JP2012047613A - Method and system for measuring particle size of blast muck pile - Google Patents
Method and system for measuring particle size of blast muck pile Download PDFInfo
- Publication number
- JP2012047613A JP2012047613A JP2010190403A JP2010190403A JP2012047613A JP 2012047613 A JP2012047613 A JP 2012047613A JP 2010190403 A JP2010190403 A JP 2010190403A JP 2010190403 A JP2010190403 A JP 2010190403A JP 2012047613 A JP2012047613 A JP 2012047613A
- Authority
- JP
- Japan
- Prior art keywords
- blasting
- scale
- particle size
- image
- temperature distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005422 blasting Methods 0.000 claims abstract description 166
- 238000009826 distribution Methods 0.000 claims abstract description 111
- 239000011435 rock Substances 0.000 claims abstract description 17
- 238000007664 blowing Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 15
- 238000010008 shearing Methods 0.000 claims description 13
- 238000009412 basement excavation Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 11
- 239000000284 extract Substances 0.000 claims description 6
- 238000005286 illumination Methods 0.000 claims description 6
- 238000000691 measurement method Methods 0.000 claims description 6
- 239000013049 sediment Substances 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims 1
- 238000005553 drilling Methods 0.000 abstract 1
- 239000000428 dust Substances 0.000 description 20
- 239000008187 granular material Substances 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 7
- 239000004575 stone Substances 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000003721 gunpowder Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は発破ズリの粒径計測方法及びシステムに関し、とくに発破工法における岩盤の掘削時に生じる発破ズリの粒径を計測する方法及びシステムに関する。 The present invention relates to a method and system for measuring the particle size of blasting shear, and more particularly to a method and system for measuring the particle size of blasting shear that occurs during excavation of rock in the blasting method.
例えば硬岩又は中硬岩の岩盤に山岳トンネル等を掘削する場合に、発破工法(発破掘削)が実施される。発破工法では、例えば図2(A)に示すように、岩盤の切羽1にトンネル軸線方向に沿って適当なパターン(発破仕様)の発破孔2を設けて火薬を埋め込み、各発破孔2の火薬を順次に起爆することで所定断面形状のトンネル坑を所定距離(例えば1〜3m)ずつ掘削する。発破時のガスや粉塵が適当に薄まったのち、図2(B)に示すように発破により粉砕されて切羽前方に飛散した岩石(以下、発破ズリという)3をダンプトラック、ベルトコンベア等に積み込んで坑外の仮置き場へ運び出し、掘削した切羽1に必要な支保工や覆工を建て込んだうえで、次回の発破掘削を繰り返す。なお、広義の発破工法は坑内だけでなく採石場や鉱山における開放空間の露天掘り等においても実施されるが(明かり発破)、本明細書では坑内で実施される発破工法を対象とする。 For example, when excavating a mountain tunnel or the like in hard rock or medium hard rock, a blasting method (blasting excavation) is performed. In the blasting method, for example, as shown in FIG. 2 (A), a blast hole 2 having an appropriate pattern (blasting specification) is provided in the rock face 1 along the tunnel axis direction, and the explosive is embedded. Are sequentially excavated to excavate a tunnel mine having a predetermined cross-sectional shape by a predetermined distance (for example, 1 to 3 m). After the gas and dust at the time of blasting have been appropriately diluted, the rock (hereinafter referred to as blasting slurries) 3 crushed by blasting and scattered in front of the face as shown in FIG. At the temporary storage place outside the mine, the necessary support and lining are built in the excavated face 1 and the next blast excavation is repeated. The blasting method in the broad sense is implemented not only in the mine, but also in open pit digging in open spaces in quarries and mines (light blasting), but this specification covers the blasting method carried out in the mine.
従来の発破工法では、発生した発破ズリの一部分をトンネル現場内の路盤材・盛土材等として利用し、残部分を現場から離れた残土処分場へダンプトラック等で搬出して処分している。しかし、近年は地球温暖化防止の観点から、二酸化炭素の排出を伴うトラック運搬による処分量を低減し、発破ズリをコンクリート骨材等として二次利用することが推奨されている(非特許文献1参照)。発破ズリの二次利用を進めるためには、ズリの粒度を調整する後処理(例えば二次的な粉砕、砕石)をできるだけ削減し、発破時に生じるズリをそのまま利用目的に応じた粒度とすることが望ましいことから、発破ズリの粒度分布を求めることが重要となる。例えば、発破ズリの粒度分布と発破の機構(仕様)との関係を解明する研究が進められており(非特許文献2参照)、利用目的に応じて発破の仕様を調整するために発破ズリの粒度分布を求めることが必要となる。また、後処理で発破ズリの粒度を二次的に処理(粉砕、砕石等)する場合にも、発破ズリの粒度分布は、その二次的な処理量算出の定量的な証拠として有用である。 In the conventional blasting method, a part of the generated blasting gap is used as a roadbed material or embankment material in the tunnel site, and the remaining part is transported to a remaining soil disposal site away from the site by a dump truck or the like and disposed. However, in recent years, from the viewpoint of preventing global warming, it has been recommended to reduce the amount of disposal by truck transportation accompanied by carbon dioxide emission and to secondary use blasting as concrete aggregate (Non-patent Document 1). reference). In order to promote secondary use of blasting debris, reduce the amount of post-processing (for example, secondary crushing and crushed stone) that adjusts the granularity of the debris as much as possible, and make the debris generated at the time of blasting as appropriate according to the purpose of use Therefore, it is important to obtain the particle size distribution of the blasting shear. For example, research to elucidate the relationship between the particle size distribution of blasting dust and the mechanism (specification) of blasting (see Non-Patent Document 2) has been conducted, and in order to adjust the blasting specification according to the purpose of use, It is necessary to determine the particle size distribution. In addition, when the particle size of the blasting dust is secondarily processed (pulverization, crushed stone, etc.) in the post-treatment, the particle size distribution of the blasting dust is useful as quantitative evidence for calculating the secondary throughput. .
従来の発破工法において発破ズリの粒度分布の計測はほとんど行われていないが、一般に発破ズリのような粒状材の粒度分布は、複数の粒径で篩い分けする方法により粒径加積曲線(粒径を横軸(対数軸)とし、その粒径以下の粒状材の全体に対する質量百分率を縦軸(線形軸)とした片対数グラフ)として求めることができる。また、発破ズリは一般に粒径が大きく、篩い分けによって粒度分布を求めることが困難であることも多いため、画像解析技術によって粒度分布を求めることも提案されている(非特許文献3、4参照)。例えば非特許文献3は、発破後に坑外の仮置き場に運び出された発破ズリの堆積物上にスケールを載置してデジタル可視光画像G(図8(A)参照)を撮影し、その画像Gから発破ズリの粒度分布を計測する方法を提案している。 In the conventional blasting method, the particle size distribution of blasting dust is hardly measured, but in general, the particle size distribution of a granular material such as blasting dust is a particle size accumulation curve (grain A semi-logarithmic graph in which the diameter is the horizontal axis (logarithmic axis) and the mass percentage of the whole of the granular material having the particle size or less is the vertical axis (linear axis). Further, since blasting is generally large in particle size and it is often difficult to obtain the particle size distribution by sieving, it has also been proposed to obtain the particle size distribution by image analysis technology (see Non-Patent Documents 3 and 4). ). For example, Non-Patent Document 3 shoots a digital visible light image G (see FIG. 8A) by placing a scale on a deposit of blasting debris carried to a temporary storage site outside a mine after blasting, and the image is taken. A method for measuring the particle size distribution of blasting from G is proposed.
