JP2005036526A - Self-propelled soil improving machine - Google Patents

Self-propelled soil improving machine Download PDF

Info

Publication number
JP2005036526A
JP2005036526A JP2003275095A JP2003275095A JP2005036526A JP 2005036526 A JP2005036526 A JP 2005036526A JP 2003275095 A JP2003275095 A JP 2003275095A JP 2003275095 A JP2003275095 A JP 2003275095A JP 2005036526 A JP2005036526 A JP 2005036526A
Authority
JP
Japan
Prior art keywords
soil
soil improvement
sand
earth
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003275095A
Other languages
Japanese (ja)
Inventor
Hiroki Takeuchi
裕樹 竹内
Yasuharu Yamamoto
康晴 山本
Hajime Ozawa
肇 小澤
Tetsuya Nishida
鉄也 西田
Ichio Endo
市夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2003275095A priority Critical patent/JP2005036526A/en
Publication of JP2005036526A publication Critical patent/JP2005036526A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-propelled soil improving machine which prevents deterioration in quality of improved soil by positively fixing a mixing ratio of soil and soil improving agent to a constant value. <P>SOLUTION: The self-propelled soil improving machine is comprised of a transporting conveyor 13 stretched from below a hopper 12 to a mixing device 47; a screw feeder 29 for feeding the soil improving agent to the soil conveyed by the transporting conveyor 13; a height sensor 22 and a rotational speed sensor 25 for detecting an amount of the soil conveyed by the transporting conveyor 13; a mixing ratio control device 75 for arithmetically operating a required amount of the soil improving agent, based on a detected value, and controlling a feeding amount of the soil improving agent by the screw feeder 29; and a discharging conveyor 59 extended from below the mixing device 47 to the outside of a main body frame 3 on a side opposite to the mixing device in a longitudinal direction. According to the soil improving machine, the mixing ratio control device 75 compares the calculated required amount of the soil improving agent with a feeding capacity of the screw feeder 29, and controls a transporting speed of the transporting conveyor 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、土砂と土質改良材とを混合して改良土を生成する土質改良機に関するものである。   The present invention relates to a soil improvement machine that mixes earth and sand with a soil improvement material to generate improved soil.

近年、建設省によるいわゆる建設リサイクル推進計画の策定(1997年)といった廃棄物再利用促進の背景の下、例えば、ガス管等の埋設工事、上下水道工事、及びその他の道路工事・基礎工事等が行われる様々な現場において、土砂を土質改良材とともに攪拌混合処理し、リサイクル用の改良土製品や宅地用地・道路の路床等の表層に敷設する地盤強化用の改良土を生成する自走式土質改良機のニーズが拡がりつつある。   In recent years, the construction of so-called construction recycling promotion plans by the Ministry of Construction (1997) has led to the reuse of waste, such as the construction of gas pipes, waterworks and sewerage, and other road construction and foundation work. A self-propelled type that mixes and mixes earth and sand with soil improvement materials at various sites where it is produced, and generates improved soil products for recycling and ground reinforcement for laying on the surface layer of residential land and roadbeds. The need for soil improvement machines is expanding.

この自走式土質改良機は、通常、土砂を受け入れるホッパと、このホッパ内の土砂を搬送する搬送コンベアと、この搬送コンベアで搬送される土砂に土質改良材を供給する土質改良材供給装置と、搬送コンベアから導入された土砂及び土質改良材を混合し改良土を生成する混合手段と、この混合手段から導出された改良土を機外に排出する排出コンベアとを備えている。   This self-propelled soil improvement machine usually includes a hopper that receives earth and sand, a conveyor that conveys the earth and sand in the hopper, and a soil improvement material supply device that supplies soil improvement material to the earth and sand conveyed by the conveyor. The mixing means for mixing the earth and sand introduced from the conveyor and generating the improved soil, and the discharge conveyor for discharging the improved soil derived from the mixing means to the outside of the machine are provided.

このような構成の自走式土質改良機において、良質な改良土を生成するためには土砂と土質改良材との混合比を好適な値に維持することが極めて重要である。   In the self-propelled soil improvement machine having such a configuration, it is extremely important to maintain the mixing ratio of soil and soil improvement material at a suitable value in order to generate high-quality improved soil.

そこで、従来より、搬送コンベアで搬送される土砂量を検出し、その搬送土砂量に応じて土質改良材の供給量を制御する自走式土質改良機が提唱されている(例えば、特許文献1参照。)。この自走式土質改良機は、搬送コンベアで搬送される土砂量を検出する土砂量検出手段(土砂体積測定手段)と、この土砂量検出手段の検出値に基づいて土質改良材要求量を演算し、土質改良材供給装置の供給量を制御する制御手段とを備えており、土砂に対して一定の混合比で土質改良材を供給できるようになっている。   Therefore, conventionally, a self-propelled soil improvement machine that detects the amount of earth and sand transported by the transport conveyor and controls the supply amount of the soil quality improvement material according to the amount of transport earth and sand has been proposed (for example, Patent Document 1). reference.). This self-propelled soil improvement machine calculates the required amount of soil improvement material based on the detection value of the sediment volume detection means (sediment volume measurement means) that detects the amount of sediment transported by the transport conveyor and the sediment volume detection means. And a control means for controlling the supply amount of the soil improvement material supply device, so that the soil improvement material can be supplied to the soil at a constant mixing ratio.

特開2003−96818号公報JP 2003-96818 A

しかしながら、上記従来技術では以下のような課題が存在する。
すなわち、上記従来技術の自走式土質改良機では、土質改良材供給装置として、スクリューを回転することで土質改良材を押し出し供給するスクリューフィーダ、又は放射状に仕切り板が設けられたロータを回転することで仕切り板間に導入した土質改良材を供給するロータリフィーダが用いられているが、一般にこれらスクリューフィーダ及びロータリフィーダは機器固有の所定の回転数範囲内において駆動するようになっており、その回転数範囲に対応した供給量(言い換えれば供給能力)の範囲内において土質改良材を供給できるようになっている。
However, there are the following problems in the above-described prior art.
That is, in the above-described prior art self-propelled soil improvement machine, as the soil improvement material supply device, a screw feeder that pushes and supplies the soil improvement material by rotating a screw, or a rotor provided with a radial partition plate is rotated. The rotary feeder that supplies the soil improvement material introduced between the partition plates is used, but in general, these screw feeders and rotary feeders are designed to be driven within a predetermined rotational speed range unique to the equipment. The soil quality improving material can be supplied within the range of the supply amount (in other words, the supply capacity) corresponding to the rotation speed range.

例えば、原料土砂の性状の変化等によって土質改良作業の作業量を増大させたい場合には土砂の供給量に合わせて土質改良材の供給量を増やす訳だが、土質改良材供給装置が供給能力の上限近くで土質改良材を供給していた場合には土質改良材要求量が土質改良材供給装置の供給能力を超えてしまう。この場合、搬送される土砂に対して土質改良材の供給量が相対的に少なくなり、最終的な改良土の品質の低下を招く恐れがあった。   For example, if you want to increase the amount of soil improvement work due to changes in the properties of the material soil, etc., the amount of soil improvement material is increased in accordance with the amount of soil supply. When the soil improvement material is supplied near the upper limit, the required amount of the soil improvement material exceeds the supply capacity of the soil improvement material supply device. In this case, the supply amount of the soil quality improving material is relatively small with respect to the transported sand and sand, and there is a possibility that the quality of the final improved soil is deteriorated.

本発明は、上記従来技術の問題に鑑みてなされたものであり、その目的は、土砂と土質改良材との混合比を確実に一定にすることで、改良土の品質低下を防止することができる自走式土質改良機を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to prevent deterioration of the quality of the improved soil by ensuring that the mixing ratio of the earth and sand and the soil conditioner is constant. It is to provide a self-propelled soil improvement machine that can do.

(1)上記目的を達成するために、本発明は、受け入れた土砂を土質改良材と混合して改質する自走式土質改良機において、本体フレームと、この本体フレームに設けた走行手段と、前記本体フレーム上に設けた混合手段と、前記本体フレームの長手方向一方側に設けた土砂受入用のホッパと、このホッパの下部から前記混合手段にかけて設けられ、前記ホッパで受け入れた土砂を前記混合手段に搬送する搬送コンベアと、この搬送コンベアで搬送される土砂に対して土質改良材を供給する土質改良材供給装置と、前記搬送コンベアで搬送される土砂量を検出する土砂量検出手段と、この土砂量検出手段の検出値に基づいて土質改良材要求量を演算し、その演算した土質改良材要求量に応じて前記土質改良材供給装置の供給量を制御すると共に、前記演算した土質改良材要求量と前記土質改良材供給装置の供給能力とを比較して前記搬送コンベアの搬送速度を制御する制御手段と、前記混合手段の下方から前記本体フレームの長手方向他方側外方へ延設され、前記混合手段で生成した改良土を機外に排出する排出コンベアとを備えるものとする。   (1) In order to achieve the above object, the present invention provides a self-propelled soil improvement machine that mixes and reforms received earth and sand with a soil improvement material to improve the main body frame and traveling means provided on the main body frame. The mixing means provided on the main body frame, the earth and sand receiving hopper provided on one side in the longitudinal direction of the main body frame, and the earth and sand received by the hopper provided from the lower part of the hopper to the mixing means. A transporting conveyor for transporting to the mixing means, a soil quality improving material supply device for supplying a soil quality improving material to the soil transported by the transporting conveyor, and a sediment amount detecting means for detecting the amount of sediment transported by the transporting conveyor; The soil improvement material requirement amount is calculated based on the detection value of the soil amount detection means, and the supply amount of the soil improvement material supply device is controlled in accordance with the calculated soil improvement material requirement amount. A control means for controlling the transport speed of the transport conveyor by comparing the calculated amount of requested soil improvement material and the supply capacity of the soil improvement material supply device, and the other longitudinal direction of the main body frame from below the mixing means A discharge conveyor that extends outward to the side and discharges the improved soil generated by the mixing means to the outside of the machine.

本発明においては、ホッパで受け入れた土砂を搬送コンベアで搬送する際に、土砂量検出手段で搬送土砂量を検出し、制御手段でこの検出値に基づいて土質改良材要求量を演算し、その演算した土質改良材要求量に応じて土質改良材供給装置の供給量を制御する。このようにして、搬送コンベアで搬送される土砂に土質改良材が一定の混合比となるように供給され、これら土砂と土質改良材とが混合手段で混合されて、生成した改良土は排出コンベアにより自走式土質改良機の機外に排出される。   In the present invention, when the earth and sand received by the hopper is conveyed by the conveyor, the amount of earth and sand detected by the earth and sand amount detecting means, and the control means calculates the required amount of soil improvement material based on the detected value, The supply amount of the soil improvement material supply device is controlled in accordance with the calculated soil improvement material requirement amount. In this way, the soil improvement material is supplied to the earth and sand transported by the transport conveyor so as to have a constant mixing ratio, and these soil and soil improvement material are mixed by the mixing means, and the generated improved soil is discharged to the discharge conveyor. Is discharged outside the self-propelled soil improvement machine.

