JP2005034826A - Method and device for manufacturing aggregate out of rock to be discharged in construction work - Google Patents

Method and device for manufacturing aggregate out of rock to be discharged in construction work Download PDF

Info

Publication number
JP2005034826A
JP2005034826A JP2003332811A JP2003332811A JP2005034826A JP 2005034826 A JP2005034826 A JP 2005034826A JP 2003332811 A JP2003332811 A JP 2003332811A JP 2003332811 A JP2003332811 A JP 2003332811A JP 2005034826 A JP2005034826 A JP 2005034826A
Authority
JP
Japan
Prior art keywords
particle size
target maximum
aggregate
rock
maximum particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003332811A
Other languages
Japanese (ja)
Other versions
JP3970823B2 (en
Inventor
Hikozo Imaoka
彦三 今岡
Masao Yoshinaga
正雄 吉永
Naoto Koizumi
直人 小泉
Takayuki Yoshino
隆之 吉野
Katsunori Fukui
勝則 福井
Ichiro Ozaki
一朗 小崎
Tamio Masai
民雄 正井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Machinery Ltd
Sato Kogyo Co Ltd
Original Assignee
Daido Machinery Ltd
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Machinery Ltd, Sato Kogyo Co Ltd filed Critical Daido Machinery Ltd
Priority to JP2003332811A priority Critical patent/JP3970823B2/en
Publication of JP2005034826A publication Critical patent/JP2005034826A/en
Application granted granted Critical
Publication of JP3970823B2 publication Critical patent/JP3970823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize rocks discharged in construction works such as tunnel muck. <P>SOLUTION: Raw muck is sieved by a first stage sieving device 2, and the objective muck to be treated consisting of the portion of the particle size not more than the target maximum value and the supplementary portion of the particle size larger than the target maximum value is taken out. The taken-out objective muck is crushed by a crusher 3 such as an impact crusher. Then, the crushed muck is sieved by a second stage sieve device 4 to obtain crushed muck of the particle size not more than the target maximum value as aggregate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、建設工事で排出される岩石(以下、建設工事排出岩石ともいう)をコンクリート骨材として有効利用する技術に関するものである。   The present invention relates to a technique for effectively using rocks discharged in construction work (hereinafter also referred to as construction work discharged rocks) as concrete aggregates.

従来、例えばトンネル掘削により発生するずりは、盛土材料として利用する場合が大半を占めており、場内で消化しきれない場合は、場外の造成ヤードや残土処分場ヘダンプトラックで運搬し、廃棄処分していた。しかし、ダンプトラックによる残土運搬は、沿道の振動・騒音・粉塵などの問題のほか、建設作業における二酸化炭素発生量の増大を招くという問題もあり好ましいものではない。   Conventionally, for example, most of the shear generated by tunnel excavation is used as embankment material, and if it cannot be completely digested in the field, it is transported by a dump truck to an off-site preparation yard or a residual soil disposal site and disposed of. Was. However, transporting the remaining soil by a dump truck is not preferable because of problems such as roadside vibration, noise, and dust, as well as an increase in the amount of carbon dioxide generated during construction work.

かかる問題を解決するために、ずりの場内利用を積極的に図ることが望まれており、破砕機を使用してずりを単粒状に破砕し、仮設道路などの路盤材として使用することも行われている。   In order to solve such problems, it is desired to actively use the shear in the field, and the shredder is crushed into single particles using a crusher and used as roadbed material for temporary roads and the like. It has been broken.

しかしながら、トンネルずり等の建設工事排出岩石を破砕して仮設道路の路盤材として利用するといっても、その利用量は少なく、他の有効利用の方法もない。このため、建設工事排出岩石の用途拡大が望まれているのが現状である。   However, even if it is said that the rocks discharged from construction works such as tunnels are crushed and used as roadbed materials for temporary roads, the amount of use is small and there is no other effective use method. For this reason, it is the present situation that the use expansion of the construction work discharge rock is desired.

したがって、本発明の主たる課題は、建設工事排出岩石の用途の拡大を図ることにある。   Therefore, the main subject of this invention is aiming at the expansion of the use of construction construction discharge | emission rock.

上記課題を解決した本発明は、次記のとおりである。
<請求項1記載の発明>
原料岩石を篩い分けし、目的最大粒径以下の分と目的最大粒径よりも大粒径の補充分とからなる処理対象分を取り出す前処理工程と、
前記取り出した処理対象分を破砕する破砕処理工程と、
前記破砕により得た破砕岩石を篩い分けし、目的最大粒径以下の破砕岩石を骨材として得る後処理工程とを含む
ことを特徴とする建設工事で排出される岩石からの骨材製造方法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
A pretreatment step of sieving the raw material rock, and taking out a portion to be treated consisting of a portion below the target maximum particle size and a replenishment portion having a particle size larger than the target maximum particle size;
A crushing treatment step of crushing the taken-out processing target,
And a post-treatment step of screening the crushed rock obtained by the crushing to obtain a crushed rock having a target maximum particle size or less as an aggregate. A method for producing an aggregate from rock discharged in construction work.

(作用効果)
本発明者らは鋭意研究の結果、発破やTBM、自由断面掘削機等により発生するずり等の、建設工事排出岩石の粒度分布が、粒径範囲こそ異なるものの一般的な骨材の粒度分布と良く似た傾向があるという知見を得た。図1は各種岩石(トンネルずり)の粒度分布を表し、図2〜図4は、一般的なコンクリートの粗骨材として使用される砕石(粒径の大きさの範囲:40mm〜5mm、および粒径の大きさの範囲:25mm〜5mm)、ならびに細骨材として使用される砕砂(粒径の大きさの範囲:5mm〜0mm)の粒度分布をそれぞれ表しているが、前者と後者とは曲線形状が類似している(図1および図4のグラフのみ横軸が対数スケールとなっているが、この相違を考慮すれば類似する)。このことは、骨材が砕石であることを考慮すれば、岩石の破砕物は、その破砕手段の如何に関わらず、ある一定の傾向の粒度分布を有することを示している。
(Function and effect)
As a result of diligent research, the present inventors have found that the particle size distribution of the rock discharged from construction work, such as blast, TBM, and shear generated by a free section excavator, is different from the particle size distribution of general aggregates although the particle size range is different. The knowledge that there was a similar tendency was obtained. FIG. 1 shows the particle size distribution of various rocks (tunnel shears), and FIGS. 2 to 4 show crushed stones (grain size range: 40 mm to 5 mm and grains) used as general aggregate coarse aggregate. The range of the size of the diameter: 25 mm to 5 mm) and the particle size distribution of the crushed sand used as the fine aggregate (the range of the size of the particle size: 5 mm to 0 mm), respectively, the former and the latter are curves The shapes are similar (only the graphs in FIGS. 1 and 4 have a logarithmic scale on the horizontal axis, but are similar if this difference is taken into account). This shows that, considering that the aggregate is crushed stone, the rock crushed material has a particle size distribution having a certain tendency regardless of the crushing means.

本発明は、かかる知見に基づくものであり、その主要ポイントは、分布形状は目的の分布と似ているが粒径範囲がズレた粒度分布を有する建設工事排出岩石を、破砕を含む特定の処理により目的粒径範囲の粒子を増加させ、目的分布に近い又は一致した骨材を製造するところにある。この特定の処理は、原料岩石と破砕岩石との間の粒度分布の変化で見ると、あたかも粒度分布をスライドさせて目的粒径範囲に近づける又は一致させるように見えるものである。   The present invention is based on such knowledge, and the main point is that the distribution shape is similar to the target distribution but the construction discharge rock having a particle size distribution with a shifted particle size range is subjected to a specific treatment including crushing. By increasing the number of particles in the target particle size range, an aggregate close to or consistent with the target distribution is manufactured. This particular treatment appears as if the particle size distribution is slid to approach or match the target particle size range by looking at the change in particle size distribution between the raw rock and the crushed rock.

より詳細に説明すると、本発明では、先ず前処理として、目的最大粒径以下の分のみならず、目的最大粒径よりも大粒径の補充分をも処理対象分として篩い分けする。この処理対象分は、分布形状および分布幅は目的の分布と似ているが、粒径範囲は目的の分布からズレている。本発明では、かかる処理対象分を破砕処理する。かくして粒径範囲が目的粒度分布に近づけられた破砕岩石が得られる。またこの際、そのままでは骨材として使用困難な特異な形状、例えばTBMで得られるような扁平形状のずりが、骨材としての利用に適した形状に整えられる(以下、整粒ともいう)。そして、かかる破砕岩石のうち、目的最大粒径以下の分を篩い分けすることにより、目的粒度分布と同等の骨材が得られるのである。   More specifically, in the present invention, as a pretreatment, not only the amount not more than the target maximum particle size but also the replenishment portion having a particle size larger than the target maximum particle size is screened as a processing target. This processing target has a distribution shape and distribution width similar to the target distribution, but the particle size range is deviated from the target distribution. In the present invention, the processing target is crushed. Thus, a crushed rock having a particle size range close to the target particle size distribution is obtained. At this time, a peculiar shape that is difficult to use as an aggregate as it is, for example, a flat shear obtained by TBM is adjusted to a shape suitable for use as an aggregate (hereinafter also referred to as sizing). And the aggregate equivalent to the target particle size distribution is obtained by sieving the part below this target maximum particle size among such crushed rocks.

かくして、本発明によれば、トンネルずり等の建設工事排出岩石を骨材として有効利用できるようになり、例えばトンネル工事の場合、場内で吹付コンクリートやトンネル内面の覆工コンクリート用骨材として用いたり、場外にあっては近郊の土木・建設工事における骨材として用いたりすることができるようになる。   Thus, according to the present invention, the rock discharged from construction work such as tunnel shear can be effectively used as an aggregate. For example, in the case of tunnel construction, it can be used as aggregate for spray concrete or lining concrete on the inner surface of a tunnel. When outside, it can be used as an aggregate in nearby civil engineering and construction work.

<請求項2記載の発明>
前記後処理工程により得た目的最大粒径以下の破砕岩石の一部を、前記前処理工程または破砕処理工程に戻すようにする、請求項1記載の建設工事で排出される岩石からの骨材製造方法。
<Invention of Claim 2>
The aggregate from the rock discharged | emitted by the construction work of Claim 1 which returns a part of crushed rock below the target maximum particle size obtained by the said post-processing process to the said pre-processing process or the crushing process. Production method.

(作用効果)
多くの場合、上記本発明の基本処理だけでは細粒分が不足するおそれがある。しかし、そのような場合には、本請求項2記載のように、後処理工程により得た目的最大粒径以下の破砕岩石の一部を、前処理工程または破砕処理工程に戻すようにすることによって、細粒分を補うことができる。
(Function and effect)
In many cases, only the basic treatment of the present invention may cause a shortage of fine particles. However, in such a case, as described in claim 2, a part of the crushed rock having a target maximum particle size or less obtained by the post-treatment process is returned to the pretreatment process or the crushing treatment process. Can compensate for fine particles.

<請求項3記載の発明>
前記目的最大粒径は10〜50mmであり、前記補充分は前記目的最大粒径の1.5〜5倍以下の粒径を有するものである、請求項1または2記載の建設工事で排出される岩石からの骨材製造方法。
<Invention of Claim 3>
The target maximum particle size is 10 to 50 mm, and the replenishment portion is discharged in construction work according to claim 1 or 2, wherein the replenishment portion has a particle size not more than 1.5 to 5 times the target maximum particle size. A method for producing aggregates from rocks.

(作用効果)
かかる数値範囲で本発明の処理を行うことにより、建設工事で通常排出される岩石(特に発破やTBMにより発生するトンネルずり)の殆どに対応できる。
(Function and effect)
By carrying out the treatment of the present invention within such a numerical range, it is possible to cope with most of rocks normally discharged in construction work (especially tunnel shear generated by blasting or TBM).

<請求項4記載の発明>
目的最大粒径以下の分と目的最大粒径よりも大粒径の補充分とからなる処理対象分が通過し、且つそれよりも大粒径の分が通過しない篩目を有する前段篩装置と、
クラッシャと、
目的最大粒径以下の分が通過し、それよりも大粒径の分が通過しない篩目を有する後段篩装置とを備え、
原料岩石を前記前段篩装置に供給して篩い分けし、そのアンダー分を前記クラッシャに供給して破砕した後、この破砕岩石を後段篩装置により篩い分けし、そのアンダー分を骨材として得るように構成した、
ことを特徴とする建設工事で排出される岩石からの骨材製造装置。
<Invention of Claim 4>
A pre-stage sieving apparatus having a mesh that passes through a portion to be treated consisting of a portion less than the target maximum particle size and a replenishment portion having a larger particle size than the target maximum particle size, and that does not pass a larger particle size than that; ,
Crusher,
A post-stage sieving device having a sieve that passes a portion less than the target maximum particle size and that does not pass a larger particle size than that,
The raw material rock is supplied to the former stage sieving apparatus and sieved, and the under part is supplied to the crusher and crushed, and then the crushed rock is sieved by the latter stage sieving apparatus so that the under part is obtained as an aggregate. Configured
Aggregate production equipment from rocks discharged from construction work.