可視光画像Gにより粒状材の粒度分布を計測する方法は、例えば特許文献1〜3に開示されている。先ず、図8に示すように粒状材Tの堆積物のデジタル画像Gをコンピュータに入力し、陰影等に基づいて画像Gを二値化処理し、必要に応じてラベリングやパターンマッチング等の手法を用いて個々の粒状材Tの輪郭(エッジ)を検出する。次いで、図9に示すように各粒状材Tの輪郭の面積等価径から粒径d(又は輪郭にフィッティングさせた楕円形から短径a・長径b)を求め、粒径d(又は短径a・長径b)のヒストグラムを作成することにより粒度分布を求める。必要に応じてキャリブレーションに基づく補正(例えば岩石の種類や発破機構に応じた補正)を施すことにより、画像処理による粒度分布(ヒストグラム)を篩い分けによる粒度分布(粒径加積曲線)に近付けることができる。仮置き場へ運び出した発破ズリの粒度分布(粒径加積曲線)についても、図8及び図9と同様の方法で求めることができる。 Methods for measuring the particle size distribution of a granular material from the visible light image G are disclosed in Patent Documents 1 to 3, for example. First, as shown in FIG. 8, a digital image G of the deposit of the granular material T is input to a computer, and the image G is binarized based on shadows and the like, and methods such as labeling and pattern matching are performed as necessary. It is used to detect the contour (edge) of each granular material T. Next, as shown in FIG. 9, the particle diameter d (or the minor axis a and the major axis b from the elliptical shape fitted to the contour) is obtained from the area equivalent diameter of the contour of each granular material T, and the particle diameter d (or the minor axis a -Determine the particle size distribution by creating a histogram of major axis b). If necessary, correction based on calibration (for example, correction according to the type of rock and blasting mechanism) makes the particle size distribution (histogram) by image processing closer to the particle size distribution (particle size accumulation curve) by sieving. be able to. The particle size distribution (particle size accumulation curve) of the blasting debris carried out to the temporary storage can also be obtained by the same method as in FIGS.
しかし、非特許文献3のように仮置き場に運び出した発破ズリを対象とする粒度分布の計測方法では、仮置き場において今回の発破ズリが前回までの発破ズリと混合されてしまうため、発破仕様の反映されたズリの粒度分布を求めることが難しくなる。上述したように発破の仕様を調整して二次利用に適したズリの粒度とするためには、発破直後にその仕様の反映された発破ズリの粒度分布を計測して次回の発破仕様を調整することが必要であり、仮置き場に運び出されて異なる発破仕様のズリと混合される前に、切羽周辺において発破ズリの粒度分布を求めることが必要となる。 However, in the particle size distribution measurement method for blasting debris carried out to the temporary storage site as in Non-Patent Document 3, this blasting debris is mixed with the previous blasting debris in the temporary storage site, so It becomes difficult to obtain the reflected particle size distribution. As described above, in order to adjust the blasting specification so that the grain size is suitable for secondary use, immediately after the blasting, measure the blasting shear size distribution that reflects the specification and adjust the next blasting specification. It is necessary to determine the particle size distribution of the blasting shear around the face before being transported to a temporary storage area and mixed with the shearing of different blasting specifications.
ただし、発破直後の切羽周辺は照明もほとんどなく非常に暗い環境であり、発破によるガスや粉塵も充満しているので、坑外の仮置き場と同じ方法では粒度分布の計測に必要な画像Gが得られない。本発明者の予備的実験によれば、発破直後の切羽付近で撮影したズリ堆積物の可視光画像Gでは、像がぼやけて且つ粉塵も写り込んでいるので、図8のように個々の発破ズリ(粒状材T)の輪郭を抽出することは困難である。ガスや粉塵が霧消するのを待って照明を用意して画像Gを撮影することも考えられるが、工事進捗の観点からはガスや粉塵の霧消後直ちに発破ズリの運び出し(ズリ出し)を始めることが必要であり、画像Gの撮影のためにズリ出し作業を一時停止させる(妨害する)ことは望ましくない。発破直後の切羽周辺における発破ズリの粒度を計測するためには、粉塵等が飛散している暗い環境下でも発破ズリの輪郭を検出できる画像を得る技術の開発が必要である。 However, the area around the face immediately after blasting is a very dark environment with almost no lighting and is filled with gas and dust from blasting, so the image G required for measuring the particle size distribution is the same as the temporary storage place outside the mine. I can't get it. According to the preliminary experiment of the present inventor, in the visible light image G of the dust deposit photographed in the vicinity of the face immediately after the blasting, the image is blurred and the dust is also reflected. Therefore, as shown in FIG. It is difficult to extract the outline of the gap (granular material T). It is conceivable to wait for the gas and dust to disappear, and then prepare the lighting and take the image G. From the viewpoint of the progress of the construction, carry out the blasting removal immediately after the gas and dust have disappeared. It is necessary to start, and it is not desirable to pause (interfere) the shifting operation for taking the image G. In order to measure the grain size of the blasting gap around the face immediately after blasting, it is necessary to develop a technique for obtaining an image that can detect the outline of the blasting gap even in a dark environment where dust or the like is scattered.
そこで本発明の目的は、発破直後の切羽において発破ズリの粒径を計測できる方法及びシステムを提供することにある。 Therefore, an object of the present invention is to provide a method and a system capable of measuring the particle size of blasting shear at the face immediately after blasting.
本発明者は、発破ズリが熱を帯びていることに着目した。一般に発破直後の切羽周辺のズリは発破による熱を帯びており、温泉地帯の地下岩盤のように切羽が高温である場合は発破ズリも高温を帯びている。また、各発破ズリの熱量は必ずしも均一ではなくズリ毎に異なっており、単一のズリ内においても中心部と周辺部とでは熱量が相違している。本発明者の予備的実験によれば、この発破直後のズリ堆積物の温度分布画像Q(例えば図5参照)を撮影すれば、可視光画像G中の陰影から発破ズリの輪郭を検出できるのと同様に、温度分布画像Q中の温度分布から発破ズリの輪郭を抽出し、各発破ズリの粒径を求めることができる。また、赤外線は可視光に比べて波長が長く散乱しにくいため、ガスや粉塵が充満している切羽周辺の環境下でも透過してズリ堆積物の画像Qを撮影することが可能となる。本発明は、この着想に基づく研究開発の結果、完成に至ったものである。 The present inventor has paid attention to the fact that the blasting gap is heated. In general, the gap around the face immediately after blasting is heated by blasting, and when the face is hot like the underground rock in a hot spring area, the blasting gap is also hot. Further, the amount of heat of each blasting gap is not necessarily uniform and is different for each gap, and even within a single gap, the amount of heat is different between the central portion and the peripheral portion. According to the inventor's preliminary experiment, if the temperature distribution image Q (for example, see FIG. 5) of the deposit immediately after the blasting is photographed, the outline of the blasting shear can be detected from the shadow in the visible light image G. In the same manner as described above, it is possible to extract the outline of the blasting shear from the temperature distribution in the temperature distribution image Q and obtain the particle size of each blasting shear. In addition, since infrared rays have a longer wavelength and are less likely to scatter compared to visible light, it is possible to capture an image Q of a deposit by transmitting even under an environment around a face filled with gas or dust. The present invention has been completed as a result of research and development based on this idea.
図1の流れ図を参照するに、本発明による発破ズリの粒径計測方法は、岩盤の発破掘削時に生じる切羽1の発破ズリ3の堆積物上に所定強度で赤外線を放出する所定大きさの複数のスケール10を載置し(ステップS002)、スケール10を含むズリ3の堆積物の温度分布画像Q(例えば図5参照)を赤外線カメラ20で撮影し(ステップS003)、その温度分布画像Qから各ズリ3及びスケール10の輪郭を抽出し且つその輪郭とスケール10の所定大きさとから各ズリ3の粒径を計測してなるものである(ステップS008〜S009)。 Referring to the flow chart of FIG. 1, the particle size measurement method for blasting shear according to the present invention is a plurality of a predetermined size that emits infrared rays with a predetermined intensity on a deposit of blasting shear 3 of a face 1 generated during blast excavation of a rock mass. The temperature distribution image Q (see, for example, FIG. 5) of the deposit of the slip 3 including the scale 10 is photographed by the infrared camera 20 (step S003), and the temperature distribution image Q is taken from the temperature distribution image Q. The outline of each gap 3 and scale 10 is extracted, and the particle diameter of each gap 3 is measured from the outline and a predetermined size of scale 10 (steps S008 to S009).