ここで、一般に土質改良機の土質改良材供給装置としては、スクリューを回転することで土質改良材を押し出し供給するスクリューフィーダや、放射状に仕切り板が設けられたロータを回転させることで仕切り板間に導入した土質改良材を供給するロータリフィーダ等が用いられるが、これらスクリューフィーダ及びロータリフィーダは機器固有の所定の回転数範囲内において駆動するようになっており、その回転数範囲に対応した供給量の範囲内(言い換えれば供給能力範囲内)において土質改良材を供給できるようになっている。   Here, as a soil conditioner supply device for a soil conditioner, generally, a screw feeder that pushes and supplies a soil conditioner by rotating a screw, or a rotor provided with a partition plate in a radial direction is rotated to rotate between the partition plates. A rotary feeder or the like that supplies the soil quality improvement material introduced in is used, but these screw feeders and rotary feeders are driven within a predetermined rotational speed range specific to the equipment, and supply corresponding to the rotational speed range The soil quality improving material can be supplied within the amount range (in other words, within the supply capacity range).

このとき、例えば原料土砂の性状の変化等によって土質改良作業の作業量を増大させたい場合には土砂の供給量に合わせて土質改良材の供給量を増やす訳だが、土質改良材供給装置が供給能力の上限近くで土質改良材を供給していた場合には土質改良材要求量が土質改良材供給装置の供給能力を超えてしまう。この場合、搬送される土砂に対して土質改良材の供給量が相対的に少なくなり、最終的な改良土の品質の低下を招く恐れがあった。一方、例えば土質改良作業の作業量を減少させたい場合において、土質改良材供給装置の供給能力の下限近くで土質改良材を供給していた場合には、土質改良材要求量が土質改良材供給装置の供給能力の下限を下回ってしまう。この場合には搬送される土砂に対して土質改良材の供給量が相対的に多くなり、これによっても最終的な改良土の品質の低下を招く恐れがあった。   At this time, for example, if you want to increase the amount of soil improvement work due to changes in the properties of the material soil, the amount of soil improvement material is increased in accordance with the amount of soil supply. When the soil improvement material is supplied near the upper limit of the capacity, the required amount of the soil improvement material exceeds the supply capacity of the soil improvement material supply device. In this case, the supply amount of the soil quality improving material is relatively small with respect to the transported sand and sand, and there is a possibility that the quality of the final improved soil is deteriorated. On the other hand, for example, when it is desired to reduce the amount of soil improvement work, if the soil improvement material is supplied near the lower limit of the supply capacity of the soil improvement material supply device, the required amount of soil improvement material is It falls below the lower limit of the supply capacity of the device. In this case, the supply amount of the soil quality improving material is relatively large with respect to the transported sand and sand, and this may also cause a deterioration in the quality of the final improved soil.

これに対し、本発明においては、制御手段で演算された土質改良材要求量と土質改良材供給装置の供給能力とを比較して搬送コンベアの搬送速度を制御する。すなわち、上述したように搬送コンベアで搬送される土砂量が増加して演算された土質改良材要求量が土質改良材供給装置の供給能力の上限を超えた場合には、制御手段で搬送コンベアの搬送速度を減速して搬送土砂量を減らすことが可能である。一方、搬送コンベアで搬送される土砂量が減少して演算された土質改良材要求量が土質改良材供給装置の供給能力の下限を下回った場合には、制御手段で搬送コンベアの搬送速度を増速して搬送土砂量を増加することが可能である。このようにして、本発明によれば土質改良材要求量を土質改良材供給装置の供給能力範囲内に確実に収めるようにすることができるので、土砂と土質改良材の混合比を確実に一定にすることができる。その結果、改良土の品質低下を防止することができる。   On the other hand, in the present invention, the transport speed of the transport conveyor is controlled by comparing the required amount of soil improvement material calculated by the control means with the supply capacity of the soil improvement material supply device. That is, as described above, when the amount of soil improvement material calculated by increasing the amount of earth and sand conveyed by the conveyor exceeds the upper limit of the supply capacity of the soil improvement material supply device, the control means It is possible to reduce the amount of transport sediment by reducing the transport speed. On the other hand, when the required amount of soil improvement material calculated by reducing the amount of sediment transported by the transport conveyor falls below the lower limit of the supply capacity of the soil improvement material supply device, the transport speed of the transport conveyor is increased by the control means. It is possible to increase the amount of transported sediment quickly. In this way, according to the present invention, the required amount of soil improvement material can be reliably kept within the supply capacity range of the soil improvement material supply device, so that the mixing ratio of soil and soil improvement material is reliably constant. Can be. As a result, deterioration of the quality of the improved soil can be prevented.

(2)上記(1)において、好ましくは、前記制御手段は、前記演算した土質改良材要求量が前記土質改良材供給装置の供給能力範囲の上限値よりも大きい場合には前記搬送コンベアの搬送速度を減速するものとする。   (2) In the above (1), preferably, the control means transports the transport conveyor when the calculated required amount of soil improvement material is larger than an upper limit value of a supply capacity range of the soil improvement material supply device. The speed shall be reduced.

(3)上記(2)において、さらに好ましくは、前記制御手段は、前記演算した土質改良材要求量が前記土質改良材供給装置の供給能力範囲の下限値よりも小さい場合には前記搬送コンベアの搬送速度を増速するものとする。   (3) In the above (2), more preferably, the control means is configured such that when the calculated amount of requested soil improvement material is smaller than a lower limit value of a supply capacity range of the soil improvement material supply device, the control means The transport speed is increased.

(4)上記(1)乃至(3)のいずれかにおいて、また好ましくは、前記土砂量検出手段は、前記搬送コンベアで搬送される土砂の体積を測定する土砂体積検出手段、前記搬送コンベアで搬送される土砂の重量を測定する土砂重量検出手段、及び前記排出コンベアで排出される改良土の重量を測定する改良土重量検出手段のうち、少なくとも1つを有するものとする。   (4) In any one of the above (1) to (3), and preferably, the earth and sand amount detecting means is a earth and sand volume detecting means for measuring a volume of earth and sand conveyed by the conveyor, and is conveyed by the conveyor. It is assumed that at least one of a soil and sand weight detecting means for measuring the weight of the soil and the improved soil weight detecting means for measuring the weight of the improved soil discharged by the discharge conveyor is provided.

本発明によれば、制御手段で演算された土質改良材要求量と土質改良材供給装置の供給能力とを比較して搬送コンベアの搬送速度を制御する。これにより、土質改良材要求量を土質改良材供給装置の供給能力範囲内に収めるようにすることができるので、土砂と土質改良材の混合比を確実に一定にすることができる。その結果、改良土の品質低下を防止することができる。   According to the present invention, the transport speed of the transport conveyor is controlled by comparing the required amount of soil improvement material calculated by the control means with the supply capacity of the soil improvement material supply device. Thereby, since the required amount of soil improvement material can be kept within the supply capacity range of the soil improvement material supply device, the mixing ratio of soil and soil improvement material can be made constant. As a result, deterioration of the quality of the improved soil can be prevented.

以下、本発明の自走式土質改良機の一実施の形態を図面を参照しつつ説明する。本実施の形態の土質改良機は、例えば宅地建設用地等の表層を掘削した土砂を改質して地盤強化のために表層に埋め戻す改良土を生成したり、道路建設用地等で現場内の所定の箇所を掘削して得た土砂を改質して路床材として敷設する改良土を生成するといった表層地盤安定化処理等に用いられる自走式土質改良機である。   Hereinafter, an embodiment of a self-propelled soil improvement machine of the present invention will be described with reference to the drawings. The soil improvement machine according to the present embodiment generates, for example, improved soil that is excavated from the surface layer of a residential land construction site and backfilled to the surface layer for ground reinforcement, This is a self-propelled soil improvement machine used for surface ground stabilization processing, such as generating improved soil to be laid as roadbed material by modifying soil obtained by excavating a predetermined location.

図1は本発明の自走式土質改良機の一実施の形態の全体構造を表す側面図、図2はその上面図、図3は図1中左側から見た正面図である。
これら図1乃至図3において、1は走行体で、この走行体1は、左・右1対の走行手段としての走行装置2と、この走行装置2の上部に略平行に延設した1対の本体フレーム3とで構成されている。また、4は走行装置2のトラックフレームで、このトラックフレーム4は、上記本体フレーム3の下部に連設している。5,6はそれぞれこのトラックフレーム4の両端に設けた従動輪(アイドラ)及び駆動輪、7はこれら従動輪5及び駆動輪6に掛け回した履帯(無限軌道履帯)、8は駆動輪6に直結した駆動装置である。9a,9bは本体フレーム3上に立設した複数の支持ポストで、これら支持ポスト9a,9bは、支持フレーム10,11を支持している。
FIG. 1 is a side view showing the overall structure of an embodiment of a self-propelled soil improvement machine of the present invention, FIG. 2 is a top view thereof, and FIG. 3 is a front view seen from the left side in FIG.
1 to 3, reference numeral 1 denotes a traveling body. The traveling body 1 includes a traveling device 2 as a pair of left and right traveling means and a pair extending substantially parallel to the upper portion of the traveling device 2. And the main body frame 3. Reference numeral 4 denotes a track frame of the traveling device 2, and the track frame 4 is connected to the lower portion of the main body frame 3. 5 and 6 are driven wheels (idlers) and driving wheels provided at both ends of the track frame 4, 7 is a crawler belt (endless track crawler) wound around the driven wheels 5 and the driving wheels 6, and 8 is a driving wheel 6. It is a directly connected drive device. Reference numerals 9a and 9b denote a plurality of support posts erected on the main body frame 3. The support posts 9a and 9b support the support frames 10 and 11, respectively.

12は改質対象となる土砂を受入れるホッパで、このホッパ12は、上下が開口した概略枠型に形成されており、上記支持フレーム10により、本体フレーム3の長手方向一方側(図1及び図2中左側)に支持されている。また、改質対象となる土砂は、例えば油圧ショベル等の投入重機で投入される場合も多く、このホッパ12は、土砂投入の利便性への配慮として、上方に向けて拡開形状に形成されている。   Reference numeral 12 denotes a hopper for receiving earth and sand to be reformed, and this hopper 12 is formed in a substantially frame shape having an open top and bottom, and is supported by the support frame 10 on one side in the longitudinal direction of the main body frame 3 (FIGS. 1 and 2 on the left side). In addition, the earth and sand to be reformed are often introduced by a loading heavy machine such as a hydraulic excavator, for example, and the hopper 12 is formed in an expanded shape toward the upper side in consideration of the convenience of loading the earth and sand. ing.

