JP2005035938A - Method for isolating and refining organic material in magnetic field - Google Patents

Method for isolating and refining organic material in magnetic field Download PDF

Info

Publication number
JP2005035938A
JP2005035938A JP2003275229A JP2003275229A JP2005035938A JP 2005035938 A JP2005035938 A JP 2005035938A JP 2003275229 A JP2003275229 A JP 2003275229A JP 2003275229 A JP2003275229 A JP 2003275229A JP 2005035938 A JP2005035938 A JP 2005035938A
Authority
JP
Japan
Prior art keywords
magnetic field
center
magnetic force
substance
isolating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003275229A
Other languages
Japanese (ja)
Other versions
JP4802318B2 (en
Inventor
Hiroshi Sakaguchi
豁 坂口
Michiko Sekiguchi
道子 関口
Shigeki Futamori
茂樹 二森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, National Institute for Materials Science filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003275229A priority Critical patent/JP4802318B2/en
Priority to PCT/JP2004/010528 priority patent/WO2005018800A1/en
Publication of JP2005035938A publication Critical patent/JP2005035938A/en
Application granted granted Critical
Publication of JP4802318B2 publication Critical patent/JP4802318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for isolating and refining various organic materials from their mixture by a simple means. <P>SOLUTION: The method for isolating and refining each of organic materials comprises applying magnetic force onto a melted organic mixture and isolating each of the resultant refined organic materials on a smooth curved surface. Alternatively, the method comprises solidifying each of the above resultant refined organic materials. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁場中における有機物の分離、精製方法に関する。   The present invention relates to a method for separating and purifying organic substances in a magnetic field.

一般に、有機物も無機物も、混合物として得られる。純粋な単一物質として有効に利用するために、様々な分離法が用いられている。例えば、各種クロマトグラフィー、再結晶、蒸留、水蒸気蒸留等である。これらの方法は、それぞれの特徴を有しているが、多大の設備とエネルギーを必要とし、維持管理、保守点検にも、多くの費用と時間を要するといった問題点を有している。
一方、近年、強力で大型の超伝導磁石(超伝導マグネット)が、比較的安価に、入手できるようになり、超伝導磁石の各種産業プロセスへの応用技術の開発が進められてきている。
In general, both organic and inorganic materials are obtained as a mixture. Various separation methods are used for effective use as a pure single substance. For example, various chromatography, recrystallization, distillation, steam distillation and the like. Although these methods have their respective characteristics, they have a problem that they require a large amount of equipment and energy, and a lot of cost and time are required for maintenance and maintenance.
On the other hand, in recent years, powerful and large superconducting magnets (superconducting magnets) have become available at a relatively low cost, and development of technologies for applying superconducting magnets to various industrial processes has been promoted.

したがって本発明は、このような現状を踏まえて、各種有機混合物を、簡便な手法で分離、精製する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for separating and purifying various organic mixtures by a simple technique in view of such a current situation.

本発明者らは、非磁性物質、即ち反磁性もしくは常磁性物質の強磁場中における挙動について検討する過程で、非磁性物質といえども、液体状態では、強磁場中、とりわけ大きな磁場勾配の存する場所においては、磁場の強さ、磁場勾配及び物質固有の反磁性もしくは常磁性の3者により決定される磁気力のために動く可能性があること、したがって、磁気力の作用は、わずかながら、物質によって異なることを見出した。
強磁性物質は、微粉状でも、強い磁場中において動くことが出来るが、非磁性物質は、微粉状或いは結晶状態では、強い磁場中においても移動させることは実際上不可能である。従って、加熱、融解して、液体状態にした後、強い磁場をかけ、磁場勾配(磁気力が一定の範囲において勾配をもって変化する磁場)を形成すると、有機物同士でも作用する磁気力が異なるので、異なる動きを示し、その結果、混合物を互いに分離し、その後、冷却することによって、再度固体状態に戻すことができる。このように、温度制御を利用して分離することができる。
In the process of examining the behavior of a non-magnetic substance, that is, a diamagnetic or paramagnetic substance in a strong magnetic field, the present inventors have a particularly large magnetic field gradient in the strong magnetic field even in the liquid state. In place, there is the possibility of moving due to the strength of the magnetic field, the magnetic field gradient and the magnetic force determined by the substance's intrinsic diamagnetism or paramagnetism, and therefore the effect of the magnetic force is slight, We found that it differs depending on the substance.
Ferromagnetic materials can move in a strong magnetic field even in the form of fine powder, but non-magnetic materials are practically impossible to move even in a strong magnetic field in the fine powder or crystalline state. Therefore, when heated, melted and made into a liquid state, when a strong magnetic field is applied to form a magnetic field gradient (a magnetic field in which the magnetic force changes with a gradient in a certain range), the magnetic force acting on organic substances also differs. It shows a different movement, so that the mixture can be separated from each other and then returned to the solid state again by cooling. In this way, separation can be performed using temperature control.