また図2の実施例を参照するに、本発明による発破ズリの粒径計測システムは、岩盤の発破掘削時に生じる切羽1の発破ズリ3の堆積物上に載置され且つ所定強度で赤外線を放出する所定大きさの複数のスケール10(図2(C)参照)、スケール10を含むズリ3の堆積物の温度分布画像Q(例えば図5参照)を撮影する赤外線カメラ20(図2(D)参照)、並びにその温度分布画像Qから各ズリ3及びスケール10の輪郭を抽出し且つその輪郭とスケール10の所定大きさとから各ズリ3の粒径を計測する画像処理装置25(図2(D)参照)を備えてなるものである。 Further, referring to the embodiment of FIG. 2, the particle size measuring system for blasting shears according to the present invention is placed on the deposit of blasting shearing 3 of the face 1 generated during the blasting excavation of the rock mass and emits infrared rays with a predetermined intensity. A plurality of scales 10 of a predetermined size (see FIG. 2C), and an infrared camera 20 that captures a temperature distribution image Q (see, for example, FIG. 5) of the deposit of the slip 3 including the scale 10 (see FIG. 2D) 2), and an image processing device 25 that extracts the outline of each gap 3 and the scale 10 from the temperature distribution image Q and measures the particle diameter of each gap 3 from the outline and a predetermined size of the scale 10. ))).
好ましくは、図1のステップS003〜S005に示すように、赤外線カメラ20により同じ視点Pから複数の温度分布画像Q1〜Q4(例えば図4〜図7参照)を経時的に撮影し、画像処理装置25により複数の画像Q1〜Q4から各ズリ3及びスケール10の輪郭を抽出する。この場合は、ズリ3の堆積物に対して継続的に送風しながら複数の温度分布画像Q1〜Q4を撮影してもよい。 Preferably, as shown in steps S003 to S005 in FIG. 1, a plurality of temperature distribution images Q1 to Q4 (see, for example, FIGS. 4 to 7) are taken over time from the same viewpoint P by the infrared camera 20, and the image processing apparatus 25, the outlines of the respective slips 3 and the scale 10 are extracted from the plurality of images Q1 to Q4. In this case, a plurality of temperature distribution images Q <b> 1 to Q <b> 4 may be taken while continuously blowing air on the deposit of the gap 3.
更に好ましくは、図3(A)及び(B)に示すようにスケール10を、ズリ3と異なる温度の発熱物質11が内蔵された中空球状体10a、10bとする。望ましくは、図示例のように、スケール10に所要長さの紐15の一端を取り付け、紐15の他端の保持位置からの投擲によりスケール10をズリ3の堆積物上に載置可能とする。必要に応じて、図3(C)及び図2(D)に示すように、スケール10に赤外線の反射物質12が表面に塗布されたスケール10cを含め、赤外線カメラ20に赤外線を照射する照明22を含めてズリ3の堆積物の赤外線反射画像Rの撮影を可能とし、発破ズリ3の堆積物の温度分布画像Qと赤外線反射画像Rとから各ズリ3の輪郭を抽出してもよい。 More preferably, as shown in FIGS. 3 (A) and 3 (B), the scale 10 is a hollow spherical body 10a, 10b in which a heat generating material 11 having a temperature different from that of the slot 3 is built. Desirably, one end of a string 15 having a required length is attached to the scale 10 as shown in the figure, and the scale 10 can be placed on the deposit of the slip 3 by throwing from the holding position of the other end of the string 15. . If necessary, as shown in FIGS. 3 (C) and 2 (D), the scale 10 includes a scale 10c having an infrared reflective material 12 applied on the surface thereof, and illumination 22 for irradiating the infrared camera 20 with infrared rays. The infrared reflection image R of the deposit of the gap 3 can be taken, and the outline of each gap 3 can be extracted from the temperature distribution image Q and the infrared reflection image R of the deposit of the blast gap 3.
本発明による発破ズリの粒径計測方法及びシステムは、岩盤の発破掘削による発破ズリ3の堆積物上に赤外線を放出する所定大きさの複数のスケール10を載置したうえで、スケール10を含むズリ3の堆積物の温度分布画像Qを赤外線カメラ20で撮影し、その画像Qの温度分布から各ズリ3及びスケール10の輪郭を抽出して各ズリ3の粒径を計測するので、次の有利な効果を奏する。 The particle size measuring method and system for blasting blast according to the present invention includes a plurality of scales 10 having a predetermined size for emitting infrared rays on a deposit of blasting blasting 3 by blasting excavation of a rock mass, and includes the scale 10. The temperature distribution image Q of the deposit of the slip 3 is taken by the infrared camera 20, the contour of each slip 3 and the scale 10 is extracted from the temperature distribution of the image Q, and the particle size of each slip 3 is measured. There is an advantageous effect.
(イ)温度分布画像Qを用いることにより、可視光画像Gによる発破ズリ3の輪郭の検出が困難な切羽周辺の暗い環境下においても各発破ズリ3の温度分布の相違から輪郭を抽出することができる。
(ロ)また、可視光に比べて散乱しにくい赤外線を用いることにより、ガスや粉塵が充満している発破直後の切羽周辺でも各発破ズリ3の粒径計測可能な画像Qを得ることができる。
(ハ)所定大きさの複数のスケール10を温度分布画像Qに写し込むことにより、画像Q中の各スケール10の大きさからズリ堆積物の奥行きを検出し、画像Q中の撮影距離の異なる各発破ズリ3の粒径を精度よく計測することが可能となる。
(ニ)ズリ堆積物の複数の温度分布画像Q1〜Q4を経時的に撮影しておけば、例えばそれらの画像Q1〜Q4の異なる温度分布を合成して各発破ズリ3の輪郭を強調し、発破ズリ3の輪郭の抽出精度、粒径の計測精度を高めることができる。
(ホ)また、スケール10に所要長さの紐15を取り付け、離隔位置からの投擲によりスケール10をズリ堆積物上に載置可能とすれば、発破直後の不安定な切羽周辺に接近することなく発破ズリ3の粒径計測が可能となる。
(ヘ)発破直後の切羽周辺において迅速・安全に今回の発破仕様の反映された発破ズリの粒度分布を求めて次回の発破仕様の調整に繋げることにより、次回の発破ズリを二次利用に適した粒度分布に近付けることが期待でき、ひいては発破ズリの二次利用の促進に貢献できる。
(A) By using the temperature distribution image Q, the contour is extracted from the difference in the temperature distribution of each blast shear 3 even in a dark environment around the face where it is difficult to detect the contour of the blast shear 3 by the visible light image G. Can do.
(B) Further, by using infrared rays that are less likely to scatter than visible light, it is possible to obtain an image Q capable of measuring the particle size of each blasting gap 3 even in the vicinity of the face immediately after blasting, which is filled with gas or dust. .
(C) By imprinting a plurality of scales 10 of a predetermined size on the temperature distribution image Q, the depth of the deposit is detected from the size of each scale 10 in the image Q, and the shooting distances in the image Q are different. It becomes possible to accurately measure the particle size of each blasting gap 3.
(D) If a plurality of temperature distribution images Q1 to Q4 of the deposit are taken over time, for example, different temperature distributions of the images Q1 to Q4 are combined to emphasize the outline of each blasting gap 3, The accuracy of extracting the outline of the blasting gap 3 and the accuracy of measuring the particle diameter can be increased.
(E) If a string 15 of a required length is attached to the scale 10 and the scale 10 can be placed on the deposit by throwing from a remote position, the scale 10 approaches the unstable face immediately after blasting. It is possible to measure the particle size of the blasting slot 3 without any problems.
(F) The next blasting gap is suitable for secondary use by finding the particle size distribution of the blasting blast reflecting the blasting specifications quickly and safely in the vicinity of the face immediately after blasting and leading to the adjustment of the next blasting specification. It can be expected that the particle size distribution will be close to that of the blast, and it can contribute to the promotion of secondary use of blasting.