図4はこのホッパ12の構造を簡略的に表す側断面図である。
この図4において、12Aはホッパ12の後述する搬送コンベア13による土砂搬送方向下流側(図4中右側)壁面の下端に切り欠いた土砂出口で、この土砂出口12Aは、上記搬送コンベア13の搬送ベルト16(後述)に対向して所定の幅(搬送ベルト16よりも僅かに狭い幅)及び所定の高さに形成されている。つまり、ホッパ12内の土砂は、搬送コンベア13によりこの土砂出口12Aの幅及び高さで切り出されるようになっている。
FIG. 4 is a side sectional view schematically showing the structure of the hopper 12.
In FIG. 4, 12 </ b> A is a sediment outlet cut out at the lower end of the wall surface downstream of the hopper 12 in the sediment transport direction (right side in FIG. 4) by the transport conveyor 13, which will be described later. Opposite to the belt 16 (described later), it is formed to have a predetermined width (a width slightly narrower than the conveyor belt 16) and a predetermined height. That is, the earth and sand in the hopper 12 is cut out by the conveyor 13 at the width and height of the earth and sand outlet 12A.

19はホッパ12の上記土砂出口12A上方に固着したブラケット、20はこのブラケット19に対しピン21を介して回動(揺動)可能に支持された揺動ローラである。この揺動ローラ20は、上記ブラケット19に連結したアーム20Aと、このアーム20Aの先端に回転自在に設けられた加圧ローラ20Bとで構成されている。つまり、この加圧ローラ20Bは、土砂出口12Aから切り出された搬送ベルト16上の搬送土砂の表面の凹凸に追従して上下動しつつ搬送土砂の表面に倣って回転するようになっている。これにより、加圧ローラ20Bを通過した土砂は、加圧ローラ20Bの自重により所定の力で加圧され、その嵩密度がほぼ一定となるようになっている。   Reference numeral 19 denotes a bracket fixed above the earth and sand outlet 12 </ b> A of the hopper 12, and 20 is a swing roller supported so as to be rotatable (swingable) via a pin 21 with respect to the bracket 19. The swing roller 20 includes an arm 20A connected to the bracket 19 and a pressure roller 20B rotatably provided at the tip of the arm 20A. That is, the pressure roller 20B rotates following the surface of the transporting earth and sand while moving up and down following the unevenness of the surface of the transporting earth and sand on the transporting belt 16 cut out from the sand and sand outlet 12A. As a result, the earth and sand that has passed through the pressure roller 20B are pressed with a predetermined force by the weight of the pressure roller 20B, and the bulk density is substantially constant.

22は加圧ローラ20Bの上方に設けた高さ検出手段で、この高さ検出手段22は、前記支持フレーム10上に位置するフレーム23に支持されている。また、この高さ検出手段22は、この種のものとして公知の超音波センサで構成されており、発信した超音波が加圧ローラ20Bで反射して戻ってくるまでの時間を検出し、その検出結果を土砂体積演算回路24に随時出力するようになっている(後述の図7参照)。なお、これら加圧ローラ20B及び高さ検出手段22は、搬送コンベア13上におけるホッパ12と土質改良材供給装置27(後述)との間に設けられている。   Reference numeral 22 denotes a height detection means provided above the pressure roller 20B. The height detection means 22 is supported by a frame 23 located on the support frame 10. The height detecting means 22 is composed of a known ultrasonic sensor of this type, and detects the time until the transmitted ultrasonic wave is reflected by the pressure roller 20B and returned. The detection result is output to the earth and sand volume calculation circuit 24 as needed (see FIG. 7 described later). The pressure roller 20B and the height detection means 22 are provided between the hopper 12 and the soil conditioner supply device 27 (described later) on the transport conveyor 13.

図1乃至図3に戻り、13はこのホッパ12で受入れた土砂を搬送する搬送コンベアで、この搬送コンベア13は、ホッパ12の下方から後述の混合装置47の入口筒体49(図5及び図6参照)上方にかけて略水平に延設されている。14はこの搬送コンベア13のコンベアフレームで、このコンベアフレーム14は、上記支持ポスト9a,9b等に支持されている。15A,15Bはそれぞれこのコンベアフレーム14の両端に設けた駆動輪及び従動輪、16はこれら駆動輪15A及び従動輪15Bに掛け回したコンベアベルト、17はこのコンベアベルト16の搬送面を支持する複数の支持ローラである。上記駆動輪15Aには、この駆動輪15Aを回転駆動することによりコンベアベルト16を循環駆動させる駆動装置18(例えば油圧モータ。後述の図7参照)が連結されている。なお、搬送コンベア13にはこの駆動装置18により回転駆動される駆動輪15Aの回転数を検出する回転数センサ25(後述の図7参照)が設けられており、この回転数センサ25はその検出結果を搬送速度演算回路77に随時出力するようになっている(後述の図7参照)。27は搬送コンベア13で搬送される土砂に土質改良材を添加する土質改良材供給装置で、この土質改良材供給装置27は、水平断面が略方形の土質改良材の貯留タンク28と、この貯留タンク28内の土質改良材を下方に導出するスクリューフィーダ29と、貯留タンク28内の土質改良材を上記スクリューフィーダ29に導く漏斗の役割を果たす略四角錐形状のシュート30とで構成されている。また、貯留タンク28は、このシュート30上部のフランジ状の枠板31に連設した蛇腹部32と、この蛇腹部32の上部をカバーする天板部33とで構成されている。35はこの天板部33のほぼ中央に設けた土質改良材充填用の受入口の開閉蓋で、この開閉蓋35は、天板部33に蝶番36(図2参照)を介して取付けられている。   Returning to FIG. 1 to FIG. 3, reference numeral 13 denotes a transfer conveyor for transferring the earth and sand received by the hopper 12, and the transfer conveyor 13 is formed from the lower side of the hopper 12 into an inlet cylinder 49 (described in FIGS. 5 and 5) of a mixing device 47 described later. 6) It extends substantially horizontally over the top. Reference numeral 14 denotes a conveyor frame of the conveyor 13, and the conveyor frame 14 is supported by the support posts 9a and 9b. Reference numerals 15A and 15B denote driving wheels and driven wheels provided at both ends of the conveyor frame 14, reference numeral 16 denotes a conveyor belt wound around the driving wheels 15A and driven wheels 15B, and reference numeral 17 denotes a plurality of belts that support the conveying surface of the conveyor belt 16. It is a support roller. A driving device 18 (for example, a hydraulic motor; see FIG. 7 described later) is connected to the driving wheel 15A to circulate and drive the conveyor belt 16 by rotationally driving the driving wheel 15A. The conveyor 13 is provided with a rotation speed sensor 25 (see FIG. 7 to be described later) for detecting the rotation speed of the drive wheel 15A that is driven to rotate by the drive device 18. The rotation speed sensor 25 detects the rotation speed sensor 25. The result is output to the conveyance speed calculation circuit 77 as needed (see FIG. 7 described later). Reference numeral 27 denotes a soil improvement material supply device for adding a soil improvement material to the earth and sand transported by the transport conveyor 13. This soil improvement material supply device 27 includes a storage tank 28 for a soil improvement material having a substantially square horizontal section, and a storage tank 28 for the storage. The screw feeder 29 that guides the soil quality improving material in the tank 28 downward, and a substantially square pyramid-shaped chute 30 that serves as a funnel for guiding the soil quality improving material in the storage tank 28 to the screw feeder 29. . In addition, the storage tank 28 includes a bellows portion 32 provided continuously to a flange-shaped frame plate 31 above the chute 30 and a top plate portion 33 that covers the top of the bellows portion 32. Reference numeral 35 denotes an opening / closing lid for the soil improvement material filling opening provided at substantially the center of the top plate portion 33. The open / close lid 35 is attached to the top plate portion 33 via a hinge 36 (see FIG. 2). Yes.

37は天板部33の外周部に複数(この例では4つ)設けた取付部、38はこれら取付部37の下部に固定的に垂設した支柱で、この支柱38の上下には、それぞれ所定の位置にピン穴39(上側のもののみ図1に図示)が穿設されている。40は上記支持フレーム11に支持された略枠型の台板、41はこの台板40上に立設した複数のガイド筒で、このガイド筒41は、前述のシュート30の枠板31を支持している。また、このガイド筒41の先端付近には、図示しないピン穴が穿設されている。つまり、上記各支柱38は、それぞれこれらガイド筒41に上下方向にスライド可能に挿入されて台板40の下方にまで突出可能となっており、支柱38のスライドに伴って前述の蛇腹部32が伸縮することにより、貯留タンク28の高さが可変な構造となっている。   Reference numeral 37 denotes a plurality of mounting portions (four in this example) provided on the outer peripheral portion of the top plate portion 33, and 38 denotes a column fixedly suspended below the mounting portion 37. A pin hole 39 (only the upper one is shown in FIG. 1) is formed at a predetermined position. 40 is a substantially frame-shaped base plate supported by the support frame 11, 41 is a plurality of guide cylinders standing on the base plate 40, and the guide cylinder 41 supports the frame plate 31 of the chute 30 described above. is doing. A pin hole (not shown) is formed near the tip of the guide tube 41. In other words, each of the support columns 38 is inserted into the guide cylinder 41 so as to be slidable in the vertical direction, and can protrude to the lower side of the base plate 40. By extending and contracting, the height of the storage tank 28 is variable.

42は支柱38をガイド筒41に固定するストッパピンで、このストッパピン42は、ガイド筒41の図示しないピン穴を介し支柱38のピン穴39に挿入するものである。すなわち、例えば稼動時等には、蛇腹部32を伸長させ、ガイド筒41のピン穴を介し支柱38の下側のピン穴39にストッパピン42を挿入することにより、図1に示す状態のように貯留タンク28の内部容積を十分確保する。一方、自走式土質改良機をトレーラ等で輸送するとき等には、蛇腹部32を限縮させ、ガイド筒41のピン穴を介し支柱38の上側のピン穴39にストッパピン42を挿入することにより、自走式土質改良機の全高を輸送制限をクリアする高さまで低くした状態で保持できるようになっている。   Reference numeral 42 denotes a stopper pin for fixing the support column 38 to the guide cylinder 41. The stopper pin 42 is inserted into a pin hole 39 of the support column 38 through a pin hole (not shown) of the guide cylinder 41. That is, for example, during operation, the bellows portion 32 is extended, and the stopper pin 42 is inserted into the pin hole 39 on the lower side of the column 38 through the pin hole of the guide cylinder 41, as shown in FIG. In addition, a sufficient internal volume of the storage tank 28 is secured. On the other hand, when the self-propelled soil improvement machine is transported by a trailer or the like, the bellows portion 32 is limited, and the stopper pin 42 is inserted into the pin hole 39 on the upper side of the column 38 through the pin hole of the guide cylinder 41. As a result, the total height of the self-propelled soil improvement machine can be held in a state where it is lowered to a height that clears the transport restrictions.

43は上記スクリューフィーダ29のケーシングで、このケーシング43は、略円筒状に形成され、内部に図示しないスクリューを備えている。このスクリューは駆動装置44(後述の図7参照)により回転駆動され、これにより、スクリューフィーダ29は先のシュート30からケーシング43内に導入された土質改良材を図1中左側に移送するようになっている。そして、ケーシング43の長手方向一方側(図1中左側)下部に設けた図示しない土質改良材の出口から、搬送コンベア13の搬送方向下流側(図1中右側)端部付近を搬送される土砂に対し、土質改良材を一定量づつ添加するようになっている。なお、上記スクリューは駆動装置44によって機器固有の所定の回転数範囲内において駆動するようになっており、その回転数範囲に対応した供給量の範囲内(言い換えれば供給能力範囲内)においてスクリューフィーダ29は土質改良材を供給するようになっている。また、図1に示すように、スクリューフィーダ29は、その移送方向上流側(図1中右側)が移送方向下流側(図1中左側)に対して低くなるように配設されており、その分、土質改良材供給装置27の高さが低くなるよう配慮されている。   43 is a casing of the screw feeder 29. The casing 43 is formed in a substantially cylindrical shape and includes a screw (not shown) therein. This screw is rotationally driven by a drive device 44 (see FIG. 7 described later), so that the screw feeder 29 transfers the soil improvement material introduced into the casing 43 from the previous chute 30 to the left side in FIG. It has become. And the earth and sand conveyed by the conveyance direction downstream side (right side in FIG. 1) edge part of the conveyance conveyor 13 from the exit of the soil improvement material which is not shown in figure provided in the longitudinal direction one side (left side in FIG. 1) lower part of the casing 43 On the other hand, the soil improvement material is added in a certain amount. The screw is driven by a drive device 44 within a predetermined rotation speed range unique to the device, and the screw feeder is within a supply amount range corresponding to the rotation speed range (in other words, within a supply capacity range). No. 29 is designed to supply soil quality improving material. Further, as shown in FIG. 1, the screw feeder 29 is arranged such that the upstream side in the transfer direction (right side in FIG. 1) is lower than the downstream side in the transfer direction (left side in FIG. 1). Therefore, consideration is given to reducing the height of the soil conditioner supply device 27.

45は自走式土質改良機の片側(図2中上側、図3中左側)に設けたクレーンで、このクレーン45は、自走式土質改良機幅方向一方側(図3中左側)の本体フレーム3に取付けた支持台46上に設けられている。また、このクレーン45は、支持台46から上方に立設した支持部45Aと、この支持部45Aに基端部が枢支接続され長手方向に伸縮するとともに略水平に旋回するアーム45Bと、このアーム45Bを俯仰動させるシリンダ45Cと、アーム45B先端に設けたウィンチ45Dとを備えている。通常、貯留タンク28内に土質改良材を充填する際には、上部の開閉蓋35を開け、このクレーン45によりフレキシブルコンテナを吊り上げて土質改良材受入口に挿入するようになっている。   45 is a crane provided on one side (upper side in FIG. 2, left side in FIG. 3) of the self-propelled soil improvement machine. This crane 45 is a main body on one side of the self-propelled soil improvement machine (left side in FIG. 3). It is provided on a support base 46 attached to the frame 3. Further, the crane 45 includes a support portion 45A erected upward from the support base 46, an arm 45B pivotally connected to the support portion 45A, the base end of which is pivotally connected to extend and contract in the longitudinal direction, A cylinder 45C that moves the arm 45B up and down and a winch 45D provided at the tip of the arm 45B are provided. Normally, when filling the storage tank 28 with the soil improvement material, the upper opening / closing lid 35 is opened, and the flexible container is lifted by the crane 45 and inserted into the soil improvement material receiving port.

このとき、繁雑防止のため特に図示しないが、天板部33には、貯留タンク28の土質改良材受入口の略直下の位置に、先端を上方に向けたカッタが設けられている。これにより、クレーン45で土質改良材受入口に挿入されたフレキシブルコンテナは、その自重によりカッタに押し付けられて底部を切り裂かれ、ここから貯留タンク28内に土質改良材を流出するようになっている。   At this time, although not shown in particular for preventing congestion, the top plate portion 33 is provided with a cutter having a tip directed upward at a position substantially directly below the soil conditioner receiving port of the storage tank 28. As a result, the flexible container inserted into the soil conditioner receiving port by the crane 45 is pressed against the cutter by its own weight, and the bottom is torn, and the soil conditioner flows out into the storage tank 28 from here. .

47は搬送コンベア13から導入された土砂及び土質改良材を混合して改良土を生成する混合装置(混合手段)である。図5はこの混合装置47の全体構造を表す上面図、図6はこの混合装置47の内部構造を表す図5中VI−VI断面による側断面図である。
これら図5及び図6において、48はこの混合装置47の略箱状の本体で、この混合装置本体48には、その長手方向一方側(図5及び図6中左側)上部に土砂及び土質改良材の入口筒体49が、他方側(図6中右側)下部に改良土の出口筒体50が設けられている。
Reference numeral 47 denotes a mixing device (mixing means) that mixes the earth and sand introduced from the conveyor 13 and the soil quality improving material to generate improved soil. FIG. 5 is a top view showing the overall structure of the mixing device 47, and FIG. 6 is a side sectional view taken along the line VI-VI in FIG.
5 and 6, reference numeral 48 denotes a substantially box-shaped main body of the mixing device 47. The mixing device main body 48 has an improvement in soil and soil quality on the upper side in one longitudinal direction (left side in FIGS. 5 and 6). An inlet cylinder 49 for the material is provided, and an outlet cylinder 50 for the improved soil is provided at the lower part on the other side (right side in FIG. 6).

51は混合装置本体48内に設けた複数(この例では2本)のパドルミキサで、このパドルミキサ51は、混合装置本体48の長手方向(図5及び図6中左右方向)に略平行に配設した中空の回転軸52(中実でも構わない)と、この回転軸52に放射状に複数設けたパドル53とで構成されている。このパドル53は、その平滑な面が、回転軸52の軸線方向(この場合図5及び図6中右方向)に対し、パドルミキサ51の回転方向を向くように所定角度傾斜しており、これにより上記入口筒体49から導入された土砂を出口筒体50に向けて混合しつつ移送できるようになっている。   Reference numeral 51 denotes a plurality (two in this example) of paddle mixers provided in the mixing device main body 48. The paddle mixers 51 are arranged substantially parallel to the longitudinal direction of the mixing device main body 48 (left and right directions in FIGS. 5 and 6). The hollow rotating shaft 52 (which may be solid) and a plurality of paddles 53 provided radially on the rotating shaft 52 are configured. The paddle 53 has a smooth surface inclined at a predetermined angle with respect to the axial direction of the rotation shaft 52 (in this case, the right direction in FIGS. 5 and 6) so as to face the rotation direction of the paddle mixer 51. The earth and sand introduced from the inlet cylinder 49 can be transferred toward the outlet cylinder 50 while being mixed.

54はパドルミキサ51の回転軸52の両端付近を回転自在に支持する軸受、55は回転軸52の他端(図6中右端)に設けられたタイミングギア、56はパドルミキサ51の駆動装置で、この駆動装置56の出力軸56aは、回転軸52の他端に直結している。また、隣接する回転軸52,52のそれぞれに設けたタイミングギア55,55は互いに噛合しており、これにより隣接するパドルミキサ51,51がほぼ同一回転数で互いに反対方向に回転駆動するようになっている。   54 is a bearing that rotatably supports both ends of the rotating shaft 52 of the paddle mixer 51, 55 is a timing gear provided at the other end (right end in FIG. 6) of the rotating shaft 52, and 56 is a driving device for the paddle mixer 51. The output shaft 56 a of the driving device 56 is directly connected to the other end of the rotating shaft 52. Further, the timing gears 55, 55 provided on the adjacent rotating shafts 52, 52 mesh with each other, so that the adjacent paddle mixers 51, 51 are driven to rotate in opposite directions at substantially the same rotational speed. ing.

このような構造により、混合装置47は、搬送コンベア13から入口筒体49を介して導入された土砂及び土質改良材をパドルミキサ51(厳密にはそのパドル53)により混合して改良土としつつ反対側に移送し、出口筒体50から下方に導出するようになっている。   With such a structure, the mixing device 47 mixes the earth and sand introduced from the transport conveyor 13 through the inlet cylinder 49 with the paddle mixer 51 (strictly, the paddle 53) to make an improved soil. It moves to the side and is led out from the outlet cylinder 50 downward.

図1乃至図3に戻り、59は混合装置47から導出された改良土を機外に排出する排出コンベアで、この排出コンベア59は、混合装置47の上記出口筒体50の下方から外側(この場合図1中右側)に向かって所定距離略水平に延在した後、混合装置47の駆動装置56下方辺りから上り傾斜に延在している。   Returning to FIG. 1 to FIG. 3, 59 is a discharge conveyor for discharging the improved soil led out from the mixing device 47 to the outside of the machine. In this case, after extending a predetermined distance substantially horizontally toward the right side in FIG. 1, it extends upward from the lower side of the driving device 56 of the mixing device 47.

60はこの排出コンベア59のコンベアフレームで、このコンベアフレーム60は、支持部材61,62等を介し、後述の動力装置68や本体フレーム3等から支持されている。63はこの排出コンベア59の搬送方向下流側(図1中右側)端部に設けた駆動輪、64は排出コンベア59の搬送方向上流側(図1中左側)に設けた従動輪(図3参照)、65は上記駆動輪63及び従動輪64に巻回されたコンベアベルトである。66はこのコンベアベルト65の搬送面を支持する複数の支持ローラ、67は駆動輪63に直結した駆動装置(図2参照)で、この駆動装置67により、駆動輪63を回転駆動してコンベアベルト65を循環駆動させるようになっている。   Reference numeral 60 denotes a conveyor frame of the discharge conveyor 59. The conveyor frame 60 is supported by a power device 68, a main body frame 3, and the like which will be described later via support members 61 and 62 and the like. Reference numeral 63 denotes a drive wheel provided at the end of the discharge conveyor 59 on the downstream side in the conveyance direction (right side in FIG. 1), and reference numeral 64 denotes a driven wheel provided on the upstream side in the conveyance direction of the discharge conveyor 59 (left side in FIG. 1). , 65 is a conveyor belt wound around the drive wheel 63 and the driven wheel 64. 66 is a plurality of support rollers for supporting the conveying surface of the conveyor belt 65, and 67 is a driving device (see FIG. 2) directly connected to the driving wheel 63. The driving device 67 rotates the driving wheel 63 to rotate the conveyor belt. 65 is circulated and driven.