このようにして、水平面上では、非磁性物質といえども、強い磁気力によって動かされるが、そのままでは、一定方向に動き続けるので、混合物を分離することは出来ない。そこで、滑らかな、しかも、その勾配が連続的に変化する斜面上を動かすことが有効であることが分かった。水平方向に磁気力を受け、且つ、滑らかな斜面上にある液体は、水平方向に受ける磁気力の大きさと、鉛直方向に受ける重力の合力によって、滑らかな斜面をさかのぼり、ちょうどつりあった地点まで達して停止する。磁気力を大きく受ける物質は、斜面の勾配の大きな地点まで到達して停止し、磁気力に対して感受性の小さな物質は、斜面を少し動いただけで、釣り合って停止する。
更に、滑らかな斜面を構成する物質の材質も、磁気分離に大きな影響を与えることが明らかとなった。滑らかな斜面を構成する物質と、その上に載っている、分離される物質との間には、常に界面張力が働いているから、その界面張力の大きさによって、磁気力によって動かされる力、斜面をさかのぼる程度が異なる。
以上、磁気分離に影響する主要な要件は、磁気力の大きさ、分離すべき物質を液体状態に保つこと、滑らかな斜面の勾配、斜面を構成する物質の表面物性、の4つであると考えられる。
本発明はこれらの知見に基づき検討を重ね、なされたものである。
In this way, even though it is a non-magnetic substance on a horizontal plane, it is moved by a strong magnetic force, but as it is, it continues to move in a certain direction, so that the mixture cannot be separated. Therefore, it has been found that it is effective to move on a slope that is smooth and has a continuously changing gradient. The liquid on the smooth slope that receives the magnetic force in the horizontal direction moves up the smooth slope and reaches the point where it was just suspended, depending on the magnitude of the magnetic force received in the horizontal direction and the resultant force of gravity in the vertical direction. And stop. A substance that receives a large magnetic force reaches a point where the slope of the slope is large and stops, and a substance that is less sensitive to the magnetic force stops in a balanced manner with a slight movement.
Furthermore, it has been clarified that the material of the material constituting the smooth slope has a great influence on the magnetic separation. Since the interfacial tension always works between the material constituting the smooth slope and the separated material on it, the force moved by the magnetic force depending on the magnitude of the interfacial tension, The degree of going up the slope is different.
As described above, there are four main requirements that affect magnetic separation: the magnitude of magnetic force, keeping the substance to be separated in a liquid state, the slope of the smooth slope, and the surface physical properties of the substance constituting the slope. Conceivable.
The present invention has been made based on these findings.

すなわち、本発明は、
(1)融解した有機物混合体に、磁気力をかけ、精製有機物を滑らかな曲面上に分離する有機物の分離、精製方法、及び、
(2)精製有機物をその後固化させる(1)項記載の有機物の分離、精製方法
を提供するものである。
That is, the present invention
(1) Applying magnetic force to the melted organic substance mixture to separate the purified organic substance on a smooth curved surface;
(2) Provided is a method for separating and purifying an organic substance as described in (1), wherein the purified organic substance is then solidified.