以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は、本発明による粒径計測方法の流れ図を示し、図2はその流れ図を山岳トンネル等の発破掘削に適用した実施例を示す。図1のステップS001は、図2(A)を参照して上述したように、岩盤切羽1に所定パターン(調整された発破仕様)の発破孔2を設けて火薬を埋め込み、切羽1を掘削する従来の発破工法と同様の処理を示す。図2(B)に示すように切羽前方に発破によって粉砕された岩石が堆積して発破ズリ3となるが、発破直後は切羽1付近にガスや粉塵が充満しているので、発破ズリ3の坑外への運び出し(ズリ出し、ステップS007)はガスや粉塵が消えるまで待ち合わせる。図1の流れ図は、この発破直後からズリ出しまでの待ち合わせ時間を利用して、発破ズリ3の粒径計測に必要な温度分布画像Qを(可能であれば可視光画像Gも含めて)撮影するものである(ステップS002〜S006)。 FIG. 1 shows a flow chart of a particle size measuring method according to the present invention, and FIG. 2 shows an embodiment in which the flow chart is applied to blast excavation such as a mountain tunnel. In step S001 of FIG. 1, as described above with reference to FIG. 2A, the rock face 1 is provided with the blast hole 2 having a predetermined pattern (adjusted blast specification), the gunpowder is embedded, and the face 1 is excavated. The same processing as the conventional blasting method is shown. As shown in FIG. 2 (B), rocks crushed by blasting accumulate in front of the face and become blasting dust 3, but immediately after blasting, gas and dust are filled in the vicinity of the face 1, so Carrying out of the mine (slip out, step S007) waits until the gas and dust disappear. The flow chart of FIG. 1 takes a temperature distribution image Q (including a visible light image G if possible) necessary for measuring the particle size of the blasting gap 3 by using the waiting time from immediately after the blasting to the gaping. (Steps S002 to S006).
先ずステップS002において、切羽1の発破ズリ3の堆積物上に、赤外線を放出する所定大きさの複数のスケール10を載置する(図2(C)参照)。従来の可視光画像Gを用いた粒度計測方法では、例えば図8に示すように計測対象の粒状体を平面的に撒きだし、各粒状体に対して撮影距離が等しくなるように、例えば上方から画像Gを撮影することが多い。しかし、発破直後の待ち合わせ時間中に迅速な撮影が要求される場面では、発破ズリ3を平面的に撒きだして上方から撮影するという手間のかかる方法を採用することは困難であり、三次元的に積み重なった発破ズリ3の堆積物を切羽前方の離れた位置から奥行きのある画像として撮影せざるを得ない。図示例のスケール10は、画像中の各スケール10の大きさからズリ堆積物の奥行き(全体の三次元形状)を検出し、画像中の撮影距離の異なる各発破ズリ3の粒径を精度よく計測するためのものであり、撮影位置から見て奥行き方向(撮影距離)の異なる複数の位置(例えば堆積物の頂部・中腹・裾野部等)に設置することが望ましい。 First, in step S002, a plurality of scales 10 having a predetermined size for emitting infrared rays are placed on the deposit of the blasting gap 3 of the face 1 (see FIG. 2C). In the conventional particle size measurement method using the visible light image G, for example, as shown in FIG. 8, the granular material to be measured is spread out in a plane, and the shooting distance is equal to each granular material, for example, from above. The image G is often taken. However, in situations where quick shooting is required during the waiting time immediately after the blasting, it is difficult to adopt a time-consuming method of shooting the blasting gap 3 in a plane and shooting from above, which is three-dimensional. It is necessary to photograph the deposit of the blasting gap 3 piled up as a deep image from a position in front of the face. The scale 10 in the illustrated example detects the depth of the deposit (the entire three-dimensional shape) from the size of each scale 10 in the image, and accurately determines the particle size of each blasting shear 3 having a different shooting distance in the image. It is for measurement, and is preferably installed at a plurality of positions (for example, the top, middle and bottom of the deposit) having different depth directions (shooting distances) when viewed from the shooting position.
スケール10は、後述する温度分布画像Qにおいて発破ズリ3と識別できるように、発破ズリ3と識別可能な所定強度の赤外線を放射するものとすることができる。例えば図3(A)及び(B)に示すように、スケール10を一対の反割り中空球状体10a、10b(例えば軽量アルミ製)により構成し、その中空球状体10a、10bの間に発熱物質(例えば加熱液体等)11を内蔵して中空球状スケール10とする。一般に発熱物質11が高温であるほど放射する赤外線の強度も大きくなるが、発破現場において発破ズリ3の放射する赤外線と識別できるように発熱物質11の温度を定めることができる。また簡易的には、図3(B)に示すように、中空球状体10a、10bの内面に反応触媒を含む発熱物質11(例えば、発熱物質として鉄粉の酸化作用を利用した携帯用カイロ等)を貼り付けて赤外線放射型の球状スケール10としてもよい。 The scale 10 can emit infrared rays having a predetermined intensity that can be distinguished from the blasting gap 3 so that the scale 10 can be identified from the blasting gap 3 in the temperature distribution image Q described later. For example, as shown in FIGS. 3A and 3B, the scale 10 is composed of a pair of split hollow spheres 10a and 10b (for example, made of lightweight aluminum), and a heat generating material is formed between the hollow spheres 10a and 10b. (For example, a heated liquid or the like) 11 is built into the hollow spherical scale 10. In general, the higher the temperature of the exothermic material 11, the greater the intensity of the infrared rays radiated. However, the temperature of the exothermic material 11 can be determined so that it can be distinguished from the infrared rays emitted by the blasting dust 3 at the blasting site. Further, simply, as shown in FIG. 3B, the exothermic substance 11 containing the reaction catalyst on the inner surface of the hollow spheres 10a and 10b (for example, a portable warmer using the oxidation action of iron powder as the exothermic substance) ) May be attached to form an infrared radiation type spherical scale 10.
図3(A)及び(B)のような球状のスケール10は、撮影方向が相違しても同じ円形像として撮影することができ、堆積物上の設置方向(設置姿勢)にもとくに制限がないので設置が容易であり、発破ズリ3が不安定な状態で積み重なった堆積物上でスケール10の位置や姿勢が多少ずれた場合でも設置し直す手間を必要としない点で、迅速な撮影を必要とする本発明に適している。ただし、本発明で用いるスケール10は球形に限定されるものではなく、例えば図3(D)のような棒状スケール10dに発熱物質を塗布し又は内蔵させて赤外線放射型のスケール10とすることも可能である。図示例のような棒状スケール10dは、堆積物上に奥行き方向(撮影距離)の異なる複数の位置に直角向きで設置することにより、画像中の各棒状スケール10dの長さからズリ堆積物の奥行き(堆積物全体の三次元形状)を検出し、奥行き方向の異なる発破ズリ3の粒径を計測することができる。 The spherical scale 10 as shown in FIGS. 3 (A) and 3 (B) can be photographed as the same circular image even if the photographing directions are different, and is particularly limited to the installation direction (installation posture) on the deposit. Since it is easy to install, there is no need to re-install it even if the position and posture of the scale 10 are slightly shifted on the piled up piled up in an unstable state of the blasting gap 3 It is suitable for the present invention that requires However, the scale 10 used in the present invention is not limited to a spherical shape. For example, a heat generating material may be applied to or built in a rod-shaped scale 10d as shown in FIG. Is possible. The rod-shaped scale 10d as shown in the example is installed on the deposit at a plurality of positions in different depth directions (photographing distances) at right angles, so that the depth of the deposit is determined from the length of each rod-shaped scale 10d in the image. It is possible to detect (the three-dimensional shape of the entire deposit) and measure the particle size of the blasting shear 3 having different depth directions.