68は先に触れた動力装置で、この動力装置68は、本体フレーム3の長手方向他方側(図1中右側)端部に支持部材69を介して支持されている。また、この動力装置68は、繁雑防止のため特に図示しないが、前述してきた各機器の駆動装置に供給する圧油を吐出する少なくとも1つの油圧ポンプと、この油圧ポンプを駆動するエンジンと、油圧ポンプから各駆動装置へ供給される圧油の方向及び流量(或いは方向のみ)をそれぞれ制御する複数のコントロールバルブ等とを内部に備えている。   Reference numeral 68 denotes the power unit touched earlier, and this power unit 68 is supported via a support member 69 on the other end (right side in FIG. 1) in the longitudinal direction of the main body frame 3. Further, the power device 68 is not particularly shown in order to prevent congestion, but at least one hydraulic pump that discharges the pressure oil supplied to the driving device of each device described above, an engine that drives the hydraulic pump, and hydraulic pressure A plurality of control valves and the like for controlling the direction and flow rate (or only the direction) of the pressure oil supplied from the pump to each driving device are provided inside.

70はこの動力装置68の前方側(図1及び図2中左側)の区画に設けた運転席で、この運転席70には、上記走行装置2の駆動装置8を操作する1対の操作レバー71が備えられている。またこの運転席70の下方には、例えば混合装置47の駆動装置56等、他の各機器の駆動装置を操作する操作盤72(図1参照)が設けられている。   Reference numeral 70 denotes a driver's seat provided in a compartment on the front side (the left side in FIGS. 1 and 2) of the power device 68. The driver's seat 70 has a pair of operating levers for operating the driving device 8 of the traveling device 2. 71 is provided. Further, an operation panel 72 (see FIG. 1) for operating drive devices of other devices such as the drive device 56 of the mixing device 47 is provided below the driver seat 70.

このとき、本実施の形態においては、例えば上記操作盤72に設けられた混合比制御装置75が搬送コンベア13により搬送される土砂量に応じて土質改良材供給装置27の供給量を制御するようになっている。図7は、この混合比制御装置75の機能を表す機能ブロック図である。   At this time, in the present embodiment, for example, the mixing ratio control device 75 provided on the operation panel 72 controls the supply amount of the soil improvement material supply device 27 according to the amount of earth and sand transported by the transport conveyor 13. It has become. FIG. 7 is a functional block diagram showing functions of the mixing ratio control device 75.

この図7において、76は搬送コンベア13により搬送される土砂の体積を測定する土砂体積検出部で、この土砂体積検出部76は、前記の搬送コンベア駆動輪15Aの回転数を検出する回転数センサ25から入力される駆動輪回転数から搬送コンベア13の搬送ベルト16の駆動速度(すなわち土砂搬送速度)を演算する搬送速度演算回路77と、この搬送速度演算回路77で演算した搬送速度、予め混合比制御装置75に記憶された(又は例えば前記の操作盤72等の適宜の外部端末により設定入力してもよい)搬送土砂の幅(すなわち前記の土砂出口12A(図4参照)の幅)、及び前記の高さ検出手段22から入力される搬送土砂の高さから搬送土砂の体積を演算する前記の土砂体積演算回路24とで構成されている。すなわち、搬送土砂は土砂出口12Aの幅でホッパ12から切り出されるようになっているため、土砂体積演算回路24は、その搬送土砂の幅に対し搬送土砂高さ及び演算した搬送速度を乗じることにより、搬送コンベア13により単位時間当たりに搬送される土砂体積を演算するようになっている。   In FIG. 7, reference numeral 76 denotes a sediment volume detector that measures the volume of sediment transported by the conveyor 13. The sediment volume detector 76 detects a rotational speed of the transport conveyor drive wheel 15 </ b> A. 25, a transport speed calculation circuit 77 for calculating the drive speed of the transport belt 16 of the transport conveyor 13 (that is, earth and sand transport speed) from the rotational speed of the drive wheels input from 25, The width of the transported sediment stored in the ratio control device 75 (or may be set and input by an appropriate external terminal such as the operation panel 72) (that is, the width of the sediment outlet 12A (see FIG. 4)), And the earth and sand volume calculating circuit 24 for calculating the volume of the earth and sand from the height of the earth and sand inputted from the height detecting means 22. That is, since the transport sediment is cut out from the hopper 12 by the width of the sediment exit 12A, the sediment volume calculation circuit 24 multiplies the transport sediment height and the calculated transport speed by the width of the transport sediment. The earth and sand volume transported per unit time by the transport conveyor 13 is calculated.

80は前記のスクリューフィーダ29の駆動装置44の回転数センサで、この回転数センサ80は、フィーダ制御部81にその検出結果を随時出力するようになっている。そして、フィーダ制御部81は、このフィーダ制御部81の有する土質改良材供給量演算回路82により入力したスクリューフィーダ駆動装置44の回転数を基に実際に供給されている土質改良材の量を演算するようになっている。また、83は操作盤72等で設定入力された土砂及び土質改良材の混合比を取り込む混合比設定回路、84はこの混合比設定回路83の入力結果を基に、上記土砂体積演算回路24から入力した搬送土砂量に対し要求される土質改良材供給量を演算する土質改良材要求量演算回路で、共にフィーダ制御部81に備えられている。   Reference numeral 80 denotes a rotation speed sensor of the drive device 44 of the screw feeder 29. The rotation speed sensor 80 outputs the detection result to the feeder control unit 81 as needed. The feeder control unit 81 calculates the amount of soil improvement material actually supplied based on the rotation speed of the screw feeder driving device 44 input by the soil quality improvement material supply amount calculation circuit 82 of the feeder control unit 81. It is supposed to be. Reference numeral 83 denotes a mixing ratio setting circuit for taking in the mixing ratio of the earth and sand and the soil quality improving material set and input on the operation panel 72 or the like. The feeder control unit 81 is a soil quality improvement material requirement calculation circuit that calculates the required amount of soil quality improvement material to be supplied with respect to the input amount of conveyed soil.

また、85はこの土質改良材要求量演算回路84及び土質改良材供給量演算回路82の演算結果を比較する比較回路である。この比較回路85は、入力した要求量を基準に、その都度実際の土質改良材供給量の過不足を判断し、土質改良材供給量が要求量に近似するよう、スクリューフィーダ29の駆動装置44に対して回転数を制御する制御信号を演算し出力するもので、同様にフィーダ制御部81に備えられている。   Reference numeral 85 denotes a comparison circuit that compares the calculation results of the soil improvement material requirement calculation circuit 84 and the soil improvement material supply amount calculation circuit 82. The comparison circuit 85 determines whether the actual soil conditioner supply amount is excessive or insufficient on the basis of the input request amount, and drives the drive device 44 of the screw feeder 29 so that the soil conditioner supply amount approximates the request amount. The control signal for controlling the number of revolutions is calculated and output, and is similarly provided in the feeder controller 81.

このような構成により、土砂体積検出部76の検出(演算)値に応じ、フィーダ制御部81がスクリューフィーダ29による土質改良材の供給量を制御するようになっている。これにより、実際の土砂及び土質改良材の混合比を予め設定した設定混合比に近似させることが可能となり、良質な改良土を生成することができるようになっている。   With such a configuration, the feeder control unit 81 controls the supply amount of the soil improvement material by the screw feeder 29 in accordance with the detection (calculation) value of the sediment volume detection unit 76. Thereby, it becomes possible to approximate the mixing ratio of the actual earth and sand and the soil improving material to a preset mixing ratio, and it is possible to generate high quality improved soil.

以上のように構成された自走式土質改良機において、本実施の形態の最も大きな特徴は、土質改良材要求量演算回路84で演算された土質改良材要求量とスクリューフィーダ29の供給能力とを比較して搬送コンベア13の搬送速度を制御するようにしたことである。以下、この詳細について説明する。   In the self-propelled soil improvement machine configured as described above, the greatest feature of the present embodiment is that the soil improvement material requirement calculated by the soil improvement material requirement calculation circuit 84 and the supply capacity of the screw feeder 29 are as follows. And the transport speed of the transport conveyor 13 is controlled. The details will be described below.

上記図7に示すように、混合比制御装置75はさらに搬送コンベア制御部90を有しており、この搬送コンベア制御部90は、例えば操作盤72等で設定入力されたスクリューフィーダ29の単位供給量(機械寸法等から決定されるものである)を取り込むフィーダ単位供給量設定回路91と、このフィーダ単位供給量設定回路91の入力結果と前記土質改良材要求量演算回路84で演算された土質改良材要求量とからスクリューフィーダ29の駆動速度(すなわちスクリューの回転数)を演算する駆動速度演算回路92と、例えば操作盤72等で設定入力されたスクリューフィーダ29の駆動可能速度範囲(すなわち機械の能力から決定されるスクリューの回転数範囲)を取り込むフィーダ駆動可能速度範囲設定回路93と、このフィーダ駆動可能速度範囲設定回路93の入力結果と前記駆動速度演算回路92で演算された駆動速度とを比較し、演算された駆動速度が入力された駆動可能速度範囲外である場合に搬送コンベア13の駆動装置18に対して回転数を制御する制御信号を演算し出力する比較回路94とを備えている。   As shown in FIG. 7, the mixing ratio control device 75 further includes a transport conveyor control unit 90, and the transport conveyor control unit 90 supplies the unit of the screw feeder 29 that is set and input on the operation panel 72 or the like, for example. Feeder unit supply amount setting circuit 91 for taking in the amount (determined from machine dimensions and the like), the input result of this feeder unit supply amount setting circuit 91, and the soil quality calculated by the soil improvement material requirement amount calculation circuit 84 A drive speed calculation circuit 92 that calculates the drive speed of the screw feeder 29 (that is, the number of rotations of the screw) from the required amount of the improved material, and a driveable speed range of the screw feeder 29 that is set and input by the operation panel 72 or the like (ie, the machine A feeder driveable speed range setting circuit 93 for taking in the screw rotation speed range determined from the capacity of the feeder, and the feeder The input result of the movable speed range setting circuit 93 is compared with the drive speed calculated by the drive speed calculation circuit 92. When the calculated drive speed is outside the input driveable speed range, A comparison circuit 94 is provided that calculates and outputs a control signal for controlling the rotational speed to the drive device 18.

以上において、高さ検出手段22及び回転数センサ25は特許請求の範囲各項記載の搬送コンベアで搬送される土砂量を検出する土砂量検出手段を構成すると共に搬送コンベアで搬送される土砂の体積を測定する土砂体積検出手段をも構成し、混合比制御装置75は制御手段を構成する。   In the above, the height detection means 22 and the rotation speed sensor 25 constitute earth and sand amount detection means for detecting the amount of earth and sand conveyed by the conveyor according to the claims and the volume of the earth and sand conveyed by the conveyor. The earth and sand volume detecting means for measuring is also constituted, and the mixing ratio control device 75 constitutes the control means.

次に、上記構成の本発明の自走式土質改良機の一実施の形態の動作を以下に説明する。
まず操作者は、作業を始める前に、改質対象となる土砂の性状等を考慮し、予め土砂及び土質改良材の最適な混合比を例えば操作盤72等から設定入力する。この入力結果は混合比設定回路83により取り込まれる。
Next, operation | movement of one Embodiment of the self-propelled soil improvement machine of this invention of the said structure is demonstrated below.
First, before starting the work, the operator sets and inputs the optimum mixing ratio of the soil and the soil quality improving material in advance from the operation panel 72 or the like in consideration of the properties of the soil to be reformed. This input result is taken in by the mixture ratio setting circuit 83.

その後、例えば油圧ショベル等によりホッパ12に改質対象となる土砂を投入すると、ホッパ12で受け入れられた土砂は、その下方の搬送コンベア13上に載置され、土砂出口12Aから押し出されて搬送される。この搬送土砂は加圧ローラ20Bで加圧されて嵩密度を一定とされる。このときの加圧ローラ20Bの高さが高さ検出手段22で検出され、その検出結果が土砂体積演算回路24に入力される。一方、回転数センサ25はこのときの搬送コンベア13の駆動輪15Aの回転数を検出し、その検出結果を搬送速度演算回路77に入力する。搬送速度演算回路77は入力された駆動輪15Aの回転数から土砂の搬送速度を演算し、土砂体積演算回路24はその演算された搬送速度と上記高さ検出手段22から入力された土砂高さと予め記憶された土砂搬送幅から単位時間当たりに搬送される土砂量を演算する。   Thereafter, for example, when the sand to be reformed is put into the hopper 12 by a hydraulic excavator or the like, the earth and sand received by the hopper 12 is placed on the transport conveyor 13 below, and pushed out and transported from the sand and sand outlet 12A. The This conveyed earth and sand is pressurized by the pressure roller 20B, and the bulk density is made constant. The height of the pressure roller 20B at this time is detected by the height detection means 22, and the detection result is input to the earth and sand volume calculation circuit 24. On the other hand, the rotational speed sensor 25 detects the rotational speed of the drive wheels 15 </ b> A of the transport conveyor 13 at this time, and inputs the detection result to the transport speed calculation circuit 77. The transport speed calculation circuit 77 calculates the transport speed of the earth and sand from the input rotational speed of the drive wheel 15A, and the sediment volume calculation circuit 24 calculates the calculated transport speed and the height of the sand and sand input from the height detection means 22. The amount of sediment transported per unit time is calculated from the previously stored sediment transport width.

次に、土質改良材要求量演算回路84はこの土砂体積演算回路24で演算された搬送土砂量に操作者により最初に設定入力され混合比設定回路83で取り込まれた混合比(正確には土質改良材の添加率)を乗じ、要求される土質改良材供給量を演算する。土質改良材供給量演算回路82はスクリューフィーダ29の回転数を回転数センサ80から入力し、実際の土質改良材供給量を演算する。比較回路85はこの実際の土質改良材供給量と土質改良材要求量演算回路84で演算された土質改良材要求量とを比較し、実際の土質改良材供給量が土質改良材要求量に近似するようにスクリューフィーダ29の駆動装置44を制御する。   Next, the soil quality improvement material requirement amount calculation circuit 84 is initially set and inputted by the operator to the amount of transported soil calculated by the sediment volume calculation circuit 24 and is taken in by the mixture ratio setting circuit 83 (more precisely, the soil quality) Multiply the improvement material addition rate) to calculate the required soil quality improvement material supply. The soil quality improvement material supply amount calculation circuit 82 inputs the rotation speed of the screw feeder 29 from the rotation speed sensor 80 and calculates the actual soil quality improvement material supply volume. The comparison circuit 85 compares the actual soil improvement material supply amount with the soil improvement material requirement amount calculated by the soil improvement material requirement amount calculation circuit 84, and the actual soil improvement material supply amount approximates the soil improvement material requirement amount. Thus, the drive device 44 of the screw feeder 29 is controlled.

このような混合比制御装置75の制御により、土質改良材供給装置27は、土砂及び土質改良材が設定入力された混合比となるように、その貯留タンク28内の土質改良材をスクリューフィーダ29により搬送コンベア13で搬送される土砂に対し一定量づつ供給していく。そして、搬送コンベア13により混合装置47に導入された土砂及び土質改良材は、パドルミキサ51で均一に攪拌混合され、排出コンベア59上に改良土として導出される。この改良土は、排出コンベア59により搬送され、最終的に自走式土質改良機の機外に排出される。   Under such control of the mixing ratio control device 75, the soil improvement material supply device 27 supplies the soil improvement material in the storage tank 28 to the screw feeder 29 so that the mixing ratio of the soil and the soil improvement material is set and inputted. Is supplied to the earth and sand transported by the transport conveyor 13 by a fixed amount. And the earth and sand introduced to the mixing device 47 by the transport conveyor 13 and the soil quality improving material are uniformly stirred and mixed by the paddle mixer 51, and are led out on the discharge conveyor 59 as improved soil. The improved soil is conveyed by a discharge conveyor 59 and finally discharged outside the self-propelled soil improvement machine.

以上のようにして行われる土質改良作業において、例えばスクリューフィーダ29の供給能力の上限近くで土質改良材を供給しつつ土質改良作業を行っている際に、原料土砂の性状の変化等によって搬送コンベア13で搬送される土砂量が増加し、土質改良材要求量演算回路84で演算された土質改良材要求量がスクリューフィーダ29の供給能力の上限を超えた場合の動作について、以下に図8を用いて説明する。   In the soil quality improvement work performed as described above, for example, when the soil quality improvement work is being performed while supplying the soil quality improvement material near the upper limit of the supply capacity of the screw feeder 29, the conveyor conveys due to a change in the properties of the raw material soil and the like. The operation when the amount of earth and sand transported at 13 increases and the amount of soil improvement material demand calculated by the soil quality improvement material demand computation circuit 84 exceeds the upper limit of the supply capacity of the screw feeder 29 is shown in FIG. It explains using.

図8は混合比制御装置75の機能のうち搬送コンベア13の搬送速度制御に係わる制御内容を表すフローチャートである。
この図8において、まずステップ10で、混合比制御装置75は土砂体積演算回路24で搬送コンベア13の単位時間当たりの搬送土砂量を演算し、次のステップ20に移る。
FIG. 8 is a flowchart showing the control contents related to the transport speed control of the transport conveyor 13 among the functions of the mixing ratio control device 75.
In FIG. 8, first, at step 10, the mixing ratio control device 75 calculates the amount of transported sediment per unit time of the transport conveyor 13 by the sediment volume calculation circuit 24, and proceeds to the next step 20.

ステップ20では、土質改良材要求量演算回路84で上記ステップ10において演算した搬送土砂量に混合比設定回路83で取り込んだ混合比(土質改良材の添加率)を乗じて土質改良材要求量を演算し、次のステップ30に移る。   In step 20, the required amount of soil improvement material is calculated by multiplying the amount of transported soil calculated in step 10 by the soil improvement material requirement amount calculation circuit 84 by the mixing ratio (addition rate of soil improvement material) taken in by the mixing ratio setting circuit 83. Calculate and go to the next step 30.

ステップ30では、駆動速度演算回路92で上記ステップ20において演算した土質改良材要求量をフィーダ単位供給量設定回路91で取り込んだスクリューフィーダ29の単位供給量で除して、スクリューフィーダ29の駆動速度(回転数)を演算し、次のステップ40に移る。   In step 30, the required speed of the soil improvement material calculated in step 20 by the drive speed calculation circuit 92 is divided by the unit supply amount of the screw feeder 29 taken in by the feeder unit supply amount setting circuit 91, thereby driving the screw feeder 29. (Rotation speed) is calculated, and the next step 40 is performed.

ステップ40では、比較回路94で上記ステップ30において演算したスクリューフィーダ29の駆動速度(回転数)がフィーダ駆動可能速度範囲設定回路93で取り込んだスクリューフィーダ29の駆動可能速度範囲(回転数範囲)内であるかどうかを判定する。範囲内であれば、判定が満たされてステップ10に戻り、ステップ10〜ステップ40を繰り返す。範囲外であれば、判定が満たされずに次のステップ50に移る。   In step 40, the drive speed (rotation speed) of the screw feeder 29 calculated in step 30 by the comparison circuit 94 is within the driveable speed range (rotation speed range) of the screw feeder 29 taken in by the feeder driveable speed range setting circuit 93. It is determined whether or not. If it is within the range, the determination is satisfied and the routine returns to Step 10 and Steps 10 to 40 are repeated. If it is out of range, the determination is not satisfied and the routine goes to the next step 50.

ステップ50では、上記ステップ30において演算したスクリューフィーダ29の駆動速度(回転数)がスクリューフィーダ29の駆動可能速度範囲(回転数範囲)の上限値よりも上であるかどうかを判定する。上であれば、判定は満たされて次のステップ60に移る。   In step 50, it is determined whether or not the driving speed (rotation speed) of the screw feeder 29 calculated in step 30 is higher than the upper limit value of the drivable speed range (rotation speed range) of the screw feeder 29. If it is above, the determination is satisfied and the routine goes to the next step 60.

ステップ60では、比較回路94が搬送コンベア13の駆動装置18に対して回転数を減少させる制御信号を演算し出力する。具体的には、比較回路94が、油圧ポンプ(図示せず)から駆動装置18(油圧モータ)へ供給される圧油の流れを制御するコントロールバルブ(図示せず)に対し、コントロールバルブが閉方向に動作するように制御信号を出力する。これにより、駆動装置18へ供給される圧油が減少してその回転数が低下し、搬送コンベア13の搬送速度が減速して搬送土砂量が減少する。この後、ステップ10に戻り、ステップ10〜ステップ60を繰り返す。搬送土砂量が徐々に減少してステップ30で演算されるスクリューフィーダ29の駆動速度がの駆動可能速度範囲内となると、ステップ40の判定が満たされてステップ40→ステップ10へ戻り、ステップ10〜ステップ40を繰り返す。   In step 60, the comparison circuit 94 calculates and outputs a control signal for reducing the rotation speed to the driving device 18 of the conveyor 13. Specifically, the comparison circuit 94 closes the control valve to a control valve (not shown) that controls the flow of pressure oil supplied from the hydraulic pump (not shown) to the driving device 18 (hydraulic motor). A control signal is output to operate in the direction. As a result, the pressure oil supplied to the driving device 18 is reduced and the number of rotations thereof is reduced, the conveyance speed of the conveyance conveyor 13 is reduced, and the amount of conveyance soil is reduced. Thereafter, the process returns to Step 10 and Steps 10 to 60 are repeated. When the amount of conveyed earth and sand gradually decreases and the driving speed of the screw feeder 29 calculated in step 30 falls within the drivable speed range, the determination in step 40 is satisfied and the process returns from step 40 to step 10, and steps 10 to 10. Step 40 is repeated.

一方、例えばスクリューフィーダ29の供給能力の下限近くで土質改良材を供給しつつ土質改良作業を行っている際に、原料土砂の性状の変化等によって搬送コンベア13で搬送される土砂量が減少し、土質改良材要求量演算回路84で演算された土質改良材要求量がスクリューフィーダ29の供給能力の下限を下回った場合の動作については、以下のようになる。   On the other hand, for example, when the soil improvement work is being performed while supplying the soil improvement material near the lower limit of the supply capacity of the screw feeder 29, the amount of sediment transported by the transport conveyor 13 is reduced due to a change in the properties of the raw material soil. The operation when the required amount of soil improvement material calculated by the soil improvement material requirement amount calculation circuit 84 falls below the lower limit of the supply capacity of the screw feeder 29 is as follows.

すなわち、先のステップ50において、ステップ30で演算したスクリューフィーダ29の駆動速度(回転数)がスクリューフィーダ29の駆動可能速度範囲(回転数範囲)の下限値よりも下である場合には、ステップ50の判定は満たされずに次のステップ70に移る。   That is, in the previous step 50, when the drive speed (rotation speed) of the screw feeder 29 calculated in step 30 is lower than the lower limit value of the driveable speed range (rotation speed range) of the screw feeder 29, step The determination of 50 is not satisfied, and the routine goes to the next step 70.

ステップ70では、比較回路94が搬送コンベア13の駆動装置18に対して回転数を増加させる制御信号を演算し出力する。具体的には、比較回路94が、油圧ポンプ(図示せず)から駆動装置18(油圧モータ)へ供給される圧油の流れを制御するコントロールバルブ(図示せず)に対し、コントロールバルブが開方向に動作するように制御信号出力する。これにより、駆動装置18へ供給される圧油が増加してその回転数が上昇し、搬送コンベア13の搬送速度が増速して搬送土砂量が増大する。この後、ステップ10に戻り、ステップ10〜ステップ50→ステップ70を繰り返す。搬送土砂量が徐々に増加してステップ30で演算されるスクリューフィーダ29の駆動速度が駆動可能速度範囲内となると、ステップ40の判定が満たされてステップ40→ステップ10へ戻り、ステップ10〜ステップ40を繰り返す。   In step 70, the comparison circuit 94 calculates and outputs a control signal for increasing the rotational speed to the driving device 18 of the conveyor 13. Specifically, the comparison circuit 94 opens a control valve for a control valve (not shown) that controls the flow of pressure oil supplied from a hydraulic pump (not shown) to the drive device 18 (hydraulic motor). A control signal is output so as to operate in the direction. Thereby, the pressure oil supplied to the drive device 18 increases, the rotation speed rises, the conveyance speed of the conveyance conveyor 13 increases, and conveyance sand volume increases. Thereafter, the process returns to Step 10 and Steps 10 to 50 → Step 70 are repeated. When the amount of conveyed earth and sand gradually increases and the driving speed of the screw feeder 29 calculated in step 30 falls within the drivable speed range, the determination in step 40 is satisfied, and the process returns from step 40 to step 10, and from step 10 to step 10. Repeat 40.

以上のような動作を行う本発明の自走式土質改良機の一実施の形態によれば、以下の作用が得られる。
一般に、スクリューフィーダ29のスクリュは駆動装置44によってその機器固有の所定の回転数範囲内において駆動するようになっており、その回転数範囲に対応した供給量の範囲内(すなわち供給能力範囲内)において土質改良材を供給するようになっている。
According to one embodiment of the self-propelled soil improvement machine of the present invention that performs the operation as described above, the following operations are obtained.
In general, the screw of the screw feeder 29 is driven by a drive device 44 within a predetermined rotation speed range specific to the device, and within a supply amount range corresponding to the rotation speed range (that is, within a supply capacity range). Soil improvement material is supplied in the area.

このとき、前述した従来技術(特開2003−96818号公報)のような自走式土質改良機においては、例えば原料土砂の性状の変化等によって土質改良作業の作業量を増大させたい場合には土砂の供給量に合わせて土質改良材の供給量を増やす訳だが、スクリューフィーダ29が供給能力の上限近くで土質改良材を供給していた場合には土質改良材要求量演算回路84で演算された土質改良材要求量がスクリューフィーダ29の供給能力を超えてしまう。この場合、搬送される土砂に対して土質改良材の供給量が相対的に少なくなり、最終的な改良土の品質の低下を招く恐れがあった。一方、例えば土質改良作業の作業量を減少させたい場合において、スクリューフィーダ29の供給能力の下限近くで土質改良材を供給していた場合には、土質改良材要求量がスクリューフィーダ29の供給能力の下限を下回ってしまう。この場合には搬送される土砂に対して土質改良材の供給量が相対的に多くなり、これによっても最終的な改良土の品質の低下を招く恐れがあった。   At this time, in a self-propelled soil improvement machine such as the above-described prior art (Japanese Patent Laid-Open No. 2003-96818), for example, when it is desired to increase the amount of soil improvement work due to changes in the properties of the material soil and the like. Although the supply amount of soil improvement material is increased in accordance with the supply amount of earth and sand, if the screw feeder 29 is supplying soil improvement material near the upper limit of the supply capacity, it is calculated by the soil improvement material requirement calculation circuit 84. Therefore, the required amount of soil improvement material exceeds the supply capacity of the screw feeder 29. In this case, the supply amount of the soil quality improving material is relatively small with respect to the transported sand and sand, and there is a possibility that the quality of the final improved soil is deteriorated. On the other hand, for example, when it is desired to reduce the amount of soil improvement work, if the soil improvement material is supplied near the lower limit of the supply capacity of the screw feeder 29, the required amount of soil improvement material is the supply capacity of the screw feeder 29. Will fall below the lower limit. In this case, the supply amount of the soil quality improving material is relatively large with respect to the transported sand and sand, and this may also cause a deterioration in the quality of the final improved soil.

これに対し、本実施の形態においては、上述したように搬送コンベア13で搬送される土砂量が増加して要求される土質改良材供給量がスクリューフィーダ29の供給能力範囲の上限値を超えた場合には、搬送コンベア制御部90の比較回路94で搬送コンベア13の搬送速度を減速して搬送土砂量を減らし、搬送コンベア13で搬送される土砂量が減少して要求される土質改良材供給量がスクリューフィーダ29の供給能力の下限を下回った場合には、比較回路94で搬送コンベア13の搬送速度を増速して搬送土砂量を増加する。このようにして、土質改良材要求量演算回路84で演算される土質改良材要求量を確実にスクリューフィーダ29の供給能力範囲内に収めるようにすることができるので、土砂と土質改良材との混合比を確実に一定にすることができる。その結果、改良土の品質低下を防止することができる。   On the other hand, in the present embodiment, as described above, the amount of soil improvement material supplied by increasing the amount of earth and sand transported by the transport conveyor 13 exceeds the upper limit value of the supply capacity range of the screw feeder 29. In this case, the comparison circuit 94 of the transport conveyor control unit 90 reduces the transport speed of the transport conveyor 13 to reduce the transport earth and sand amount, and the required amount of soil and sand transported by the transport conveyor 13 is reduced. When the amount falls below the lower limit of the supply capability of the screw feeder 29, the comparison circuit 94 increases the conveyance speed of the conveyance conveyor 13 to increase the conveyance soil amount. In this way, since the required amount of soil improvement material calculated by the soil quality improvement material required amount calculation circuit 84 can be surely kept within the supply capacity range of the screw feeder 29, the soil and soil improvement material The mixing ratio can be reliably kept constant. As a result, deterioration of the quality of the improved soil can be prevented.

なお、上記本発明の一実施の形態においては、搬送土砂量の増減により土質改良材要求量がスクリューフィーダ29の供給能力の範囲外となった場合に、搬送コンベア13による搬送土砂量を徐々に増減させつつフィードバックをかけ、そのときの土質改良材要求量を演算して供給能力と比較する制御を行うようにしたが、これに限らない。すなわち、例えば搬送コンベア13による搬送土砂量を2倍又は1/2倍等段階的に増減するようにしてもよい。なおこの場合には、搬送コンベア13を通常駆動に復帰するための土質改良材要求量のしきい値を別に設けるようにしてもよい。   In the above embodiment of the present invention, when the required amount of soil improvement material becomes out of the supply capacity of the screw feeder 29 due to the increase / decrease in the amount of transport soil, the amount of transport soil by the transport conveyor 13 is gradually increased. Although feedback is performed while increasing / decreasing, the control for calculating the required amount of soil improvement material at that time and comparing it with the supply capacity is performed, but this is not restrictive. That is, for example, the amount of earth and sand conveyed by the conveyor 13 may be increased or decreased stepwise, such as twice or ½ times. In this case, a threshold value of the required amount of soil improvement material for returning the conveyor 13 to normal driving may be provided separately.

また、上記本発明の一実施の形態においては、搬送コンベア13で搬送される搬送土砂量をその体積を測定することにより検出するようにしたが、これに限らず、例えば搬送コンベア13にコンベアスケール(図示せず)を設けて土砂重量を測定することにより搬送土砂量を検出するようにしてもよいし、また、排出コンベア59にコンベアスケール(図示せず)を設けて改良土の重量を測定することにより搬送土砂量を検出するようにしてもよい。このとき、これらのコンベアスケールは請求項4記載の搬送コンベアで搬送される土砂の重量を測定する土砂重量検出手段及び排出コンベアで排出される改良土の重量を測定する改良土重量検出手段をそれぞれ構成する。   Further, in the embodiment of the present invention, the amount of transport earth and sand transported by the transport conveyor 13 is detected by measuring the volume thereof, but the present invention is not limited to this. (Not shown) may be provided to detect the amount of transported sand and sand, and the amount of transported soil may be detected, or a conveyor scale (not shown) may be provided on the discharge conveyor 59 to measure the weight of the improved soil. By doing so, you may make it detect the amount of conveyance earth and sand. At this time, each of these conveyor scales includes a soil weight detecting means for measuring the weight of the earth and sand conveyed by the conveyor according to claim 4 and an improved soil weight detecting means for measuring the weight of the improved soil discharged by the discharge conveyor. Constitute.

またさらに、上記本発明の一実施の形態においては、土質改良材供給装置としてスクリューフィーダ29を備えた自走式土質改良機に本発明を適用したが、これに限らず、例えば放射状に仕切り板が設けられたロータを回転させることで仕切り板間に導入した土質改良材を供給するロータリフィーダを備えた自走式土質改良機に本発明を適用してもよい。この場合にも、本発明と同様の効果を得ることができる。   Furthermore, in the above-described embodiment of the present invention, the present invention is applied to a self-propelled soil conditioner equipped with a screw feeder 29 as a soil conditioner supply device. The present invention may also be applied to a self-propelled soil conditioner equipped with a rotary feeder that supplies a soil conditioner introduced between partition plates by rotating a rotor provided with. In this case, the same effect as that of the present invention can be obtained.

本発明の自走式土質改良機の一実施の形態の全体構造を表す側面図である。It is a side view showing the whole structure of one embodiment of the self-propelled soil improvement machine of the present invention. 本発明の自走式土質改良機の一実施の形態の全体構造を表す上面図である。It is a top view showing the whole structure of one embodiment of the self-propelled soil improvement machine of the present invention. 本発明の自走式土質改良機の一実施の形態の全体構造を表す正面図である。It is a front view showing the whole structure of one embodiment of the self-propelled soil improvement machine of the present invention. 本発明の自走式土質改良機の一実施の形態を構成するホッパの構造を簡略的に表す側断面図である。It is a sectional side view showing simply the structure of the hopper which constitutes one embodiment of the self-propelled soil improvement machine of the present invention. 本発明の自走式土質改良機の一実施の形態を構成する混合装置の全体構造を表す上面図である。It is a top view showing the whole structure of the mixing apparatus which comprises one embodiment of the self-propelled soil improvement machine of the present invention. 本発明の自走式土質改良機の一実施の形態を構成する混合装置の内部構造を表す図5中VI−VI断面による側断面図である。It is a sectional side view by the VI-VI cross section in FIG. 5 showing the internal structure of the mixing apparatus which comprises one Embodiment of the self-propelled soil improvement machine of this invention. 本発明の自走式土質改良機の一実施の形態を構成する混合比制御装置の機能を表す機能ブロック図である。It is a functional block diagram showing the function of the mixing ratio control apparatus which comprises one embodiment of the self-propelled soil improvement machine of the present invention. 本発明の自走式土質改良機の一実施の形態を構成する混合比制御装置の機能のうち搬送コンベアの搬送速度制御に係わる制御内容を表すフローチャートである。It is a flowchart showing the control content regarding the conveyance speed control of a conveyance conveyor among the functions of the mixing ratio control apparatus which comprises one Embodiment of the self-propelled soil improvement machine of this invention.

符号の説明Explanation of symbols

2 走行装置(走行手段)
3 本体フレーム
12 ホッパ
13 搬送コンベア
22 高さ検出手段(土砂量検出手段;土砂体積検出手段)
25 回転数センサ(土砂量検出手段;土砂体積検出手段)
27 土質改良材供給装置
47 混合装置(混合手段)
59 排出コンベア
75 混合比制御装置(制御手段)
2 Traveling devices (traveling means)
3 Main body frame 12 Hopper 13 Conveyor 22 Height detection means (sediment volume detection means; sediment volume detection means)
25 Rotational speed sensor (Sediment volume detection means; Sediment volume detection means)
27 Soil improvement material supply device 47 Mixing device (mixing means)
59 Discharge conveyor 75 Mixing ratio control device (control means)

Claims (4)

受け入れた土砂を土質改良材と混合して改質する自走式土質改良機において、
本体フレームと、
この本体フレームに設けた走行手段と、
前記本体フレーム上に設けた混合手段と、
前記本体フレームの長手方向一方側に設けた土砂受入用のホッパと、
このホッパの下部から前記混合手段にかけて設けられ、前記ホッパで受け入れた土砂を前記混合手段に搬送する搬送コンベアと、
この搬送コンベアで搬送される土砂に対して土質改良材を供給する土質改良材供給装置と、
前記搬送コンベアで搬送される土砂量を検出する土砂量検出手段と、
この土砂量検出手段の検出値に基づいて土質改良材要求量を演算し、その演算した土質改良材要求量に応じて前記土質改良材供給装置の供給量を制御すると共に、前記演算した土質改良材要求量と前記土質改良材供給装置の供給能力とを比較して前記搬送コンベアの搬送速度を制御する制御手段と、
前記混合手段の下方から前記本体フレームの長手方向他方側外方へ延設され、前記混合手段で生成した改良土を機外に排出する排出コンベアと
を備えたことを特徴とする自走式土質改良機。
In a self-propelled soil improvement machine that mixes and reforms the received earth and sand with a soil improvement material,
Body frame,
Traveling means provided on the main body frame;
Mixing means provided on the body frame;
A hopper for receiving earth and sand provided on one side in the longitudinal direction of the main body frame;
A conveyor that is provided from the lower part of the hopper to the mixing means and conveys the earth and sand received by the hopper to the mixing means;
A soil improvement material supply device for supplying a soil quality improvement material to the earth and sand transported by this conveyor;
Earth and sand amount detecting means for detecting the amount of earth and sand transported by the transport conveyor;
Based on the detected value of the soil amount detection means, the required amount of soil improvement material is calculated, and the supply amount of the soil improvement material supply device is controlled according to the calculated required amount of soil improvement material, and the calculated soil improvement A control means for controlling the conveyance speed of the conveyance conveyor by comparing the material requirement amount and the supply capacity of the soil improvement material supply device;
A self-propelled soil that includes a discharge conveyor that extends from the lower side of the mixing unit to the other side in the longitudinal direction of the main body frame and discharges the improved soil generated by the mixing unit to the outside of the machine. Improved machine.
請求項1記載の自走式土質改良機において、前記制御手段は、前記演算した土質改良材要求量が前記土質改良材供給装置の供給能力範囲の上限値よりも大きい場合には前記搬送コンベアの搬送速度を減速することを特徴とする自走式土質改良機。   2. The self-propelled soil improvement machine according to claim 1, wherein when the calculated soil improvement material requirement amount is larger than an upper limit value of a supply capacity range of the soil improvement material supply device, the control means A self-propelled soil conditioner that reduces the transport speed. 請求項2記載の自走式土質改良機において、前記制御手段は、前記演算した土質改良材要求量が前記土質改良材供給装置の供給能力範囲の下限値よりも小さい場合には前記搬送コンベアの搬送速度を増速することを特徴とする自走式土質改良機。   The self-propelled soil improvement machine according to claim 2, wherein the control means is configured to control the transport conveyor when the calculated soil improvement material requirement amount is smaller than a lower limit value of a supply capacity range of the soil improvement material supply device. A self-propelled soil improvement machine characterized by increasing the conveyance speed. 請求項1乃至3のいずれか1項記載の自走式土質改良機において、前記土砂量検出手段は、前記搬送コンベアで搬送される土砂の体積を測定する土砂体積検出手段、前記搬送コンベアで搬送される土砂の重量を測定する土砂重量検出手段、及び前記排出コンベアで排出される改良土の重量を測定する改良土重量検出手段のうち、少なくとも1つを有することを特徴とする自走式土質改良機。
The self-propelled soil improvement machine according to any one of claims 1 to 3, wherein the earth and sand amount detecting means is a earth and sand volume detecting means for measuring a volume of earth and sand conveyed by the conveyor, and is conveyed by the conveyor. Self-propelled soil quality having at least one of earth and sand weight detecting means for measuring the weight of the earth and sand to be measured and improved earth weight detecting means for measuring the weight of the improved soil discharged by the discharge conveyor Improved machine.
JP2003275095A 2003-07-16 2003-07-16 Self-propelled soil improving machine Pending JP2005036526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275095A JP2005036526A (en) 2003-07-16 2003-07-16 Self-propelled soil improving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275095A JP2005036526A (en) 2003-07-16 2003-07-16 Self-propelled soil improving machine

Publications (1)

Publication Number Publication Date
JP2005036526A true JP2005036526A (en) 2005-02-10

Family

ID=34211847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275095A Pending JP2005036526A (en) 2003-07-16 2003-07-16 Self-propelled soil improving machine

Country Status (1)

Country Link
JP (1) JP2005036526A (en)

Similar Documents

Publication Publication Date Title
KR100403753B1 (en) Automotive soil treating machine
JP4695682B2 (en) Soil improvement material supply equipment
JP2005036526A (en) Self-propelled soil improving machine
JP4108952B2 (en) Self-propelled soil improvement machine
JP3769485B2 (en) Self-propelled soil improvement machine and bridge prevention device
JP3798282B2 (en) Self-propelled soil improvement machine
JP3343523B2 (en) Self-propelled soil improvement machine
JP3370307B2 (en) Mixing ratio control device for soil improvement machine
JP3760122B2 (en) Self-propelled soil improvement machine
JP2004169365A (en) Self-propelled type soil improvement machine and carried soil-sand quantity measuring device installed to it
JP2004162434A (en) Soil improving machine and soil improving system
JP4119282B2 (en) Soil improvement machine and conveyor device used therefor
JP3713453B2 (en) Self-propelled soil improvement machine and soil improvement material supply device used therefor
JP3713427B2 (en) Self-propelled soil conditioner solidifying material control device and self-propelled soil conditioner
JP2010270501A (en) Soil treatment structure
JP5417035B2 (en) Soil treatment structure and soil treatment vehicle
JP4919381B2 (en) Hopper gate device
JP2003096818A (en) Mixing ratio controller of soil improving machine, sediment supply measuring device for use in the same, and self-propelled soil improving machine
JP2009281068A (en) Self-propelled recycling machine and self-propelled conveyor device
JP3370643B2 (en) Self-propelled soil improvement machine
JP3344715B2 (en) Self-propelled soil improvement machine
JP5417036B2 (en) Soil treatment structure and soil treatment vehicle
JP2001311141A (en) Self-driving soil improvement machine
JP2003321850A (en) Self propelling powdery and granular material feeder and earth and sand mixing system using the same
JP2003193507A (en) Self-running soil texture improving machine and soil texture improving material controller used in the same