(作用効果)
請求項1記載の発明と同様の作用効果が奏せられる。また本請求項4記載の装置は、破砕機1台と篩装置2台の簡素な構成であるため、低コストで骨材製造が可能になり、またトンネル場内での設置スペースの確保も容易である。
(Function and effect)
The same effect as that of the first aspect of the invention can be achieved. In addition, since the device according to claim 4 has a simple configuration of one crusher and two sieve devices, it is possible to manufacture aggregates at low cost, and it is easy to secure an installation space in the tunnel site. is there.

以上のとおり、本発明によれば、建設工事で排出される岩石を骨材として有効利用できるようになり、用途の拡大を図ることができる。   As described above, according to the present invention, rocks discharged in construction work can be effectively used as aggregates, and the application can be expanded.

以下、本発明の実施形態について詳説する。
先ず、原料について説明する。本発明では建設工事で排出される岩石を原料として使用する。本発明が対象とする建設工事としては、地下構造物(地下空間)の建設工事、橋梁工事、トンネル工事、ダム工事、塔・タンク・サイロの工事、水門・管路の工事、道路・鉄道工事、港湾・空港工事、エネルギー施設等の各種施設の工事、上下水道・用廃水工事、廃棄物処理場の工事、河川・海岸(護岸、砂防等)・海洋工事、土地造成工事等を挙げることができ、骨材として使用可能な岩石が掘削等により排出されるものであれば特に限定されるものではない。
Hereinafter, embodiments of the present invention will be described in detail.
First, raw materials will be described. In the present invention, rocks discharged in construction work are used as raw materials. Construction works covered by the present invention include construction of underground structures (underground spaces), bridge construction, tunnel construction, dam construction, tower / tank / silo construction, sluice / pipe construction, road / railway construction , Construction of various facilities such as harbors and airports, construction of energy facilities, water and sewage and sewage works, construction of waste treatment plants, rivers and coasts (seawalls, sabo etc.), marine construction, land preparation work, etc. There is no particular limitation as long as rocks that can be used as aggregates are discharged by excavation or the like.

また、原料岩石の材質は骨材として使用しうるものであれば特に限定されず、表1に示されるもののうち玄武岩、安山岩、硬質砂岩、硬質石灰岩またはこれに準ずる石質を有する岩石を好適に用いることができる。   The material of the raw material rock is not particularly limited as long as it can be used as an aggregate. Among those shown in Table 1, basalt, andesite, hard sandstone, hard limestone, or rocks having a similar quality are suitable. Can be used.

Figure 2005034826
Figure 2005034826

次に、本発明に係る装置及び方法例について、トンネルずりの場合を例に取り説明する。図5は、本発明に係る骨材製造装置例1を示している。符号2は、前段篩装置を示しており、原料ずりは未処理の状態でこの前段篩装置2に投入される。   Next, an example of the apparatus and method according to the present invention will be described taking the case of tunneling as an example. FIG. 5 shows an aggregate manufacturing apparatus example 1 according to the present invention. The code | symbol 2 has shown the front | former stage sieve apparatus, and raw material scrap is thrown into this front | former stage sieve apparatus 2 in the unprocessed state.

前段篩装置2としては、目的最大粒径以下の分と目的最大粒径よりも大粒径の補充分とからなる処理対象分が通過し、且つそれよりも大粒径の分が通過しない篩目を有するものが用いられる。前段篩装置2としては、一般的な振動篩装置を好適に使用できる(後述の後段篩装置も同様)。目的最大粒径は目的とする骨材の最大粒径を意味し、適宜定めることができるが、例えば一般的なコンクリートに用いる細骨材のみを製造する場合には10mmとし、細骨材分および粗骨材分の両者を含む骨材を製造する場合には50mmとすることができる。補充分の最大粒径は、原料ずりの種類、後述のクラッシャの特性、装置全体の構成等、種々の要因により変化する、あるいは適宜設定できるため一概には言えないが、本実施形態の装置構成では、概ね目的最大粒径の1.5〜5倍程度、特に1.5〜3.5倍程度とするのが好ましい。補充分の最大粒径は、後述のクラッシャ3の規模や性能等にも左右されるが、例えば100〜200mmの範囲内で適宜定めることができる。なお、この補充分の最大粒径が目的最大粒径の1.5倍未満になると、所望の粒度分布および量を確保し難くなり、また5倍を超えるとクラッシャが大きくなり、装置コストや設置スペースの確保が困難になる。   As the pre-stage sieving device 2, a sieve to be processed consisting of a portion below the target maximum particle size and a replenishment portion having a particle size larger than the target maximum particle size passes, and a sieve having a particle size larger than that is not passed through. Those with eyes are used. As the pre-stage sieving apparatus 2, a general vibration sieving apparatus can be suitably used (the same applies to the later-stage sieving apparatus described later). The target maximum particle size means the maximum particle size of the target aggregate and can be determined as appropriate. For example, when only a fine aggregate used for general concrete is manufactured, the target maximum particle size is 10 mm, When manufacturing an aggregate containing both coarse aggregates, the thickness can be set to 50 mm. The maximum particle size of the replenishment varies depending on various factors such as the type of raw material scrap, the characteristics of the crusher described later, the configuration of the entire device, and can be set as appropriate. Then, it is preferably about 1.5 to 5 times, especially about 1.5 to 3.5 times the target maximum particle size. The maximum particle size for replenishment depends on the scale and performance of the crusher 3 described later, but can be determined as appropriate within a range of 100 to 200 mm, for example. If the maximum particle size of the replenishment is less than 1.5 times the target maximum particle size, it becomes difficult to secure the desired particle size distribution and amount, and if it exceeds 5 times, the crusher becomes large, resulting in equipment cost and installation. It becomes difficult to secure space.

前段篩装置2に供給された原料ずりは、その処理対象分が篩を通過し、アンダー分(網下分)として取り出される。オーバー分(網上分)は他の用途に利用するか、廃棄することができる。かくして得られた処理対象分は、分布形状および分布幅は目的の分布と似ているが、粒径範囲は補充分の最大粒径以下であり、目的の分布からズレている。   The raw material scrap supplied to the pre-stage sieving apparatus 2 passes through the sieve and is taken out as an under part (net part). The over portion (net portion) can be used for other purposes or discarded. The processing object thus obtained has a distribution shape and distribution width similar to the target distribution, but the particle size range is not more than the maximum particle size of the replenishment and deviates from the target distribution.

次いで、得られた処理対象分はクラッシャ3に供給され破砕される。かかる粉砕により、粒径範囲が目的粒度分布に近づけられた又は一致された破砕ずりが得られる。またこの際、整粒もなされる。本発明に用いるクラッシャ3としては、インパクトクラッシャ、ジョークラッシャ等公知のものを用いることができる。クラッシャの運転条件は、試験を行う等により、破砕ずりの粒径範囲が目的粒度分布に可能な限り近くなる又は一致するように設定する。   Next, the obtained processing target is supplied to the crusher 3 and crushed. By this pulverization, a crushing shear whose particle size range is close to or coincident with the target particle size distribution is obtained. At this time, sizing is also performed. As the crusher 3 used in the present invention, a known one such as an impact crusher or a jaw crusher can be used. The operating conditions of the crusher are set so that the particle size range of the crushing shear is as close as possible to or coincides with the target particle size distribution by performing a test or the like.

そして、かくして得られた破砕ずりは後段篩装置4に供給される。図示形態では、この供給にベルトコンベア5を利用している。後段篩装置4では、かかる破砕ずりのうち、目的最大粒径(例えば前述のように細骨材のみの場合は10mm、粗骨材まで含む場合は50mm)以下の分が篩い分けされ、目的粒度分布と同等のずり骨材が分離される。   The crushing shear thus obtained is supplied to the post-stage sieving device 4. In the illustrated embodiment, a belt conveyor 5 is used for this supply. In the post-stage sieving device 4, the portion below the target maximum particle size (for example, 10 mm when only fine aggregate is used and 50 mm when including coarse aggregate as described above) is screened out. The shear aggregate equivalent to the distribution is separated.

ただし、多くの場合、上記本発明の基本処理だけでは細粒分が不足する。そこで、図示するように、後段篩装置4により分離した目的最大粒径以下の破砕ずりの一部を、図示のように原料ずりとともに前段篩装置2に再投入するか、あるいは図示しないが処理対象分とともにクラッシャ3に再投入するのが望ましい。この場合、目的最大粒径以下の粒径を有する再投入分が再度破砕処理されることにより、細粒分が増量される。なお、この場合、予め試験を行い、目的粒度分布が得られるような再投入量を予め求めておくのが望ましい。再投入量は、運転中常に一定にすることもできるし、必要に応じて(例えば原料ずりの石質が変わったとき等)変更することもできる。   However, in many cases, the fine particles are insufficient only by the basic process of the present invention. Therefore, as shown in the drawing, a part of the crushing shear of the target maximum particle size or less separated by the post-stage sieving apparatus 4 is re-introduced into the pre-stage sieving apparatus 2 together with the raw material shear as shown in the figure, or although not illustrated It is desirable to re-enter the crusher 3 with the minute. In this case, the recharged portion having a particle size equal to or smaller than the target maximum particle size is crushed again to increase the fine particle content. In this case, it is desirable to conduct a test in advance and obtain a re-input amount so as to obtain a target particle size distribution in advance. The re-input amount can be always constant during operation, or can be changed as necessary (for example, when the quality of the raw material is changed).

かくして、ずりの粒度分布に特定の傾向があること、また破砕後の粒度分布に特定の傾向があることを巧みに利用することで、トンネルずりから場内または場外で再利用可能な骨材を簡易な方法で製造できるようになる。また、製造した骨材の再投入量により細粒分の調整も可能となり、簡易な方法で粒度調整が可能となる。また、装置が簡素なため、広い設置スペースを必要とせず、設置も容易で施工性に優れており、複雑なメンテナンスも不要である等の利点ももたらされる。   Thus, by utilizing the specific tendency of the particle size distribution of the shear and the specific tendency of the particle size distribution after crushing, it is possible to simplify the aggregate that can be reused from inside or outside the tunnel. Can be manufactured in a simple manner. In addition, fine particles can be adjusted by changing the amount of the aggregate produced again, and the particle size can be adjusted by a simple method. In addition, since the apparatus is simple, it does not require a large installation space, is easy to install, has excellent workability, and does not require complicated maintenance.

本発明は、前述の各種工事現場で排出された岩石を現地でコンクリート骨材とし、そのまま現地のコンクリート工事に利用する形態、例えば、トンネル工事において発生する掘削ずりを骨材とし、これを当該トンネル工事における吹付コンクリート・覆工コンクリートに用いる形態等に好適である。   In the present invention, the rock discharged at the various construction sites described above is used as a concrete aggregate in the field, and is used as it is for the local concrete work, for example, excavation generated in tunnel construction is used as the aggregate, and this is used as the aggregate. Suitable for forms used for shotcrete and lining concrete in construction.

各種トンネルずりの粒度分布を示すグラフである。It is a graph which shows the particle size distribution of various tunnel shears. 粗骨材として用いられる砕石(粒径の大きさの範囲:40mm〜5mm)の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the crushed stone (range of the size of a particle size: 40 mm-5 mm) used as a coarse aggregate. 粗骨材として用いられる砕石(粒径の大きさの範囲:25mm〜5mm)の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the crushed stone (range of the size of a particle size: 25 mm-5 mm) used as a coarse aggregate. 細骨材として用いられる砕石(粒径の大きさの範囲:5mm〜0mm)の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the crushed stone (range of the size of a particle size: 5 mm-0 mm) used as a fine aggregate. 本発明に係る骨材製造装置のフロー図である。It is a flowchart of the aggregate manufacturing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…骨材製造装置、2…前段篩装置、3…クラッシャ、4…後段篩装置。   DESCRIPTION OF SYMBOLS 1 ... Aggregate manufacturing apparatus, 2 ... Front stage sieve apparatus, 3 ... Crusher, 4 ... Back stage sieve apparatus.

Claims (4)

原料岩石を篩い分けし、目的最大粒径以下の分と目的最大粒径よりも大粒径の補充分とからなる処理対象分を取り出す前処理工程と、
前記取り出した処理対象分を破砕する破砕処理工程と、
前記破砕により得た破砕岩石を篩い分けし、目的最大粒径以下の破砕岩石を骨材として得る後処理工程とを含む
ことを特徴とする建設工事で排出される岩石からの骨材製造方法。
A pretreatment step of sieving the raw material rock, and taking out a portion to be treated consisting of a portion below the target maximum particle size and a replenishment portion having a particle size larger than the target maximum particle size;
A crushing treatment step of crushing the taken-out processing target,
And a post-treatment step of screening the crushed rock obtained by the crushing to obtain a crushed rock having a target maximum particle size or less as an aggregate. A method for producing an aggregate from rock discharged in construction work.
前記後処理工程により得た目的最大粒径以下の破砕岩石の一部を、前記前処理工程または破砕処理工程に戻すようにする、請求項1記載の建設工事で排出される岩石からの骨材製造方法。 The aggregate from the rock discharged | emitted by the construction work of Claim 1 which returns a part of crushed rock below the target maximum particle size obtained by the said post-processing process to the said pre-processing process or the crushing process. Production method. 前記目的最大粒径は10〜50mmであり、前記補充分は前記目的最大粒径の1.5〜5倍以下の粒径を有するものである、請求項1または2記載の建設工事で排出される岩石からの骨材製造方法。 The target maximum particle size is 10 to 50 mm, and the replenishment portion is discharged in construction work according to claim 1 or 2, wherein the replenishment portion has a particle size not more than 1.5 to 5 times the target maximum particle size. A method for producing aggregates from rocks. 目的最大粒径以下の分と目的最大粒径よりも大粒径の補充分とからなる処理対象分が通過し、且つそれよりも大粒径の分が通過しない篩目を有する前段篩装置と、
クラッシャと、
目的最大粒径以下の分が通過し、それよりも大粒径の分が通過しない篩目を有する後段篩装置とを備え、
原料岩石を前記前段篩装置に供給して篩い分けし、そのアンダー分を前記クラッシャに供給して破砕した後、この破砕岩石を後段篩装置により篩い分けし、そのアンダー分を骨材として得るように構成した、
ことを特徴とする建設工事で排出される岩石からの骨材製造装置。
A pre-stage sieving apparatus having a mesh that passes through a portion to be treated consisting of a portion less than the target maximum particle size and a replenishment portion having a larger particle size than the target maximum particle size, and that does not pass a larger particle size than that; ,
Crusher,
A post-stage sieving device having a sieve that passes a portion less than the target maximum particle size and that does not pass a larger particle size than that,
The raw material rock is supplied to the former stage sieving apparatus and sieved, and the under part is supplied to the crusher and crushed, and then the crushed rock is sieved by the latter stage sieving apparatus so that the under part is obtained as an aggregate. Configured
Aggregate production equipment from rocks discharged from construction work.
JP2003332811A 2003-07-02 2003-09-25 Aggregate production method from rocks discharged in tunnel construction Expired - Lifetime JP3970823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332811A JP3970823B2 (en) 2003-07-02 2003-09-25 Aggregate production method from rocks discharged in tunnel construction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003190582 2003-07-02
JP2003332811A JP3970823B2 (en) 2003-07-02 2003-09-25 Aggregate production method from rocks discharged in tunnel construction

Publications (2)

Publication Number Publication Date
JP2005034826A true JP2005034826A (en) 2005-02-10
JP3970823B2 JP3970823B2 (en) 2007-09-05

Family

ID=34220592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332811A Expired - Lifetime JP3970823B2 (en) 2003-07-02 2003-09-25 Aggregate production method from rocks discharged in tunnel construction

Country Status (1)

Country Link
JP (1) JP3970823B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468358B (en) * 2007-12-28 2011-05-25 上海德滨环保科技有限公司 Environmental-protecting type closed modular building rubbish reconditioning system
CN102152398A (en) * 2011-01-27 2011-08-17 葛洲坝集团试验检测有限公司 Gravel doped grinding system for anti-leakage wall and preparation method thereof
JP2012047613A (en) * 2010-08-27 2012-03-08 Kajima Corp Method and system for measuring particle size of blast muck pile
JP2017154943A (en) * 2016-03-03 2017-09-07 宇部興産機械株式会社 Manufacturing method and manufacturing device of building material using tunnel excavation muck
CN110130920A (en) * 2019-04-28 2019-08-16 贵州成智重工科技有限公司 Tunnel is slagged tap, sandstone is processed and concrete processes transportation integration equipment and technique
CN111617844A (en) * 2020-05-29 2020-09-04 新十建设集团有限公司 Thick and thin sand integrated sorting equipment based on concrete mixing degree

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468358B (en) * 2007-12-28 2011-05-25 上海德滨环保科技有限公司 Environmental-protecting type closed modular building rubbish reconditioning system
JP2012047613A (en) * 2010-08-27 2012-03-08 Kajima Corp Method and system for measuring particle size of blast muck pile
CN102152398A (en) * 2011-01-27 2011-08-17 葛洲坝集团试验检测有限公司 Gravel doped grinding system for anti-leakage wall and preparation method thereof
CN102152398B (en) * 2011-01-27 2012-09-05 葛洲坝集团试验检测有限公司 Graded dispensing system of gravel for anti-leakage wall and preparation method thereof
JP2017154943A (en) * 2016-03-03 2017-09-07 宇部興産機械株式会社 Manufacturing method and manufacturing device of building material using tunnel excavation muck
CN110130920A (en) * 2019-04-28 2019-08-16 贵州成智重工科技有限公司 Tunnel is slagged tap, sandstone is processed and concrete processes transportation integration equipment and technique
CN111617844A (en) * 2020-05-29 2020-09-04 新十建设集团有限公司 Thick and thin sand integrated sorting equipment based on concrete mixing degree

Also Published As

Publication number Publication date
JP3970823B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
Sonawane et al. Use of recycled aggregate concrete
Bellopede et al. Main aspects of tunnel muck recycling
JP2013136911A (en) Reformed soil manufacturing method
CN105110669A (en) Method for comprehensive utilization of stone wastes
JP2005034826A (en) Method and device for manufacturing aggregate out of rock to be discharged in construction work
Mhlongo et al. Artisanal and small-scale mining activities as post-mining land use in abandoned mine sites: a case of Giyani and Musina areas, Limpopo Province of South Africa
JP5698016B2 (en) Manufacturing method for civil engineering adjustment material and civil engineering adjustment material
JP5317434B2 (en) Excavated soil reforming plant containing defective soil residue
Oggeri et al. Muck classification: raw material or waste in tunnelling operation
JP2007175585A (en) Treatment method of contaminated soil
JP2008155069A (en) Method for manufacturing earth and sand alternative material using organic sludge as main raw material
JP3839642B2 (en) Method for producing fluidized soil
JP2021038408A (en) Soil solidification material, method for producing soil solidification material, and soil solidification method
JP2008256078A (en) Manufacturing method for pipe protection material using excavated soil, production plant of pipe protection material for practicing the method and pipe protection material manufactured by the production plant
JP6485835B2 (en) Backfill material manufacturing method and backfill material manufacturing system
Bahoria Study of Mechanical properties of Sand extracted from Overburden of WCL Mines–the Effective Sustainable Sand Solution
GB2430168A (en) A sand and gravel washing process
JP5835120B2 (en) Method for producing modified soil
JP2005342655A (en) Manufacturing device and manufacturing method for product sand
Sissakian Quarries and the Environment in the Kurdistan Region, Iraq
ARAD et al. Geotechnical research regarding the use of solid mineral tailings from the mining industry in construction, in the context of circular economy
Hegde et al. A Study on Strength Characteristics of Concrete by Replacing Coarse Aggregate by Demolished Column Waste
JP5075788B2 (en) Method for improving construction generated soil mainly composed of type 4 construction generated soil and construction plant improving soil composed mainly of type 4 construction generated soil.
Iacovidou et al. Environmental Life Cycle Impacts of Inert/Less Reactive Waste Materials: A report prepared for Defra
JP3670600B2 (en) Construction sludge recycling system and recycled crushed stone production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Ref document number: 3970823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

EXPY Cancellation because of completion of term