本発明の分離、精製方法によって、室温で固体の各種有機物を、容易に分離、精製することが出来る。極めて限定された、温和な条件でしか、過熱、冷却を行わず、強力な磁気力を用いる以外には、普遍的に存在する重力、及び、安定な容器表面との界面張力を用いるのみで、物質本来の性質をなんら損なうことなく、不安定な物質をも容易に分離することが可能である。   By the separation and purification method of the present invention, various organic substances that are solid at room temperature can be easily separated and purified. Only under extremely limited and mild conditions, overheating and cooling are not performed, and, besides using strong magnetic force, only using universally existing gravity and stable interfacial tension with the container surface, An unstable substance can be easily separated without deteriorating the original properties of the substance.

本発明において、有機物の分離、精製は磁気力により行われる。そのための磁場の発生源としては、それに限定されるものではないが、超伝導磁石によるものが好ましく、なかでもヘリウムフリーの超伝導マグネットを用いることが、操作性及びコストなどの面に優れ特に好ましい。ヘリウムフリーの超伝導マグネットとしては市販のものをそのまま用いることができる。また、本発明において、磁場の強さは、1〜10テスラ程度が好ましく、5〜10テスラがさらに好ましい。
例えば、典型的な市販の10テスラの超伝導マグネットの場合、磁場中心から100mm離れた地点で、磁気力が最大となるので、その場所に、分離したい混合物を置く。例えば、融点が室温以上、100℃以下の有機化合物の混合体を分離する場合には、循環水で温度制御した銅製の試料台に載せた容器に混合体を入れ、融点以上の温度で完全に融解したことを確認した後、超伝導マグネットの磁気力が最大となる場所に混合物を置き、磁気分離することができる。
In the present invention, organic substances are separated and purified by magnetic force. The source of the magnetic field for that purpose is not limited to this, but a superconducting magnet is preferred, and in particular, it is particularly preferred to use a helium-free superconducting magnet because of its operability and cost. . A commercially available helium-free superconducting magnet can be used as it is. In the present invention, the strength of the magnetic field is preferably about 1 to 10 Tesla, more preferably 5 to 10 Tesla.
For example, in the case of a typical commercially available 10 Tesla superconducting magnet, the magnetic force is maximized at a point 100 mm away from the center of the magnetic field, so the mixture to be separated is placed there. For example, when separating a mixture of organic compounds having a melting point of not less than room temperature and not more than 100 ° C., the mixture is placed in a container placed on a copper sample table whose temperature is controlled by circulating water, and the mixture is completely at a temperature above the melting point. After confirming that the mixture has melted, the mixture can be placed in a place where the magnetic force of the superconducting magnet is maximized and magnetically separated.

本発明において有機物混合体を温度制御により融解させる方法は、特に限定されるものではなく、従来用いられている加熱方法を用いることができる。   In the present invention, the method for melting the organic mixture by temperature control is not particularly limited, and a conventionally used heating method can be used.

本発明においては、有機物混合体は、滑らかな曲面上で融解、磁気分離、及び、固化されるものである。滑らかな曲面を有する容器としては、例えば、滑らかな凹面をしており、中央では水平であるが、中心から遠ざかるに従って勾配が大きくなるような容器が挙げられ、最も簡単には、一定の曲率半径を持った球面をした試料皿などが挙げられる。
滑らかな曲面を構成する物質としては、それに限定されるものではないが、比較的入手しやすい物質としては、例えば、ガラス(GL)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ナイロン(親水性ポリマー、Ny)、セロファン(親水性ポリマー、Cell)、ポリカーボネートなどが挙げられる。これらの物質からなる滑らかな曲面を、分離、精製される有機物に合わせ、適宜選択することができる。
In the present invention, the organic mixture is melted, magnetically separated, and solidified on a smooth curved surface. An example of a container having a smooth curved surface is a container having a smooth concave surface, which is horizontal in the center, but whose gradient increases as it moves away from the center. The simplest is a constant radius of curvature. For example, a spherical sample dish with
The material constituting the smooth curved surface is not limited thereto, but examples of relatively easily available materials include glass (GL), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), Examples include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), nylon (hydrophilic polymer, Ny), cellophane (hydrophilic polymer, Cell), polycarbonate, and the like. A smooth curved surface composed of these substances can be appropriately selected in accordance with the organic substance to be separated and purified.

混合物の入った滑らかな曲面の容器を設置後、磁場を発生させ、これを磁気力として作用させることにより、融解された液体状の混合物は、磁気力によって滑らかな曲面の容器中を移動し、容器と分離する物質との間に働く界面張力、物質固有の常磁性もしくは反磁性の大きさに基づく磁気力の大きさ、容器の曲面の勾配にしたがって決まる重力による容器中心に引き戻される力、の3者の釣り合いの位置で、液体のまま停止する。このとき、それぞれの物質の釣り合いの位置は、各物質によって異なるので、液体のまま、各成分に分離される。
その後、容器を、混合物のうちで低いほうの物質の融点以下まで冷却することによって、分離された各成分は、それぞれの位置で凝固して固化し、室温で、容易に、磁場中より取り出し、精製することが出来る。このとき、実際には、滑らかな曲面上で、融点よりもはるかに低温まで、各物質は凝固することなく、液体のまま保たれるので(過冷却)、融点よりもはるかに低温まで冷却することが必要である。本発明において、有機物を固化させるための冷却方法は特に限定されるものではなく、従来用いられている冷却方法を用いることができる。
After installing a smooth curved container containing the mixture, by generating a magnetic field and acting as a magnetic force, the molten liquid mixture moves in the smooth curved container by the magnetic force, The interfacial tension acting between the container and the substance to be separated, the magnitude of the magnetic force based on the inherent paramagnetic or diamagnetic magnitude of the substance, and the force pulled back to the container center by gravity determined according to the gradient of the curved surface of the container. At the position of the balance of the three, stop with the liquid. At this time, since the balance position of each substance is different depending on each substance, it is separated into each component while remaining in a liquid state.
Then, by cooling the container to below the melting point of the lower substance in the mixture, each separated component solidifies and solidifies at each position, and is easily taken out from the magnetic field at room temperature. It can be purified. At this time, in fact, on a smooth curved surface, each substance is kept in a liquid without being solidified to a temperature much lower than the melting point (supercooling), so it is cooled to a temperature much lower than the melting point. It is necessary. In the present invention, the cooling method for solidifying the organic substance is not particularly limited, and a conventionally used cooling method can be used.

次に、本発明を実施例に基づいてさらに詳細に説明する。なお、例中、組成を示す%は質量%を示す。
実施例1
水循環式温度制御装置と、耐熱ホースで連結した温度制御容器を試作した。温度制御容器は、外壁が直径98mm、長さ200mmのポリ塩化ビニルで作られた円筒型容器で、その中に、発泡ポリスチロールの断熱材で保護された銅製の水循環用パイプ及び試料台が組み込まれている。銅製試料台1の部分(平面図(A)側面図(B)及び断面図(C))を図1に示す。なお、図1中に記載された数値の単位はmmである。
この銅製試料台1の凹部1aの上に、図2に示す試料皿2を載せた。図2の(A)は平面図、(B)は断面図である。試料皿2は、外側の曲率半径76.3mm、曲面部分の直径65mm、厚さ0.125mmのポリエチレンテレフタレート製で、一定曲率の滑らかな凹面をしている。この試料皿2は、別途作成したステンレス製の型を用いて電気炉中でポリエチレンテレフタレートフィルムを加熱、融解、冷却して作成したものである。試料皿を、試料台1に密着するようにプラスチック製のねじ4個で固定し水平に保った。
次に、試料皿の中央にベンゾフェノンの結晶100mg及びn−ドコサンの結晶100mgを載せ、温度制御装置を作動させて、試料台を70℃一定に保った。ベンゾフェノンとn−ドコサンは完全に融解し、互いに混合して、均一な溶液となった。試料部分を銅製のふた、更に断熱材及びポリ塩化ビニルのふたで覆い、円筒型容器全体を、水平に保ったまま、水平方向に固定されたヘリウムフリー超伝導マグネットのボア中に挿入した。このとき、まだ、超伝導磁石は作動しておらず、磁場は発生していない。
ヘリウムフリー超伝導マグネットのボアは内径100mmであり、円筒型容器は丁度その中に入るように設計されている。磁場の中心より100mm手前に試料皿の中心が位置し、そこに試料が来るように試料容器の位置を固定した。この位置で、磁場の強さと磁場勾配の大きさの積の値で決められる磁気力が最大となる。
ボア中で70℃に保ったまま磁場の上昇を開始し、45分後に図1に示す磁場中心が10.0テスラに達した後は、そのまま一定に保った。温度は、その後、分速0.5℃で0℃まで下げ、3時間一定に保った後、25℃まで昇温した。その後、ボア中より円筒型容器を取り出し、試料を取り出すと、肉眼でみて試料皿の中央に近い側(磁場中心と皿の中心を結ぶ線の延長線で、皿の中心から15mm離れたところ)と、試料皿の外周に近い側(磁場中心と皿の中心を結ぶ線の延長線で、皿の中心から26mm離れたところ)の2つの部分に分かれて、明らかに異なる種類の結晶が付着していた。それぞれの部分の結晶を示差走査熱量計を用いて分析したところ、試料皿の中央に近い側の結晶には、ベンゾフェノン74%及びn−ドコサン26%が、試料皿の外周に近い側の結晶には、ベンゾフェノン5%及びn−ドコサン95%が、それぞれ含まれていた。この結果は以下のことを示している。
Next, the present invention will be described in more detail based on examples. In the examples,% indicating composition indicates mass%.
Example 1
A temperature control vessel connected with a water-circulating temperature controller and a heat-resistant hose was prototyped. The temperature control vessel is a cylindrical vessel made of polyvinyl chloride with an outer wall of 98 mm in diameter and 200 mm in length. Inside, a copper water circulation pipe protected by foamed polystyrene insulation and a sample stage are incorporated. It is. The part (plan view (A) side view (B) and sectional view (C)) of the copper sample stage 1 is shown in FIG. In addition, the unit of the numerical value described in FIG. 1 is mm.
A sample pan 2 shown in FIG. 2 was placed on the concave portion 1 a of the copper sample stage 1. 2A is a plan view, and FIG. 2B is a cross-sectional view. The sample pan 2 is made of polyethylene terephthalate having an outer radius of curvature of 76.3 mm, a curved surface diameter of 65 mm, and a thickness of 0.125 mm, and has a smooth concave surface with a constant curvature. This sample pan 2 is prepared by heating, melting and cooling a polyethylene terephthalate film in an electric furnace using a separately prepared stainless steel mold. The sample pan was fixed with four plastic screws so as to be in close contact with the sample stage 1 and kept horizontal.
Next, 100 mg of benzophenone crystals and 100 mg of n-docosane crystals were placed in the center of the sample dish, and the temperature controller was operated to keep the sample stage constant at 70 ° C. Benzophenone and n-docosane melted completely and mixed together to form a homogeneous solution. The sample portion was covered with a copper lid, a heat insulating material, and a polyvinyl chloride lid, and the entire cylindrical container was inserted horizontally into a bore of a helium-free superconducting magnet fixed horizontally. At this time, the superconducting magnet is not operating yet and no magnetic field is generated.
The bore of the helium-free superconducting magnet has an inner diameter of 100 mm, and the cylindrical container is designed to fit just inside it. The position of the sample container was fixed so that the center of the sample pan was positioned 100 mm before the center of the magnetic field, and the sample came there. At this position, the magnetic force determined by the product of the strength of the magnetic field and the magnitude of the magnetic field gradient is maximized.
The rise of the magnetic field was started while maintaining at 70 ° C. in the bore, and after 45 minutes, the magnetic field center shown in FIG. Thereafter, the temperature was lowered to 0 ° C. at a rate of 0.5 ° C. per minute, kept constant for 3 hours, and then raised to 25 ° C. After that, when the cylindrical container is taken out from the bore, and the sample is taken out, the side closer to the center of the sample pan as viewed with the naked eye (the extension line of the line connecting the center of the magnetic field and the center of the pan, 15 mm away from the center of the pan) And two parts on the side near the outer periphery of the sample pan (extension of the line connecting the center of the magnetic field and the center of the pan and 26 mm away from the center of the pan), and clearly different types of crystals are attached. It was. When each portion of the crystal was analyzed using a differential scanning calorimeter, 74% of benzophenone and 26% of n-docosane were found on the crystal near the center of the sample pan. Contained 5% benzophenone and 95% n-docosane, respectively. This result shows the following.

即ち、ベンゾフェノン、n−ドコサン共に、融解状態では完全に混合しているが、それにもかかわらず大きさの相違する磁気力を受ける。磁気力の作用で、重力に逆らって、それぞれ滑らかな斜面を遡るが、磁気力の作用(磁気力で押される力)は、ベンゾフェノンよりもn−ドコサンに対するのほうが大きいので、n−ドコサンのほうがより急勾配のところまで到達する。その結果、両者共に液体であるにも関わらず、分離した状態でそれぞれの斜面に留まる。その後、温度低下によって最初にn−ドコサンが、次いでベンゾフェノンも結晶化し、ポリエチレンテレフタレート膜の表面に付着したものである。表面付着力は両者共に強いので、磁場の外に室温で取り出した後も、分離した状態がそのまま保たれていたものである。   That is, both benzophenone and n-docosane are completely mixed in the molten state but nevertheless receive a magnetic force having a different size. The action of the magnetic force goes back to each smooth slope against the gravity, but the action of the magnetic force (the force pushed by the magnetic force) is greater for n-docosane than for benzophenone, so n-docosane is more A steep slope is reached. As a result, although both are liquids, they remain separated on their slopes. Thereafter, n-docosane crystallizes first due to a temperature drop, and then benzophenone, and adheres to the surface of the polyethylene terephthalate film. Since both of the surface adhesion forces are strong, the separated state was kept as it was even after taking it out at room temperature outside the magnetic field.

この試験における磁場の強さ、磁場勾配、磁気力の指標(=磁場の強さ×磁場勾配)のそれぞれの値を、磁場中心(磁場の強さが最大のところ)を距離0として図3(A)、(B)、(C)に示す。
図3(A)は、磁場の強さHx(T)と磁場中心からの距離との関係を示す。同図から磁場の強さについては、磁場中心(距離0)のとき10.0テスラの中心から離れるにつれて磁場は弱くなることがわかる。
図3(B)は、磁場の強さ図3(A)の接線の勾配と磁場中心からの距離との関係を示したグラフである。磁場中心から100mmを越えたところで極小値を示すことがわかる。
図3(C)は、磁気力の指標を示す。同図が示すように、磁気力の指標である(磁場の強さ)×(磁場勾配)の値は、磁場中心(磁場の強さが最大の地点)から100mm離れたところで最大値をとる。従って、この場合(この磁石を用い、10.0テスラの磁場にしたとき)、100mmの地点で磁気力が最大となり、最も大きな力で曲面を登ることができる。
The values of magnetic field strength, magnetic field gradient, and magnetic force index (= magnetic field strength x magnetic field gradient) in this test are shown in FIG. Shown in A), (B), (C).
FIG. 3A shows the relationship between the magnetic field strength Hx (T) and the distance from the magnetic field center. It can be seen from the figure that the magnetic field strength decreases with increasing distance from the center of 10.0 Tesla at the magnetic field center (distance 0).
FIG. 3B is a graph showing the relationship between the strength of the magnetic field and the tangential gradient in FIG. 3A and the distance from the magnetic field center. It can be seen that the minimum value is shown when it exceeds 100 mm from the center of the magnetic field.
FIG. 3C shows an index of magnetic force. As shown in the figure, the value of (magnetic field strength) × (magnetic field gradient), which is an index of magnetic force, takes a maximum value at a distance of 100 mm from the magnetic field center (a point where the magnetic field strength is maximum). Therefore, in this case (when this magnet is used and a magnetic field of 10.0 Tesla is used), the magnetic force becomes maximum at a point of 100 mm, and the curved surface can be climbed with the largest force.

実施例2〜5
実施例1と同様にして各100mgずつのベンゾフェノン及びn−ドコサンを用い、試料皿を厚さ0.125mmのポリエチレンテレフタレートから、厚さ0.200mmのポリテレラフルオロエチレン(実施例2)、厚さ0.300mmのナイロン66(実施例3)、厚さ2mmのガラス(実施例4)、厚さ0.5mmのポリ塩化ビニル(実施例5)に変えて、それぞれ同様の実験を試みたところ、ほぼ同様の結果を得た。但し、ポリ塩化ビニルを用いた場合には、分離効率は他の場合と同様に良好であったが、皿が若干変形した。これは恐らく、ポリ塩化ビニル膜中に含まれる可塑剤が溶出してきてベンゾフェノンと反応したためと考えられた。
Examples 2-5
100 mg each of benzophenone and n-docosane were used in the same manner as in Example 1, and the sample dish was changed from 0.125 mm thick polyethylene terephthalate to 0.200 mm thick polyterelafluoroethylene (Example 2), 0.300 mm thick. Nylon 66 (Example 3), glass with a thickness of 2 mm (Example 4), and polyvinyl chloride with a thickness of 0.5 mm (Example 5) were tested in the same manner. Got. However, when polyvinyl chloride was used, the separation efficiency was as good as other cases, but the dish was slightly deformed. This was probably because the plasticizer contained in the polyvinyl chloride film eluted and reacted with benzophenone.

実施例6〜7
実施例1と同様にして各100mgずつのベンゾフェノンを用いる一方、n−ドコサンを各100mgのn−オクタデカン(実施例6)もしくはn−トリアコンタン(n-C30H62)(実施例7)に変え、試料皿を厚さ0.2mmのポリテトラフルオロエチレンに変えて、実施例1と同様の実験を行い、ほぼ同様の磁気分離の結果を得た。
Examples 6-7
While 100 mg each of benzophenone was used as in Example 1, n-docosane was changed to 100 mg of n-octadecane (Example 6) or n-triacontane (nC 30 H 62 ) (Example 7), The same experiment as in Example 1 was performed by changing the sample dish to polytetrafluoroethylene having a thickness of 0.2 mm, and almost the same magnetic separation results were obtained.

実施例1において用いた試料台を示し(A)平面図(上左図)、(B)は側面図(上右図、なお、A−A断面を一点鎖線で示す)、及び(C)B−B断面図(下図)である。図中の×印は磁場中心を示し、磁場中心から100mmは離れた位置に分離すべき混合有機物をおく。The sample stage used in Example 1 is shown. (A) Plan view (upper left figure), (B) is a side view (upper right figure, AA cross section is shown by a one-dot chain line), and (C) B. It is -B sectional drawing (lower figure). The x mark in the figure indicates the center of the magnetic field, and the mixed organic material to be separated is placed at a position 100 mm away from the magnetic field center. 実施例1において用いた試料皿の(A)は平面図(上図)及び(B)は断面図(下図)である。(A) of the sample pan used in Example 1 is a top view (upper figure), and (B) is sectional drawing (lower figure). 実施例1で用いた装置の(A)は磁場の強さと磁場中心からの距離の関係を示すグラフ、(B)は磁場勾配と磁場中心からの距離の関係を示すグラフ、(C)は、磁気力の指標である(磁場の強さ)×(磁場勾配)と磁場中心からの距離との関係を示すグラフである。(A) of the apparatus used in Example 1 is a graph showing the relationship between the strength of the magnetic field and the distance from the magnetic field center, (B) is a graph showing the relationship between the magnetic field gradient and the distance from the magnetic field center, and (C) is It is a graph which shows the relationship between (magnetic field strength) x (magnetic field gradient) which is an index of magnetic force, and the distance from the magnetic field center.

符号の説明Explanation of symbols

1 試料台
2 試料皿
1 Sample stand 2 Sample pan

Claims (2)

融解した有機物混合体に、磁気力をかけ、精製有機物を滑らかな曲面上に分離する有機物の分離、精製方法。   A method for separating and purifying an organic substance, in which a magnetic force is applied to a molten organic substance mixture to separate the purified organic substance on a smooth curved surface. 精製有機物をその後固化させる請求項1記載の有機物の分離、精製方法。   The method for separating and purifying an organic substance according to claim 1, wherein the purified organic substance is then solidified.
JP2003275229A 2003-07-16 2003-07-16 Method for separating and purifying organic substances in a magnetic field Expired - Lifetime JP4802318B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003275229A JP4802318B2 (en) 2003-07-16 2003-07-16 Method for separating and purifying organic substances in a magnetic field
PCT/JP2004/010528 WO2005018800A1 (en) 2003-07-16 2004-07-16 Method for separating or purifying organic substance in magnetic field and magnetism gravity chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275229A JP4802318B2 (en) 2003-07-16 2003-07-16 Method for separating and purifying organic substances in a magnetic field

Publications (2)

Publication Number Publication Date
JP2005035938A true JP2005035938A (en) 2005-02-10
JP4802318B2 JP4802318B2 (en) 2011-10-26

Family

ID=34211940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275229A Expired - Lifetime JP4802318B2 (en) 2003-07-16 2003-07-16 Method for separating and purifying organic substances in a magnetic field

Country Status (1)

Country Link
JP (1) JP4802318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121119A (en) * 2014-12-25 2016-07-07 武輝 山田 Amino acid separation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117692A (en) * 1995-10-26 1997-05-06 Murata Mfg Co Ltd Device and method for separating electronic part chip and medium
JP2003104947A (en) * 2001-09-28 2003-04-09 Dainippon Ink & Chem Inc Method for purifying liquid crystal compound by magnetic field application
JP2005125314A (en) * 2003-09-30 2005-05-19 National Institute Of Advanced Industrial & Technology Magnetic gravity chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117692A (en) * 1995-10-26 1997-05-06 Murata Mfg Co Ltd Device and method for separating electronic part chip and medium
JP2003104947A (en) * 2001-09-28 2003-04-09 Dainippon Ink & Chem Inc Method for purifying liquid crystal compound by magnetic field application
JP2005125314A (en) * 2003-09-30 2005-05-19 National Institute Of Advanced Industrial & Technology Magnetic gravity chromatography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121119A (en) * 2014-12-25 2016-07-07 武輝 山田 Amino acid separation method

Also Published As

Publication number Publication date
JP4802318B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Omenyi et al. Attraction and repulsion of solid particles by solidification fronts I. Thermodynamic effects
Wakayama et al. Effect of a magnetic field gradient on the crystallization of hen lysozyme
US8944142B2 (en) Method and device for the electromagnetic stirring of electrically conductive fluids
Wang et al. A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient
US20100163207A1 (en) Method and device for the electromagnetic stirring of electrically conductive fluids
Schaefer et al. Convection-induced distortion of a solid-liquid interface
US3238024A (en) Method and apparatus for the zonemelting of nonconductive or poorly conductive substances
JP4802318B2 (en) Method for separating and purifying organic substances in a magnetic field
TW200813267A (en) Crystallization furnace
NZ536771A (en) Method for fractional crystallisation of a molten metal
Nakajima et al. Effect of Oxide Catalyst on Heterogeneous Nucleation in Fe–10mass% Ni Alloys
US6375893B1 (en) Method and apparatus for evaporating components of multiple substance mixtures and multiple substance systems
JP4691689B2 (en) Magnetic gravity chromatography
WO2005018800A1 (en) Method for separating or purifying organic substance in magnetic field and magnetism gravity chromatography
Shibata et al. Molecular composites composed of castor oil‐modified poly (ε‐caprolactone) and self‐assembled hydroxystearic acid fibers
US8906243B2 (en) Apparatus and process for treatment for immiscible liquids
JP2015521213A (en) Reactor and related method for gasifying and / or purifying, in particular depolymerizing, plastic materials
JP4434946B2 (en) Electromagnetic devices for interfacial agitation by fusing two-phase systems, especially to promote metallurgical and high temperature chemical processes
Rich et al. Study of a melt crystallization process for seawater desalination
Miller et al. Phase separation in Cu47Ti33Zr11Ni8Si1
CN102989193B (en) Method for purifying organic mixture in static melt crystallization
Luo et al. Liquid phase separation and subsequent dendritic solidification of ternary Fe35Cu35Si30 alloy
JP2588223Y2 (en) Solid material melting equipment
Vermeulen et al. The influence of chemical composition on the crystallization and the heat transfer of synthetic mould fluxes
JP2001019591A (en) Device for casting silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4802318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term