好ましくは、図2(C)及び図3に示すように、スケール10に所要長さの紐15の一端を取り付ける。一般に発破直後の切羽1付近の岩盤は不安定となっている可能性があり、発破ズリ3も不安定な状態で積み重なっているので、ズリ堆積物に近付いてスケール10を載置する作業(ステップS002)は危険を伴うことが多い。スケール10に所要長さの紐15を取り付けておけば、例えば切羽前方の離れた撮影位置Pに紐15の他端を保持し、撮影位置Pからスケール10をズリ堆積物上に投げ込むことにより、スケール10をズリ堆積物上に載置することが可能となる。投げ込んだスケール10の位置や姿勢が撮影に適していない場合は、紐15を利用してスケール10を撮影位置Pに回収して再投入することにより、ズリ堆積物上の位置や姿勢を簡単に修正することもできる。また、画像の撮影終了後のスケール10の回収(ステップS007)も容易となる。 Preferably, one end of a string 15 having a required length is attached to the scale 10 as shown in FIGS. Generally, the bedrock near the face 1 immediately after blasting may be unstable, and the blasting shear 3 is also piled up in an unstable state. S002) is often dangerous. If the string 15 of the required length is attached to the scale 10, for example, the other end of the string 15 is held at the photographing position P far away from the face, and the scale 10 is thrown onto the deposit from the photographing position P. The scale 10 can be placed on the deposit. If the position and posture of the scale 10 thrown in are not suitable for photographing, the position and posture on the sludge deposit can be easily obtained by using the string 15 to collect the scale 10 at the photographing position P and re-insert it. It can also be corrected. In addition, the collection of the scale 10 after the completion of image capture (step S007) is facilitated.
次いで図1のステップS003において、撮影位置Pに赤外線カメラ20を設置し、スケール10を載置したズリ堆積物の温度分布画像(赤外線サーモグラフィ)Qを撮影する(図2(D)参照)。図示例の赤外線カメラ20の一例は、ズリ堆積物及びスケール10の放射する赤外線エネルギー(主に遠赤外線)の強度を検知する装置(赤外線サーモグラフ)であり、その強度を見かけの温度に変換した温度分布を可視化して画像表示するものである。例えば、図示例のようにカメラ20に三脚21を含め、切羽前方の離れた撮影位置Pにカメラ20を固定してズリ堆積物を撮影することにより、赤外線を放射する各発破ズリ3の表面温度とスケール10の表面温度とを相対的に比較できる温度分布画像Qを得ることができる。 Next, in step S003 in FIG. 1, the infrared camera 20 is installed at the photographing position P, and a temperature distribution image (infrared thermography) Q of the deposit on which the scale 10 is placed is photographed (see FIG. 2D). An example of the infrared camera 20 in the illustrated example is a device (infrared thermograph) that detects the intensity of infrared energy (mainly far infrared rays) emitted from the deposit and the scale 10, and the intensity is converted into an apparent temperature. The temperature distribution is visualized and displayed as an image. For example, as shown in the example, the camera 20 includes a tripod 21, and the camera 20 is fixed at a shooting position P far away from the face and the deposit 20 is photographed, whereby the surface temperature of each blast slot 3 that emits infrared rays. And a temperature distribution image Q that can relatively compare the surface temperature of the scale 10 can be obtained.
図4〜図7は、熱を帯びた岩石粒の温度分布画像Qにより各岩石粒の輪郭が抽出できるか否かを確認した実験結果を示す写真である。この実験では、発破ズリ3に代えて50度程度に加熱した採石場の砕石3の堆積物を用い、内面に携帯用カイロを貼り付けた中空球状スケール10(図3(B)参照)と並べて温度分布画像Qを撮影した。また、堆積物と対向させて固定した赤外線カメラ20により、加熱した砕石3の堆積物及びスケール10の複数の温度分布画像Q1〜Q4を所定時間t(例えば5分程度)間隔で経時的に撮影し、時間経過による温度分布画像Qの変化を観察した。図4は撮影開始直後の画像Q1を表し、図5〜図7はそれぞれ所定時間t、2t、3t経過後の画像Q2、Q3、Q4を表す。 4-7 is a photograph which shows the experimental result which confirmed whether the outline of each rock grain was extractable from the temperature distribution image Q of the rock grain which became hot. In this experiment, a quarry 3 deposit heated at about 50 degrees was used in place of the blasting gap 3, and the hollow spherical scale 10 (see FIG. 3B) with a portable body warmer attached to the inner surface was used. A temperature distribution image Q was taken. Further, the heated crushed stone 3 deposit and a plurality of temperature distribution images Q1 to Q4 of the scale 10 are photographed over time at a predetermined time t (for example, about 5 minutes) by the infrared camera 20 fixed facing the deposit. The change in the temperature distribution image Q over time was observed. FIG. 4 shows an image Q1 immediately after the start of photographing, and FIGS. 5 to 7 show images Q2, Q3, and Q4 after elapse of predetermined times t, 2t, and 3t, respectively.
温度分布画像Q1〜Q4の比較から、スケール10の放射する赤外線エネルギー(温度)は時間3tが経過しても大きく変化しないのに対し、砕石3の放射する赤外線エネルギーは時間3tの経過の間に徐々に小さくなり、温度が低下していることが分かる。また、時間3tの経過した温度分布画像Q4(図7)では堆積物中の各砕石3の輪郭を抽出することは困難であるが、例えば時間t又は2tの経過した温度分布画像Q2又はQ3(図5、図6)によれば各砕石3の輪郭を抽出することが可能であることが分かる。実際の発破現場では発破ズリ3の帯びる温度によっても相違するが、例えばステップS003において図5のような温度分布画像Q2(又は図6の画像Q3)を撮影しておけば、後述するステップS008〜S009において画像Q2(又は画像Q3)から発破ズリ3の輪郭を抽出することができる。 From the comparison of the temperature distribution images Q1 to Q4, the infrared energy (temperature) radiated by the scale 10 does not change greatly even when the time 3t elapses, whereas the infrared energy radiated by the crushed stone 3 changes during the elapse of the time 3t. It becomes small gradually and it turns out that temperature is falling. Moreover, although it is difficult to extract the outline of each crushed stone 3 in the sediment in the temperature distribution image Q4 (FIG. 7) after the elapse of time 3t, for example, the temperature distribution image Q2 or Q3 (elapsed after the time t or 2t) 5 and 6), it can be seen that the outline of each crushed stone 3 can be extracted. For example, if a temperature distribution image Q2 as shown in FIG. 5 (or an image Q3 in FIG. 6) is taken in step S003, for example, in step S003, it will be different in steps S008 and later. In S009, the outline of the blasting shear 3 can be extracted from the image Q2 (or the image Q3).
好ましくは、ステップS003〜S005に示すように、ズリ堆積物を所定時間tずつ放置しながら同じ視点Pで温度分布画像Qの撮影を経時的に繰り返し、図4〜図7のような複数の温度分布画像Q1〜Q4を取得する。上述したように、各発破ズリ3の温度差が比較的明瞭な単独の温度分布画像Q2(又は画像Q3)を用いることにより堆積物中の各ズリ3の輪郭を抽出することも可能であるが、温度分布の異なる複数の画像Q1〜Q4を用いることにより、各発破ズリ3の輪郭の抽出精度を高めることができる。例えば、温度分布画像Q1〜Q4の異なる温度分布を合成して各発破ズリ3の輪郭が強調された合成画像を作成し、その合成画像から各発破ズリ3の輪郭を抽出する。 Preferably, as shown in steps S003 to S005, photographing of the temperature distribution image Q is repeated over time from the same viewpoint P while leaving the deposits for a predetermined time t, and a plurality of temperatures as shown in FIGS. Distribution images Q1-Q4 are acquired. As described above, it is possible to extract the outline of each shear 3 in the deposit by using a single temperature distribution image Q2 (or image Q3) in which the temperature difference between each blast 3 is relatively clear. By using a plurality of images Q1 to Q4 having different temperature distributions, the accuracy of extracting the outline of each blasting gap 3 can be increased. For example, by synthesizing different temperature distributions of the temperature distribution images Q1 to Q4, a synthesized image in which the outline of each blasting gap 3 is emphasized is created, and the outline of each blasting gap 3 is extracted from the synthesized image.
また、ステップS003〜S005において、ズリ堆積物に対して送風しながら複数の温度分布画像Q1〜Q4を撮影することも有効である。例えば送風機の送風によって発破ズリ3を積極的に冷却しながら温度分布画像Qを経時的に撮影することにより、図4〜図7のような温度分布の異なる複数の画像Qを取得し、発破ズリ3の輪郭の抽出精度を高めることが期待できる。一般の坑内発破現場では坑入口から切羽まで風管を配置して切羽の排気や換気を行っていることが多いので、例えばそのような風管を送風機として利用してズリ堆積物を冷却しながら複数の画像Qを撮影することができる。 In steps S003 to S005, it is also effective to take a plurality of temperature distribution images Q1 to Q4 while blowing air to the deposit. For example, a plurality of images Q having different temperature distributions as shown in FIGS. 4 to 7 are obtained by photographing the temperature distribution image Q over time while actively cooling the blasting gap 3 by blowing air from a blower. It can be expected that the extraction accuracy of the contour 3 is improved. In general mine blasting sites, wind pipes are often arranged from the entrance to the face to exhaust and ventilate the face. For example, while using such a wind pipe as a blower, A plurality of images Q can be taken.
更に好ましくは、ステップS003〜S005において、図2(D)に示すように赤外線カメラ20に発破ズリ3の堆積物に対して赤外線を照射する照明22を含め、上述した温度分布画像Qと共に、赤外線カメラ20により堆積物から反射される赤外線の反射画像Rを撮影可能とする。上述した赤外線サーモグラフは対象物から放射される主に遠赤外線(波長1.5〜100μm)のエネルギーを検知して温度分布画像Qを作成するものであるが、そのような温度分布画像Qに加えて、対象物から反射される赤外線を検知して赤外線反射画像Rを作成することにより、温度分布画像Qと赤外線反射画像Rとの両者から各発破ズリ3の輪郭を容易に抽出できる場合がある。望ましくは、照明22により発破ズリ3の体積物に対して遠赤外線よりも波長の短い近赤外線(波長0.7〜2.5μm)を照射し、赤外線カメラ20によって発破ズリ3の近赤外線の吸収度合い(反射度合い)を反映した赤外線吸収画像Rを撮影する。 More preferably, in steps S003 to S005, as shown in FIG. 2 (D), the infrared camera 20 includes an illumination 22 for irradiating infrared rays to the deposit of the blasting gap 3 and the temperature distribution image Q described above and the infrared ray. An infrared reflection image R reflected from the deposit by the camera 20 can be taken. The above-described infrared thermograph detects the energy of far-infrared rays (wavelength 1.5 to 100 μm) radiated from the object and creates the temperature distribution image Q. In addition, by detecting the infrared rays reflected from the object and creating the infrared reflection image R, the outline of each blasting gap 3 can be easily extracted from both the temperature distribution image Q and the infrared reflection image R. is there. Desirably, near-infrared rays having a wavelength shorter than that of far infrared rays (wavelength 0.7 to 2.5 μm) are irradiated to the volume of the blasting gap 3 by the illumination 22, and the infrared camera 20 absorbs the near infrared rays of the blasting gap 3 An infrared absorption image R reflecting the degree (reflection degree) is taken.
すなわち、発破直後のズリ3は、上述したように熱を帯びていると共に、切羽坑内に露出している岩盤と異なる表面水分を有していることが多い。また各発破ズリ3の表面水分はズリ毎に異なっており、更に時間の経過と共に蒸発して変化している。近赤外線は水分に吸収されやすい特性を有しているので、例えば発破ズリ3に近赤外線を照射して赤外線反射画像Rを撮影すれば、その赤外線反射画像Rから発破ズリ3の近赤外線の吸収度合いの分布(すなわち表面水分の分布)を検出し、その分布から発破ズリ3の輪郭を抽出することができる。或いは、上述した温度分布画像Qの場合と同様に、ズリ堆積物を所定時間tずつ放置しながら赤外線反射画像R1〜R4を経時的に撮影すれば、複数の画像R1〜R4中の水分分布の変化から各発破ズリ3の輪郭を抽出することができる。従って、遠赤外線画像Qと赤外線反射画像Rとの両者を用いることにより、いわば温度分布と水分分布との両面から各発破ズリ3の輪郭を抽出することが可能となり、各発破ズリ3の輪郭の抽出精度、ひいては各発破ズリ3の粒径の計測精度を高めることが期待できる。 That is, the shear 3 immediately after blasting is often heated as described above and has surface moisture different from that of the rock exposed in the face pit. Further, the surface moisture of each blasting gap 3 is different for each gap, and further changes by evaporation as time elapses. Since near infrared rays have a characteristic that they are easily absorbed by moisture, for example, if an infrared reflection image R is photographed by irradiating the blasting shear 3 with the near infrared radiation, the near infrared absorption of the blasting shear 3 from the infrared reflection image R The distribution of the degree (that is, the distribution of surface moisture) can be detected, and the contour of the blasting gap 3 can be extracted from the distribution. Alternatively, as in the case of the temperature distribution image Q described above, if infrared reflection images R1 to R4 are photographed over time while the deposit is left for a predetermined time t, the moisture distribution in the plurality of images R1 to R4 is determined. The contour of each blasting gap 3 can be extracted from the change. Therefore, by using both the far-infrared image Q and the infrared reflection image R, it is possible to extract the outline of each blasting gap 3 from both sides of the temperature distribution and the moisture distribution. It can be expected that the extraction accuracy and, in turn, the measurement accuracy of the particle size of each blasting gap 3 will be improved.
赤外線反射画像Rを撮影する場合は、例えば図3(C)及び図3(D)に示すように、近赤外線の反射物質12が表面に塗布又は散布された球状スケール10c又は棒状スケール10dをスケール10に含め、各発破ズリ3及びスケール10の反射する近赤外光により赤外線反射画像Rを作成することができる。例えば、球状又は棒状スケール10c、10dの表面に水分を塗布又は散布して赤外線反射画像R用のスケール10とする。望ましくは、時間の経過によっても蒸発しにくい近赤外光反射塗料をスケール10c、10dの表面に塗布して赤外線反射画像R用のスケール10とする。例えば、図3(A)のような発熱物質11の内蔵された中空球状スケール10の表面に近赤外光反射塗料を塗布することにより、温度分布画像Q用のスケール10を赤外線反射画像R用のスケール10として共用することも可能である。 When the infrared reflection image R is taken, for example, as shown in FIGS. 3C and 3D, a spherical scale 10c or a rod-like scale 10d on which a near-infrared reflective material 12 is applied or dispersed is scaled. 10, an infrared reflection image R can be created from near-infrared light reflected by each blasting gap 3 and the scale 10. For example, the scale 10 for the infrared reflection image R is formed by applying or dispersing moisture on the surfaces of the spherical or rod-shaped scales 10c and 10d. Desirably, a near-infrared light reflecting paint that does not easily evaporate over time is applied to the surfaces of the scales 10c and 10d to form the scale 10 for the infrared reflected image R. For example, the scale 10 for the temperature distribution image Q is used for the infrared reflected image R by applying a near-infrared light reflecting paint to the surface of the hollow spherical scale 10 in which the heat generating material 11 is embedded as shown in FIG. The scale 10 can be shared.
ステップS003〜S005を例えば切羽付近のガスや粉塵が適当に薄まるまで繰り返し、温度分布画像Qの撮影を終了する場合はステップS004からステップS006へ進む。ステップS006において、可視光画像Gの撮影が可能であれば、撮影位置Pの赤外線カメラ20を可視光カメラに交換して、スケール10を含むズリ堆積物の可視光画像Gを撮影することが望ましい。上述した温度分布画像Q及び赤外線反射画像Rに加えて、可視光画像Gをも用いて各発破ズリ3の輪郭を抽出することにより、各発破ズリ3の輪郭抽出の更なる高精度化を図り、後述する粒度分布予測の品質向上に繋げることができる。ただし、ステップS006における可視光画像Gの撮影は、ステップS007のズリ出し作業を妨げるようであれば省略することができる。 Steps S003 to S005 are repeated until, for example, the gas or dust near the face is appropriately diluted, and when the photographing of the temperature distribution image Q is finished, the process proceeds from step S004 to step S006. In step S006, if the visible light image G can be photographed, it is desirable to replace the infrared camera 20 at the photographing position P with a visible light camera and photograph the visible light image G of the deposit including the scale 10. . In addition to the above-described temperature distribution image Q and infrared reflection image R, the visible light image G is also used to extract the contour of each blasting gap 3, thereby further improving the accuracy of the contour extraction of each blasting gap 3. This can lead to quality improvement of the particle size distribution prediction described later. However, the photographing of the visible light image G in step S006 can be omitted if it hinders the shifting operation in step S007.
ステップS002〜S006において発破ズリ3の粒径計測に必要な温度分布画像Q(及び、可能であれば可視光画像G)を撮影したのち、ステップS007においてスケール10を回収し、通常の発破工法と同様に発破ズリ3を坑外へ運び出すると共に切羽観察用の可視画像(通常の写真)を撮影し、必要に応じて切羽1に支保工や覆工を建て込んだうえで、ステップS011からステップS001へ戻って次回の発破掘削を繰り返す。 In Steps S002 to S006, after taking the temperature distribution image Q (and the visible light image G if possible) necessary for the particle size measurement of the blast crack 3, the scale 10 is collected in Step S007, and the normal blasting method is used. In the same manner, the blasting gap 3 is carried out of the mine and a visible image (ordinary photograph) for observing the face is taken, and a support or lining is built in the face 1 as necessary. Return to S001 and repeat the next blast excavation.
図1のステップS008〜S010は、上述した温度分布画像Q(及び赤外線反射画像R)を図2(D)の画像処理装置25へ入力し、画像処理装置25において温度分布画像Q(及び赤外線反射画像R)から各発破ズリ3及びスケール10の輪郭を抽出し、その輪郭とスケール10の所定大きさとから各ズリ3の粒径を計測する処理を示す。図示例の画像処理装置25は、輪郭抽出手段26、粒径計測手段27、及び粒度分布算出手段28を有する。輪郭抽出手段26は、図8に示すように、温度分布画像Qを温度分布に基づいて二値化処理し(又は赤外線反射画像Rを水分分布に基づいて二値化処理し)、ラベリング、パターンマッチング等の手法を用いて画像Q(及び画像R)中の各発破ズリ3及びスケール10の輪郭を抽出する内蔵プログラムである(ステップS008)。また粒径計測手段27は、図9に示すように、抽出された輪郭に基づき、各スケール10の径dを求めると共に各発破ズリ3の粒径d(又は短径a・長径b)を求める内蔵プログラムである。粒径計測手段27は、更に各スケール10の径dと所定大きさTとからズリ堆積物の三次元形状(撮影位置Pから見た堆積物全体の奥行き)を算出し、そのズリ堆積物全体の三次元形状に基づいて各発破ズリ3の粒径dとスケール10の所定大きさとを比較することにより、各発破ズリ3の粒径を算出する(ステップS009)。 In steps S008 to S010 in FIG. 1, the temperature distribution image Q (and infrared reflection image R) described above is input to the image processing device 25 in FIG. 2D, and the temperature distribution image Q (and infrared reflection) in the image processing device 25. The process of extracting the outline of each blasting gap 3 and the scale 10 from the image R) and measuring the particle diameter of each gap 3 from the outline and a predetermined size of the scale 10 is shown. The illustrated image processing apparatus 25 includes a contour extracting unit 26, a particle size measuring unit 27, and a particle size distribution calculating unit 28. As shown in FIG. 8, the contour extraction unit 26 binarizes the temperature distribution image Q based on the temperature distribution (or binarizes the infrared reflection image R based on the moisture distribution), and performs labeling and patterning. This is a built-in program that extracts contours of each blasting gap 3 and scale 10 in the image Q (and image R) using a technique such as matching (step S008). Further, as shown in FIG. 9, the particle diameter measuring means 27 obtains the diameter d of each scale 10 based on the extracted contour and obtains the particle diameter d (or minor axis a / major axis b) of each blasting gap 3. It is a built-in program. The particle size measuring means 27 further calculates the three-dimensional shape of the deposit (the depth of the entire deposit as viewed from the photographing position P) from the diameter d and the predetermined size T of each scale 10, and the entire deposit. Based on the three-dimensional shape, the particle diameter d of each blasting gap 3 is compared with a predetermined size of the scale 10 to calculate the particle diameter of each blasting gap 3 (step S009).
図2(D)の画像処理装置25の粒度分布算出手段28は、粒径計測手段27により算出された各発破ズリ3の粒径dのヒストグラムを作成し、発破ズリ3の粒度分布を求める内蔵プログラムである(ステップS010)。例えば発破現場において試験的に採取した発破ズリ3の粒径ヒストグラムと粒度分布との関係式(補正式)をキャリブレーションに基づいて作成し、その関係式(補正式)に基づいて発破ズリ3の粒径ヒストグラムを補正することにより、発破ズリ3の高品質な粒度分布を算出することができる。このような補正は、上述した従来の仮置き場に運び出した発破ズリの粒度分布計測と同様のものであり、従来技術に属する。 The particle size distribution calculating means 28 of the image processing apparatus 25 of FIG. 2D creates a histogram of the particle size d of each blasting gap 3 calculated by the particle size measuring means 27 and obtains the particle size distribution of the blasting gap 3. It is a program (step S010). For example, a relational expression (correction formula) between the particle size histogram and the particle size distribution of the blasting shear 3 collected experimentally at the blasting site is created based on the calibration, and based on the relational expression (correction formula), By correcting the particle size histogram, it is possible to calculate a high-quality particle size distribution of the blasting gap 3. Such correction is the same as the particle size distribution measurement of the blasting gap carried out to the above-described conventional temporary storage place, and belongs to the prior art.
図1の流れ図によれば、切羽周辺の暗い環境下においても発破ズリ3の輪郭を抽出できる温度分布画像Qを得ることができ、坑外へ運び出す前の発破直後の切羽周辺において発破ズリ3の粒度分布を求めることが可能となる。また、温度分布画像Qを得るための赤外光は、ガスや粉塵が充満している発破直後の切羽周辺においても散乱しにくいので、発破後直ちに画像Qを撮影することが可能であり、発破からズリ出しまでの待ち合わせ時間を利用して発破ズリ3の粒度分布を迅速に求めることができる。従って、ステップS008〜S010において求めた今回の発破ズリ3の粒度分布を、ステップS001における次回の発破仕様の調整に利用することが可能となり、次回の発破ズリを二次利用に適した粒度分布に近付けることにより発破ズリの二次利用を促進することができる。 According to the flowchart of FIG. 1, a temperature distribution image Q that can extract the outline of the blasting gap 3 even in a dark environment around the face can be obtained, and the blasting gap 3 of the blasting gap 3 immediately after the blasting before being carried out of the mine is obtained. The particle size distribution can be obtained. In addition, since infrared light for obtaining the temperature distribution image Q is not easily scattered around the face immediately after blasting, which is filled with gas or dust, it is possible to shoot the image Q immediately after blasting. The particle size distribution of the blasting gap 3 can be quickly obtained by using the waiting time from the start to the deviation. Therefore, it is possible to use the particle size distribution of the current blasting gap 3 obtained in steps S008 to S010 for the adjustment of the next blasting specification in step S001, and to make the next blasting gap a particle size distribution suitable for secondary use. By approaching, secondary use of blasting can be promoted.
こうして本発明の目的である「発破直後の切羽において発破ズリの粒径を計測できる方法及びシステム」を提供することができる。 Thus, it is possible to provide the “method and system capable of measuring the particle size of the blasting gap in the face immediately after blasting”, which is the object of the present invention.
1…切羽 2…発破孔
3…発破ズリ
10…スケール 10a、10b…反割り中空球状体
10c…球状体 10d…棒状スケール
11、11a、11b…発熱物質
12…反射物質 14…スプレー
15…紐
20…赤外線カメラ(又は近赤外線カメラ)
21…三脚 22…照明
25…コンピュータ 26…輪郭抽出手段
27…粒径計測手段 28…粒度分布算出手段
P…撮影位置 Q…温度分布画像
G…可視画像 T…粒状体
DESCRIPTION OF SYMBOLS 1 ... Face 2 ... Blasting hole 3 ... Blasting slot 10 ... Scale 10a, 10b ... Reverse split hollow spherical body 10c ... Spherical body 10d ... Rod-shaped scale 11, 11a, 11b ... Exothermic substance 12 ... Reflective substance 14 ... Spray 15 ... String 20 ... Infrared camera (or near infrared camera)
DESCRIPTION OF SYMBOLS 21 ... Tripod 22 ... Illumination 25 ... Computer 26 ... Contour extraction means 27 ... Particle size measurement means 28 ... Particle size distribution calculation means P ... Shooting position Q ... Temperature distribution image G ... Visible image T ... Granule
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010190403A JP5408732B2 (en) | 2010-08-27 | 2010-08-27 | Blast particle size measuring method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010190403A JP5408732B2 (en) | 2010-08-27 | 2010-08-27 | Blast particle size measuring method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012047613A true JP2012047613A (en) | 2012-03-08 |
JP5408732B2 JP5408732B2 (en) | 2014-02-05 |
Family
ID=45902662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010190403A Active JP5408732B2 (en) | 2010-08-27 | 2010-08-27 | Blast particle size measuring method and system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5408732B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014095644A (en) * | 2012-11-11 | 2014-05-22 | Kajima Corp | Method, system, and program for measuring grain size of deposited granular material |
JP2017072433A (en) * | 2015-10-06 | 2017-04-13 | 新日鐵住金株式会社 | Measurement apparatus, measurement method and program |
JP2017129408A (en) * | 2016-01-19 | 2017-07-27 | 株式会社大林組 | Grain size monitoring method of ground material and three-dimensional image processing facility |
JP2017167031A (en) * | 2016-03-17 | 2017-09-21 | 三菱マテリアルテクノ株式会社 | Evaluation method of blast debris, and evaluation system of blast debris |
JP2017198017A (en) * | 2016-04-28 | 2017-11-02 | 株式会社大林組 | Quality management method for rock zone in rock fill dam |
JP2018072158A (en) * | 2016-10-28 | 2018-05-10 | 月島機械株式会社 | Uniformity evaluating device |
CN109992841A (en) * | 2019-03-11 | 2019-07-09 | 长江水利委员会长江科学院 | A kind of blast fragmentation size space omnidirectional subarea management numerical value emulation method |
CN114742833A (en) * | 2022-06-13 | 2022-07-12 | 济宁圣城化工实验有限责任公司 | Material crushing effect evaluation method for aluminum phosphide tablet production |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62263425A (en) * | 1986-05-10 | 1987-11-16 | Jeol Ltd | Thermography apparatus |
JPH0351495A (en) * | 1989-07-18 | 1991-03-05 | Kumagai Gumi Co Ltd | Execution control system of tunnel construction |
JPH05296749A (en) * | 1992-04-24 | 1993-11-09 | Nkk Corp | Blast furnace in-pile observation camera unit |
JP2005034826A (en) * | 2003-07-02 | 2005-02-10 | Sato Kogyo Co Ltd | Method and device for manufacturing aggregate out of rock to be discharged in construction work |
JP2006078234A (en) * | 2004-09-07 | 2006-03-23 | Kyoto Univ | Gravel measuring instrument and method |
-
2010
- 2010-08-27 JP JP2010190403A patent/JP5408732B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62263425A (en) * | 1986-05-10 | 1987-11-16 | Jeol Ltd | Thermography apparatus |
JPH0351495A (en) * | 1989-07-18 | 1991-03-05 | Kumagai Gumi Co Ltd | Execution control system of tunnel construction |
JPH05296749A (en) * | 1992-04-24 | 1993-11-09 | Nkk Corp | Blast furnace in-pile observation camera unit |
JP2005034826A (en) * | 2003-07-02 | 2005-02-10 | Sato Kogyo Co Ltd | Method and device for manufacturing aggregate out of rock to be discharged in construction work |
JP2006078234A (en) * | 2004-09-07 | 2006-03-23 | Kyoto Univ | Gravel measuring instrument and method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014095644A (en) * | 2012-11-11 | 2014-05-22 | Kajima Corp | Method, system, and program for measuring grain size of deposited granular material |
JP2017072433A (en) * | 2015-10-06 | 2017-04-13 | 新日鐵住金株式会社 | Measurement apparatus, measurement method and program |
JP2017129408A (en) * | 2016-01-19 | 2017-07-27 | 株式会社大林組 | Grain size monitoring method of ground material and three-dimensional image processing facility |
JP2017167031A (en) * | 2016-03-17 | 2017-09-21 | 三菱マテリアルテクノ株式会社 | Evaluation method of blast debris, and evaluation system of blast debris |
JP2017198017A (en) * | 2016-04-28 | 2017-11-02 | 株式会社大林組 | Quality management method for rock zone in rock fill dam |
JP2018072158A (en) * | 2016-10-28 | 2018-05-10 | 月島機械株式会社 | Uniformity evaluating device |
CN109992841A (en) * | 2019-03-11 | 2019-07-09 | 长江水利委员会长江科学院 | A kind of blast fragmentation size space omnidirectional subarea management numerical value emulation method |
CN109992841B (en) * | 2019-03-11 | 2022-12-06 | 长江水利委员会长江科学院 | Blasting block space omnibearing partition coupling numerical simulation method |
CN114742833A (en) * | 2022-06-13 | 2022-07-12 | 济宁圣城化工实验有限责任公司 | Material crushing effect evaluation method for aluminum phosphide tablet production |
CN114742833B (en) * | 2022-06-13 | 2022-08-23 | 济宁圣城化工实验有限责任公司 | Material crushing effect evaluation method for aluminum phosphide tablet production |
Also Published As
Publication number | Publication date |
---|---|
JP5408732B2 (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5408732B2 (en) | Blast particle size measuring method and system | |
JP6062217B2 (en) | Particle size measuring method, system and program for accumulated granular material | |
Ishihara | The IceCube Upgrade--Design and Science Goals | |
Trivedi et al. | Prediction of blast-induced flyrock in Indian limestone mines using neural networks | |
Zhu et al. | Experimental evidence of reaction‐induced fracturing during olivine carbonation | |
Gheibie et al. | Modified Kuz—Ram fragmentation model and its use at the Sungun Copper Mine | |
Kwon et al. | An investigation of the excavation damaged zone at the KAERI underground research tunnel | |
JP6959020B2 (en) | Tunnel construction method | |
JP4883799B2 (en) | Ground material particle size measurement system and program | |
JP6455990B2 (en) | Blasting evaluation method and blasting evaluation system | |
JP5518760B2 (en) | Brilliance particle size measurement method and system using near infrared light | |
Azizi et al. | A new approach to represent impact of discontinuity spacing and rock mass description on the median fragment size of blasted rocks using image analysis of rock mass | |
Sudhakar et al. | Comparison of fragmentation measurements by photographic and image analysis techniques | |
CN108027433A (en) | Monitoring system and method | |
Zaid | Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS | |
JP2006189410A (en) | Non-destructive inspection method for structure, and device therefor | |
JP7018355B2 (en) | Tunnel face monitoring system and tunnel face monitoring method | |
Kulula et al. | Influence of blasting parameters and density of rocks on blast performance at Tschudi Mine, Tsumeb, Namibia | |
Aubertin et al. | Horizontal single hole blast testing–Part 1: Systematic measurements using TLS surveys | |
JP2017526928A (en) | Apparatus and method for non-invasive detection of toxic substances in aquatic environment | |
Ramesh et al. | Effects of spacing-to-burden ratio and joint angle on rock fragmentation: an unmanned aerial vehicle and AI approach in overburden benches | |
JP6696290B2 (en) | Quality control method of rock zone in rock fill dam | |
JP7117273B2 (en) | Fragmented piece detection method, fragmented fragmentation method, fragmented fragment detection device and fragmented fragmentation device | |
Manzoor et al. | Rock fragmentation measurements in sublevel caving: field tests at LKAB’s Malmberget mine | |
Segarra et al. | A Method for Reconstruction of Size Distributions from 3D Drone Image Analysis: A Case Study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5408732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |