 7 is disposed at the center of the module, and cooling is performed by blowing fan cooling air to the heat sink of the CPU.
[0005]
Further, in the conventional rack mount server module of FIG. 2, the air is sucked from the front surface of the module, and the cooling air is exhausted from the rear surface of the module to the surroundings. At this time, electronic components (not shown) mounted on the main board 3 such as the storage 2 and the memory 2 other than the CPU arranged at the front of the module are also cooled by the flow of the cooling air by the cooling fan 7. Such a cooling technique for a rack mount server is disclosed in, for example, Patent Document 1.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-366258
[Problems to be solved by the invention]
In recent years, rack mount systems have become thinner due to the high density mounting and space saving of server modules in rack cabinets, and cooling fans that can be mounted inside the system can only be mounted with small size and low airflow. . In addition, since a device such as a disk is mounted on the front surface of the apparatus and a connector for connection to the outside is disposed on the rear surface of the apparatus, the intake / exhaust area has been remarkably reduced.
[0008]
In addition, in the rack mount method, with the higher performance of server modules, the speed of CPUs and LSIs, the multi-configuration of CPUs, the high rotation and array of devices such as disk drives, etc. have progressed and the amount of heat generation has also increased. is doing. For this reason, it is difficult to secure a flow path for cooling air, and forced air cooling with cooling air is difficult. In particular, a 1U server module is greatly affected by an increase in the amount of heat generated by the CPU, so that it is necessary to increase the size of the cooling fin, and it is difficult to mount it at a height of 1U.
[0009]
An object of the present invention is to provide a cooling technology for improving the performance of a cooling system that cools a rack mount server module by radiating CPU heat to the surroundings without increasing the mounting height of the cooling system. It is in.
[0010]
Particularly, it is an object of the present invention to provide a cooling system and a cooling device that are useful for configuring a 1U server module and that do not impair the thinness of the 1U.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention solves this problem by providing a liquid cooling system in a module of a rack mount server. Specifically, the cooling liquid is circulated by a pump, the heat generated by the CPU is absorbed into the cooling liquid by a jacket attached to the CPU, and the cooling liquid is cooled by air by a radiator cooled by a cooling fan. I tried to dissipate heat.
[0012]
At this time, in order to cool the electronic components other than the disk and CPU in the module, a cooling fan is arranged in the center of the module, and the storage parts such as the disk are removed by the outside air sucked from the front of the module by the cooling fan. Cooling. Furthermore, a radiator is arranged on the air discharge side of the cooling fan, and the discharged cooling air is applied to the radiator to cool the cooling liquid that has absorbed the heat generated by the CPU, and with the cooling air that has passed through the radiator, Cooled other devices and electronic components on the main board.
[0013]
In addition, the radiator is a fin module in which a thin heat dissipating fin is provided in the circumferential direction of the U-shaped tube through which the cooling liquid flows to increase the heat dissipating area. A plurality of numbers were provided so as to be perpendicular to the direction. The U-shaped tubes of the fin modules were sequentially connected in the direction of cooling air flow so that the coolant flowed through the fin modules in order from the upstream side to the downstream side of the cooling air flow. The cooling liquid sequentially flows through the plurality of fin modules, and the cooling air passes between the fins of the fin modules, so that the heat absorbed by the cooling liquid is radiated from the radiating fins to the cooling air, and the cooling liquid is cooled.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.
[0015]
FIG. 1 is a diagram showing an outline of a liquid cooling system of a module of 2 CPU having a 1U size (about 45 mm height) as an example of the present invention. The liquid cooling system includes a pump 10 that circulates two cooling liquids, a jacket 11 that absorbs heat generated by the CPU into the cooling liquid, a radiator 12 that cools the cooling liquid, and a cooling fan that blows cooling air to the radiator 12 to cool the radiator. 13.
[0016]
As the cooling liquid, an antifreeze diluted with propylene glycol is used, and further a corrosion inhibitor of copper or aluminum is added.
[0017]
The jacket 11 and the radiator 12 through which the coolant circulates are made of copper or aluminum having good thermal conductivity, and these are connected by a flexible tube such as butyl rubber.
[0018]
In the middle of the coolant circulation path, a tank 14 for venting the coolant is provided. The air that has permeated from the flexible tube or the joint portion is removed from the coolant in the tank 14 in order to reduce the performance of the pump 10 or the heat transfer efficiency of the jacket 11 or the radiator 12.
[0019]
In addition, a universal joint with a check valve may be provided in the middle of the coolant circulation path so that the jacket can be added or replaced in the field. As a result, CPU replacement due to CPU field expansion or failure can be easily performed.
[0020]
In order to accommodate the liquid cooling system shown in FIG. 1 in a 1U size (about 45 mm), the cooling fan 13 is configured to use a plurality of 40 mm square ones, and the pump 10 is also selected to have an external dimension of 40 mm. Further, the height of the radiator 12 is set to 40 mm or less.
[0021]
FIG. 3 is a diagram showing a schematic view of a server module of a rack mount server equipped with the liquid cooling system shown in FIG. 1, and FIG. 4 is a diagram showing the top surface thereof. In the figure, the upper surface is opened, but this is for showing the contents, and in the actual machine, it is covered with a top plate. In the rack mount server, a plurality of such 1U size modules are stacked and mounted on the rack. For this reason, ventilation from the upper surface is not performed, and the cooling air is sucked from the front surface of the module and exhausted from the rear surface of the module.
[0022]
A liquid cooling system is arranged in the center of the module, and the storage component 5 such as a disk is cooled by outside air sucked from the front of the module by the cooling fan 13. Furthermore, a radiator 12 is arranged on the air discharge side of the cooling fan, and the discharged cooling air is applied to the radiator to cool the cooling liquid that has absorbed the heat generated by the CPU (11), and the cooling air that has passed through the radiator is used. Cooled other devices in the module and electronic components on the main board.
[0023]
As described above, the cooling air flows from the front surface to the rear surface of the module. Therefore, the expansion board 6, the memory module 2, and the power supply unit 4 are preferably arranged along the flow of the cooling air. With such an arrangement, the flow of cooling air can be improved, the cooling efficiency of the CPU can be increased, and the capacity of the cooling fan can be reduced.
[0024]
FIG. 5 is a schematic diagram of the liquid cooling system shown in FIG. 1, and the cooling operation will be described in detail with reference to FIG. The reference numerals are assigned in the same manner as in FIG. 1, and description of the contents is omitted. The coolant is circulated by the pump 10, absorbs heat generated by the CPU by the jacket 11, and is cooled by the cooling air by the radiator 12. The cooled coolant is vented in the tank 14 and returned to the pump 10. In this way, heat is transferred during the circulation of the cooling liquid, and the CPU generates heat to the outside air to cool the CPU.
[0025]
In the two-CPU module of this embodiment, the radiator 12 is shared, and a pump 10 and a jacket 11 are provided for each CPU to be unitized, and connected in parallel to the coolant circulation path. Furthermore, the pump 10 and the jacket 11 may be unitized and connected to the coolant circulation path by the universal joint 16. Thereby, even in the case of a 4-CPU configuration other than the 2-CPU configuration, it can be configured by connecting four units in parallel.
[0026]
The cooling performance of the liquid cooling system is determined by the heat receiving performance of the jacket 11, the flow rate of the coolant, the heat radiation performance of the radiator 12, and the amount of cooling air, but the performance of the radiator 12 is particularly important. Further, when the pump 10 and the jacket 11 are unitized as described above, the radiator heat dissipation performance determined by the number of units is different, so adjustment is necessary. For this reason, it is necessary to prepare a plurality of radiators having different heat dissipation capacities.
[0027]
In the present invention, as will be described in detail later, a plurality of radiators are arranged in the flow direction of the cooling air, and each radiator is connected in series to form a cooling liquid circulation path. As a result, the increase in the heat radiation capacity is dealt with by increasing the number of radiators to be connected. According to this method, since the height of the radiator does not change, the heat radiation capacity can be adjusted within the 1U size module. At this time, the cooling air increases the flow rate because the heat radiation amount increases and the flow passage resistance of the radiator portion increases.
[0028]
FIG. 6 is a diagram showing the structure of the jacket 11 that receives the heat generated by the CPU in the coolant. The jacket is made of copper or aluminum. The jacket 11 is screwed through the heat receiving plate 20 so as to be thermally connected to the upper surface of the CPU. The heat generated by the CPU conducts heat from the heat receiving plate 20 to the fins 18 and is transferred to the coolant flowing in from the introduction pipe 17. The coolant that has absorbed the heat generated by the CPU flows out from the discharge pipe 19 to the radiator. The fins 18 are installed in parallel with the flow of the cooling liquid to reduce the flow path resistance and increase the heat radiation area to increase the heat transfer amount. Needless to say, the internal structure of the jacket is not limited to this.
[0029]
FIGS. 7A and 7B are structural views of the radiator, where FIG. 7A is a top view seen from the top of the module, FIG. 7B is a right side view, and FIG. 7C is a left side view. In FIG. 7A, a plurality of cooling fluid flow channel pipes 21 are arranged in a direction perpendicular to the direction of the cooling air of the cooling fan 13 (from the bottom to the top in the figure). The flow path pipe 21 has heat radiation fins 22 in the circumferential direction, and the heat of the coolant is thermally conducted to the heat radiation fins 22 through the flow path pipe. The cooling air flows through the gaps between the heat radiating fins 22, and at this time, heat is received from the surface of the heat radiating fins. The coolant that has absorbed the heat generated by the CPU in this manner is radiated from the radiator to the outside air and cooled.
[0030]
The radiating fins 22 are divided into two flow channel pipes 21 and are unitized as shown in FIG. Each unit 23 is arranged in the direction of the flow of cooling air. Further, as shown in (c), at the other end of the unit 23, the channel pipe is connected to another unit (24 part in the figure) to form one channel.
[0031]
By increasing or decreasing the number of units 23 arranged in the flow direction of the cooling air, the heat dissipating area of the heat dissipating fins can be increased and decreased, and the heat dissipating capacity of the radiator 12 can be adjusted.
[0032]
FIG. 8 is a diagram showing a schematic structure of a tank provided in a part of the coolant flow path. This tank is provided for venting the cooling liquid, and the cooling liquid flowing in from the upper part is temporarily accumulated in the tank. At this time, bubbles of the coolant are accumulated in the upper part of the tank. The coolant is discharged from the lower part of the tank and circulates. Further, this tank may be used as a reserve tank for replenishing a decrease due to permeation from a coolant tube or the like or leakage from a connecting portion. In this case, it is necessary to provide a tank having a capacity larger than the replenishment amount.
[0033]
FIG. 9 is a diagram showing a manufacturing procedure of the radiator of the present invention. (A) to (d) outline the manufacturing procedure. First, a unit for radiating fins is formed. As shown in (a), a thin aluminum plate is press-fitted into a copper or aluminum U-shaped tube. The pipe diameter of the U-shaped pipe is determined by the flow rate of the coolant, but in this example, a pipe having an outer diameter of 5 mm and a wall thickness of 0.4 mm was used. The bending R of the U-shaped tube is determined by the material of the tube and the tube diameter, but in this embodiment, it is 10 mm. These dimensions can be appropriately determined so that the radiator height is about 40 mm if the size is 1U. A plurality of aluminum thin plates are press-fitted into this U-shaped tube at a pitch of 1.5 mm to form a radiation fin unit (b). At this time, although the reason will be described later, the press-fitting position of the U-shaped tube is provided with an offset in a predetermined height direction from the center. Next, the unit of the radiating fin is assembled so as to be parallel to the U-shaped tube and alternately inverted up and down (FIG. (C)). Thereafter, the open end of the U-shaped tube is connected to the adjacent unit (FIG. (D)). In this way, the flow path forms a single radiator.
[0034]
The reason why the U-shaped tube is attached to the fin by providing an offset to the thin plate will be described with reference to FIG. (A) The figure is the figure which shows arrangement | positioning of the flow path pipe | tube of the cooling fluid of the radiator of this invention. Staggered arrangement. On the other hand, when all the radiating fin units are assembled in the same direction, it is as shown in FIG. In this case, the flow channel pipe is arranged in parallel to the flow direction of the cooling air. Comparing the two, (b) is characterized in that the cooling pipe connection distance to the adjacent unit is shorter and the bending R becomes larger and the workability and assemblability are improved when connected by a U-shaped pipe. . However, in terms of the flow of cooling air between the radiating fins, since the distance of the flow path tube that inhibits the flow of cooling air is larger in (a) than in (b), the average of the radiator is increased. The cooling air flow is stable. Since the heat transfer is stabilized by stabilizing the flow of the cooling air, the configuration shown in FIG.
[0035]
FIG. 11 is a diagram showing another embodiment of the radiator. In this example, an example of increasing the heat dissipation capacity of the radiator 12 will be described with reference to the module configuration diagram shown in FIG. As described above, the heat radiation capacity of the radiator depends on the heat radiation area of the heat radiation fin or the like. Here, considering the arrangement of the electronic components on the main board, the height of the components is becoming smaller as the electronic components are highly integrated. In addition, there are a large number of surface-mounted components, and components with a large component height have become limited components. Paying attention to this point, the radiator of the present embodiment is designed so that a radiating fin having a height smaller than the radiating fin height on the cooling air suction side is attached to the cooling air discharge side (main board 3 side). 3 was overhanged and installed. The height of the heat radiating fin in the overhanging portion may be set so as not to contact the main board component. Accordingly, the heat radiation capacity can be increased without increasing the height of the radiator and without increasing the installation length in the depth direction in which the cooling air flows.
[0036]
FIG. 12 is a diagram for explaining another embodiment for adjusting the heat dissipation capacity of the radiator 12. In the above embodiment of the present invention, the example in which the radiator heat dissipation capacity is adjusted by the number of the radiation fin units assembled in the flow direction of the cooling air has been described. In the embodiment shown in FIG. 12, an example in which the number of radiating fins is adjusted to adjust the radiating capacity of the radiator will be shown.
[0037]
When the standard server module has a 2 CPU configuration, the width of the radiator is L, and the number of radiating fin units to be assembled is 4 units. When this radiator is used in a 1 CPU configuration, there is a surplus in the heat dissipation capacity of the radiator. Although this is not a problem in terms of performance, the manufacturing cost of the radiator is not used effectively. In the above embodiment, the number of heat dissipating units is composed of two units. However, in this embodiment, the radiator 12 is composed of thin heat dissipating fins corresponding to the width of L / 2. This is because the heat dissipation capacity of the radiator is proportional to the heat dissipation area of the heat dissipation fin.
[0038]
The present embodiment is an embodiment that is particularly effective when a module having a smaller CPU configuration than the standard configuration is configured. Here, in order to cool other devices, it is desirable that the number of cooling fans is the same, not halved.
[0039]
In this embodiment, the device that is cooled by the liquid cooling system is described as a CPU. However, a storage device such as a memory module, a chip set, or an HDD may be cooled by such a liquid cooling system. In this case, the jacket may be thermally connected to the device to be cooled, and may be connected in parallel with the cooling of the CPU to the coolant circulation path, or may be connected in series with the cooling jacket of the CPU. . When connecting in series, the amount of heat generated by the CPU is smaller than that of the CPU, so it is desirable to connect immediately after the radiator and then connect the cooling jacket of the CPU.
[0040]
【The invention's effect】
According to the present invention, even when a high-speed CPU or a high heat-generating device having a high heat generation amount is used, the heat generated by the CPU or device can be radiated with high efficiency, so even a 1U size server module can be used without increasing the module size. Such CPU and device can be mounted.
[0041]
Moreover, since a radiator can be comprised combining a radiation fin unit according to a required heat dissipation capacity, a radiator can be manufactured cheaply.
[Brief description of the drawings]
FIG. 1 is a schematic view of a 2CPU cooling system of the present invention.
FIG. 2 is a mounting example of a rack mount server module according to the prior art.
FIG. 3 is a schematic view of a rack mount server module to which the present invention is applied.
FIG. 4 is a top view of the module.
FIG. 5 is a schematic view of a liquid cooling system of the present invention.
FIG. 6 is a structural diagram of a jacket.
FIG. 7 is a structural diagram of a radiator.
FIG. 8 is a structural diagram of a tank.
FIG. 9 shows a procedure for manufacturing a radiator.
FIG. 10 is a configuration diagram of a flow path pipe of a radiator.
FIG. 11 is a view of another embodiment of the radiator.
FIG. 12 is a view of another embodiment of the radiator.
[Explanation of symbols]
10 ... Pump, 11 ... CPU jacket, 12 ... Radiator, 13 ... Heat dissipation fan,
21 ... U-shaped tube, 22 ... radiating fin, 22 ... radiating fin unit

Claims (5)

発熱部の発生熱を冷却液に吸熱するジャケットと、冷却液の蓄熱を外気に放熱するラジエーターと、冷却液を循環するポンプと、前記ラジエーターを冷却する冷却ファンを備えた情報処理装置の液冷システムであって、
前記ラジエーターは、複数の放熱フィンユニットが前記冷却ファンの冷却風の流れ方向にする配置されるとともに、前記冷却液が複数の放熱フィンユニットを直列に流れるように接続して形成されることを特徴とする液冷システム。
Liquid cooling of an information processing apparatus comprising a jacket that absorbs heat generated by the heat generating portion into the cooling liquid, a radiator that radiates heat stored in the cooling liquid to the outside air, a pump that circulates the cooling liquid, and a cooling fan that cools the radiator. A system,
The radiator is formed by arranging a plurality of radiating fin units in a flow direction of cooling air of the cooling fan and connecting the cooling liquid so that the cooling liquid flows in series. Liquid cooling system.
前記放熱ファンと前記ラジエーターは近接して情報処理装置の中央部に設置され、前記放熱ファンにより装置の外部から外気を吸引して、放熱ファンの吸気側のデバイスを冷却するとともに、前記放熱ファンから吐出された冷却風で前記ラジエーターを冷却した後に放熱ファンの吐出し側のデバイスを冷却しながら装置外部に排気することを特徴とする請求項1記載の液冷システム。The heat dissipating fan and the radiator are installed close to each other in the center of the information processing apparatus, and the heat dissipating fan sucks outside air from the outside of the apparatus to cool the device on the intake side of the heat dissipating fan, and from the heat dissipating fan. 2. The liquid cooling system according to claim 1, wherein after cooling the radiator with the discharged cooling air, the device on the discharge side of the heat radiating fan is cooled to the outside of the apparatus while being cooled. 少なくとも前記ジャケットを単位に、該液冷システムの循環路に他のジャケットと並列接続可能な結合部を有することを特徴とする請求項1記載の液冷システム。The liquid cooling system according to claim 1, further comprising a coupling portion that can be connected in parallel with another jacket in the circulation path of the liquid cooling system at least in the jacket. 冷却液が流れるU字管の円周方向に薄板が一定間隔で設けられた放熱フィンユニットは、冷却風の流れ方向に対して、前記U字管が垂直になるように流れ方向に複数個配置され、隣り合う放熱ユニットのU字管を直列に接続して冷却液が流動するように形成されたことを特徴とする情報処理装置の液冷システム用ラジエーター。A plurality of heat dissipating fin units in which thin plates are provided at regular intervals in the circumferential direction of the U-shaped pipe through which the cooling liquid flows are arranged in the flow direction so that the U-shaped pipe is perpendicular to the flow direction of the cooling air A radiator for a liquid cooling system of an information processing apparatus, wherein U-tubes of adjacent heat radiating units are connected in series so that the coolant flows. 前記放熱フィンユニットのU字管が、冷却風の流れ方向に千鳥に配置されたことを特徴とする請求項4記載の情報処理装置の液冷システム用ラジエーター。The radiator for a liquid cooling system of an information processing apparatus according to claim 4, wherein the U-shaped tubes of the radiation fin units are arranged in a staggered manner in the flow direction of the cooling air.
JP2003198851A 2003-07-18 2003-07-18 Liquid cooling system and radiator Expired - Fee Related JP4603783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198851A JP4603783B2 (en) 2003-07-18 2003-07-18 Liquid cooling system and radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198851A JP4603783B2 (en) 2003-07-18 2003-07-18 Liquid cooling system and radiator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008159867A Division JP2008287733A (en) 2008-06-19 2008-06-19 Liquid cooling system

Publications (2)

Publication Number Publication Date
JP2005038112A true JP2005038112A (en) 2005-02-10
JP4603783B2 JP4603783B2 (en) 2010-12-22

Family

ID=34208473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198851A Expired - Fee Related JP4603783B2 (en) 2003-07-18 2003-07-18 Liquid cooling system and radiator

Country Status (1)

Country Link
JP (1) JP4603783B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007058385A (en) * 2005-08-23 2007-03-08 Hitachi Ltd Information processor
JP2008171386A (en) * 2006-12-13 2008-07-24 Hitachi Ltd Storage controller
US8564951B1 (en) 2012-09-07 2013-10-22 Fujitsu Limited Electronic apparatus and cooling module mounted in that electronic apparatus
JP2014053507A (en) * 2012-09-07 2014-03-20 Fujitsu Ltd Cooling unit and electronic device
JP2016131168A (en) * 2015-01-13 2016-07-21 富士通株式会社 Heat exchanger, cooling unit, and electronic device
WO2016191374A1 (en) * 2015-05-22 2016-12-01 Teza Technologies LLC Fluid cooled server and radiator
JP2016539503A (en) * 2013-11-22 2016-12-15 リキッドクール ソリューションズ, インク. Scalable liquid immersion cooling device
CN108990361A (en) * 2017-06-02 2018-12-11 中航光电科技股份有限公司 The general VPX module of conduction cooling liquid cooling and its frame assembly
CN113597216A (en) * 2021-07-29 2021-11-02 苏州浪潮智能科技有限公司 Liquid cooling radiator and server
CN113760067A (en) * 2021-08-18 2021-12-07 浪潮电子信息产业股份有限公司 Server heat dissipation equipment
CN115494923A (en) * 2022-09-16 2022-12-20 天津商业大学 Single-layer server-level full liquid cooling heat dissipation device
WO2024053737A1 (en) * 2022-09-09 2024-03-14 三菱重工業株式会社 Server cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252212B (en) * 2013-06-29 2017-12-15 华为技术有限公司 Liquid-cooling heat radiator and equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119620A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Constitution system for cooling water supply equipment
JPH02197773A (en) * 1989-01-26 1990-08-06 Nec Corp Cooling device
JPH04133497A (en) * 1990-09-26 1992-05-07 Hitachi Ltd Cooling structure of electronic device
JPH11307703A (en) * 1998-04-17 1999-11-05 Mitsubishi Electric Corp Element cooling device
JP3068892U (en) * 1999-11-11 2000-05-26 川富 簡 CPU heat dissipation device
JP2002168547A (en) * 2000-11-20 2002-06-14 Global Cooling Bv Cpu cooling device using siphon
JP2002257450A (en) * 2001-03-02 2002-09-11 Sanyo Electric Co Ltd Cooling apparatus of semiconductor device
JP2002261222A (en) * 2001-03-02 2002-09-13 Sanyo Electric Co Ltd Cooling device for semiconductor element
JP2002335091A (en) * 2001-03-05 2002-11-22 Sanyo Electric Co Ltd Cooling device for exothermic electronic part
JP2002366258A (en) * 2001-06-01 2002-12-20 Internatl Business Mach Corp <Ibm> Electronic equipment system and vertical rack
JP2002372360A (en) * 2001-06-15 2002-12-26 Hitachi Ltd Cooling method
JP2003501737A (en) * 1999-06-02 2003-01-14 广 ▲計▼ 董 Heat dissipation system in computer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119620A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Constitution system for cooling water supply equipment
JPH02197773A (en) * 1989-01-26 1990-08-06 Nec Corp Cooling device
JPH04133497A (en) * 1990-09-26 1992-05-07 Hitachi Ltd Cooling structure of electronic device
JPH11307703A (en) * 1998-04-17 1999-11-05 Mitsubishi Electric Corp Element cooling device
JP2003501737A (en) * 1999-06-02 2003-01-14 广 ▲計▼ 董 Heat dissipation system in computer
JP3068892U (en) * 1999-11-11 2000-05-26 川富 簡 CPU heat dissipation device
JP2002168547A (en) * 2000-11-20 2002-06-14 Global Cooling Bv Cpu cooling device using siphon
JP2002257450A (en) * 2001-03-02 2002-09-11 Sanyo Electric Co Ltd Cooling apparatus of semiconductor device
JP2002261222A (en) * 2001-03-02 2002-09-13 Sanyo Electric Co Ltd Cooling device for semiconductor element
JP2002335091A (en) * 2001-03-05 2002-11-22 Sanyo Electric Co Ltd Cooling device for exothermic electronic part
JP2002366258A (en) * 2001-06-01 2002-12-20 Internatl Business Mach Corp <Ibm> Electronic equipment system and vertical rack
JP2002372360A (en) * 2001-06-15 2002-12-26 Hitachi Ltd Cooling method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721822B2 (en) * 2005-08-23 2011-07-13 株式会社日立製作所 Information processing device
JP2007058385A (en) * 2005-08-23 2007-03-08 Hitachi Ltd Information processor
JP2008171386A (en) * 2006-12-13 2008-07-24 Hitachi Ltd Storage controller
EP2706568A3 (en) * 2012-09-07 2016-10-26 Fujitsu Limited Cooling unit and electronic equipment
US8564951B1 (en) 2012-09-07 2013-10-22 Fujitsu Limited Electronic apparatus and cooling module mounted in that electronic apparatus
EP2706833A2 (en) 2012-09-07 2014-03-12 Fujitsu Limited Electronic apparatus and cooling module mounted in that electronic apparatus
JP2014053507A (en) * 2012-09-07 2014-03-20 Fujitsu Ltd Cooling unit and electronic device
US9223362B2 (en) 2012-09-07 2015-12-29 Fujitsu Limited Electronic apparatus and cooling module mounted in that electronic apparatus
JP2016539503A (en) * 2013-11-22 2016-12-15 リキッドクール ソリューションズ, インク. Scalable liquid immersion cooling device
US9913402B2 (en) 2013-11-22 2018-03-06 Liquidcool Solutions, Inc. Scalable liquid submersion cooling system
JP2016131168A (en) * 2015-01-13 2016-07-21 富士通株式会社 Heat exchanger, cooling unit, and electronic device
WO2016191374A1 (en) * 2015-05-22 2016-12-01 Teza Technologies LLC Fluid cooled server and radiator
US10107303B2 (en) 2015-05-22 2018-10-23 Teza Technologies LLC Fluid cooled server and radiator
CN108990361A (en) * 2017-06-02 2018-12-11 中航光电科技股份有限公司 The general VPX module of conduction cooling liquid cooling and its frame assembly
CN113597216A (en) * 2021-07-29 2021-11-02 苏州浪潮智能科技有限公司 Liquid cooling radiator and server
CN113597216B (en) * 2021-07-29 2023-02-28 苏州浪潮智能科技有限公司 Liquid cooling radiator and server
CN113760067A (en) * 2021-08-18 2021-12-07 浪潮电子信息产业股份有限公司 Server heat dissipation equipment
WO2024053737A1 (en) * 2022-09-09 2024-03-14 三菱重工業株式会社 Server cooling system
CN115494923A (en) * 2022-09-16 2022-12-20 天津商业大学 Single-layer server-level full liquid cooling heat dissipation device
WO2024055604A1 (en) * 2022-09-16 2024-03-21 天津商业大学 Full-liquid-cooling heat dissipation apparatus of single-layer server level

Also Published As

Publication number Publication date
JP4603783B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP2008287733A (en) Liquid cooling system
TWI289039B (en) Cooling apparatus and electronic equipment incorporating the same
US8953317B2 (en) Wicking vapor-condenser facilitating immersion-cooling of electronic component(s)
US7639498B2 (en) Conductive heat transport cooling system and method for a multi-component electronics system
US7400505B2 (en) Hybrid cooling system and method for a multi-component electronics system
JP3594900B2 (en) Display integrated computer
US8345423B2 (en) Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
US7916483B2 (en) Open flow cold plate for liquid cooled electronic packages
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
US20100073866A1 (en) Cooling device and electronic equipment including cooling device
KR100633492B1 (en) Cooling module
US6639797B2 (en) Computer having cooling device
JP5664397B2 (en) Cooling unit
JP2004246649A (en) Rack-mounted server system, rack cabinet, server module, and cooling method of rack-mounted server system
TW201018381A (en) Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
JP4603783B2 (en) Liquid cooling system and radiator
US10874034B1 (en) Pump driven liquid cooling module with tower fins
JP2004319628A (en) System module
JP5760796B2 (en) Cooling unit
KR101005404B1 (en) Heat absorption member, cooling device, and electronic apparatus
JP5760797B2 (en) Cooling unit
JP2004094961A (en) Display unit integrated computer system and cooling module used for it
JP2006200796A (en) Radiator integrated with tank
JP2005317033A (en) Display device integrated computer, and cooling module used therein
JP4332359B2 (en) Computer cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080625

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4603783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees